US20020120988A1 - Abrasion-and wrinkle-resistant finish for textiles - Google Patents

Abrasion-and wrinkle-resistant finish for textiles Download PDF

Info

Publication number
US20020120988A1
US20020120988A1 US10/084,031 US8403102A US2002120988A1 US 20020120988 A1 US20020120988 A1 US 20020120988A1 US 8403102 A US8403102 A US 8403102A US 2002120988 A1 US2002120988 A1 US 2002120988A1
Authority
US
United States
Prior art keywords
resin
reactive
textile
durable
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/084,031
Inventor
David Soane
William Ware
David Offord
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Tex Inc
Original Assignee
Nano Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Tex Inc filed Critical Nano Tex Inc
Priority to US10/084,031 priority Critical patent/US20020120988A1/en
Assigned to NANO-TEX, LLC reassignment NANO-TEX, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WARE, WILLIAM JR., OFFORD, DAVID A., SOANE, DAVID S.
Publication of US20020120988A1 publication Critical patent/US20020120988A1/en
Assigned to BURLINGTON INDUSTRIES, INC. reassignment BURLINGTON INDUSTRIES, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANO-TEX, LLC
Assigned to WLR BURLINGTON ACQUISITION LLC reassignment WLR BURLINGTON ACQUISITION LLC ASSIGNMENT OF SECURITY AGREEMENT Assignors: BURLINGTON INDUSTRIES, INC.
Assigned to NANO-TEX, LLC reassignment NANO-TEX, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TEXTILE GROUP, INC. (FKA WLR BURLINGTON ACQUISITION LLC)
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/432Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/423Amino-aldehyde resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions

Definitions

  • the present invention relates to textile treatment compositions for imparting permanent abrasion- and wrinkle-resistance to textiles.
  • Cotton consists of cellulose, a polysaccharide.
  • the cellulose molecules in a cotton fiber are arranged linearly and pass in and out of crystalline and amorphous regions and are held in place by hydrogen bonds between the molecules. Slippage between the cellulose chains or between larger structural units of the fiber occurs when a force of sufficient magnitude is placed on the fiber. The hydrogen bonds tend to resist or prevent the slippage, but once slippage occurs the bonds reform in new locations and tend to maintain the fiber in the bent or wrinkled state.
  • cotton fiber is hydrophilic and absorbs water, which can break hydrogen bonds and allow the fiber or fabric to shrink. Thus, 100% cotton wrinkles easily and has the potential to shrink upon laundering.
  • Cellulose is made up of repeating anhydroglucose units. Each unit contains two secondary and one primary alcohol groups. To achieve wrinkle resistance, alcohol groups on adjacent cellulose chains are partially crosslinked to keep the chains fixed relative to each other. Over the years, a number of crosslinking agents (resins) have been explored to achieve durable-press properties. Some include isocyanates, epoxides, divinylsulfones, aldehydes, chlorohydrins, N-methylol compounds, and polycarboxylic acids. Of these, N-methylol compounds have been used the most.
  • Examples include dimethylol urea, dimethylol ethylene urea, trimethylol trazine, dimethylol methyl carbamate, uron, triazone, and dimethylol dihydroxy ethylene urea.
  • Dimethylol dihydroxy ethylene urea (DMDHEU) is the most common durable-press finish used today.
  • the anionic softeners are generally sulfated or sulfonated compounds used primarily to lubricate yarns through processing. Examples of these compounds include sulfonated tallow, glycerides, and esters. Sulfonated or sulfated castor oil, propyl oleate, butyl oleate, and tallow are used in various steps in dying fabrics. Anionics tend to provide inferior softness compared to the cationics and nonionics. Furthermore, they have limited durability to laundering or dry-cleaning. Their major limitation comes from their negative charge, which causes incompatibility in resin finishing baths and makes them most sensitive to water hardness and electrolytes.
  • the cationic softeners are nitrogen-containing compounds including fatty amino amides, imidazolines, amino polysiloxanes, and quaternaries. As a result of their positive charge, they are attracted to cotton or synthetic fabrics through electrostatic interactions. They tend to be compatible with most resin finishes and are somewhat durable to laundering. The most significant disadvantage of cationic softeners is their tendency to change the shade or affect the fastness of certain dyestuffs. Discoloration on white fabrics may also be a concern. The development of a fishy odor on the fabric can be a problem with certain systems.
  • Nonionics are the most widely used softeners. This class includes polyethylenes, glycerides such as glycerol monostearate, ethoxylates such as ethoxylated castor wax, coconut oil, corn oil, etc., and ethoxylated fatty alcohol and acids.
  • the nonionic softeners offer excellent compatibility in resin baths due to their uncharged state. Since nonionics have no charge, they have no specific affinity for fabrics and therefore have relatively low durability to washing.
  • This invention is directed to treatment preparations useful for the permanent or substantially permanent treatment of textiles and other webs to provide tear and abrasion strength and softness to durable-press garments.
  • the preparations comprise a softener (referred to herein as a “resin-reactive modifier”) durable to repeated laundering used in conjunction with a durable-press resin, to increase the comfort and lifetime of durable-press garments.
  • the preparations of the invention comprise a “rubbery” resin-reactive modifier capable of reacting with a durable-press resin during textile treatment.
  • reacting is meant that the polymer will form a covalent bond with the durable-press resin and the resin will form a covalent bond to the fiber, textile, or web to be treated.
  • the resulting durable-press/softener preparation is substantially permanently attached to the web and provides improved softness and tear/abrasion strength retention within and/or on the textile or web fiber structure while retaining the durable-press properties of the resin through repeated launderings.
  • This invention is further directed to the yarns, fibers, fabrics, textiles, finished goods, or nonwovens (encompassed herein under the terms “textiles” and “webs”) treated with the textile-reactive durable-press/softener preparation.
  • Such textiles and webs exhibit a greatly improved, durable softness and tear/abrasion strength.
  • durable softness and tear/abrasion strength and “durable wrinkle resistance, a soft hand, and tear/abrasion resistance” are meant that the textile or web will exhibit improved softness and resistance to tear and/or abrasion, even after multiple launderings, while retaining its durable press or resistance to wrinkling.
  • Methods are provided for treating fabrics to impart permanent wrinkle resistance as well as permanent softness and tear/abrasion resistance by combining a “rubbery” resin-reactive modifier with durable-press resins.
  • the textile-reactive preparations of the invention comprise a combination of i) a durable-press resin capable of imparting wrinkle resistance and ii) a resin-reactive modifier capable of imparting a soft hand and tear/abrasion resistance to textiles.
  • the resin-reactive modifier useful in the present invention comprises particular monomers, oligomers, or polymers having hydroxyl—or other reactive group-containing monomers, or mixtures thereof (referred to herein and in the appended claims as “reactive building blocks”), copolymerized with soft, rubbery or elastomeric monomers or polymers (referred to herein and in the appended claims as “rubbery building blocks”).
  • the resin-reactive modifier may also comprise rubbery building blocks that are processed post-polymerization to include hydroxyl—or other reactive groups.
  • the resin-reactive modifier is capable of reacting with a durable-press resin during textile treatment. By “reacting” is meant that the resin-reactive polymer will form a covalent bond with the durable-press resin.
  • the resin in turn will form a covalent bond to the fiber, textile, or web to be treated.
  • the resin-reactive modifier will impart a soft hand to the resin-treated textile and also provide tear and/or abrasion resistance to the textile.
  • This resin-reactive modifier because of its covalent bonding to the textile through the wrinkle-resistant resin, is durable to laundering and is permanent, and it significantly increases the comfort and lifetime of durable-press garments.
  • the rubbery groups of the resin-reactive modifier are selected from those groups that will provide the necessary softness and tear/abrasion resistance. Examples include polymers of isoprene, chloroprene, butadiene, ethylene, isopropylene, ethyleneoxide, isobutylene, propylene, chlorinated ethylene, and polymers such as polydimethylsiloxane, polyisobutylene, poly-alt-styrene-co-butadiene, poly-random-styrene-co-butadiene, etc., and copolymers of all of these.
  • the rubbery group is copolymerized in such a proportion as to take about 60% to about 99.8% by weight, preferably about 80% to about 95% by weight, of the resin-reactive modifier copolymer of this invention.
  • the reactive groups on the resin-reactive modifier are selected from those groups that will bind chemically with a particular durable-press resin.
  • groups may consist of hydroxyls, amines, amides, or thiols.
  • the resin modifier is selected from polymers containing at least one hydroxyl group per molecule.
  • the durable-press resin is chosen from those that will bind chemically with a particular fiber, yarn, fabric, or finished good.
  • cellulosic-based webs such as paper, cotton, rayon, linen, and jute contain hydroxyls.
  • Wool which is a proteinaceous animal fiber, contains hydroxyls, amines, carboxylates, and thiols.
  • Specific amine-reactive groups include isothiocyanates, isocyanates, acyl azides, N-hydroxysuccinimide esters, sulfonyl chlorides, aldehydes and glyoxals, epoxides and oxiranes, carbonates, arylating agents, imidoesters, carbodiimides, anhydrides (such as maleic anhydride), and halohydrins.
  • Carboxylate-reactive groups include diazoalkanes and diazoacetyl compounds, carbonyl diimidazole, and carbodiimides.
  • Hydroxyl-reactive chemical reactions for, e.g., wool and cotton
  • Hydroxyl-reactive chemical reactions include couplings with epoxides and oxiranes, carbonyl diimidazole, N,N′-disuccinimidyl carbonate or N-hydroxysuccinimidyl chloroformate, alkyl halogens, isocyanates, and halohydrins, oxidation with periodate, and enzymatic oxidization.
  • thiol-reactive chemical reactions for wool, for example
  • examples of thiol-reactive chemical reactions include couplings with haloacetyl and alkyl halide derivatives, maleimides, aziridines, acryloyl derivatives, arylating agents, and disulfide-forming reactions mediated by exchange reagents (such as pyridyl disulfides, disulfide reductants, and 5-thio-2-nitrobenzoic acid, for example).
  • Durable-press resins useful in the present invention include isocyanates, epoxides, divinylsulfones, aldehydes, chlorohydrins, N-methylol compounds, and polycarboxylic acids, which compounds are known to those of skill in the art. N-methylol compounds have been used the most. Examples include dimethylol urea, dimethylol ethylene urea, trimethylol trazine, dimethylol methyl carbamate, uron, triazone, and dimethylol dihydroxy ethylene urea (DMDHEU. Additionally, in the case of cotton, any compound capable of forming a crosslink between two hydroxyl groups may be used as the resin component.
  • the durable-press/softener preparation comprises i) a resin modifier selected from polymers consisting of butadiene or hydrogenated butadiene containing at least one hydroxyl group per molecule, and ii) the resin DMDHEU or cyanuric chloride.
  • additional crosslinkers or complementary reactive functionalities may also be added to the solution of the durable-press/softener preparation to help create bridges between crosslinkable groups, to alter the crosslink density, and/or to add additional properties to the textile (for example water and stain resistance).
  • the present invention is further directed to the yarns, fibers, fabrics, textiles, or finished goods (encompassed herein under the terms “textiles” and “webs”) treated with the durable-press/softener preparation.
  • textiles and “webs”
  • These novel textiles or webs will display comparable durable-press performance without the harsh hand or the low tear and low abrasion resistance of traditional durable-press textiles.
  • These textiles which exhibit wrinkle resistance, a soft hand, and improved tear/abrasion resistance, can be used in a variety of ways including, but not limited to: clothing, especially those for, but not limited to easily wrinkled clothing, such as formal garments, coats, hats, shirts, pants, gloves, and the like; other textiles subject to wear or tearing, such as awnings, draperies, upholstery for outdoor furniture, protective covers for barbecues and outdoor furniture, automotive upholstery, sails for boats, and the like; and industrial uses, such as those listed in Adanur, S., Wellington Sears Handbook of Industrial Textiles , p. 8-11 (Technomic Publishing Co., Lancaster, Pa., 1995).
  • the novel webs of the present invention are intended to include fabrics and textiles, and may be a sheet-like structure (woven, knitted, tufted, stitch-bonded, or non-woven) comprised of fibers or structural elements.
  • the fibers may include non-fibrous elements, such as particulate fillers, binders, sizes and the like.
  • the textiles or webs include fibers, woven and non-woven fabrics derived from natural or synthetic fibers or blends of such fibers, as well as cellulose-based papers, and the like. They can comprise fibers in the form of continuous or discontinuous monofilaments, multifilaments, staple fibers, and yarns containing such filaments and/or fibers, which fibers can be of any desired composition.
  • the fibers can be of natural, man-made, or synthetic origin. Mixtures of natural fibers, man-made fibers, and/or synthetic fibers can also be used. Examples of natural fibers include cotton, wool, silk, jute, linen, and the like. Examples of man-made fibers include regenerated cellulose rayon, cellulose acetate and regenerated proteins. Examples of synthetic fibers include polyesters (including polyethyleneglycolterephthalate), polyamides (including nylon), acrylics, olefins, aramids, azlons, modacrylics, novoloids, nytrils, aramids, spandex, vinyl polymers and copolymers, vinal, vinyon, and the like.
  • the fiber, the yarn, the fabric, or the finished good (the “textile” or “web”) is exposed to the resin-reactive modifier suspended in an aqueous solution in the presence of a suitable durable-press resin and suitable catalyst for activating the resin (such as, for example, MgCl 2 or any Lewis acid), by methods known in the art such as by soaking, spraying, dipping, fluid-flow, padding, and the like.
  • a suitable durable-press resin and suitable catalyst for activating the resin such as, for example, MgCl 2 or any Lewis acid
  • the resin-reactive modifier and the durable-press resin may be added together to the solution with the web or they may be added sequentially.
  • the textile-reactive functional groups of the durable-press resin react with the web, by covalent bonding, to permanently attach to the web.
  • the resin-reactive functional groups on the permanent softener-tear/abrasion resistant polymer react with the durable-press resin, by covalent bonding.
  • the durable-press resin serves to crosslink the cellulose chains, in the case of cotton for example, while at the same time reacting with the reactive group-containing resin-reactive modifier, thus serving as a covalent bridge between the cellulose and the resin-reactive modifier.
  • the modifier may be linked by one or multiple hydroxyls to the cellulose through the resin. The treated web is then removed from the solution, dried, and cured.
  • the concentration of the resin-reactive modifier in solution can be from about 0.1 wt % to about 10 wt %, preferably from about 2 wt % to about 8 wt %, more preferably about 8 wt %; depending, however, on the characteristics of the particular resin-reactive modifier selected (such as molecular weight or material) and on the amount of softening and tear/abrasion resistance desired.
  • the concentration of the durable press resin may vary, depending on the particular resin used and the final characteristics of the product desired. For example, in the case of DMDHEU, the manufacturer of the resin recommends 8 wt % DMDHEU to obtain permanently pressed textiles, whereas a lower amount may be used when abrasion resistance without permanent press is desired.
  • the process temperature can vary widely, depending on the affinity of the durable press resin for the web substrate and for the resin-reactive modifier. However, the temperature should not be so high as to decompose the reactants or so low as to cause inhibition of the reaction or freezing of the solvent. Unless specified to the contrary, the processes described herein take place at atmospheric pressure over a temperature range from about 120° C. to about 180° C., more preferably from about 140° C. to about 160° C., and most preferably at about 150° C. The time required for the processes herein will depend to a large extent on the temperature being used and the relative reactivities of the starting materials. Therefore, the time of exposure of the textile to the polymer in solution can vary greatly, for example from about one minute to about two hours.
  • the exposure time will be from about one to about five minutes.
  • the treated yarn or fabric is dried at ambient temperature or at a temperature above ambient, up to about 90° C., possibly higher.
  • the pH of the solution will be dependent on the requirements of the resin, the resin-reactive modifier, and the textile.
  • resin-crosslinking is optimized at low pH, but cotton, for example, degrades in acid, so a balance must be reached.
  • the deposition of resin-reactive modifiers with charged groups e.g., amines, carboxylates, and the like
  • Salts such as, for example, NaCI
  • the process times and conditions are intended to be approximate.
  • Fabric samples were dipped in 200% of fabric weight resin and catalyst solution and padded to 100% pick-up. Samples were dried at 85° C. for 10 minutes, followed by curing at 160° C. for 4 min. Samples were tested for flex abrasion (measured using an ASTM 03885-92, at 4 lb tension and 1 lb pressure) and wrinkle recovery (following the AATCC test method #66-1998). Additionally, samples were washed in an accelerated laundering machine to simulate five home launderings. All sample treatments were done to mimic a dip, pad, squeeze application method with approximately 100% wet pick-up. The results are shown in Table I. TABLE I Wrinkle recovery angle and flex abrasion cycles of various samples.

Abstract

This invention is directed to treatment preparations useful for the permanent or substantially permanent treatment of textiles and other webs to provide tear and abrasion strength and softness to durable-press garments. The preparations comprise a softener (a “resin-reactive modifier”) durable to repeated laundering used in conjunction with a durable-press resin, to increase the comfort and lifetime of durable-press garments. The resulting durable-press/softener preparation is substantially permanently attached to the web and provides improved softness and tear/abrasion strength retention within and/or on the textile or web fiber structure while retaining the durable-press properties of the resin. This invention is further directed to the yarns, fibers, fabrics, textiles, finished goods, or nonwovens (encompassed herein under the terms “textiles” and “webs”) treated with the textile-reactive durable-press/softener preparation. Such textiles and webs exhibit a greatly improved, durable softness and tear/abrasion strength.

Description

  • The present invention is a continuation application of co-pending International Patent Appln. No. PCT/US00/24581, filed Sep. 8, 2000 and designating the United States of America, which application claims the benefit of Provisional U.S. application Ser. No. 60/153,375, filed Sep. 10, 1999; the entire disclosures of which are incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to textile treatment compositions for imparting permanent abrasion- and wrinkle-resistance to textiles. [0002]
  • BACKGROUND OF THE INVENTION
  • Cotton consists of cellulose, a polysaccharide. The cellulose molecules in a cotton fiber are arranged linearly and pass in and out of crystalline and amorphous regions and are held in place by hydrogen bonds between the molecules. Slippage between the cellulose chains or between larger structural units of the fiber occurs when a force of sufficient magnitude is placed on the fiber. The hydrogen bonds tend to resist or prevent the slippage, but once slippage occurs the bonds reform in new locations and tend to maintain the fiber in the bent or wrinkled state. In addition, cotton fiber is hydrophilic and absorbs water, which can break hydrogen bonds and allow the fiber or fabric to shrink. Thus, 100% cotton wrinkles easily and has the potential to shrink upon laundering. [0003]
  • Cellulose is made up of repeating anhydroglucose units. Each unit contains two secondary and one primary alcohol groups. To achieve wrinkle resistance, alcohol groups on adjacent cellulose chains are partially crosslinked to keep the chains fixed relative to each other. Over the years, a number of crosslinking agents (resins) have been explored to achieve durable-press properties. Some include isocyanates, epoxides, divinylsulfones, aldehydes, chlorohydrins, N-methylol compounds, and polycarboxylic acids. Of these, N-methylol compounds have been used the most. Examples include dimethylol urea, dimethylol ethylene urea, trimethylol trazine, dimethylol methyl carbamate, uron, triazone, and dimethylol dihydroxy ethylene urea. Dimethylol dihydroxy ethylene urea (DMDHEU) is the most common durable-press finish used today. [0004]
  • Resins improve wrinkle recovery, fabric smoothness, dimensional stability, washfastness of some dyes, pilling resistance, ease of ironing, durability of finishes (repellents, hand modifiers, embossing, etc.), and general appearance. However, crosslinking has its disadvantages, including loss in tear and tensile strength, loss in abrasion resistance, reduced moisture regain, possible damage due to chlorine retention, potential odors, potential discoloration, and sewing problems. Durable-press fabrics also often have stiff, harsh, uncomfortable fabric tactile (hand) properties. Therefore, fabric softeners/lubricants are commonly added to these fabrics to mitigate some of these deficiencies. Softeners improve the hand of the fabric as well as increase abrasion resistance and tear strength. The softener also functions as a sewing lubricant. There are four basic types of softeners—anionic, cationic, nonionic, and blended systems. [0005]
  • The anionic softeners are generally sulfated or sulfonated compounds used primarily to lubricate yarns through processing. Examples of these compounds include sulfonated tallow, glycerides, and esters. Sulfonated or sulfated castor oil, propyl oleate, butyl oleate, and tallow are used in various steps in dying fabrics. Anionics tend to provide inferior softness compared to the cationics and nonionics. Furthermore, they have limited durability to laundering or dry-cleaning. Their major limitation comes from their negative charge, which causes incompatibility in resin finishing baths and makes them most sensitive to water hardness and electrolytes. [0006]
  • The cationic softeners are nitrogen-containing compounds including fatty amino amides, imidazolines, amino polysiloxanes, and quaternaries. As a result of their positive charge, they are attracted to cotton or synthetic fabrics through electrostatic interactions. They tend to be compatible with most resin finishes and are somewhat durable to laundering. The most significant disadvantage of cationic softeners is their tendency to change the shade or affect the fastness of certain dyestuffs. Discoloration on white fabrics may also be a concern. The development of a fishy odor on the fabric can be a problem with certain systems. [0007]
  • Nonionics are the most widely used softeners. This class includes polyethylenes, glycerides such as glycerol monostearate, ethoxylates such as ethoxylated castor wax, coconut oil, corn oil, etc., and ethoxylated fatty alcohol and acids. The nonionic softeners offer excellent compatibility in resin baths due to their uncharged state. Since nonionics have no charge, they have no specific affinity for fabrics and therefore have relatively low durability to washing. [0008]
  • To optimize softening and lubricating properties, many manufacturers tend to formulate a softener containing both nonionic and cationic types. Typically, an aminosilicone or an imidazoline for a silky soft slick hand will be blended with a cationic or a nonionic polyethylene lubricant for sewability and tear- and abrasion-strength properties. Increased customer demand for improved durability and useful life of a garment has led to the use of high-density polyethylenes as softeners. Polyethylenes have decreased solubility in detergent solutions,which results in increased softener durability. However, the disadvantages of the softeners (such as, for example, lack of durability to repeated launderings) remain. [0009]
  • SUMMARY OF THE INVENTION
  • This invention is directed to treatment preparations useful for the permanent or substantially permanent treatment of textiles and other webs to provide tear and abrasion strength and softness to durable-press garments. The preparations comprise a softener (referred to herein as a “resin-reactive modifier”) durable to repeated laundering used in conjunction with a durable-press resin, to increase the comfort and lifetime of durable-press garments. More particularly, the preparations of the invention comprise a “rubbery” resin-reactive modifier capable of reacting with a durable-press resin during textile treatment. By “reacting” is meant that the polymer will form a covalent bond with the durable-press resin and the resin will form a covalent bond to the fiber, textile, or web to be treated. The resulting durable-press/softener preparation is substantially permanently attached to the web and provides improved softness and tear/abrasion strength retention within and/or on the textile or web fiber structure while retaining the durable-press properties of the resin through repeated launderings. [0010]
  • This invention is further directed to the yarns, fibers, fabrics, textiles, finished goods, or nonwovens (encompassed herein under the terms “textiles” and “webs”) treated with the textile-reactive durable-press/softener preparation. Such textiles and webs exhibit a greatly improved, durable softness and tear/abrasion strength. By “durable softness and tear/abrasion strength” and “durable wrinkle resistance, a soft hand, and tear/abrasion resistance” are meant that the textile or web will exhibit improved softness and resistance to tear and/or abrasion, even after multiple launderings, while retaining its durable press or resistance to wrinkling. [0011]
  • Methods are provided for treating fabrics to impart permanent wrinkle resistance as well as permanent softness and tear/abrasion resistance by combining a “rubbery” resin-reactive modifier with durable-press resins. [0012]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The textile-reactive preparations of the invention comprise a combination of i) a durable-press resin capable of imparting wrinkle resistance and ii) a resin-reactive modifier capable of imparting a soft hand and tear/abrasion resistance to textiles. [0013]
  • The resin-reactive modifier useful in the present invention comprises particular monomers, oligomers, or polymers having hydroxyl—or other reactive group-containing monomers, or mixtures thereof (referred to herein and in the appended claims as “reactive building blocks”), copolymerized with soft, rubbery or elastomeric monomers or polymers (referred to herein and in the appended claims as “rubbery building blocks”). The resin-reactive modifier may also comprise rubbery building blocks that are processed post-polymerization to include hydroxyl—or other reactive groups. The resin-reactive modifier is capable of reacting with a durable-press resin during textile treatment. By “reacting” is meant that the resin-reactive polymer will form a covalent bond with the durable-press resin. The resin in turn will form a covalent bond to the fiber, textile, or web to be treated. The resin-reactive modifier will impart a soft hand to the resin-treated textile and also provide tear and/or abrasion resistance to the textile. This resin-reactive modifier, because of its covalent bonding to the textile through the wrinkle-resistant resin, is durable to laundering and is permanent, and it significantly increases the comfort and lifetime of durable-press garments. [0014]
  • The rubbery groups of the resin-reactive modifier are selected from those groups that will provide the necessary softness and tear/abrasion resistance. Examples include polymers of isoprene, chloroprene, butadiene, ethylene, isopropylene, ethyleneoxide, isobutylene, propylene, chlorinated ethylene, and polymers such as polydimethylsiloxane, polyisobutylene, poly-alt-styrene-co-butadiene, poly-random-styrene-co-butadiene, etc., and copolymers of all of these. The rubbery group is copolymerized in such a proportion as to take about 60% to about 99.8% by weight, preferably about 80% to about 95% by weight, of the resin-reactive modifier copolymer of this invention. [0015]
  • The reactive groups on the resin-reactive modifier are selected from those groups that will bind chemically with a particular durable-press resin. For example, groups may consist of hydroxyls, amines, amides, or thiols. In a presently preferred embodiment, the resin modifier is selected from polymers containing at least one hydroxyl group per molecule. [0016]
  • The durable-press resin is chosen from those that will bind chemically with a particular fiber, yarn, fabric, or finished good. For example, cellulosic-based webs such as paper, cotton, rayon, linen, and jute contain hydroxyls. Wool, which is a proteinaceous animal fiber, contains hydroxyls, amines, carboxylates, and thiols. [0017]
  • Specific amine-reactive groups (for reaction with wool, for example) include isothiocyanates, isocyanates, acyl azides, N-hydroxysuccinimide esters, sulfonyl chlorides, aldehydes and glyoxals, epoxides and oxiranes, carbonates, arylating agents, imidoesters, carbodiimides, anhydrides (such as maleic anhydride), and halohydrins. Carboxylate-reactive groups (for reaction with wool, e.g.) include diazoalkanes and diazoacetyl compounds, carbonyl diimidazole, and carbodiimides. Hydroxyl-reactive chemical reactions (for, e.g., wool and cotton) include couplings with epoxides and oxiranes, carbonyl diimidazole, N,N′-disuccinimidyl carbonate or N-hydroxysuccinimidyl chloroformate, alkyl halogens, isocyanates, and halohydrins, oxidation with periodate, and enzymatic oxidization. Examples of thiol-reactive chemical reactions (for wool, for example) include couplings with haloacetyl and alkyl halide derivatives, maleimides, aziridines, acryloyl derivatives, arylating agents, and disulfide-forming reactions mediated by exchange reagents (such as pyridyl disulfides, disulfide reductants, and 5-thio-2-nitrobenzoic acid, for example). [0018]
  • Durable-press resins useful in the present invention include isocyanates, epoxides, divinylsulfones, aldehydes, chlorohydrins, N-methylol compounds, and polycarboxylic acids, which compounds are known to those of skill in the art. N-methylol compounds have been used the most. Examples include dimethylol urea, dimethylol ethylene urea, trimethylol trazine, dimethylol methyl carbamate, uron, triazone, and dimethylol dihydroxy ethylene urea (DMDHEU. Additionally, in the case of cotton, any compound capable of forming a crosslink between two hydroxyl groups may be used as the resin component. [0019]
  • In a presently preferred embodiment, the durable-press/softener preparation comprises i) a resin modifier selected from polymers consisting of butadiene or hydrogenated butadiene containing at least one hydroxyl group per molecule, and ii) the resin DMDHEU or cyanuric chloride. [0020]
  • In forming the durably soft, tear/abrasion-resistant textile, additional crosslinkers or complementary reactive functionalities may also be added to the solution of the durable-press/softener preparation to help create bridges between crosslinkable groups, to alter the crosslink density, and/or to add additional properties to the textile (for example water and stain resistance). [0021]
  • The present invention is further directed to the yarns, fibers, fabrics, textiles, or finished goods (encompassed herein under the terms “textiles” and “webs”) treated with the durable-press/softener preparation. These novel textiles or webs will display comparable durable-press performance without the harsh hand or the low tear and low abrasion resistance of traditional durable-press textiles. [0022]
  • These textiles, which exhibit wrinkle resistance, a soft hand, and improved tear/abrasion resistance, can be used in a variety of ways including, but not limited to: clothing, especially those for, but not limited to easily wrinkled clothing, such as formal garments, coats, hats, shirts, pants, gloves, and the like; other textiles subject to wear or tearing, such as awnings, draperies, upholstery for outdoor furniture, protective covers for barbecues and outdoor furniture, automotive upholstery, sails for boats, and the like; and industrial uses, such as those listed in Adanur, S., [0023] Wellington Sears Handbook of Industrial Textiles, p. 8-11 (Technomic Publishing Co., Lancaster, Pa., 1995).
  • The novel webs of the present invention are intended to include fabrics and textiles, and may be a sheet-like structure (woven, knitted, tufted, stitch-bonded, or non-woven) comprised of fibers or structural elements. The fibers may include non-fibrous elements, such as particulate fillers, binders, sizes and the like. The textiles or webs include fibers, woven and non-woven fabrics derived from natural or synthetic fibers or blends of such fibers, as well as cellulose-based papers, and the like. They can comprise fibers in the form of continuous or discontinuous monofilaments, multifilaments, staple fibers, and yarns containing such filaments and/or fibers, which fibers can be of any desired composition. The fibers can be of natural, man-made, or synthetic origin. Mixtures of natural fibers, man-made fibers, and/or synthetic fibers can also be used. Examples of natural fibers include cotton, wool, silk, jute, linen, and the like. Examples of man-made fibers include regenerated cellulose rayon, cellulose acetate and regenerated proteins. Examples of synthetic fibers include polyesters (including polyethyleneglycolterephthalate), polyamides (including nylon), acrylics, olefins, aramids, azlons, modacrylics, novoloids, nytrils, aramids, spandex, vinyl polymers and copolymers, vinal, vinyon, and the like. [0024]
  • To prepare the permanent durable-press, soft, and tear/abrasion-resistant webs, the fiber, the yarn, the fabric, or the finished good (the “textile” or “web”) is exposed to the resin-reactive modifier suspended in an aqueous solution in the presence of a suitable durable-press resin and suitable catalyst for activating the resin (such as, for example, MgCl[0025] 2 or any Lewis acid), by methods known in the art such as by soaking, spraying, dipping, fluid-flow, padding, and the like. The resin-reactive modifier and the durable-press resin may be added together to the solution with the web or they may be added sequentially. The textile-reactive functional groups of the durable-press resin react with the web, by covalent bonding, to permanently attach to the web. The resin-reactive functional groups on the permanent softener-tear/abrasion resistant polymer react with the durable-press resin, by covalent bonding. The durable-press resin serves to crosslink the cellulose chains, in the case of cotton for example, while at the same time reacting with the reactive group-containing resin-reactive modifier, thus serving as a covalent bridge between the cellulose and the resin-reactive modifier. The modifier may be linked by one or multiple hydroxyls to the cellulose through the resin. The treated web is then removed from the solution, dried, and cured.
  • The concentration of the resin-reactive modifier in solution can be from about 0.1 wt % to about 10 wt %, preferably from about 2 wt % to about 8 wt %, more preferably about 8 wt %; depending, however, on the characteristics of the particular resin-reactive modifier selected (such as molecular weight or material) and on the amount of softening and tear/abrasion resistance desired. [0026]
  • The concentration of the durable press resin may vary, depending on the particular resin used and the final characteristics of the product desired. For example, in the case of DMDHEU, the manufacturer of the resin recommends 8 wt % DMDHEU to obtain permanently pressed textiles, whereas a lower amount may be used when abrasion resistance without permanent press is desired. [0027]
  • The process temperature can vary widely, depending on the affinity of the durable press resin for the web substrate and for the resin-reactive modifier. However, the temperature should not be so high as to decompose the reactants or so low as to cause inhibition of the reaction or freezing of the solvent. Unless specified to the contrary, the processes described herein take place at atmospheric pressure over a temperature range from about 120° C. to about 180° C., more preferably from about 140° C. to about 160° C., and most preferably at about 150° C. The time required for the processes herein will depend to a large extent on the temperature being used and the relative reactivities of the starting materials. Therefore, the time of exposure of the textile to the polymer in solution can vary greatly, for example from about one minute to about two hours. Normally, the exposure time will be from about one to about five minutes. Following exposure, the treated yarn or fabric is dried at ambient temperature or at a temperature above ambient, up to about 90° C., possibly higher. The pH of the solution will be dependent on the requirements of the resin, the resin-reactive modifier, and the textile. Typically, resin-crosslinking is optimized at low pH, but cotton, for example, degrades in acid, so a balance must be reached. Furthermore, the deposition of resin-reactive modifiers with charged groups (e.g., amines, carboxylates, and the like) is expected to be dependent on solution pH. Salts (such as, for example, NaCI) may optionally be added to increase the rate of adsorption of anionic and cationic polymers onto the fibers. Unless otherwise specified, the process times and conditions are intended to be approximate.[0028]
  • EXAMPLES Example 1 Preparation of Resin-Reactive Modifier Solution
  • Four percent (4%) by weight of hydroxy-terminated polybutadiene (PBD-OH, 1200 MW, [hydroxyl]=1.7 meq/g, CAS# 69102-90-5, Aldrich, Milwaukee, Wis.) and 4% by weight of Tween-40 (polyoxyethylene sorbitan ester, ICI Surfactants, Wilmington, Del.) were added to water with stirring to give an aqueous solution of hydroxy-terminated resin-reactive modifier. [0029]
  • Example 2 Application of Durable-Press/Softener Preparation to 100% Cotton, and Physical Characterization
  • Cotton fabric samples (400 series, Test Fabrics, West Pittston, Pa.) were treated in stirred aqueous solutions containing various percentages of hydroxy-terminated polybutadiene and Tween-40, prepared as described in Example 1 above. The samples were removed and dried at 85° C. for 10 minutes. The samples were then treated with a commercial preparation of durable press resin (Freerez 901, 38% buffered DMDHEU, BF Goodrich, Greenville, S.C.) and catalyst (Freecat LF, MgCl[0030] 2 and citric acid, BF Goodrich, Greenville, S.C.) according to the manufacturer's specifications at 8% and 2% on bath weight, respectively. Fabric samples were dipped in 200% of fabric weight resin and catalyst solution and padded to 100% pick-up. Samples were dried at 85° C. for 10 minutes, followed by curing at 160° C. for 4 min. Samples were tested for flex abrasion (measured using an ASTM 03885-92, at 4 lb tension and 1 lb pressure) and wrinkle recovery (following the AATCC test method #66-1998). Additionally, samples were washed in an accelerated laundering machine to simulate five home launderings. All sample treatments were done to mimic a dip, pad, squeeze application method with approximately 100% wet pick-up. The results are shown in Table I.
    TABLE I
    Wrinkle recovery angle and flex abrasion cycles of various samples.
    # Home Wrinkle Flex Abrasion
    Sample % PBD-OH % DMDHEU Launderings Recovery Angle Cycles
    Pure Cotton 0 0 0  72° 329 ± 129
    0 HL
    Pure Cotton 0 0 5  70° 455 ± 95
    5 HL
    DMDHEU Treated 0 8 0 135° 168 ± 91
    Cotton - 0 HL
    DMDHEU Treated 0 8 5 120° 138 ± 100
    Cotton - 5 HL
    PBD-OH/DMDHEU 4 8 0 128° 585 ± 120
    Treated Cotton - 0 HL
    PBD-OH/DMDHEU 4 8 5 127° 737 ± 291
    Treated Cotton - 5 HL

Claims (19)

What is claimed is:
1. A textile-reactive preparation comprising:
a durable-press resin capable of forming a covalent bond with a textile and capable of imparting wrinkle-resistance to said textile, and
a resin-reactive modifier capable of imparting a soft hand and tear/abrasion resistance to said textile, said resin-reactive modifier comprising reactive groups capable of forming a covalent bond with said durable-press resin.
2. A textile-reactive preparation according to claim 1 wherein said resin-reactive modifier comprises reactive building blocks and rubbery building blocks.
3. A textile-reactive preparation according to claim 2 wherein said resin-reactive modifier comprises at least one hydroxyl reactive group per molecule.
4. A textile-reactive preparation according to claim 2 wherein said resin-reactive modifier is selected from the group consisting of butadiene polymer and hydrogenated butadiene polymer comprising at least one hydroxyl reactive group per molecule.
5. A textile-reactive preparation according to claim 2 wherein said durable-press resin is DMDHEU.
6. A method for treating a textile comprising:
exposing a textile to an aqueous solution or suspension of a textile-reactive preparation comprising i) a durable-press resin capable of forming a covalent bond with said textile and capable of imparting wrinkle-resistance to said textile, ii) a resin-reactive modifier capable of imparting a soft hand and tear/abrasion resistance to said textile, said resin-reactive modifier comprising reactive groups capable of forming a covalent bond with said durable-press resin, and optionally, iii) a catalyst;
removing said treated textile from the aqueous solution;
drying said treated textile; and
curing said treated textile;
to give a treated textile that exhibits durable wrinkle resistance, soft hand, and tear/abrasion resistance.
7. A method according to claim 6 wherein said resin-reactive modifier comprises reactive building blocks and rubbery building blocks.
8. A method according to claim 7 wherein said resin-reactive modifier comprises at least one hydroxyl reactive group per molecule.
9. A method according to claim 7 wherein said resin-reactive modifier is selected from the group consisting of butadiene polymer and hydrogenated butadiene polymer comprising at least one hydroxyl reactive group per molecule.
10. A method according to claim 7 wherein said durable-press resin is DMDHEU.
11. A treated textile prepared by the method comprising:
exposing a textile to an aqueous solution or suspension of a textile-reactive preparation comprising i) a durable-press resin capable of forming a covalent bond with said textile and capable of imparting wrinkle-resistance to said textile, ii) a resin-reactive modifier capable of imparting a soft hand and tear/abrasion resistance to said textile, said resin-reactive modifier comprising reactive groups capable of forming a covalent bond with said durable-press resin, and optionally, iii) a catalyst;
removing said treated textile from the aqueous solution;
drying said treated textile; and
curing said treated textile;
said treated textile having the characteristic of exhibiting durable wrinkle resistance, soft hand, and tear/abrasion resistance.
12. A treated textile according to claim 11 wherein said resin-reactive modifier comprises reactive building blocks and rubbery building blocks.
13. A treated textile according to claim 12 wherein said resin-reactive modifier comprises at least one hydroxyl reactive group per molecule.
14. A treated textile according to claim 12 wherein said resin-reactive modifier is selected from the group consisting of butadiene polymer and hydrogenated butadiene polymer comprising at least one hydroxyl reactive group per molecule.
15. A treated textile according to claim 12 wherein said durable-press resin is DMDHEU.
16. A resin-reactive modifier which comprises reactive groups capable of forming a covalent bond with a durable-press resin and which is capable of imparting a soft hand and tear/abrasion resistance to a textile.
17. A resin-reactive modifier according to claim 16 which comprises reactive building blocks and rubbery building blocks.
18. A resin-reactive modifier according to claim 17 which comprises at least one hydroxyl reactive group per molecule.
19. A resin-reactive modifier according to claim 17 which is selected from the group consisting of butadiene polymer and hydrogenated butadiene polymer comprising at least one hydroxyl reactive group per molecule.
US10/084,031 1999-09-10 2002-02-27 Abrasion-and wrinkle-resistant finish for textiles Abandoned US20020120988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/084,031 US20020120988A1 (en) 1999-09-10 2002-02-27 Abrasion-and wrinkle-resistant finish for textiles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15337599P 1999-09-10 1999-09-10
PCT/US2000/024581 WO2001018304A1 (en) 1999-09-10 2000-09-08 Abrasion- and wrinkle-resistant finish for textiles
US10/084,031 US20020120988A1 (en) 1999-09-10 2002-02-27 Abrasion-and wrinkle-resistant finish for textiles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/024581 Continuation WO2001018304A1 (en) 1999-09-10 2000-09-08 Abrasion- and wrinkle-resistant finish for textiles

Publications (1)

Publication Number Publication Date
US20020120988A1 true US20020120988A1 (en) 2002-09-05

Family

ID=22546954

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/084,031 Abandoned US20020120988A1 (en) 1999-09-10 2002-02-27 Abrasion-and wrinkle-resistant finish for textiles

Country Status (4)

Country Link
US (1) US20020120988A1 (en)
EP (1) EP1226301A1 (en)
AU (1) AU7356300A (en)
WO (1) WO2001018304A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050229328A1 (en) * 2004-04-06 2005-10-20 Availableip.Com Nano-particles on fabric or textile
US20060198209A1 (en) * 2005-02-23 2006-09-07 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US20070173154A1 (en) * 2006-01-26 2007-07-26 Outlast Technologies, Inc. Coated articles formed of microcapsules with reactive functional groups
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
WO2010008910A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat regulating article with moisture enhanced temperature control
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
WO2010008908A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Articles containing functional polymeric phase change materials and methods of manufacturing the same
US20100264353A1 (en) * 2008-07-16 2010-10-21 Outlast Technologies, Inc. Thermal regulating building materials and other construction components containing polymeric phase change materials
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350162A (en) * 1963-01-28 1967-10-31 Staley Mfg Co A E Method of creaseproofing and stiffening cellulose textile with dimethylol ethylene urea and amylopectin size
US3606992A (en) * 1967-08-28 1971-09-21 Warnaco Inc Abrasion and wrinkle resistant cotton containing fabric and method of manufacture
US4292111A (en) * 1979-01-31 1981-09-29 American Cyanamid Company Method of adhesion of rubber to reinforcing materials
US4396391A (en) * 1982-06-30 1983-08-02 Sun Chemical Corporation Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol
US5614591A (en) * 1994-12-15 1997-03-25 The Virkler Company Process and composition for imparting durable press properties to textile fabrics
US5879749A (en) * 1997-09-16 1999-03-09 National Starch And Chemical Investment Holding Corporation Crosslinkable fabric care compositions
US6497733B1 (en) * 2000-04-03 2002-12-24 Nano-Tex, Llc Dye fixatives

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1134352B (en) * 1954-11-08 1962-08-09 Irene Von Szentpaly Geb Eloed Method of stiffening tissues
DE1243633B (en) * 1963-02-01 1967-07-06 Hoechst Ag Process for crease-proof finishing of textiles containing native or regenerated cellulose
CH1615668D (en) * 1964-09-15
HU166031B (en) * 1972-04-20 1974-12-28

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350162A (en) * 1963-01-28 1967-10-31 Staley Mfg Co A E Method of creaseproofing and stiffening cellulose textile with dimethylol ethylene urea and amylopectin size
US3606992A (en) * 1967-08-28 1971-09-21 Warnaco Inc Abrasion and wrinkle resistant cotton containing fabric and method of manufacture
US4292111A (en) * 1979-01-31 1981-09-29 American Cyanamid Company Method of adhesion of rubber to reinforcing materials
US4396391A (en) * 1982-06-30 1983-08-02 Sun Chemical Corporation Treating cellulose textile fabrics with dimethylol dihydroxyethyleneurea-polyol
US4396391B1 (en) * 1982-06-30 1984-08-28
US4396391B2 (en) * 1982-06-30 1993-03-16 Treating cellulose textile fabrics with dimenthylol dihydroyethyleneuree-polyol
US5614591A (en) * 1994-12-15 1997-03-25 The Virkler Company Process and composition for imparting durable press properties to textile fabrics
US5879749A (en) * 1997-09-16 1999-03-09 National Starch And Chemical Investment Holding Corporation Crosslinkable fabric care compositions
US6497733B1 (en) * 2000-04-03 2002-12-24 Nano-Tex, Llc Dye fixatives

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050229328A1 (en) * 2004-04-06 2005-10-20 Availableip.Com Nano-particles on fabric or textile
US7862624B2 (en) 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7671398B2 (en) 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US20060198209A1 (en) * 2005-02-23 2006-09-07 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US20070173154A1 (en) * 2006-01-26 2007-07-26 Outlast Technologies, Inc. Coated articles formed of microcapsules with reactive functional groups
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US10377936B2 (en) 2008-07-16 2019-08-13 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US20100264353A1 (en) * 2008-07-16 2010-10-21 Outlast Technologies, Inc. Thermal regulating building materials and other construction components containing polymeric phase change materials
WO2010008910A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat regulating article with moisture enhanced temperature control
US20100016513A1 (en) * 2008-07-16 2010-01-21 Outlast Technologies, Inc. Functional Polymeric Phase Change Materials and Methods of Manufacturing the Same
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
US10590321B2 (en) 2008-07-16 2020-03-17 Outlast Technologies, Gmbh Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
WO2010008908A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Articles containing functional polymeric phase change materials and methods of manufacturing the same
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
US9371400B2 (en) 2010-04-16 2016-06-21 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US11411262B2 (en) 2015-02-04 2022-08-09 Latent Heat Solutions, Llc Systems, structures and materials for electrochemical device thermal management

Also Published As

Publication number Publication date
WO2001018304A1 (en) 2001-03-15
WO2001018304A9 (en) 2001-06-14
EP1226301A1 (en) 2002-07-31
AU7356300A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US6872424B2 (en) Durable finishes for textiles
US6379753B1 (en) Modified textile and other materials and methods for their preparation
US20050183203A1 (en) Hydrophilic finish for fibrous substrates
WO2008141522A1 (en) Modifying and dyeing method of fiber material
US20020120988A1 (en) Abrasion-and wrinkle-resistant finish for textiles
CA2665628A1 (en) Cellulosic textiles treated with hyperbranched polyethyleneimine derivatives
US20040117917A1 (en) Treatment method for imparting properties of absorbing and realeasing moisture to fiber
US6149549A (en) Anionically derivatised cotton for improved comfort and care-free laundering
US7244371B2 (en) Compositions and methods for treating a textile using such compositions
US3900663A (en) Method of treating fabrics
US6336943B1 (en) Anionically derivatised cotton for improved comfort and care-free laundering
US3632422A (en) Textile fabric having soil release finish and method of making same
JPS63120172A (en) Treatment of fabric
JP4089083B2 (en) Antibacterial fiber structure
US6464730B1 (en) Process for applying softeners to fabrics
US3910759A (en) Method of treating fabrics
JP4361367B2 (en) Treatment of textiles with fluorinated polyethers
JP3900705B2 (en) Cellulosic fiber-containing fabric
JP3991476B2 (en) Cellulosic fiber-containing fabric
US4191802A (en) Coating of fibrous materials with compositions containing mixtures of polycarbamoyl sulphonates and other polymers
JP2000192371A (en) Fabric containing cellulosic fiber
US20050108828A1 (en) Method of modifying the adour properties of textiles
US8778321B2 (en) Modification of cellulosic substrates to control body odor
JP2000129576A (en) Cellulosic fiber-containing cloth
JPH05163678A (en) Fiber-finishing agent composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANO-TEX, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOANE, DAVID S.;WARE, WILLIAM JR.;OFFORD, DAVID A.;REEL/FRAME:012660/0609;SIGNING DATES FROM 20020225 TO 20020226

AS Assignment

Owner name: BURLINGTON INDUSTRIES, INC., NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:NANO-TEX, LLC;REEL/FRAME:014097/0530

Effective date: 20031027

AS Assignment

Owner name: WLR BURLINGTON ACQUISITION LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF SECURITY AGREEMENT;ASSIGNOR:BURLINGTON INDUSTRIES, INC.;REEL/FRAME:014196/0360

Effective date: 20031130

AS Assignment

Owner name: NANO-TEX, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:INTERNATIONAL TEXTILE GROUP, INC. (FKA WLR BURLINGTON ACQUISITION LLC);REEL/FRAME:016902/0478

Effective date: 20051216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION