US20020171177A1 - System and method for printing and supporting three dimensional objects - Google Patents

System and method for printing and supporting three dimensional objects Download PDF

Info

Publication number
US20020171177A1
US20020171177A1 US10/101,089 US10108902A US2002171177A1 US 20020171177 A1 US20020171177 A1 US 20020171177A1 US 10108902 A US10108902 A US 10108902A US 2002171177 A1 US2002171177 A1 US 2002171177A1
Authority
US
United States
Prior art keywords
support
support structure
dispensing
pillar
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US10/101,089
Inventor
Elisha Kritchman
Hanan Gothait
Gershon Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Object Geometries Ltd
Original Assignee
Object Geometries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Object Geometries Ltd filed Critical Object Geometries Ltd
Priority to US10/101,089 priority Critical patent/US20020171177A1/en
Assigned to OBJET GEOMETRIES LTD. reassignment OBJET GEOMETRIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOTHAIT, HANAN, KRITCHMAN, ELISHA M., MILLER, GERSHON
Publication of US20020171177A1 publication Critical patent/US20020171177A1/en
Priority to US10/716,426 priority patent/US7364686B2/en
Priority to US12/062,094 priority patent/US7685694B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49885Assembling or joining with coating before or during assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49993Filling of opening

Definitions

  • This present invention relates to printing 3-D (Three-Dimensional) objects in general and to supporting complex 3-D structures in particular.
  • 3-D printing which generally works by building parts in layers, is a process used for the building up of 3-D objects.
  • 3-D printing is relatively speedy and flexible allowing for the production of various objects as prototype parts and tooling directly from, for example, a CAD (Computer Aided Design) file.
  • CAD Computer Aided Design
  • Embodiments for 3-D printing are described in U.S. patent application Ser. No. 09/259323 to the Assignees of the present application, and incorporated herein by reference
  • Such embodiments include a dispensing apparatus including a printing head having a plurality of nozzles, which selectively dispenses interface material through the nozzles in layers and curing means for optionally curing each of the layers deposited.
  • the depth of each deposited layer may be controllable by selectively adjusting the output from each of the plurality of nozzles.
  • Embodiments for 3-D printing are also described in U.S. patent application Ser. No. 09/412,618. Some such embodiments include printing complex 3-D objects by using interface materials having different hardness or elasticity and mixing the interface material from each of the printing heads to control the hardness of the material forming the 3-D object.
  • Embodiments of the present invention provide a method and system for printing a 3-D (Three-Dimensional) object and supporting the 3-D object during its construction.
  • a method and system of printing a 3-D object which includes the steps of dispensing a raw first interface material which will be referred to as building material, or briefly BM, directly to place for the construction of the 3-D object and (or not) for building part of the supporting structure of the 3-D object, dispensing a raw second interface material, which will be referred to as support material or briefly SM, to form the other part of the supporting structure, and applying a hardening process (e.g., curing) to the building and (or not) support materials.
  • the immediate layer of a supporting structure that touches the 3-D object surface may be composed of support material only, so as to serve as a release layer between the 3-D object and the rest of the supporting structure.
  • the step of dispensing a BM includes the step of dispensing the BM in a plurality of layers, each layer being less than 10 ⁇ (micron) thick.
  • the step of dispensing a SM includes the step of dispensing the raw SM in a plurality of layers, each layer being the same thickness as the layer of the BM.
  • the step of dispensing the BM may include the step of dispensing the SM as well.
  • the final SM has a different viscosity or hardness or cohesiveness from the final BM (FBM).
  • the step of separating includes the step of dissolving the FSM in a solvent.
  • the step of separating includes the step of subjecting the FSM to radiation thereby to cause the support structure or part of it to, for example, turn to gas or liquid or powder.
  • the radiation includes electromagnetic radiation at microwave wavelength, sonic radiation at ultrasonic wavelength or low frequency mechanical vibration.
  • the FSM may be a fluid.
  • the step of separating includes the step of draining the FSM and/or washing the 3-D object with a solvent—in particular with water.
  • the fluid may have the proper characteristics that are required to prevent deterioration of surface quality of the 3-D object due to mix of BM and SM at the interface layer between both.
  • Such characteristics include having large surface tension between both raw materials, or being the raw SM compatible with the BM in respect of the hardening process of the BM (example: BM without initiator is being used as SM).
  • the fluid may be soluble or dispersible in environmental friendly solvent or dispersant—in particular water.
  • the fluid may be water or water solution or dispersion such as Poly Ethanol Glycol, Propylene Glycol, Glycerol.
  • the support structure includes a container retaining the non self sustaining SM.
  • the container includes a plurality of walls everywhere the FSM is adjacent to air and (or not) to the table, including (or not) the air above the FSM.
  • the support structure may also include pillars and membranes that stabilize and support the 3-D object.
  • a typical embodiment includes vertical pillars and horizontal membranes; each membrane is composed of one or few printed layers of BM, or BM and SM.
  • the membrane may be full or screen-like in such that it comprises of thin beams that connect the pillars to each other.
  • the pillars and or membranes may or may not connect the 3-D object to the container's walls or base, or connect parts of the 3-D object to each other.
  • the membranes also connect pillars to each other.
  • the material of container, pillars and membranes may be viscous or cohesive and harder than the FSM material, and may be composed of, for example, FBM, or of a mix of BM and SM, or a separate material.
  • Island is defined as any part of the object, which is not connected to the object from beneath.
  • the bottom part of the object is an example of an island
  • the membrane stretches out of the island circumference to a certain extent and is connected to the pillars from below, or is connected to the adjacent walls.
  • the support structure may also include a fine mix of BM and SM in a way that the mix is even substance with hardness, flexibility and cohesiveness between the fluid SM and the cured BM.
  • One way of achieving such a mix is printing fine pillars of BM surrounded by SM.
  • the support structure may also include a layer of SM between the 3-D object and the mixed substance for releasing purposes
  • one edge of support pillar or membrane may contact or be adjacent to the 3-D object being supported.
  • the edge may be tapered or thinned.
  • a base grid may be built where there is vertical “line of sight” to the table.
  • An extra may be the grid of the extra support section.
  • An island may be formed below islands and the very immediate vicinity.
  • a fine grid may be formed elsewhere.
  • the container and connecting walls may be formed in such a way that they are easily separable from the 3-D object. Hence they may be formed of thin layer of FBM, the layer may be reinforced by columns, or thick layer with thin “break lines” and sharp edges where the wall is connected to the object, or thick layer which is composed of a mix of BM and SM.
  • the raw SM may be flooded into place instead of directly dispensed into place after or before the raw BM is dispensed into place.
  • the 3-D object during printing may be partially sunk in a bath of raw SM, and the raw BM may be dispensed into place.
  • the table supporting the object sinks so that only the very top of the printed object protrudes above the SM.
  • the table may sink before this step even more in order to enable the SM flowing to any open space between the printed object parts.
  • the method further includes the steps of curing the BM for a first period of time and at a first electromagnetic radiation wavelength to obtain a first modulus of elasticity and curing or not the SM for a second period of time and at a second radiation wavelength to obtain a second modulus of elasticity.
  • the radiation wavelength and time length of both may be equal.
  • inserts may be rigid, semi-rigid or flexible and may be produced from various materials. The inserts may installed during the printing process as will be explained herein.
  • FIG. 1 is a schematic sectional elevational view of a release/support structure for use in the construction of a 3-D object, constructed and operative in accordance with a preferred embodiment of the present invention
  • FIG. 2 is an enlarged detail of a layer of the 3-D object of FIG. 1;
  • FIG. 3 is a schematic illustration of an embodiment of the 3-D printing system for use in constructing the 3-D object and release/support structure of FIG. 1;
  • FIG. 4-A is a schematic cross-sectional elevational view of a further embodiment of release/support structure for a 3-D object
  • FIG. 4-B is an enlarged detail showing the support pillar for the 3-D object according to an embodiment of the present invention.
  • FIG. 4-C depicts another embodiment of a pillar end used to support a cantilever of a 3-D model according to an embodiment of the present invention
  • FIG. 5 depicts a schematic cross-sectional view of a yet further embodiment of release/support structure for a 3-D model
  • FIG. 6-A is an enlarged detail of part of a container and a membrane forming the support structure of FIG. 5;
  • FIG. 6-B is an plan view of a serration used to support a thin section of a model according to an embodiment of the present invention
  • FIG. 7 is a complex of pillars and membranes used to support a printed model according to an embodiment of the present invention.
  • FIG. 8-A is a model containing a flat insert according to an embodiment of the present invention.
  • FIG. 8-B is the base of a part when an insert is introduced according to an embodiment of the present invention.
  • FIG. 9-A is a model containing an internal graduated insert according to an embodiment of the present invention.
  • FIG. 9-B is the lower section of part 140 when the insert is introduced according to an embodiment of the present invention.
  • FIG. 10-A is a model containing a skew insert according to an embodiment of the present invention.
  • FIG. 10-B is the lower section of part 150 when the skewed insert is inserted.
  • Object layer (or component) or model layer a layer of BM (building material) included in the 3-D object;
  • Support layer (or component)—a layer of SM (support material) for supporting the 3-D object layer and not included in the 3-D object;
  • Release layer (or component)—a layer of interface material for separating the 3-D object layer from components, such as the support layer, not included in the 3-D object.
  • FIG. 1 is. a schematic cross sectional view of a release/support structure according to an embodiment of the present invention, generally referenced 50 , for a 3-D element 52 (shown hatched) being constructed.
  • Element 52 set on a table 54 , is shown as being a slim upright object having dimensions, whose height H is typically a large multiple of its width (W), In the example of FIG. 1, H ⁇ 15 ⁇ W. Other dimensions and proportions may be used.
  • 3-D element 52 may be supported during construction. Surrounding the 3-D element 52 may be a shaped support structure 60 that ensures that the 3-D object is adequately braced.
  • Element 52 is preferably constructed in layers, utilizing suitable apparatus such as embodiments described in U.S. patent applications Ser. Nos. 09/259323 and/or 09/412,618, assigned to the Assignees of the present application, and incorporated herein by reference. Other 3-D modeling apparatuses may be used. For clarity, only three layers, referenced 58 A, 58 B and 58 C are shown. It will be appreciated that 3-D element 52 is constructed in a plurality of layers, approximately 10 ⁇ -20 ⁇ thick. Other dimensions may be used.
  • each layer comprises support material 58 , building material 52 and release material 56 .
  • Each of the support material 58 , building material 52 and release material 56 may be, for example, a photopolymer or other substance that is curable. Curing may be done by, for example, electromagnetic radiation (e.g., X rays, UV rays, visible light, IR radiation, microwave radiation, radio frequencies, etc.). Other curing methods, such as electron beam curing, may be used. Different substances may be used, and different curing methods may be used.
  • apparatus including a printing head having a plurality of nozzles, a dispenser connected to the printing head for selectively dispensing interface material in layers and curing apparatus for optionally curing each of the layers deposited.
  • the depth of each deposited layer may be controllable by selectively adjusting the output from each of the plurality of nozzles.
  • Embodiments described in U.S. patent application Ser. No. 09/412,618 include a system and a method for printing complex 3-D objects by using interface material having different hardness or elasticity and mixing the interface material from each of the printing heads to control the hardness of the material forming the 3-D object.
  • FIG. 3 is a schematic illustration of a 3-D printing system according to an embodiment of the present invention, generally designated 10 .
  • the 3-D printing system 10 includes a printing head 12 having a plurality of ink-jet nozzles 14 , through which interface material 16 is jetted and a curing unit 18 for curing the interface material 16 to form the 3-D element 52 .
  • the 3-D printing system 10 further comprises a process controller 24 connected to and controlling the printing head 12 and curing unit 18 as well as to a CAD system 26 .
  • CAD system 26 prepares and outputs the data for the 3-D object being produced.
  • a single printing head 12 may be used for dispensing the building material 52 , support material 58 and release material 56 by allocating different nozzles for each of the different materials.
  • separate printing heads may be used for each material.
  • the support layer may be constituted from, for example, a separate material, from the material used for the release layer, from a mixture of release layer material and support layer material, or from any suitable combination of materials having sufficient strength to provide support to the build layers.
  • the 3-D element 52 is build up in layers.
  • the depth of each layer is controllable by, for example, selectively adjusting the output from each of the plurality of ink-jet nozzles 14 .
  • an object can be supported during printing by concurrently printing support material using a mixture having a different hardness or elasticity from the mixture forming the 3-D element 52 .
  • 3-D element 52 can be supported, for example, by a conical shaped support structure 50 .
  • the shaped support structure 50 is preferably constituted from material having mix proportions different from the constructed 3-D element 52 .
  • the shaped support structure 50 may be released by suitable means consistent with the composition of the support structure. For example, by dissolving shaped support structure 50 in water or other solvent, or by subjecting the structure to mechanical vibrations, or alternatively, subjecting the shaped support structure 50 to ‘energy bombardment’, such as from microwaves, which would cause the shaped support structure 50 to weaken; for example to turn to gas, liquid or powder.
  • suitable means consistent with the composition of the support structure. For example, by dissolving shaped support structure 50 in water or other solvent, or by subjecting the structure to mechanical vibrations, or alternatively, subjecting the shaped support structure 50 to ‘energy bombardment’, such as from microwaves, which would cause the shaped support structure 50 to weaken; for example to turn to gas, liquid or powder.
  • release material 56 can be used to separate the build material from the support material 58 B.
  • the shaped support structure 50 may be constituted from material having mix proportions similar to the constructed 3-D element 52 , provided that a release layer 56 is inserted between the shaped support structure 50 and the constructed 3-D element 52 .
  • the release layer is generally softer than both the shaped support structure 50 and the constructed 3-D element 52 . The support structure 50 can then be easily separated from the 3-D element 52 .
  • the release layer has a modulus of elasticity different from those of the support structure and the build material (typically, when measured after deposition and possibly after curing, if curing is used). In certain embodiments, such modulus of elasticity may be measured after a weakening agent (e g., solvent, radiation, temperature) is applied. Typically, the modulus of elasticity for the release layer is lower than both the support and release material (which may or may not have the same modulus of elasticity).
  • the release layer may be constructed from, for example, a mix of support and build material, or may be constructed from a third, separate material.
  • FIG. 4-A is a schematic cross-sectional view of a further embodiment of a release/support structure, generally referenced 60 for a more ‘complex’ 3-D element, 62 .
  • the example of 3-D element 62 may be described as having a generally “I”-shape (as seen in cross-section), having a ‘fragile’ foot 63 supporting a wider ‘leg’ 64 , which further supports cantilever ‘arms’ 66 and 68 .
  • Cantilever arm 66 is deeper than cantilever arm 68 .
  • the structure 60 is supported by support material 70 . Unless the support material 70 is itself adequately retained (or sufficiently dense so as to be self-supporting), the support material 70 may ‘spread’ or bulge thus causing both cantilever ‘arms’ 66 and 68 to sag or curt.
  • a secondary support in the form of a container 72 , is used.
  • Container 72 may be a generally box-shaped structure having an open top, which may be jetted in the same manner as the 3-D element 62 and the support material 70 . Other shapes for the container may be used.
  • Container 72 may be constituted so that it is sufficiently strong to retain the support material 70 .
  • the use of container 72 enables the use of a semi-fluid material, for example, for the support material layers.
  • the support material may be any suitable low viscosity material capable of supporting the 3-D object being produced. Using low viscosity material as the support allows the 3-D object to be easily released by simply upending the container 72 , the support layer 70 also acting as a release material.
  • the support material typically has a modulus of elasticity less than that of the container and the build object (typically when measured after dispensing or after curing).
  • the modulus of elasticity of the container and build object may be the same
  • the container 72 may be constructed layer by layer concurrently with the construction of the 3-D object 62 and the release/support 70 , as described in U.S. patent application Ser. No. 09/259323. Other methods may be used.
  • Additional support pillars may be added during construction (if required) for supporting the overhangs formed from cantilever ‘arms’ 66 and 68 .
  • FIG. 4-B is an enlarged detail of the corner of cantilever ‘arm’ 66 and support pillar 76 according to an embodiment of the present invention.
  • Support pillar 76 may be constructed in layers during the construction of container 72 .
  • the support pillar 76 is shown as ending a distance ‘d’ below the bottom layer of cantilever ‘arm’ 66 .
  • the distance ‘d’ is preferably the thickness of one or two layers, that is 20-50 microns.
  • the pillar 76 can be constructed up to the bottom layer of cantilever ‘arm’ 66 , as shown in FIG. 4-C, the last layer being a single ink-jet ‘drop’.
  • the support pillar 76 acts to prevent the cantilever arm 66 from sagging.
  • the maximum ‘sag’ is thus the distance ‘d’ (that is, 20-50 microns).
  • the last layers of the supporting pillar 76 just below the cantilever ‘arm’ 66 may be narrowed, as shown in FIG. 4-B.
  • Alternative configurations for the last layers include a point or any suitable formation, as shown in FIG, 4 -C, so as to ease breaking the support structure.
  • FIG. 5 is a schematic cross-sectional view of a further embodiment of a release/support structure, generally referenced 80 .
  • a ‘complex’ 3-D structure generally designated 82 is being constructed within a container-like retainer 84 .
  • the 3-D structure comprises a ‘foot’ 86 supporting a ‘leg’ 87 , which supports an upper ‘body’ 88 .
  • Upper ‘body’ 88 further comprises a nib 90 and a ‘mortise’ 92 cut into one part of body 88 .
  • the material used to build the container may be, for example, the build material, or may be other material, such as a third material or a mix of BM and SM.
  • the structure 82 is supported by support material 94 , which is similar to support material 70 described hereinabove with respect to FIG. 4-A.
  • FIG. 6 is an enlarged detail of nib 90 according to an embodiment of the system and method of the present invention.
  • the shrinkage indicated by arrow 95 , may cause ‘curling’ to occur at the ends of the layers being deposited. This is shown in exaggerated detail by the dashed lines 96 .
  • One technique to prevent ‘curling’ to occur is shown in the embodiment of FIGS. 6 -A and 6 -B, where the end of nib 90 is extended by disposing a few thin serrations 98 , connected to the container-like retainer 84 .
  • the serrations 98 act as restraints, preventing the upward curling of the edges of the nib 90 .
  • Another technique of supporting a thin nib 102 at its lower side is shown in FIG. 5; dispensing a supporting nib 100 as an integral part of the container 84 , leaving a thin gap ‘F’, and dispensing SM or a release layer over it enables the formation of the thin nib 102 .
  • additional support pillars may be added during construction for supporting the nib 90 and the overhang formed from the upper ‘body’ 88 .
  • support pillars ( 102 , 103 , 104 ) may be constructed in layers during the construction of container 84 ending a distance ‘d below the bottom layer of components 88 and 90 , or ending by thinning or a point as shown in FIGS. 4 -B and 4 -C.
  • Curing is preferably carried out after the deposition of each layer. However, alternatively, curing may be optionally deferred so that curing occurs after the deposition of more than one layer.
  • FIG. 7 depicting a cross sectional view of a 3-D model 110 according to an embodiment of the present invention.
  • the 3-D model 110 is constructed layer by layer including a container 118 and support material 119 .
  • One or more pillars such as pillars 120 , 122 , and 124 may be constructed in order to support the islands 114 and 116 .
  • the pillars are preferably made from the building material, but may be constructed from other material.
  • Thin membranes like 128 , 130 , 132 may also be dispensed and cured. These membranes may be used to stabilize the pillars by forming connection among them and by connecting them to the relatively rigid container wall 118 .
  • the membranes are preferably dispensed from the building material, but may be constructed from other material.
  • the linkage of said membranes 128 , 130 and 132 to the container wall 118 may be continuous or by serrations 98 , as shown in FIGS. 6A and 6B, or may be by other methods.
  • Membranes 130 and 132 are also forming the lower layer of islands 114 and 116 .
  • FIG, 8 -A is an embodiment of a 3-D model 130 comprising a cured BM part 132 and an insert 134 .
  • the insert 134 may be produced from a third material such as metal, plastic, wood or any other suitable material, or may be produced from build material, support material, or release material.
  • the insert is preferably more rigid than the liquid or semi-liquid materials used to form the build object and support structures.
  • a plate 134 having threads 136 is inserted in the model, although any other suitable form could be used.
  • the method of producing a model such like 130 is by first dispensing the lower layers of the model 133 , as shown in FIG. 8-B (the container not shown), where the recess 135 is left uncured or filled with SM.
  • the recess 135 may be built slightly larger than the insert 134 .
  • the recess 135 is emptied from the uncured material, the insert 134 is inserted and the dispensing continues, filling the gaps between the cured part 133 and the insert 134 .
  • FIG. 9-A is still another embodiment of a method of producing a 3-D model having an embedded graduated insert 144 .
  • the method of producing such a 3-D model is similar to that shown in FIG. 8-A; the lower part of the model 142 is dispensed as shown in FIG. 9B, forming a recess 145 which is uncured and slightly larger than the insert 146 .
  • the recess 145 has attained the form of the insert 144
  • the recess is emptied from the uncured support material, the insert 144 is inserted into the recess 145 and dispensing the BM continues.
  • FIG. 10-A is still another embodiment of a method of producing a 3-D model 150 having an embedded skewed insert 154 .
  • the method of producing such a 3-D model is similar to that shown in FIG 8 -A; the lower part of the model 153 is dispensed as shown in FIG. 10-B, forming a recess 155 which is uncured, filled with SM, (not shown) and slightly larger than the insert 154 .
  • the recess 155 has attained the form of the insert 154 , the recess is emptied from the SM, the insert 154 is inserted into the recess and dispensing continues.

Abstract

A method for printing and supporting a three-dimensional (3-D) object is provided. The method of printing can include dispensing a first interface material for the construction of the three-dimensional object, dispensing a second interface material to form a support structure for supporting the three-dimensional object and dispensing a third interface material which may be used to separate the support structure from the 3-D object Disclosed also a method for producing a 3-D model containing various kinds of inserts.

Description

    PRIOR PROVISIONAL APPLICATION
  • The present application claims benefit from prior U.S. provisional application serial No. 60/277,259, filed Mar. 21, 2001, entitled “SYSTEM AND METHOD FOR PRINTING AND SUPPORTING THREE DIMENSIONAL OBJECTS”.[0001]
  • FIELD OF THE INVENTION
  • This present invention relates to printing 3-D (Three-Dimensional) objects in general and to supporting complex 3-D structures in particular. [0002]
  • BACKGROUND OF THE INVENTION
  • 3-D printing, which generally works by building parts in layers, is a process used for the building up of 3-D objects. 3-D printing is relatively speedy and flexible allowing for the production of various objects as prototype parts and tooling directly from, for example, a CAD (Computer Aided Design) file. [0003]
  • Using 3-D printing enables the manufacturer to obtain a full 3-D model of any proposed product before tooling thereby possibly substantially reducing the cost of tooling and leading to a better synchronization between design and manufacturing. [0004]
  • Embodiments for 3-D printing are described in U.S. patent application Ser. No. 09/259323 to the Assignees of the present application, and incorporated herein by reference Such embodiments include a dispensing apparatus including a printing head having a plurality of nozzles, which selectively dispenses interface material through the nozzles in layers and curing means for optionally curing each of the layers deposited. The depth of each deposited layer may be controllable by selectively adjusting the output from each of the plurality of nozzles. [0005]
  • Embodiments for 3-D printing are also described in U.S. patent application Ser. No. 09/412,618. Some such embodiments include printing complex 3-D objects by using interface materials having different hardness or elasticity and mixing the interface material from each of the printing heads to control the hardness of the material forming the 3-D object. [0006]
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provide a method and system for printing a 3-D (Three-Dimensional) object and supporting the 3-D object during its construction. [0007]
  • There is thus provided, in accordance with an embodiment of the present invention, a method and system of printing a 3-D object which includes the steps of dispensing a raw first interface material which will be referred to as building material, or briefly BM, directly to place for the construction of the 3-D object and (or not) for building part of the supporting structure of the 3-D object, dispensing a raw second interface material, which will be referred to as support material or briefly SM, to form the other part of the supporting structure, and applying a hardening process (e.g., curing) to the building and (or not) support materials. In addition, the immediate layer of a supporting structure that touches the 3-D object surface may be composed of support material only, so as to serve as a release layer between the 3-D object and the rest of the supporting structure. [0008]
  • In addition, there is thus provided a method of increasing the viscosity of the building and or support materials by reducing the temperature of the materials after dispensing. [0009]
  • In addition, there is thus provided a method of hardening the BM and (or not) SM by “curing” brought about by, for example, electromagnetic radiation to produce the (final) interface materials. Furthermore, in accordance with an embodiment of the present invention, the step of dispensing a BM includes the step of dispensing the BM in a plurality of layers, each layer being less than 10μ (micron) thick. The step of dispensing a SM includes the step of dispensing the raw SM in a plurality of layers, each layer being the same thickness as the layer of the BM. [0010]
  • Additionally, the step of dispensing the BM may include the step of dispensing the SM as well. [0011]
  • The final SM (FSM) has a different viscosity or hardness or cohesiveness from the final BM (FBM). [0012]
  • In addition, there is thus provided a method of separating the support structure from the 3-D object thereby to produce the finished 3-D object. Further more, in accordance with an embodiment of the present invention, the step of separating includes the step of dissolving the FSM in a solvent. [0013]
  • Alternatively, the step of separating includes the step of subjecting the FSM to radiation thereby to cause the support structure or part of it to, for example, turn to gas or liquid or powder. The radiation includes electromagnetic radiation at microwave wavelength, sonic radiation at ultrasonic wavelength or low frequency mechanical vibration. [0014]
  • The FSM may be a fluid. In this case the step of separating includes the step of draining the FSM and/or washing the 3-D object with a solvent—in particular with water. [0015]
  • The fluid may have the proper characteristics that are required to prevent deterioration of surface quality of the 3-D object due to mix of BM and SM at the interface layer between both. Such characteristics include having large surface tension between both raw materials, or being the raw SM compatible with the BM in respect of the hardening process of the BM (example: BM without initiator is being used as SM). [0016]
  • The fluid may be soluble or dispersible in environmental friendly solvent or dispersant—in particular water. The fluid may be water or water solution or dispersion such as Poly Ethanol Glycol, Propylene Glycol, Glycerol. [0017]
  • Furthermore, in accordance with an embodiment of the present invention, the support structure includes a container retaining the non self sustaining SM. The container includes a plurality of walls everywhere the FSM is adjacent to air and (or not) to the table, including (or not) the air above the FSM. [0018]
  • The support structure may also include pillars and membranes that stabilize and support the 3-D object. A typical embodiment includes vertical pillars and horizontal membranes; each membrane is composed of one or few printed layers of BM, or BM and SM. The membrane may be full or screen-like in such that it comprises of thin beams that connect the pillars to each other. The pillars and or membranes may or may not connect the 3-D object to the container's walls or base, or connect parts of the 3-D object to each other. The membranes also connect pillars to each other. The material of container, pillars and membranes may be viscous or cohesive and harder than the FSM material, and may be composed of, for example, FBM, or of a mix of BM and SM, or a separate material. [0019]
  • One special case of using horizontal membranes is when a layer includes an island. Island is defined as any part of the object, which is not connected to the object from beneath. The bottom part of the object is an example of an island The membrane stretches out of the island circumference to a certain extent and is connected to the pillars from below, or is connected to the adjacent walls. [0020]
  • The support structure may also include a fine mix of BM and SM in a way that the mix is even substance with hardness, flexibility and cohesiveness between the fluid SM and the cured BM. One way of achieving such a mix is printing fine pillars of BM surrounded by SM. The support structure may also include a layer of SM between the 3-D object and the mixed substance for releasing purposes [0021]
  • Furthermore, one edge of support pillar or membrane may contact or be adjacent to the 3-D object being supported. When in contact, the edge may be tapered or thinned. [0022]
  • There may be, for example, four sets of grids or membranes: Base, extra, island and fine. A base grid may be built where there is vertical “line of sight” to the table. An extra may be the grid of the extra support section. An island may be formed below islands and the very immediate vicinity. A fine grid may be formed elsewhere. The container and connecting walls may be formed in such a way that they are easily separable from the 3-D object. Hence they may be formed of thin layer of FBM, the layer may be reinforced by columns, or thick layer with thin “break lines” and sharp edges where the wall is connected to the object, or thick layer which is composed of a mix of BM and SM. [0023]
  • Furthermore the raw SM may be flooded into place instead of directly dispensed into place after or before the raw BM is dispensed into place. [0024]
  • Furthermore the 3-D object during printing may be partially sunk in a bath of raw SM, and the raw BM may be dispensed into place. After each slice (e.g., printed layer) the table supporting the object sinks so that only the very top of the printed object protrudes above the SM. The table may sink before this step even more in order to enable the SM flowing to any open space between the printed object parts. [0025]
  • Furthermore, in accordance with an embodiment of the present invention, the method further includes the steps of curing the BM for a first period of time and at a first electromagnetic radiation wavelength to obtain a first modulus of elasticity and curing or not the SM for a second period of time and at a second radiation wavelength to obtain a second modulus of elasticity. The radiation wavelength and time length of both may be equal. [0026]
  • Furthermore, in accordance with an embodiment of the present invention, a method of printing 3-D models containing various kinds inserts is presented. [0027]
  • These inserts may be rigid, semi-rigid or flexible and may be produced from various materials. The inserts may installed during the printing process as will be explained herein.[0028]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the appended drawings in which: [0029]
  • FIG. 1 is a schematic sectional elevational view of a release/support structure for use in the construction of a 3-D object, constructed and operative in accordance with a preferred embodiment of the present invention; [0030]
  • FIG. 2 is an enlarged detail of a layer of the 3-D object of FIG. 1; [0031]
  • FIG. 3 is a schematic illustration of an embodiment of the 3-D printing system for use in constructing the 3-D object and release/support structure of FIG. 1; [0032]
  • FIG. 4-A is a schematic cross-sectional elevational view of a further embodiment of release/support structure for a 3-D object; [0033]
  • FIG. 4-B is an enlarged detail showing the support pillar for the 3-D object according to an embodiment of the present invention; [0034]
  • FIG. 4-C depicts another embodiment of a pillar end used to support a cantilever of a 3-D model according to an embodiment of the present invention; [0035]
  • FIG. 5 depicts a schematic cross-sectional view of a yet further embodiment of release/support structure for a 3-D model; [0036]
  • FIG. 6-A is an enlarged detail of part of a container and a membrane forming the support structure of FIG. 5; [0037]
  • FIG. 6-B is an plan view of a serration used to support a thin section of a model according to an embodiment of the present invention; [0038]
  • FIG. 7 is a complex of pillars and membranes used to support a printed model according to an embodiment of the present invention; [0039]
  • FIG. 8-A is a model containing a flat insert according to an embodiment of the present invention; [0040]
  • FIG. 8-B is the base of a part when an insert is introduced according to an embodiment of the present invention; [0041]
  • FIG. 9-A is a model containing an internal graduated insert according to an embodiment of the present invention; [0042]
  • FIG. 9-B is the lower section of [0043] part 140 when the insert is introduced according to an embodiment of the present invention;
  • FIG. 10-A is a model containing a skew insert according to an embodiment of the present invention; and [0044]
  • FIG. 10-B is the lower section of [0045] part 150 when the skewed insert is inserted.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well-known features may be omitted or simplified in order not to obscure the present invention. [0046]
  • List of Definitions: [0047]
  • The following definitions are used in this Application: [0048]
  • Object layer (or component) or model layer: a layer of BM (building material) included in the 3-D object; [0049]
  • Support layer (or component)—a layer of SM (support material) for supporting the 3-D object layer and not included in the 3-D object; [0050]
  • Release layer (or component)—a layer of interface material for separating the 3-D object layer from components, such as the support layer, not included in the 3-D object. [0051]
  • Reference is now made to FIG. 1, which is. a schematic cross sectional view of a release/support structure according to an embodiment of the present invention, generally referenced [0052] 50, for a 3-D element 52 (shown hatched) being constructed.
  • [0053] Element 52, set on a table 54, is shown as being a slim upright object having dimensions, whose height H is typically a large multiple of its width (W), In the example of FIG. 1, H≡15×W. Other dimensions and proportions may be used.
  • As will be appreciated, a slim upright object such as [0054] element 52 is likely to snap much more easily than a wider based object. Thus, in order to ensure that 3-D element does not break or snap during printing, 3-D element 52 may be supported during construction. Surrounding the 3-D element 52 may be a shaped support structure 60 that ensures that the 3-D object is adequately braced.
  • [0055] Element 52 is preferably constructed in layers, utilizing suitable apparatus such as embodiments described in U.S. patent applications Ser. Nos. 09/259323 and/or 09/412,618, assigned to the Assignees of the present application, and incorporated herein by reference. Other 3-D modeling apparatuses may be used. For clarity, only three layers, referenced 58A, 58B and 58C are shown. It will be appreciated that 3-D element 52 is constructed in a plurality of layers, approximately 10μ-20μ thick. Other dimensions may be used.
  • As shown in the enlarged detail of layer [0056] 58B in FIG. 2, each layer comprises support material 58, building material 52 and release material 56, Each of the support material 58, building material 52 and release material 56 may be, for example, a photopolymer or other substance that is curable. Curing may be done by, for example, electromagnetic radiation (e.g., X rays, UV rays, visible light, IR radiation, microwave radiation, radio frequencies, etc.). Other curing methods, such as electron beam curing, may be used. Different substances may be used, and different curing methods may be used.
  • Briefly, embodiments described in U.S. patent application Ser. No. 09/259323 describe apparatus including a printing head having a plurality of nozzles, a dispenser connected to the printing head for selectively dispensing interface material in layers and curing apparatus for optionally curing each of the layers deposited. The depth of each deposited layer may be controllable by selectively adjusting the output from each of the plurality of nozzles. [0057]
  • Embodiments described in U.S. patent application Ser. No. 09/412,618 include a system and a method for printing complex 3-D objects by using interface material having different hardness or elasticity and mixing the interface material from each of the printing heads to control the hardness of the material forming the 3-D object. [0058]
  • Reference is now briefly made to FIG. 3, which is a schematic illustration of a 3-D printing system according to an embodiment of the present invention, generally designated [0059] 10.
  • In one embodiment, the 3-[0060] D printing system 10 includes a printing head 12 having a plurality of ink-jet nozzles 14, through which interface material 16 is jetted and a curing unit 18 for curing the interface material 16 to form the 3-D element 52. The 3-D printing system 10 further comprises a process controller 24 connected to and controlling the printing head 12 and curing unit 18 as well as to a CAD system 26. CAD system 26 prepares and outputs the data for the 3-D object being produced.
  • A [0061] single printing head 12 may be used for dispensing the building material 52, support material 58 and release material 56 by allocating different nozzles for each of the different materials. Alternatively, separate printing heads may be used for each material. The support layer may be constituted from, for example, a separate material, from the material used for the release layer, from a mixture of release layer material and support layer material, or from any suitable combination of materials having sufficient strength to provide support to the build layers.
  • The 3-[0062] D element 52 is build up in layers. In one embodiment, the depth of each layer is controllable by, for example, selectively adjusting the output from each of the plurality of ink-jet nozzles 14.
  • As described in U.S. patent application Ser. No. 09/412,618, an object can be supported during printing by concurrently printing support material using a mixture having a different hardness or elasticity from the mixture forming the 3-[0063] D element 52. Thus, in the example of FIG. 1, 3-D element 52 can be supported, for example, by a conical shaped support structure 50. The shaped support structure 50, is preferably constituted from material having mix proportions different from the constructed 3-D element 52.
  • In one embodiment, the shaped [0064] support structure 50 may be released by suitable means consistent with the composition of the support structure. For example, by dissolving shaped support structure 50 in water or other solvent, or by subjecting the structure to mechanical vibrations, or alternatively, subjecting the shaped support structure 50 to ‘energy bombardment’, such as from microwaves, which would cause the shaped support structure 50 to weaken; for example to turn to gas, liquid or powder.
  • Alternatively, in the embodiment shown in FIG. 2, [0065] release material 56 can be used to separate the build material from the support material 58B. The shaped support structure 50 may be constituted from material having mix proportions similar to the constructed 3-D element 52, provided that a release layer 56 is inserted between the shaped support structure 50 and the constructed 3-D element 52. In this case, the release layer is generally softer than both the shaped support structure 50 and the constructed 3-D element 52. The support structure 50 can then be easily separated from the 3-D element 52.
  • In one embodiment, the release layer has a modulus of elasticity different from those of the support structure and the build material (typically, when measured after deposition and possibly after curing, if curing is used). In certain embodiments, such modulus of elasticity may be measured after a weakening agent (e g., solvent, radiation, temperature) is applied. Typically, the modulus of elasticity for the release layer is lower than both the support and release material (which may or may not have the same modulus of elasticity). The release layer may be constructed from, for example, a mix of support and build material, or may be constructed from a third, separate material. [0066]
  • Reference is now made to FIG. 4-A which is a schematic cross-sectional view of a further embodiment of a release/support structure, generally referenced [0067] 60 for a more ‘complex’ 3-D element, 62. The example of 3-D element 62 may be described as having a generally “I”-shape (as seen in cross-section), having a ‘fragile’ foot 63 supporting a wider ‘leg’ 64, which further supports cantilever ‘arms’ 66 and 68. Cantilever arm 66 is deeper than cantilever arm 68, The structure 60 is supported by support material 70. Unless the support material 70 is itself adequately retained (or sufficiently dense so as to be self-supporting), the support material 70 may ‘spread’ or bulge thus causing both cantilever ‘arms’ 66 and 68 to sag or curt.
  • In the embodiment shown in FIG. 4-A, a secondary support, in the form of a [0068] container 72, is used. Container 72 may be a generally box-shaped structure having an open top, which may be jetted in the same manner as the 3-D element 62 and the support material 70. Other shapes for the container may be used. Container 72 may be constituted so that it is sufficiently strong to retain the support material 70. The use of container 72 enables the use of a semi-fluid material, for example, for the support material layers. Thus, the support material may be any suitable low viscosity material capable of supporting the 3-D object being produced. Using low viscosity material as the support allows the 3-D object to be easily released by simply upending the container 72, the support layer 70 also acting as a release material.
  • The support material typically has a modulus of elasticity less than that of the container and the build object (typically when measured after dispensing or after curing). The modulus of elasticity of the container and build object may be the same The [0069] container 72 may be constructed layer by layer concurrently with the construction of the 3-D object 62 and the release/support 70, as described in U.S. patent application Ser. No. 09/259323. Other methods may be used.
  • Additional support pillars ([0070] 74, 76) may be added during construction (if required) for supporting the overhangs formed from cantilever ‘arms’ 66 and 68. Reference is now made to FIG. 4-B, which is an enlarged detail of the corner of cantilever ‘arm’ 66 and support pillar 76 according to an embodiment of the present invention. Support pillar 76 may be constructed in layers during the construction of container 72. The support pillar 76 is shown as ending a distance ‘d’ below the bottom layer of cantilever ‘arm’ 66. The distance ‘d’ is preferably the thickness of one or two layers, that is 20-50 microns. Alternatively, the pillar 76 can be constructed up to the bottom layer of cantilever ‘arm’ 66, as shown in FIG. 4-C, the last layer being a single ink-jet ‘drop’. Thus, the support pillar 76 acts to prevent the cantilever arm 66 from sagging. In the embodiment of FIG. 4-B, the maximum ‘sag’ is thus the distance ‘d’ (that is, 20-50 microns).
  • The last layers of the supporting [0071] pillar 76 just below the cantilever ‘arm’ 66 may be narrowed, as shown in FIG. 4-B. Alternative configurations for the last layers include a point or any suitable formation, as shown in FIG, 4-C, so as to ease breaking the support structure.
  • Reference is now made to FIG. 5, which is a schematic cross-sectional view of a further embodiment of a release/support structure, generally referenced [0072] 80. In the embodiment of FIG. 5, a ‘complex’ 3-D structure, generally designated 82 is being constructed within a container-like retainer 84. The 3-D structure comprises a ‘foot’ 86 supporting a ‘leg’ 87, which supports an upper ‘body’ 88. Upper ‘body’ 88 further comprises a nib 90 and a ‘mortise’ 92 cut into one part of body 88. The material used to build the container may be, for example, the build material, or may be other material, such as a third material or a mix of BM and SM.
  • The [0073] structure 82 is supported by support material 94, which is similar to support material 70 described hereinabove with respect to FIG. 4-A.
  • Reference is now also made to FIG. 6, which is an enlarged detail of [0074] nib 90 according to an embodiment of the system and method of the present invention. Owing to thermal changes taking place during the construction of the interface material, there is a tendency for shrinkage to occur. The shrinkage, indicated by arrow 95, may cause ‘curling’ to occur at the ends of the layers being deposited. This is shown in exaggerated detail by the dashed lines 96. One technique to prevent ‘curling’ to occur is shown in the embodiment of FIGS. 6-A and 6-B, where the end of nib 90 is extended by disposing a few thin serrations 98, connected to the container-like retainer 84. The serrations 98 act as restraints, preventing the upward curling of the edges of the nib 90. Another technique of supporting a thin nib 102 at its lower side is shown in FIG. 5; dispensing a supporting nib 100 as an integral part of the container 84, leaving a thin gap ‘F’, and dispensing SM or a release layer over it enables the formation of the thin nib 102.
  • Similar to the embodiment of FIG. 4-A, additional support pillars ([0075] 102, 103, 104) may be added during construction for supporting the nib 90 and the overhang formed from the upper ‘body’ 88. As described hereinabove with respect to the support pillar 76 of FIG. 4-A, support pillars (102, 103, 104) may be constructed in layers during the construction of container 84 ending a distance ‘d below the bottom layer of components 88 and 90, or ending by thinning or a point as shown in FIGS. 4-B and 4-C.
  • Curing is preferably carried out after the deposition of each layer. However, alternatively, curing may be optionally deferred so that curing occurs after the deposition of more than one layer. [0076]
  • Reference is made now to FIG. 7, depicting a cross sectional view of a 3-[0077] D model 110 according to an embodiment of the present invention. According to this preferred embodiment the 3-D model 110 is constructed layer by layer including a container 118 and support material 119.
  • One or more pillars such as [0078] pillars 120, 122, and 124 may be constructed in order to support the islands 114 and 116. The pillars are preferably made from the building material, but may be constructed from other material.
  • Thin membranes like [0079] 128, 130, 132, typically having at least thickness of a single layer, may also be dispensed and cured. These membranes may be used to stabilize the pillars by forming connection among them and by connecting them to the relatively rigid container wall 118. The membranes are preferably dispensed from the building material, but may be constructed from other material.
  • The linkage of said [0080] membranes 128, 130 and 132 to the container wall 118 may be continuous or by serrations 98, as shown in FIGS. 6A and 6B, or may be by other methods.
  • Membranes [0081] 130 and 132 are also forming the lower layer of islands 114 and 116.
  • Refer now to FIG, [0082] 8-A which is an embodiment of a 3-D model 130 comprising a cured BM part 132 and an insert 134. The insert 134 may be produced from a third material such as metal, plastic, wood or any other suitable material, or may be produced from build material, support material, or release material. The insert is preferably more rigid than the liquid or semi-liquid materials used to form the build object and support structures. According to an embodiment of the present invention, a plate 134 having threads 136, is inserted in the model, although any other suitable form could be used.
  • The method of producing a model such like [0083] 130, is by first dispensing the lower layers of the model 133, as shown in FIG. 8-B (the container not shown), where the recess 135 is left uncured or filled with SM. The recess 135 may be built slightly larger than the insert 134. When the lower part of the model 133 has attained a thickness of the insert ‘T’, the recess 135 is emptied from the uncured material, the insert 134 is inserted and the dispensing continues, filling the gaps between the cured part 133 and the insert 134.
  • Reference is made now to FIG. 9-A which is still another embodiment of a method of producing a 3-D model having an embedded graduated [0084] insert 144.
  • The method of producing such a 3-D model is similar to that shown in FIG. 8-A; the lower part of the [0085] model 142 is dispensed as shown in FIG. 9B, forming a recess 145 which is uncured and slightly larger than the insert 146. When the recess 145 has attained the form of the insert 144, the recess is emptied from the uncured support material, the insert 144 is inserted into the recess 145 and dispensing the BM continues.
  • Reference is made now to FIG. 10-A which is still another embodiment of a method of producing a 3-[0086] D model 150 having an embedded skewed insert 154.
  • The method of producing such a 3-D model is similar to that shown in FIG [0087] 8-A; the lower part of the model 153 is dispensed as shown in FIG. 10-B, forming a recess 155 which is uncured, filled with SM, (not shown) and slightly larger than the insert 154. When the recess 155 has attained the form of the insert 154, the recess is emptied from the SM, the insert 154 is inserted into the recess and dispensing continues.
  • It will be further appreciated that the present invention is not limited by what has been described hereinabove and that numerous modifications, all of which fall within the scope of the present invention, exist. Rather the scope of the invention is defined by the claims, which follow: [0088]

Claims (60)

1. A method for building three-dimensional objects, said method comprising:
dispensing a first material used to form at least the three-dimensional object;
dispensing a second material used to form at least part of a support structure; and
dispensing a third material between said 3-D object and said support structure to form a release layer.
2. The method of claim 1 wherein at least said first material is a photopolymer and at least the three-dimensional object is formed after being irradiated by electromagnetic radiation.
3. The method of claim 1 wherein said second material is a photopolymer and the support structure is formed after being irradiated by electromagnetic radiation.
4. The method of claim 1 wherein said third material is a photopolymer and the release layer is formed after being irradiated by electromagnetic radiation.
5. The method of claim 1 wherein said support structure comprises said first material.
6. The method of claim 1 wherein said second and third materials are the same substance.
7. The method of claim 1 wherein said release layer is softer than said support structure, and said support structure is softer than said 3-D object.
8. The method of claim 1 comprising separating said support structure and release layer from said 3-D object thereby to produce a three dimensional object comprised of said first material.
9. The method according to claim 1, comprising subjecting said second material to a solvent or to radiation thereby to cause the support structure to weaken.
10. The method according to claim 1, wherein said support structure and release layer are at least partly liquid or paste after curing.
11. The method according to claim 1, where said support structure comprises a container capable of confining said support material.
12. The method according to claim 1, further comprising constructing at least one support pillar of said first material within said support structure.
13. The method according to claim 12, further comprising constructing at least one connecting membrane of first material attached to said at least one support pillar.
14. A system for building three-dimensional objects, said system comprising:
a controller, and
a jetting head capable of selectively dispensing:
a first material used to form at least the three-dimensional object;
a second material used to form at least part of a support structure; and
a third material between said 3-D object and said support structure used to form a release layer.
15. The system of claim 14 wherein at least said first material is a photopolymer and at least the three-dimensional object is formed after being irradiated by electromagnetic radiation.
16. The system of claim 14 wherein said second material is a photopolymer and the support structure is formed after being irradiated by electromagnetic radiation.
17. The system of claim 14 wherein said third material is a photopolymer and the release layer is formed after being irradiated by electromagnetic radiation.
18. The system of claim 14 wherein said support structure comprises said first material.
19. The system of claim 14, wherein said support structure and release layer are at least partly liquid or paste after curing.
20. The system of claim 14, where said support structure comprises a container capable of confining said support material.
21. A method for building three-dimensional objects, said method comprising:
dispensing a curable build material to form the 3-D object and part of the support structure;
dispensing a support material to form part of the support structure, the build material being solid after curing and the support material being liquid after curing; and
forming a support structure comprising a container capable of holding said support material
22. The method according to claim 21, wherein said container comprises a base, a plurality of walls and an open top.
23. The method according to claim 21, wherein said container comprises at least one nib projecting from at least one of said walls, wherein said at least one nib is capable of restraining the movement of a three dimensional object.
24. The method according to claim 21, wherein said container comprises build material.
25. The method according to claim 21, wherein each of said build material, support material and container are formed in layers.
26. A system for building three-dimensional objects, said system comprising:
a controller; and
a material dispenser capable of dispensing:
a curable build material to form the 3-D object and part of a support structure; and
a support material to form part of the support structure, the build material being solid after curing and the support material being liquid after curing; wherein the material dispenser is capable of forming a support structure comprising a container capable of holding said support material.
27. The system according to claim 26, wherein said container comprises a base, a plurality of walls and an open top.
28. The system according to claim 26, wherein said container comprises at least one nib projecting from at least one of said walls, wherein said at least one nib is capable of restraining the movement of a three dimensional object.
29. The system according to claim 26, wherein said container material is identical to said build material.
30. The system according to claim 26, wherein each of said build material, support material and container material are deposited in layers.
31. A method for building three-dimensional objects, said method comprising:
dispensing a build material;
dispensing a second material forming a support structure; and
constructing a support pillar to support an object comprised of said build material.
32. The method according to claim 31, comprising constructing membranes connected to said support pillar.
33. The method according to claim 31, wherein said at least one support pillar is comprised of said build material.
34. The method according to claim 31, wherein said at least one support pillar is comprised of said build material and said second material.
35. The method according to claim 31, wherein said at least one support pillar comprises a plurality of layers and wherein the topmost layer of said at least one support pillar is adjacent to an object being supported.
36. The method according to claim 31, wherein said upper portion of said at least one support pillar is tapered.
37. The method according to claim 31, wherein each of said build material, second material and pillar are deposited in layers.
38. The method according to claim 31, wherein the topmost layer of said at least one support pillar comprises said second material.
39. The method according to claim 31, wherein the topmost layer of said at least one support pillar comprises a third material, said third material being softer than the material forming the remainder of said at least one support pillar.
40. A system for building three-dimensional objects, said system comprising:
dispenser capable of dispensing:
a build material;
second material forming a support structure; and
said dispenser constructing a support pillar to support an object comprised of said build material.
41. The system according to claim 40, wherein said dispenser is capable of material forming dispensing constructing membranes connected to said support pillar.
42. The system according to claim 40, wherein said at least one support pillar is comprised of said build material.
43. The system according to claim 40, wherein said at least one support pillar is comprised of said build material and said second material.
44. The system according to claim 40, wherein said at least one support pillar comprises a plurality of layers and wherein the topmost layer of said at least one support pillar is adjacent to an object being supported.
45. The system according to claim 40, wherein the topmost layer of said at least one support pillar comprises said second material.
46. The system according to claim 40, wherein the topmost layer of said at least one support pillar comprises a third material, said third material being softer than the material forming the remainder of the pillar.
47. The system according to claim 40, wherein said upper portion of said at least one support pillar is tapered.
48. The system according to claim 40, wherein each of said build material, second material and pillar are deposited in layers.
49. A method for building three-dimensional objects, said method comprising:
dispensing a first material for the construction of the three-dimensional object;
dispensing a support material forming a support structure for supporting said three-dimensional object; and
inserting a support insert.
50. The method of claim 49 wherein the support insert comprises a third material.
51. The method of claim 49 wherein the support insert includes plastic.
52. The method of claim 49 wherein the support insert includes metal.
53. The method of claim 49 wherein the support insert is a plate shaped member.
54. The method of claim 49 wherein the support insert is a skewed member.
55. The method of claim 49 wherein the support insert includes at least threads.
56. The method of claim 49 wherein the support insert is flexible.
57. The method of claim 49 wherein the support insert is more rigid than the support material, after said support material is cured.
58. A system for building three-dimensional objects, said system comprising:
a build material jetting means for dispensing build material;
a support material jetting means for dispensing support material; and
a release material jetting means for dispensing release material between said built and support materials.
59. A system for building three-dimensional objects, said system comprising:
a controller means;
a material dispenser means for dispensing:
build material having a first modulus of elasticity;
container material having a second modulus of elasticity; and
support material having a third modulus of elasticity and being held in a container comprised of said container material.
60. A system for building three-dimensional objects, said system comprising:
a dispenser means for dispensing:
a build material;
a second material forming a support structure; and
said dispenser means constructing a support pillar to support an object comprised of said build material.
US10/101,089 2001-03-21 2002-03-20 System and method for printing and supporting three dimensional objects Pending US20020171177A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/101,089 US20020171177A1 (en) 2001-03-21 2002-03-20 System and method for printing and supporting three dimensional objects
US10/716,426 US7364686B2 (en) 2001-03-21 2003-11-20 System and method for printing and supporting three dimensional objects
US12/062,094 US7685694B2 (en) 2001-03-21 2008-04-03 Method for building a three dimensional object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27725901P 2001-03-21 2001-03-21
US10/101,089 US20020171177A1 (en) 2001-03-21 2002-03-20 System and method for printing and supporting three dimensional objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/716,426 Continuation US7364686B2 (en) 2001-03-21 2003-11-20 System and method for printing and supporting three dimensional objects

Publications (1)

Publication Number Publication Date
US20020171177A1 true US20020171177A1 (en) 2002-11-21

Family

ID=26797888

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/101,089 Pending US20020171177A1 (en) 2001-03-21 2002-03-20 System and method for printing and supporting three dimensional objects
US10/716,426 Expired - Lifetime US7364686B2 (en) 2001-03-21 2003-11-20 System and method for printing and supporting three dimensional objects
US12/062,094 Expired - Lifetime US7685694B2 (en) 2001-03-21 2008-04-03 Method for building a three dimensional object

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/716,426 Expired - Lifetime US7364686B2 (en) 2001-03-21 2003-11-20 System and method for printing and supporting three dimensional objects
US12/062,094 Expired - Lifetime US7685694B2 (en) 2001-03-21 2008-04-03 Method for building a three dimensional object

Country Status (1)

Country Link
US (3) US20020171177A1 (en)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006686A1 (en) * 2000-07-12 2002-01-17 Cloud Eugene H. Die to die connection method and assemblies and packages including dice so connected
US20030100658A1 (en) * 2001-10-03 2003-05-29 3D Systems, Inc. Phase change support material composition
US20030173665A1 (en) * 2000-06-08 2003-09-18 Grigg Ford B. Support ring for use with a contact pad and semiconductor device compoents including the same
WO2004044816A1 (en) 2002-11-12 2004-05-27 Objet Geometries Ltd. Three-dimensional object printing
WO2004050323A1 (en) 2002-12-03 2004-06-17 Objet Geometries Ltd. Process of and apparatus for three-dimensional printing
US20040145781A1 (en) * 2003-01-16 2004-07-29 Kia Silverbrook A 3-D object creation system incorporating semiconductor memory
US6780744B2 (en) 2000-02-24 2004-08-24 Micron Technology, Inc. Stereolithographic methods for securing conductive elements to contacts of semiconductor device components
US6794224B2 (en) 2000-08-31 2004-09-21 Micron Technology, Inc. Semiconductor device including leads in communication with contact pads thereof and a stereolithographically fabricated package substantially encapsulating the leads and methods for fabricating the same
US20040242728A1 (en) * 2001-10-03 2004-12-02 3D Systems, Inc. Phase change support material composition
US20050014323A1 (en) * 2000-06-08 2005-01-20 Salman Akram Methods for protecting intermediate conductive elements of semiconductor device assemblies
US20050058837A1 (en) * 2003-09-16 2005-03-17 Farnworth Warren M. Processes for facilitating removal of stereolithographically fabricated objects from platens of stereolithographic fabrication equipment, object release elements for effecting such processes, systems and fabrication processes employing the object release elements, and objects which have been fabricated using the object release elements
US20050064679A1 (en) * 2003-09-19 2005-03-24 Farnworth Warren M. Consolidatable composite materials, articles of manufacture formed therefrom, and fabrication methods
US6875640B1 (en) 2000-06-08 2005-04-05 Micron Technology, Inc. Stereolithographic methods for forming a protective layer on a semiconductor device substrate and substrates including protective layers so formed
US20050072113A1 (en) * 2003-10-03 2005-04-07 Collins David C. Uses of support material in solid freeform fabrication systems
US6881607B2 (en) 2000-08-08 2005-04-19 Micron Technology, Inc. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
US6893904B2 (en) 2000-06-08 2005-05-17 Micron Technology, Inc. Stereolithographic methods of fabricating semiconductor devices having protective layers thereon through which contact pads are exposed
US6893804B2 (en) 2000-08-08 2005-05-17 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6896837B2 (en) 2000-08-29 2005-05-24 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US6900078B2 (en) 2000-02-24 2005-05-31 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6909929B2 (en) 1999-02-26 2005-06-21 Micron Technology, Inc. Stereolithographic method and apparatus for packaging electronic components
US6911735B2 (en) 2000-06-08 2005-06-28 Micron Technology, Inc. Collar positionable about a periphery of a contact pad and around a conductive structure secured to the contact pads, semiconductor device components including same, and methods for fabricating same
US20050148115A1 (en) * 2000-02-10 2005-07-07 Williams Vernon M. Programmed material consolidation methods for fabricating heat sinks
US20050181545A1 (en) * 2002-07-22 2005-08-18 Grigg Ford B. Methods of encapsulating selected locations of a semiconductor die assembly using a thick solder mask
US6939501B2 (en) 2000-01-11 2005-09-06 Micron Technology, Inc. Methods for labeling semiconductor device components
US6946732B2 (en) 2000-06-08 2005-09-20 Micron Technology, Inc. Stabilizers for flip-chip type semiconductor devices and semiconductor device components and assemblies including the same
US6951779B2 (en) 2000-08-17 2005-10-04 Micron Technology, Inc. Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
US20050245005A1 (en) * 2004-04-29 2005-11-03 Benson Peter A Wafer edge ring structures and methods of formation
US20050253261A1 (en) * 2003-02-20 2005-11-17 Farnworth Warren M Electronic device package structures
US20050255675A1 (en) * 2003-09-19 2005-11-17 Farnworth Warren M Apparatus for supporting wafers for die singulation and subsequent handling and in-process wafer structure
US20050278056A1 (en) * 2004-06-14 2005-12-15 Farnworth Warren M Machine vision systems for use with programmable material consolidation system and associated methods and structures
US20050282383A1 (en) * 2003-09-16 2005-12-22 Farnworth Warren M Systems for forming insulative coatings for via holes in semiconductor devices
US6980014B2 (en) 2000-03-23 2005-12-27 Micron Technology, Inc. Interposer and methods for fabricating same
US20060003255A1 (en) * 2003-09-19 2006-01-05 Wood Alan G Methods for optimizing physical characteristics of selectively consolidatable materials
US20060003569A1 (en) * 2002-07-08 2006-01-05 Farnworth Warren M Semiconductor devices with permanent polymer stencil and method for manufacturing the same
US20060046347A1 (en) * 2004-09-02 2006-03-02 Wood Alan G Die package, conductive element, semiconductor device including same, microlens, system including same, and methods of manufacture
EP1637307A2 (en) * 2002-12-03 2006-03-22 Objet Geometries Ltd. System, apparatus and method for printing of three-dimensional objects
US7018871B2 (en) 2002-04-02 2006-03-28 Micron Technology, Inc. Solder masks for use on carrier substrates, carrier substrates and semiconductor device assemblies including such solder masks, and methods
US20060081966A1 (en) * 2003-10-20 2006-04-20 Farnworth Warren M Chip-scale packages
US7041532B2 (en) 2000-04-28 2006-05-09 Micron Technology, Inc. Methods for fabricating interposers including upwardly protruding dams
US7041513B2 (en) 2000-06-08 2006-05-09 Micron Technology, Inc. Methods for forming semiconductor devices so as to stabilize the same when positioned face-down over test substrates
US20060111807A1 (en) * 2002-09-12 2006-05-25 Hanan Gothait Device, system and method for calibration in three-dimensional model printing
US7063524B2 (en) 2000-08-18 2006-06-20 Micron Technology, Inc. Apparatus for increased dimensional accuracy of 3-D object creation
US20070001321A1 (en) * 2004-06-14 2007-01-04 Hembree David R Semiconductor devices at least partially covered by a composite coating including particles dispersed through photopolymer material
US20070134359A1 (en) * 2001-08-30 2007-06-14 Farnworth Warren M Apparatus for use in stereolithographic processing of components and assemblies
US7232498B2 (en) 2004-08-13 2007-06-19 The Goodyear Tire & Rubber Company Tire with raised indicia
US20070148817A1 (en) * 2000-06-08 2007-06-28 Williams Vernon M Methods for fabricating reinforced, self-aligning conductive structures for semiconductor device components
US7368391B2 (en) 2002-04-10 2008-05-06 Micron Technology, Inc. Methods for designing carrier substrates with raised terminals
US20100256791A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Method and apparatus for the three-dimensional shape magnetic forming of a motor core
US7923298B2 (en) 2007-09-07 2011-04-12 Micron Technology, Inc. Imager die package and methods of packaging an imager die on a temporary carrier
EP2392473A1 (en) * 2010-06-07 2011-12-07 LUXeXcel Holding BV. Print head, upgrade kit for a conventional inkjet printer, inkjet printer and method for printing optical structures
WO2012166505A1 (en) * 2011-06-02 2012-12-06 A. Raymond Et Cie Structural component made by three-dimensional printing
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
WO2013154723A1 (en) * 2012-04-10 2013-10-17 A. Raymond Et Cie Printed encapsulation
EP2666613A1 (en) * 2012-05-25 2013-11-27 Technische Universität Darmstadt Invention related to auxiliary structures for the production of components by means of generative or additive methods
US20130316149A1 (en) * 2010-11-29 2013-11-28 William Brian Atkins Forming objects by infiltrating a printed matrix
US20140013962A1 (en) * 2011-01-24 2014-01-16 Jeffrey I. Lipton Deposition of materials for edible solid freeform fabrication
US20140162033A1 (en) * 2010-10-27 2014-06-12 Eugene Giller Process and Apparatus for Fabrication of Three-Dimensional Objects
CN104085110A (en) * 2014-07-03 2014-10-08 厦门达天电子科技有限公司 Radio frequency recognition and parameter configuration method and device for three-dimensional printing supplies
US8883064B2 (en) 2011-06-02 2014-11-11 A. Raymond & Cie Method of making printed fastener
US8916085B2 (en) 2011-06-02 2014-12-23 A. Raymond Et Cie Process of making a component with a passageway
EP2815873A1 (en) * 2013-06-17 2014-12-24 Rolls-Royce plc An additive layer manufacturing method
WO2014174090A3 (en) * 2013-04-26 2015-01-29 Materialise N.V. Hybrid support systems and methods of generating a hybrid support system using three dimensional printing
WO2015040410A3 (en) * 2013-09-19 2015-05-14 3T Rpd Limited Additive manufacturing method
US20150137423A1 (en) * 2013-11-18 2015-05-21 Xyzprinting, Inc. Three-dimensional printing method
US20150151494A1 (en) * 2007-10-10 2015-06-04 Materialise Nv Method and apparatus for automatic support generation for an object made by means of a rapid prototype production method
US9157007B2 (en) 2011-03-09 2015-10-13 3D Systems, Incorporated Build material and applications thereof
WO2015185502A1 (en) * 2014-06-03 2015-12-10 Grundel Investments B.V. Layered manufacturing process, forming device and data carrier
US20160167302A1 (en) * 2013-07-09 2016-06-16 Siemens Aktiengesellschaft Adaptation method and production method for components produced by slm
US9394441B2 (en) 2011-03-09 2016-07-19 3D Systems, Inc. Build material and applications thereof
US20160214317A1 (en) * 2013-10-04 2016-07-28 Mimaki Engineering Co., Ltd. Three-dimensional-object forming apparatus and three-dimensional-object forming method
US9511544B2 (en) 2011-06-02 2016-12-06 A. Raymond et Cie Method of making fasteners by three-dimensional printing
EP3015251A4 (en) * 2013-06-28 2017-01-11 Cmet Inc. Three-dimensional shaped body and support formation method
US9592690B2 (en) 2011-01-06 2017-03-14 Luxexcel Holding B.V. Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures
US9662837B2 (en) 2012-05-08 2017-05-30 Luxexcel Holding B.V. Method for printing a three-dimensional structure with smooth surfaces
EP3199267A1 (en) * 2016-01-29 2017-08-02 Seiko Epson Corporation Three-dimensional shaped article production method
EP3205424A1 (en) * 2016-02-11 2017-08-16 General Electric Company Method and connecting upports for additive manufacturing
WO2017180314A1 (en) * 2016-04-14 2017-10-19 Desktop Metal, Inc. Additive fabrication with support structures
US20170297264A1 (en) * 2014-10-03 2017-10-19 X Development Llc Continuous Pull Three-Dimensional Printing
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
EP3378626A1 (en) * 2017-03-21 2018-09-26 Ricoh Company Ltd. Method of manufacturing solid freeform fabrication object and method of creating data for solid freeform fabrication object
US10286578B2 (en) * 2014-01-09 2019-05-14 Seiko Epson Corporation Three-dimensional shaped article manufacturing apparatus
US10294380B2 (en) * 2014-01-09 2019-05-21 Seiko Epson Corporation Three-dimensional shaped article manufacturing method, three-dimensional shaped article manufacturing apparatus, ink set, and three-dimensional shaped article
US10335994B2 (en) 2000-03-13 2019-07-02 Stratasys Ltd Methods for three-dimensional model printing
US10365413B2 (en) 2009-02-14 2019-07-30 Luxexcel Holding B.V. Device for directing light beams, illustration device, method for producing a device and an illustration device
US10399258B2 (en) 2010-11-29 2019-09-03 Halliburton Energy Services, Inc. Heat flow control for molding downhole equipment
US10464131B2 (en) 2016-12-02 2019-11-05 Markforged, Inc. Rapid debinding via internal fluid channels
US10556417B2 (en) 2012-05-07 2020-02-11 Luxexcel Holding B.V. Method for printing a three-dimensional structure, method for controlling a print head and a printed article
US10723156B2 (en) * 2009-05-18 2020-07-28 Xjet Ltd. Method and device for printing on heated substrates
US10766070B2 (en) * 2015-08-28 2020-09-08 Materialise N.V. Self supporting in additive manufacturing
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
CN112719268A (en) * 2019-10-28 2021-04-30 帕洛阿尔托研究中心公司 Alloy support
US11117329B2 (en) 2018-06-26 2021-09-14 General Electric Company Additively manufactured build assemblies having reduced distortion and residual stress
US11292185B2 (en) * 2018-06-28 2022-04-05 Stratasys Ltd. Method and system for reducing curling in additive manufacturing
US11364543B2 (en) * 2018-04-30 2022-06-21 Hewlett-Packard Development Company, L.P. Three-dimensional printed component setter generation
US11396136B2 (en) * 2018-09-06 2022-07-26 Xerox Corporation 3D printing support structures incorporating sacrificial materials
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
US11712842B2 (en) * 2014-11-19 2023-08-01 Digital Metal Ab Method and apparatus for manufacturing a series of objects
US11833739B2 (en) 2018-08-20 2023-12-05 Esko-Graphics Imaging Gmbh Additive plate making system and method

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1631439B1 (en) * 2003-05-01 2007-08-22 Objet Geometries Ltd. Rapid prototyping apparatus
KR101537494B1 (en) * 2006-05-26 2015-07-16 3디 시스템즈 인코오퍼레이티드 Apparatus and methods for handling materials in a 3-d printer
US8784723B2 (en) * 2007-04-01 2014-07-22 Stratasys Ltd. Method and system for three-dimensional fabrication
GB0715621D0 (en) * 2007-08-10 2007-09-19 Rolls Royce Plc Support architecture
US8858856B2 (en) 2008-01-08 2014-10-14 Stratasys, Inc. Method for building and using three-dimensional objects containing embedded identification-tag inserts
US8070473B2 (en) * 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
US8876513B2 (en) * 2008-04-25 2014-11-04 3D Systems, Inc. Selective deposition modeling using CW UV LED curing
US8609204B2 (en) * 2008-06-05 2013-12-17 Stratasys Ltd. Apparatus and method for solid freeform fabrication
US20100140850A1 (en) * 2008-12-04 2010-06-10 Objet Geometries Ltd. Compositions for 3D printing
US20100140852A1 (en) 2008-12-04 2010-06-10 Objet Geometries Ltd. Preparation of building material for solid freeform fabrication
US8147910B2 (en) * 2009-02-24 2012-04-03 Objet Ltd. Method and apparatus for three-dimensional printing
US20120224734A1 (en) 2009-11-08 2012-09-06 Objet Ltd. Hearing aid and method of fabricating the same
US8983643B2 (en) 2010-01-15 2015-03-17 Stratasys, Inc. Method for generating and building support structures with deposition-based digital manufacturing systems
US8318076B2 (en) 2010-06-15 2012-11-27 3D Systems, Inc. Selective deposition modeling methods for improved support-object interface
EP2670572B1 (en) 2011-01-31 2022-09-21 Global Filtration Systems, A DBA of Gulf Filtration Systems Inc. Apparatus for making three-dimensional objects from multiple solidifiable materials
FR2974316B1 (en) * 2011-04-19 2015-10-09 Phenix Systems PROCESS FOR PRODUCING AN OBJECT BY SOLIDIFYING A POWDER USING A LASER
DE102011109368A1 (en) * 2011-08-04 2013-02-07 Arburg Gmbh + Co Kg Process for producing a three-dimensional article of solidifiable material and article produced therewith
US10150247B2 (en) 2013-03-12 2018-12-11 Orange Maker LLC 3D printing using spiral buildup and high viscosity build materials
AU2014248509B2 (en) * 2013-03-12 2018-12-13 Orange Maker LLC 3D printing using spiral buildup
US9573321B2 (en) 2013-03-14 2017-02-21 Stratasys Ltd. System and method for three-dimensional printing
US10850450B2 (en) * 2013-05-31 2020-12-01 Hewlett-Packard Development Company, L.P. Modifying a base layer of an object
DE102013011630B4 (en) * 2013-07-12 2021-09-02 Delcam, Ltd. Method for calculating support structures
US10843401B2 (en) 2013-11-01 2020-11-24 Kraton Polymers U.S. Llc Fuse molded three dimensional article and a method for making the same
JP6273849B2 (en) * 2014-01-15 2018-02-07 セイコーエプソン株式会社 Three-dimensional structure manufacturing method, three-dimensional structure manufacturing apparatus, and ink set
US20150202825A1 (en) * 2014-01-17 2015-07-23 Christopher Cordingley Three Dimensional Printing Method
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
CN107980022B (en) 2014-07-13 2020-12-04 斯特拉塔西斯公司 Method and system for rotating three-dimensional printing
JP6565178B2 (en) * 2014-11-28 2019-08-28 セイコーエプソン株式会社 Three-dimensional object shaping apparatus, three-dimensional object shaping system, three-dimensional object shaping apparatus control method, and three-dimensional object shaping apparatus control program
US10528033B2 (en) 2015-04-01 2020-01-07 Hewlett-Packard Development Company, L.P. Structure forming for a three-dimensional object
EP3230810B1 (en) 2015-04-24 2021-09-29 Hewlett-Packard Development Company, L.P. Method for setting printing properties of a three-dimensional object for additive manufacturing process
CN106273438B (en) 2015-05-11 2019-11-05 三纬国际立体列印科技股份有限公司 Three-dimensional printing molding structure
WO2017009831A1 (en) 2015-07-13 2017-01-19 Stratasys Ltd. Method and system for 3d printing
EP3322577B1 (en) 2015-07-13 2023-06-07 Stratasys Ltd. Leveling apparatus for a 3d printer
WO2017015146A2 (en) * 2015-07-17 2017-01-26 Applied Materials, Inc. Brace structures for additive manufacturing
USD812653S1 (en) 2015-08-02 2018-03-13 Stratasys Ltd. 3D printing block assembly
EP3313650B1 (en) 2015-08-02 2020-01-29 Stratasys Ltd. System and method for 3d printing
USD812654S1 (en) 2015-08-02 2018-03-13 Stratasys Ltd. 3D printing block base
CN105265505B (en) * 2015-11-06 2017-12-22 北京小飞侠科技有限公司 Thin pancake printer
CN106808680B (en) * 2015-12-01 2020-02-28 三纬国际立体列印科技股份有限公司 Three-dimensional printing method and three-dimensional printing device applying same
US10245822B2 (en) 2015-12-11 2019-04-02 Global Filtration Systems Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials
US10061303B2 (en) 2016-05-18 2018-08-28 Autodesk Inc. Three-dimensional printing support models
US10259956B2 (en) 2016-10-11 2019-04-16 Xerox Corporation Curable ink composition
US10828828B2 (en) * 2016-11-08 2020-11-10 Flex Ltd. Method of manufacturing a part
EP3548212B1 (en) * 2016-12-02 2023-03-08 Markforged, Inc. Method of reducing distortion in an additively manufactured part
JP7146757B2 (en) * 2016-12-02 2022-10-04 マークフォージド,インコーポレーテッド Supports for sintered additive manufacturing parts
US10828905B2 (en) 2016-12-29 2020-11-10 Stratasys Ltd. Pressure control system for print head
JP6926485B2 (en) * 2017-01-18 2021-08-25 富士フイルムビジネスイノベーション株式会社 Modeling equipment
US10775770B2 (en) 2017-06-22 2020-09-15 Autodesk, Inc. Building and attaching support structures for 3D printing
US11465334B2 (en) 2018-06-28 2022-10-11 Stratasys Ltd. Structure supporting an object during additive manufacturing and method for forming
WO2020202147A1 (en) 2019-03-31 2020-10-08 Stratasys Ltd. Method and system for leveling a layer in freeform fabrication
US20230108185A1 (en) 2020-04-27 2023-04-06 Stratasys Ltd. System for improving safety in three-dimensional printing
JP2022086720A (en) * 2020-11-30 2022-06-09 株式会社リコー Three-dimensional object producing method, three-dimensional object producing program, and three-dimensional object producing apparatus

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720799A (en) * 1954-07-26 1955-10-18 Pfost Leland Process for molding a wrench and hard-metal insert used therein
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5263130A (en) * 1986-06-03 1993-11-16 Cubital Ltd. Three dimensional modelling apparatus
IL95034A (en) 1990-07-10 1995-03-15 Cubital Ltd Three dimensional modeling.
US5287435A (en) * 1987-06-02 1994-02-15 Cubital Ltd. Three dimensional modeling
US5141680A (en) * 1988-04-18 1992-08-25 3D Systems, Inc. Thermal stereolighography
US5216616A (en) * 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5136515A (en) * 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5192559A (en) * 1990-09-27 1993-03-09 3D Systems, Inc. Apparatus for building three-dimensional objects with sheets
US5594652A (en) * 1991-01-31 1997-01-14 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5173220A (en) * 1991-04-26 1992-12-22 Motorola, Inc. Method of manufacturing a three-dimensional plastic article
FR2692065A1 (en) * 1992-06-05 1993-12-10 Laser Int Sa Process for the production of industrial parts by the action of light on a liquid polymerizable or crosslinkable material without the need for supports.
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US5717599A (en) * 1994-10-19 1998-02-10 Bpm Technology, Inc. Apparatus and method for dispensing build material to make a three-dimensional article
IL112140A (en) * 1994-12-25 1997-07-13 Cubital Ltd Method of forming three dimensional objects
EP0807014B1 (en) * 1995-02-01 2002-05-02 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
US5943235A (en) * 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6270335B2 (en) * 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US6347257B1 (en) * 1995-09-27 2002-02-12 3D Systems, Inc. Method and apparatus for controlling the drop volume in a selective deposition modeling environment
BR9610663A (en) 1995-09-27 1999-07-13 3D Systems Inc Method and apparatus for data manipulation and system control in a selective deposit modeling system
US6136252A (en) * 1995-09-27 2000-10-24 3D Systems, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
US5784279A (en) * 1995-09-29 1998-07-21 Bpm Technology, Inc. Apparatus for making three-dimensional articles including moving build material reservoir and associated method
DE19537264A1 (en) * 1995-10-06 1997-04-10 Fraunhofer Ges Forschung Producing three=dimensional components, in particular, those made of metals, plastics or ceramics
IL117278A (en) 1996-02-27 2000-02-17 Idanit Tech Ltd Method for operating an ink jet printer
US6030199A (en) * 1998-02-09 2000-02-29 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Apparatus for freeform fabrication of a three-dimensional object
US6490496B1 (en) * 1999-02-25 2002-12-03 3D Systems, Inc. Method, apparatus, and article of manufacture for a control system in a selective deposition modeling system
US6259962B1 (en) * 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US6364986B1 (en) * 1999-10-04 2002-04-02 The United States Of America As Represented By The Secretary Of The Navy High-strength parts formed using stereolithography
US6658314B1 (en) 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
US6569373B2 (en) * 2000-03-13 2003-05-27 Object Geometries Ltd. Compositions and methods for use in three dimensional model printing
US7074358B2 (en) * 2001-12-13 2006-07-11 Alexander Sergeievich Gybin Polymer casting method and apparatus

Cited By (265)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909929B2 (en) 1999-02-26 2005-06-21 Micron Technology, Inc. Stereolithographic method and apparatus for packaging electronic components
US20050251282A1 (en) * 1999-02-26 2005-11-10 Farnworth Warren M Method and apparatus for forming structures proximate to workpieces
US6939501B2 (en) 2000-01-11 2005-09-06 Micron Technology, Inc. Methods for labeling semiconductor device components
US7239015B2 (en) 2000-02-10 2007-07-03 Micron Technology, Inc. Heat sinks including nonlinear passageways
US7205654B2 (en) 2000-02-10 2007-04-17 Micron Technology, Inc. Programmed material consolidation methods for fabricating heat sinks
US20050148115A1 (en) * 2000-02-10 2005-07-07 Williams Vernon M. Programmed material consolidation methods for fabricating heat sinks
US7273802B2 (en) 2000-02-24 2007-09-25 Micron Technology, Inc. Methods for consolidating previously unconsolidated conductive material to form conductive structures or contact pads or secure conductive structures to contact pads
US7189600B2 (en) 2000-02-24 2007-03-13 Micron Technology, Inc. Methods for fabricating stiffeners for flexible substrates
US6815253B2 (en) 2000-02-24 2004-11-09 Micron Technology, Inc. Stereolithographically fabricated conductive elements, semiconductor device components and assemblies including such conductive elements, and methods
US6900078B2 (en) 2000-02-24 2005-05-31 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US20040255458A1 (en) * 2000-02-24 2004-12-23 Williams Vernon M. Programmed material consolidation methods for fabricating semiconductor device components and conductive features thereof
US20050006736A1 (en) * 2000-02-24 2005-01-13 Williams Vernon M. Selective consolidation processes for electrically connecting contacts of semiconductor device components
US20070062033A1 (en) * 2000-02-24 2007-03-22 Williams Vernon M Selective consolidation methods for fabricating semiconductor device components and conductive features thereof
US20050026414A1 (en) * 2000-02-24 2005-02-03 Williams Vernon M. Methods for consolidating previously unconsolidated conductive material to form conductive structures or contact pads or secure conductive structures to contact pads
US6780744B2 (en) 2000-02-24 2004-08-24 Micron Technology, Inc. Stereolithographic methods for securing conductive elements to contacts of semiconductor device components
US20050230806A1 (en) * 2000-02-24 2005-10-20 Williams Vernon M Conductive elements with adjacent, mutually adhered regions and semiconductor device assemblies including such conductive elements
US20060121649A1 (en) * 2000-02-24 2006-06-08 Grigg Ford B Methods for fabricating stiffeners for flexible substrates
US20050221531A1 (en) * 2000-02-24 2005-10-06 Williams Vernon M Carrier substrates and conductive elements thereof
US7029954B2 (en) 2000-02-24 2006-04-18 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US20050230843A1 (en) * 2000-02-24 2005-10-20 Williams Vernon M Flip-chip type semiconductor devices and conductive elements thereof
US6977211B2 (en) 2000-02-24 2005-12-20 Micron Technology, Inc. Selective consolidation processes for electrically connecting contacts of semiconductor device components
US7137193B2 (en) 2000-02-24 2006-11-21 Micron Technology, Inc. Programmed material consolidation methods for fabricating printed circuit board
US10335994B2 (en) 2000-03-13 2019-07-02 Stratasys Ltd Methods for three-dimensional model printing
US7093358B2 (en) 2000-03-23 2006-08-22 Micron Technology, Inc. Method for fabricating an interposer
US6980014B2 (en) 2000-03-23 2005-12-27 Micron Technology, Inc. Interposer and methods for fabricating same
US20060220665A1 (en) * 2000-03-23 2006-10-05 Salman Akram Alignment fences and devices and assemblies including the same
US7041532B2 (en) 2000-04-28 2006-05-09 Micron Technology, Inc. Methods for fabricating interposers including upwardly protruding dams
US7064002B2 (en) 2000-04-28 2006-06-20 Micron Technology, Inc. Method for fabricating interposers including upwardly protruding dams, semiconductor device assemblies including the interposers
US7115981B2 (en) 2000-04-28 2006-10-03 Micron Technology, Inc. Semiconductor device assemblies including interposers with dams protruding therefrom
US7095106B2 (en) 2000-06-08 2006-08-22 Micron Technology, Inc. Collars, support structures, and forms for protruding conductive structures
US6882049B2 (en) * 2000-06-08 2005-04-19 Micron Technology, Inc. Support ring for use with a contact pad and semiconductor device components including the same
US6902995B2 (en) 2000-06-08 2005-06-07 Micron Technology, Inc. Ring positionable about a periphery of a contact pad, semiconductor device components including same, and methods for positioning the ring around a contact pad
US6911735B2 (en) 2000-06-08 2005-06-28 Micron Technology, Inc. Collar positionable about a periphery of a contact pad and around a conductive structure secured to the contact pads, semiconductor device components including same, and methods for fabricating same
US6913988B2 (en) 2000-06-08 2005-07-05 Micron Technology, Inc. Methods for fabricating semiconductor device test apparatus that include protective structures for intermediate conductive elements
US20060189005A1 (en) * 2000-06-08 2006-08-24 Salman Akram Methods for fabricating semiconductor devices so as to stabilize the same when contact-bearing surfaces thereof face over test substrates
US20050156314A1 (en) * 2000-06-08 2005-07-21 Grigg Ford B. Support ring for use with a contact pad and semiconductor device components including the same
US20050156331A1 (en) * 2000-06-08 2005-07-21 Salman Akram Semiconductor devices having stereolithographically fabricated protective layers thereon through which contact pads are exposed and assemblies including the same
US20050173790A1 (en) * 2000-06-08 2005-08-11 Salman Akram Protective structures for bond wires
US20050014323A1 (en) * 2000-06-08 2005-01-20 Salman Akram Methods for protecting intermediate conductive elements of semiconductor device assemblies
US20050042856A1 (en) * 2000-06-08 2005-02-24 Salman Akram Programmed material consolidation processes for protecting intermediate conductive structures
US6946378B2 (en) 2000-06-08 2005-09-20 Micron Technology, Inc. Methods for fabricating protective structures for bond wires
US6946732B2 (en) 2000-06-08 2005-09-20 Micron Technology, Inc. Stabilizers for flip-chip type semiconductor devices and semiconductor device components and assemblies including the same
US20050208704A1 (en) * 2000-06-08 2005-09-22 Salman Akram Methods including fabrication of substrates and other semiconductor device components with collars on or around the contact pads thereof
US7087984B2 (en) 2000-06-08 2006-08-08 Micron Technology, Inc. Methods for protecting intermediate conductive elements of semiconductor device assemblies
US6893904B2 (en) 2000-06-08 2005-05-17 Micron Technology, Inc. Stereolithographic methods of fabricating semiconductor devices having protective layers thereon through which contact pads are exposed
US7084013B2 (en) 2000-06-08 2006-08-01 Micron Technology, Inc. Methods for forming protective layers on semiconductor device substrates
US20050101158A1 (en) * 2000-06-08 2005-05-12 Farnworth Warren M. Methods for forming protective layers on semiconductor device substrates
US6890787B2 (en) 2000-06-08 2005-05-10 Micron Technology, Inc. Methods for protecting intermediate conductive elements of semiconductor device assemblies
US20060017175A1 (en) * 2000-06-08 2006-01-26 Salman Akram Collars, support structures, and forms for protuding conductive structures
US6963127B2 (en) 2000-06-08 2005-11-08 Micron Technology, Inc. Protective structures for bond wires
US7084012B2 (en) 2000-06-08 2006-08-01 Micron Technology, Inc. Programmed material consolidation processes for protecting intermediate conductive structures
US7067901B2 (en) 2000-06-08 2006-06-27 Micron Technology, Inc. Semiconductor devices including protective layers on active surfaces thereof
US20070148817A1 (en) * 2000-06-08 2007-06-28 Williams Vernon M Methods for fabricating reinforced, self-aligning conductive structures for semiconductor device components
US20050269714A1 (en) * 2000-06-08 2005-12-08 Salman Akram Semiconductor device components with structures for stabilizing the semiconductor device components upon flip-chip arrangement with high-level substrates
US7109106B2 (en) 2000-06-08 2006-09-19 Micron Technology, Inc. Methods for providing support for conductive structures protruding from semiconductor device components
US7557452B1 (en) 2000-06-08 2009-07-07 Micron Technology, Inc. Reinforced, self-aligning conductive structures for semiconductor device components and methods for fabricating same
US7041533B1 (en) 2000-06-08 2006-05-09 Micron Technology, Inc. Stereolithographic method for fabricating stabilizers for semiconductor devices
US20050282313A1 (en) * 2000-06-08 2005-12-22 Salman Akram Methods for modifying semiconductor devices to stabilize the same and semiconductor device assembly
US7041513B2 (en) 2000-06-08 2006-05-09 Micron Technology, Inc. Methods for forming semiconductor devices so as to stabilize the same when positioned face-down over test substrates
US20070117277A1 (en) * 2000-06-08 2007-05-24 Salman Akram Methods for fabricating protective layers on semiconductor device components
US6875640B1 (en) 2000-06-08 2005-04-05 Micron Technology, Inc. Stereolithographic methods for forming a protective layer on a semiconductor device substrate and substrates including protective layers so formed
US7138653B1 (en) 2000-06-08 2006-11-21 Micron Technology, Inc. Structures for stabilizing semiconductor devices relative to test substrates and methods for fabricating the stabilizers
US20030173665A1 (en) * 2000-06-08 2003-09-18 Grigg Ford B. Support ring for use with a contact pad and semiconductor device compoents including the same
US7166925B2 (en) 2000-06-08 2007-01-23 Micron Technology, Inc. Semiconductor devices having stereolithographically fabricated protective layers thereon through which contact pads are exposed and assemblies including the same
US7169693B2 (en) 2000-06-08 2007-01-30 Micron Technology, Inc. Collar positionable about a periphery of a contact pad and around a conductive structure secured to the contact pads, semiconductor device components including same, and methods for fabricating same
US20060197235A1 (en) * 2000-06-08 2006-09-07 Farnworth Warren M Electronic device components including protective layers on surfaces thereof
US7170171B2 (en) 2000-06-08 2007-01-30 Micron Technology, Inc. Support ring for use with a contact pad and semiconductor device components including the same
US20020006686A1 (en) * 2000-07-12 2002-01-17 Cloud Eugene H. Die to die connection method and assemblies and packages including dice so connected
US6984544B2 (en) 2000-07-12 2006-01-10 Micron Technology, Inc. Die to die connection method and assemblies and packages including dice so connected
US20060115929A1 (en) * 2000-07-12 2006-06-01 Cloud Eugene H Die-to-die connection method and assemblies and packages including dice so connected
US6992398B2 (en) 2000-08-08 2006-01-31 Micron Technology, Inc. Underfill and encapsulation of carrier substrate-mounted flip-chip components
US6893804B2 (en) 2000-08-08 2005-05-17 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6881607B2 (en) 2000-08-08 2005-04-19 Micron Technology, Inc. Underfill and encapsulation of carrier substrate-mounted flip-chip components using stereolithography
US7128551B2 (en) 2000-08-08 2006-10-31 Micron Technology, Inc. Surface smoothing of stereolithographically formed 3-D objects
US6951779B2 (en) 2000-08-17 2005-10-04 Micron Technology, Inc. Stereolithographic methods for fabricating hermetic semiconductor device packages and semiconductor devices including stereolithographically fabricated hermetic packages
US7063524B2 (en) 2000-08-18 2006-06-20 Micron Technology, Inc. Apparatus for increased dimensional accuracy of 3-D object creation
US6955783B2 (en) 2000-08-29 2005-10-18 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US7021915B2 (en) 2000-08-29 2006-04-04 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US20050129795A1 (en) * 2000-08-29 2005-06-16 Farnworth Warren M. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US6896837B2 (en) 2000-08-29 2005-05-24 Micron Technology, Inc. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US6794224B2 (en) 2000-08-31 2004-09-21 Micron Technology, Inc. Semiconductor device including leads in communication with contact pads thereof and a stereolithographically fabricated package substantially encapsulating the leads and methods for fabricating the same
US7275925B2 (en) 2001-08-30 2007-10-02 Micron Technology, Inc. Apparatus for stereolithographic processing of components and assemblies
US20070134359A1 (en) * 2001-08-30 2007-06-14 Farnworth Warren M Apparatus for use in stereolithographic processing of components and assemblies
US20030100658A1 (en) * 2001-10-03 2003-05-29 3D Systems, Inc. Phase change support material composition
US7399796B2 (en) 2001-10-03 2008-07-15 3D Systems, Inc. Phase change support material composition
US20050080163A1 (en) * 2001-10-03 2005-04-14 Schmidt Kris Alan Ultra-violet light curable hot melt composition
US20040242728A1 (en) * 2001-10-03 2004-12-02 3D Systems, Inc. Phase change support material composition
US7378460B2 (en) 2001-10-03 2008-05-27 3D Systems, Inc. Ultra-violet light curable hot melt composition
US7176253B2 (en) * 2001-10-03 2007-02-13 3D Systems, Inc. Phase change support material composition
US7061124B2 (en) 2002-04-02 2006-06-13 Micron Technology, Inc. Solder masks including dams for at least partially surrounding terminals of a carrier substrate and recessed areas positioned adjacent to the dams, and carrier substrates including such solder masks
US7018871B2 (en) 2002-04-02 2006-03-28 Micron Technology, Inc. Solder masks for use on carrier substrates, carrier substrates and semiconductor device assemblies including such solder masks, and methods
US7368391B2 (en) 2002-04-10 2008-05-06 Micron Technology, Inc. Methods for designing carrier substrates with raised terminals
US7589010B2 (en) 2002-07-08 2009-09-15 Micron Technology, Inc. Semiconductor devices with permanent polymer stencil and method for manufacturing the same
US20060003569A1 (en) * 2002-07-08 2006-01-05 Farnworth Warren M Semiconductor devices with permanent polymer stencil and method for manufacturing the same
US6998334B2 (en) 2002-07-08 2006-02-14 Micron Technology, Inc. Semiconductor devices with permanent polymer stencil and method for manufacturing the same
US20060205117A1 (en) * 2002-07-22 2006-09-14 Grigg Ford B Solder masks used in encapsulation, assemblies including the solar mask, and methods
US20050181545A1 (en) * 2002-07-22 2005-08-18 Grigg Ford B. Methods of encapsulating selected locations of a semiconductor die assembly using a thick solder mask
US7138724B2 (en) 2002-07-22 2006-11-21 Micron Technology, Inc. Thick solder mask for confining encapsulant material over selected locations of a substrate and assemblies including the solder mask
US7125748B2 (en) 2002-07-22 2006-10-24 Micron Technology, Inc. Methods of encapsulating selected locations of a semiconductor die assembly using a thick solder mask
US20060111807A1 (en) * 2002-09-12 2006-05-25 Hanan Gothait Device, system and method for calibration in three-dimensional model printing
EP1938952A2 (en) 2002-11-12 2008-07-02 Objet Geometries Ltd. Three-dimensional object printing
US10632679B2 (en) 2002-11-12 2020-04-28 Stratasys Ltd. Method for printing a three-dimensional object
US8798780B2 (en) 2002-11-12 2014-08-05 Stratasys Ltd. Cartridge apparatus for three-dimensional object printing
WO2004044816A1 (en) 2002-11-12 2004-05-27 Objet Geometries Ltd. Three-dimensional object printing
US20060127153A1 (en) * 2002-11-12 2006-06-15 Guy Menchik Three-dimensional object printing
US11179881B2 (en) 2002-11-12 2021-11-23 Stratasys Ltd. Cartridge array for a three-dimensional printing apparatus
US7996101B2 (en) 2002-11-12 2011-08-09 Objet Geometries Ltd. Cartridge apparatus for three-dimensional object printing
US20100208016A1 (en) * 2002-11-12 2010-08-19 Guy Menchik Cartridge apparatus for three-dimensional object printing
US7725209B2 (en) 2002-11-12 2010-05-25 Objet Geometries Ltd Three-dimensional object printing
EP2199068A3 (en) * 2002-12-03 2012-02-22 Objet Geometries Ltd. Method for printing of three-dimensional objects
EP1637307A3 (en) * 2002-12-03 2006-09-20 Objet Geometries Ltd. System, apparatus and method for printing of three-dimensional objects
US10940616B2 (en) * 2002-12-03 2021-03-09 Stratasys Ltd. Method for printing of three-dimensional objects
EP1637307A2 (en) * 2002-12-03 2006-03-22 Objet Geometries Ltd. System, apparatus and method for printing of three-dimensional objects
US20080166480A1 (en) * 2002-12-03 2008-07-10 Kritchman Eliahu M Method and apparatus for printing of three-dimensional objects
US20060054039A1 (en) * 2002-12-03 2006-03-16 Eliahu Kritchman Process of and apparratus for three-dimensional printing
US10099406B2 (en) * 2002-12-03 2018-10-16 Stratasys Ltd Method for printing of three-dimensional objects
US7958841B2 (en) 2002-12-03 2011-06-14 Objet Geometries Ltd. Apparatus for printing of three-dimensional objects
US7658976B2 (en) 2002-12-03 2010-02-09 Objet Geometries Ltd. Method for printing of three-dimensional objects
WO2004050323A1 (en) 2002-12-03 2004-06-17 Objet Geometries Ltd. Process of and apparatus for three-dimensional printing
US20080121130A1 (en) * 2002-12-03 2008-05-29 Kritchman Eliahu M Method for printing of three-dimensional objects
US11485056B2 (en) * 2002-12-03 2022-11-01 Stratasys Ltd. Method for printing of three-dimensional objects
US7604768B2 (en) 2002-12-03 2009-10-20 Objet Geometries Ltd. Method for printing of three-dimensional objects
US9017589B2 (en) 2002-12-03 2015-04-28 Stratasys Ltd. Method for printing of three-dimensional objects
US8636494B2 (en) 2002-12-03 2014-01-28 Stratasys Ltd. Apparatus for printing of three-dimensional objects
US20080110395A1 (en) * 2002-12-03 2008-05-15 Kritchman Eliahu M Apparatus for printing of three-dimensional objects
US7628857B2 (en) 2002-12-03 2009-12-08 Objet Geometries Ltd. System and method for printing of three-dimensional objects
US20040145781A1 (en) * 2003-01-16 2004-07-29 Kia Silverbrook A 3-D object creation system incorporating semiconductor memory
US8129839B2 (en) 2003-02-20 2012-03-06 Micron Technology, Inc. Electronic device package structures
US7043830B2 (en) 2003-02-20 2006-05-16 Micron Technology, Inc. Method of forming conductive bumps
US20050253261A1 (en) * 2003-02-20 2005-11-17 Farnworth Warren M Electronic device package structures
US20060006503A1 (en) * 2003-09-16 2006-01-12 Farnworth Warren M Insulative coatings for apertures of semiconductor device components and semiconductor device components including insulative coatings
US7138334B2 (en) 2003-09-16 2006-11-21 Micron Technology, Inc. Systems for forming insulative coatings for via holes in semiconductor devices
US6984583B2 (en) 2003-09-16 2006-01-10 Micron Technology, Inc. Stereolithographic method for forming insulative coatings for via holes in semiconductor devices
US20060226578A1 (en) * 2003-09-16 2006-10-12 Farnworth Warren M Processes for facilitating removel of fabricated objects from platens of programmed material consolidation equipment, and fabrication processes employing the object release elements
US20050058837A1 (en) * 2003-09-16 2005-03-17 Farnworth Warren M. Processes for facilitating removal of stereolithographically fabricated objects from platens of stereolithographic fabrication equipment, object release elements for effecting such processes, systems and fabrication processes employing the object release elements, and objects which have been fabricated using the object release elements
US20050282383A1 (en) * 2003-09-16 2005-12-22 Farnworth Warren M Systems for forming insulative coatings for via holes in semiconductor devices
US20060231025A1 (en) * 2003-09-16 2006-10-19 Farnworth Warren M Programmed material consolidation systems employing object release elements securable to platens for facilitating removal of fabricated objects therefrom
US20070067064A1 (en) * 2003-09-16 2007-03-22 Farnworth Warren M Surface level control systems and material recycling systems for use with programmable material consolidation apparatus
US20050064679A1 (en) * 2003-09-19 2005-03-24 Farnworth Warren M. Consolidatable composite materials, articles of manufacture formed therefrom, and fabrication methods
US7960829B2 (en) 2003-09-19 2011-06-14 Micron Technology, Inc. Support structure for use in thinning semiconductor substrates and for supporting thinned semiconductor substrates
US20060003255A1 (en) * 2003-09-19 2006-01-05 Wood Alan G Methods for optimizing physical characteristics of selectively consolidatable materials
US20060001139A1 (en) * 2003-09-19 2006-01-05 Wood Alan G Support structure for use in thinning semiconductor substrates and for supporting thinned semiconductor substrates
US20060003549A1 (en) * 2003-09-19 2006-01-05 Wood Alan G Assemblies including semiconductor substrates of reduced thickness and support structures therefor
US20050255675A1 (en) * 2003-09-19 2005-11-17 Farnworth Warren M Apparatus for supporting wafers for die singulation and subsequent handling and in-process wafer structure
US20060008739A1 (en) * 2003-09-19 2006-01-12 Wood Alan G Materials for use in programmed material consolidation processes
US7713841B2 (en) 2003-09-19 2010-05-11 Micron Technology, Inc. Methods for thinning semiconductor substrates that employ support structures formed on the substrates
US20050072113A1 (en) * 2003-10-03 2005-04-07 Collins David C. Uses of support material in solid freeform fabrication systems
WO2005032802A1 (en) * 2003-10-03 2005-04-14 Hewlett-Packard Development Company, L.P. Uses of support material in solid freeform fabrication systems
US7064010B2 (en) 2003-10-20 2006-06-20 Micron Technology, Inc. Methods of coating and singulating wafers
US20060081966A1 (en) * 2003-10-20 2006-04-20 Farnworth Warren M Chip-scale packages
US7615119B2 (en) 2004-04-29 2009-11-10 Micron Technology, Inc. Apparatus for spin coating semiconductor substrates
US7244665B2 (en) 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US20050245005A1 (en) * 2004-04-29 2005-11-03 Benson Peter A Wafer edge ring structures and methods of formation
US20060191475A1 (en) * 2004-04-29 2006-08-31 Benson Peter A Apparatus for spin coating semiconductor substrates
US7489020B2 (en) 2004-04-29 2009-02-10 Micron Technology, Inc. Semiconductor wafer assemblies
US7216009B2 (en) 2004-06-14 2007-05-08 Micron Technology, Inc. Machine vision systems for use with programmable material consolidation system and associated methods and structures
US20050278056A1 (en) * 2004-06-14 2005-12-15 Farnworth Warren M Machine vision systems for use with programmable material consolidation system and associated methods and structures
US7282806B2 (en) 2004-06-14 2007-10-16 Micron Technology, Inc. Semiconductor devices at least partially covered by a composite coating including particles dispersed through photopolymer material
US20070123058A1 (en) * 2004-06-14 2007-05-31 Farnworth Warren M Semiconductor device structures that include sacrificial, readily removable materials
US20070001321A1 (en) * 2004-06-14 2007-01-04 Hembree David R Semiconductor devices at least partially covered by a composite coating including particles dispersed through photopolymer material
US20070124012A1 (en) * 2004-06-14 2007-05-31 Farnworth Warren M Programmed material consolidation methods employing machine vision
US7232498B2 (en) 2004-08-13 2007-06-19 The Goodyear Tire & Rubber Company Tire with raised indicia
US20060115925A1 (en) * 2004-09-02 2006-06-01 Wood Alan G Methods of fabricating a microlens including selectively curing flowable, uncured optically trasmissive material
US20060134827A1 (en) * 2004-09-02 2006-06-22 Wood Alan G Microlenses including a plurality of mutually adhered layers of optically transmissive material and systems including the same
US20060046347A1 (en) * 2004-09-02 2006-03-02 Wood Alan G Die package, conductive element, semiconductor device including same, microlens, system including same, and methods of manufacture
US7923298B2 (en) 2007-09-07 2011-04-12 Micron Technology, Inc. Imager die package and methods of packaging an imager die on a temporary carrier
US11104119B2 (en) 2007-10-10 2021-08-31 Materialise N.V. Support structure for an object made by means of a rapid prototype production method
US10343389B2 (en) * 2007-10-10 2019-07-09 Materialise N.V. Support structure for an object made by means of a rapid prototype production method
US20150151494A1 (en) * 2007-10-10 2015-06-04 Materialise Nv Method and apparatus for automatic support generation for an object made by means of a rapid prototype production method
US10365413B2 (en) 2009-02-14 2019-07-30 Luxexcel Holding B.V. Device for directing light beams, illustration device, method for producing a device and an illustration device
US20100256791A1 (en) * 2009-04-06 2010-10-07 Gm Global Technology Operations, Inc. Method and apparatus for the three-dimensional shape magnetic forming of a motor core
US10723156B2 (en) * 2009-05-18 2020-07-28 Xjet Ltd. Method and device for printing on heated substrates
US8840235B2 (en) 2010-06-07 2014-09-23 Luxexcel Holding Bv. Print head, upgrade kit for a conventional inkjet printer, inkjet printer and method for printing optical structures
EP2636534A1 (en) * 2010-06-07 2013-09-11 LUXeXcel Holding BV. Method for printing optical structures
EP2392473A1 (en) * 2010-06-07 2011-12-07 LUXeXcel Holding BV. Print head, upgrade kit for a conventional inkjet printer, inkjet printer and method for printing optical structures
US20140162033A1 (en) * 2010-10-27 2014-06-12 Eugene Giller Process and Apparatus for Fabrication of Three-Dimensional Objects
US10357918B2 (en) 2010-10-27 2019-07-23 Rize Inc. Process and apparatus for fabrication of three dimensional objects
US10265910B2 (en) 2010-10-27 2019-04-23 Rize Inc. Process and apparatus for fabrication of three-dimensional objects
US11148354B2 (en) 2010-10-27 2021-10-19 Rize, Inc. Process and apparatus for fabrication of three dimensional objects
US9227366B2 (en) * 2010-10-27 2016-01-05 File2Part, Inc. Process for fabrication of three-dimensional objects
US10399258B2 (en) 2010-11-29 2019-09-03 Halliburton Energy Services, Inc. Heat flow control for molding downhole equipment
US20130316149A1 (en) * 2010-11-29 2013-11-28 William Brian Atkins Forming objects by infiltrating a printed matrix
US9790744B2 (en) * 2010-11-29 2017-10-17 Halliburton Energy Services, Inc. Forming objects by infiltrating a printed matrix
US9592690B2 (en) 2011-01-06 2017-03-14 Luxexcel Holding B.V. Print head, upgrade kit for a conventional inkjet printer, printer and method for printing optical structures
US20140013962A1 (en) * 2011-01-24 2014-01-16 Jeffrey I. Lipton Deposition of materials for edible solid freeform fabrication
US10259161B2 (en) * 2011-01-24 2019-04-16 Cornell University Deposition of materials for edible solid freeform fabrication
US9534103B2 (en) 2011-02-23 2017-01-03 3D Systems, Inc. Support material and applications thereof
US10232529B2 (en) 2011-02-23 2019-03-19 3D Systems, Inc. Support material and applications thereof
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
US9394441B2 (en) 2011-03-09 2016-07-19 3D Systems, Inc. Build material and applications thereof
US9604408B2 (en) 2011-03-09 2017-03-28 3D Systems, Inc. Build material and applications thereof
US9157007B2 (en) 2011-03-09 2015-10-13 3D Systems, Incorporated Build material and applications thereof
US10207460B2 (en) 2011-06-02 2019-02-19 A. Raymond Et Cie Method of making hinged fasteners by three-dimensional printing
WO2012166505A1 (en) * 2011-06-02 2012-12-06 A. Raymond Et Cie Structural component made by three-dimensional printing
US8916085B2 (en) 2011-06-02 2014-12-23 A. Raymond Et Cie Process of making a component with a passageway
US8883064B2 (en) 2011-06-02 2014-11-11 A. Raymond & Cie Method of making printed fastener
US10207461B2 (en) 2011-06-02 2019-02-19 A. Raymond Et Cie Method of making winged fasteners by three-dimensional printing
US10220575B2 (en) 2011-06-02 2019-03-05 A. Raymond Et Cie Method of making nut fasteners
US9511544B2 (en) 2011-06-02 2016-12-06 A. Raymond et Cie Method of making fasteners by three-dimensional printing
US20150099087A1 (en) * 2012-04-10 2015-04-09 A. Raymond Et Cie Printed encapsulation
JP2015512816A (en) * 2012-04-10 2015-04-30 ア レイモン エ シーA. Raymond Et Cie Molding encapsulation method
WO2013154723A1 (en) * 2012-04-10 2013-10-17 A. Raymond Et Cie Printed encapsulation
CN104379324A (en) * 2012-04-10 2015-02-25 阿雷蒙公司 Printed encapsulation
US10556417B2 (en) 2012-05-07 2020-02-11 Luxexcel Holding B.V. Method for printing a three-dimensional structure, method for controlling a print head and a printed article
US9662837B2 (en) 2012-05-08 2017-05-30 Luxexcel Holding B.V. Method for printing a three-dimensional structure with smooth surfaces
EP2666613A1 (en) * 2012-05-25 2013-11-27 Technische Universität Darmstadt Invention related to auxiliary structures for the production of components by means of generative or additive methods
BE1022525B1 (en) * 2013-04-26 2016-05-20 Materialise N.V. HYBRID SUPPORT SYSTEMS AND METHODS FOR GENERATING A HYBRID SUPPORT SYSTEM USING THREE-DIMENSIONAL PRINTING
WO2014174090A3 (en) * 2013-04-26 2015-01-29 Materialise N.V. Hybrid support systems and methods of generating a hybrid support system using three dimensional printing
US10384263B2 (en) 2013-04-26 2019-08-20 Materialise N.V. Hybrid support systems and methods of generating a hybrid support system using three dimensional printing
EP2815873A1 (en) * 2013-06-17 2014-12-24 Rolls-Royce plc An additive layer manufacturing method
EP3015251A4 (en) * 2013-06-28 2017-01-11 Cmet Inc. Three-dimensional shaped body and support formation method
US10124540B2 (en) 2013-06-28 2018-11-13 Cmet Inc. Three-dimensional modeled object and support forming method
US20160167302A1 (en) * 2013-07-09 2016-06-16 Siemens Aktiengesellschaft Adaptation method and production method for components produced by slm
US10071526B2 (en) * 2013-07-09 2018-09-11 Siemens Aktiengesellschaft Adaptation method and production method for components produced by SLM
GB2520596A (en) * 2013-09-19 2015-05-27 3T Rpd Ltd Manufacturing method
WO2015040410A3 (en) * 2013-09-19 2015-05-14 3T Rpd Limited Additive manufacturing method
GB2520596B (en) * 2013-09-19 2018-08-15 3T Rpd Ltd Manufacturing method
US20160214317A1 (en) * 2013-10-04 2016-07-28 Mimaki Engineering Co., Ltd. Three-dimensional-object forming apparatus and three-dimensional-object forming method
US9434109B2 (en) * 2013-11-18 2016-09-06 Xyzprinting, Inc. Three-dimensional printing method
US20150137423A1 (en) * 2013-11-18 2015-05-21 Xyzprinting, Inc. Three-dimensional printing method
US10294380B2 (en) * 2014-01-09 2019-05-21 Seiko Epson Corporation Three-dimensional shaped article manufacturing method, three-dimensional shaped article manufacturing apparatus, ink set, and three-dimensional shaped article
US10286578B2 (en) * 2014-01-09 2019-05-14 Seiko Epson Corporation Three-dimensional shaped article manufacturing apparatus
WO2015185502A1 (en) * 2014-06-03 2015-12-10 Grundel Investments B.V. Layered manufacturing process, forming device and data carrier
NL2012934B1 (en) * 2014-06-03 2016-06-22 Grundel Invest B V Layered manufacturing process and forming device.
CN104085110A (en) * 2014-07-03 2014-10-08 厦门达天电子科技有限公司 Radio frequency recognition and parameter configuration method and device for three-dimensional printing supplies
US10399272B2 (en) * 2014-10-03 2019-09-03 X Development Llc Continuous pull three-dimensional printing
US20170297264A1 (en) * 2014-10-03 2017-10-19 X Development Llc Continuous Pull Three-Dimensional Printing
US10987869B2 (en) 2014-10-03 2021-04-27 X Development Llc Continuous pull three-dimensional printing
US11712842B2 (en) * 2014-11-19 2023-08-01 Digital Metal Ab Method and apparatus for manufacturing a series of objects
US10766070B2 (en) * 2015-08-28 2020-09-08 Materialise N.V. Self supporting in additive manufacturing
CN111745960A (en) * 2016-01-29 2020-10-09 精工爱普生株式会社 Method for manufacturing three-dimensional shaped object
CN107020739A (en) * 2016-01-29 2017-08-08 精工爱普生株式会社 The manufacture method of three-D moulding object
EP3199267A1 (en) * 2016-01-29 2017-08-02 Seiko Epson Corporation Three-dimensional shaped article production method
US20210154891A1 (en) * 2016-01-29 2021-05-27 Seiko Epson Corporation Three-dimensional shaped article production method
US20170217097A1 (en) * 2016-01-29 2017-08-03 Seiko Epson Corporation Three-dimensional shaped article production method
EP3205424A1 (en) * 2016-02-11 2017-08-16 General Electric Company Method and connecting upports for additive manufacturing
US10486362B2 (en) 2016-02-11 2019-11-26 General Electric Company Method and connecting supports for additive manufacturing
US11597011B2 (en) 2016-04-14 2023-03-07 Desktop Metal, Inc. Printer for the three-dimensional fabrication
US10456833B2 (en) 2016-04-14 2019-10-29 Desktop Metals, Inc. Shrinkable support structures
US10272492B2 (en) 2016-04-14 2019-04-30 Desktop Metal, Inc. Multi-part removable support structures
US9833839B2 (en) 2016-04-14 2017-12-05 Desktop Metal, Inc. Fabricating an interface layer for removable support
WO2017180314A1 (en) * 2016-04-14 2017-10-19 Desktop Metal, Inc. Additive fabrication with support structures
US10350682B2 (en) * 2016-04-14 2019-07-16 Desktop Metal, Inc. Sinterable article with removable support structures
US9815118B1 (en) 2016-04-14 2017-11-14 Desktop Metal, Inc. Fabricating multi-part assemblies
US11173550B2 (en) 2016-12-02 2021-11-16 Markforged, Inc. Supports for sintering additively manufactured parts
US10040241B2 (en) 2016-12-02 2018-08-07 Markforged, Inc. Supports for sintering additively manufactured parts
US10800108B2 (en) 2016-12-02 2020-10-13 Markforged, Inc. Sinterable separation material in additive manufacturing
US10464131B2 (en) 2016-12-02 2019-11-05 Markforged, Inc. Rapid debinding via internal fluid channels
US10035298B2 (en) 2016-12-02 2018-07-31 Markforged, Inc. Supports for sintering additively manufactured parts
US10040242B2 (en) 2016-12-02 2018-08-07 Markforged, Inc. Supports for sintering additively manufactured parts
US10391714B2 (en) 2016-12-02 2019-08-27 Markforged, Inc. Supports for sintering additively manufactured parts
US10000011B1 (en) 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts
US10052815B2 (en) 2016-12-02 2018-08-21 Markforged, Inc. Supports for sintering additively manufactured parts
US10377083B2 (en) 2016-12-02 2019-08-13 Markforged, Inc. Supports for sintering additively manufactured parts
US10556384B2 (en) 2016-12-02 2020-02-11 Markforged, Inc. Supports for sintering additively manufactured parts
US10377082B2 (en) 2016-12-02 2019-08-13 Markforged, Inc. Supports for sintering additively manufactured parts
US10828698B2 (en) 2016-12-06 2020-11-10 Markforged, Inc. Additive manufacturing with heat-flexed material feeding
EP3378626A1 (en) * 2017-03-21 2018-09-26 Ricoh Company Ltd. Method of manufacturing solid freeform fabrication object and method of creating data for solid freeform fabrication object
US11364543B2 (en) * 2018-04-30 2022-06-21 Hewlett-Packard Development Company, L.P. Three-dimensional printed component setter generation
US11117329B2 (en) 2018-06-26 2021-09-14 General Electric Company Additively manufactured build assemblies having reduced distortion and residual stress
US11292185B2 (en) * 2018-06-28 2022-04-05 Stratasys Ltd. Method and system for reducing curling in additive manufacturing
US11833739B2 (en) 2018-08-20 2023-12-05 Esko-Graphics Imaging Gmbh Additive plate making system and method
US11396136B2 (en) * 2018-09-06 2022-07-26 Xerox Corporation 3D printing support structures incorporating sacrificial materials
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
CN112719268A (en) * 2019-10-28 2021-04-30 帕洛阿尔托研究中心公司 Alloy support

Also Published As

Publication number Publication date
US20040207124A1 (en) 2004-10-21
US7364686B2 (en) 2008-04-29
US20080211124A1 (en) 2008-09-04
US7685694B2 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
US7364686B2 (en) System and method for printing and supporting three dimensional objects
Montgomery et al. Recent advances in additive manufacturing of active mechanical metamaterials
KR101593488B1 (en) Apparatus and method for enhancing speed of 3d printer
US9604407B2 (en) 3D printing techniques for creating tissue engineering scaffolds
US10357828B2 (en) Methods and leading edge supports for additive manufacturing
US20180154441A1 (en) Methods and table supports for additive manufacturing
AU2018262560B2 (en) Molding method and apparatus, particularly applicable to metal and/or ceramics
JP2015180537A (en) Method of producing three-dimensional shaped article
US20060099287A1 (en) Three-dimensional printing prototyping system
EP2599613A2 (en) Three-dimensional shaping apparatus, three-dimensional shaping method, set-data creating apparatus for three-dimensional shaping apparatus, program for creating set-data for three-dimensional shaping apparatus, and computer-readable recording medium
Postiglione et al. Effect of 3D-printed microvascular network design on the self-healing behavior of cross-linked polymers
Xu et al. Predictive compensation-enabled horizontal inkjet printing of alginate tubular constructs
US10556383B2 (en) Methods and rail supports for additive manufacturing
KR20170124961A (en) System and method for forming integrated interfaces within a three-dimensionally printed object with different build materials
JP2015123687A (en) Method for producing molding and control device
EP3814101B1 (en) Structure supporting an object during additive manufacturing and method for forming
US20200189177A1 (en) Processes for formation of porous biologically compatible scaffold structures
WO2019155897A1 (en) Three-dimensional forming method
Quetzeri-Santiago et al. Additive manufacturing with liquid latex and recycled end-of-life rubber
JP2007168294A (en) Method for manufacturing ceramic structure
EP3296901B1 (en) Three-dimensional modeling apparatus, method, and computer program
US10596800B2 (en) Three-dimensional shaped article production method, three-dimensional shaped article production apparatus, and three-dimensional shaped article
DE102008009003A1 (en) Apparatus and method for the generative production of 3-dimensional objects based on a multi-phase system
JP4232782B2 (en) Manufacturing method of photonic three-dimensional structure
JP2016141113A (en) Lamination molding device and lamination molding program

Legal Events

Date Code Title Description
AS Assignment

Owner name: OBJET GEOMETRIES LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRITCHMAN, ELISHA M.;GOTHAIT, HANAN;MILLER, GERSHON;REEL/FRAME:013139/0436

Effective date: 20020618

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED