US20020172679A1 - Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM - Google Patents

Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM Download PDF

Info

Publication number
US20020172679A1
US20020172679A1 US10/118,600 US11860002A US2002172679A1 US 20020172679 A1 US20020172679 A1 US 20020172679A1 US 11860002 A US11860002 A US 11860002A US 2002172679 A1 US2002172679 A1 US 2002172679A1
Authority
US
United States
Prior art keywords
monoclonal antibody
antigen binding
antibody
fib
binding fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/118,600
Inventor
Douglas Ringler
Dominic Picarella
Walter Newman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Pharmaceuticals Inc
Original Assignee
Millennium Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharmaceuticals Inc filed Critical Millennium Pharmaceuticals Inc
Priority to US10/118,600 priority Critical patent/US20020172679A1/en
Publication of US20020172679A1 publication Critical patent/US20020172679A1/en
Priority to US11/264,627 priority patent/US20060057135A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/801Drug, bio-affecting and body treating compositions involving antibody or fragment thereof produced by recombinant dna technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/81Drug, bio-affecting and body treating compositions involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, immunotolerance, or anergy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/866Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving immunoglobulin or antibody fragment, e.g. fab', fab, fv, fc, heavy chain or light chain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/867Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving immunoglobulin or antibody produced via recombinant dna technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/868Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving autoimmunity, allergy, immediate hypersensitivity, delayed hypersensitivity, immunosuppression, or immunotolerance

Definitions

  • IBD Inflammatory bowel disease
  • ulcerative colitis and Crohn's disease can be a debilitating and progressive disease involving inflammation of the gastrointestinal tract affecting an estimated two million people in the United States. Symptoms include abdominal pain, cramping, diarrhea and rectal bleeding. IBD treatments have included anti-inflammatory drugs (such as, corticosteroids and sulfasalazine), immunosuppressive drugs (such as, 6-mercaptopurine, cyclosporine and azathioprine) and surgery (such as, colectomy). Podolsky, The New England Journal of Medicine, 325:928-937 (1991) and Podolsky, The New England Journal of Medicine, 325:1008-1016 (1991).
  • anti-inflammatory drugs such as, corticosteroids and sulfasalazine
  • immunosuppressive drugs such as, 6-mercaptopurine, cyclosporine and azathioprine
  • VCAM-1 vascular cell adhesion molecule-1
  • VLA-4 vascular cell adhesion molecule-1
  • IBD can be treated by blocking the interaction of ICAM-1 with LFA-1 or Mac-1 or VCAM-1 with ⁇ 4 ⁇ 1 (e.g., WO 93/15764).
  • these therapeutic targets are likely involved in inflammatory processes in multiple organs, and a functional blockade would likely result in systemic immune dysfunction.
  • Mucosal addressin MAdCAM a mucosal vascular adhesion molecule
  • MAdCAM a mucosal vascular adhesion molecule
  • MAdCAM In contrast to VCAM-1 and ICAM- 1, MAdCAM is preferentially expressed in the gastrointestinal tract, binds the ⁇ 4 ⁇ 7 integrin (also called LPAM-1 and CD49d/CD ⁇ ) found on lymphocytes, and participates in the homing of these cells to mucosal sites, such as Peyer's patches in the intestinal wall (Hamann et al., Journal of Immunology, 152:3282-3293 (1994)).
  • ⁇ 4 ⁇ 7 integrin also called LPAM-1 and CD49d/CD ⁇
  • the invention relates to the treatment of individuals suffering from a disease associated with leukocyte recruitment to the gastrointestinal tract as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM, comprising administering to the individual an effective amount of a compound, such as an antibody, which inhibits the binding of leukocytes to endothelial MAdCAM.
  • a compound such as an antibody
  • the antibody is preferably monoclonal, chimeric and/or humanized or an antigen binding fragment thereof, and inhibits adhesion of leukocytes expressing an integrin containing the ⁇ 7 chain (such as ⁇ 4 ⁇ 7) to endothelium expressing MAdCAM.
  • the monoclonal antibody or antigen binding fragment thereof has the antigenic specificity of a monoclonal antibody selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1.
  • Inflammatory bowel diseases such as but not limited to ulcerative colitis, Crohn's disease, Pouchitis, celiac disease, microscopic or collagenous colitis, and eosinophilic gastroenteritis can be treated according to the claimed method.
  • FIGS. 1 a and 1 b are graphic illustrations of histologic scores of inflammatory activity and epithelial injury from left (descending) and right (ascending) colon of mice exposed to 10 days of DSS in their drinking water. Three groups of mice are shown, consisting of groups receiving an irrelevant rat IgG2a antibody, FIB21, or FIB30 antibodies.
  • FIG. 2 is a graph of ⁇ counts per minute (cpm) ( ⁇ 1 SEM) as a percentage of input from mice given DSS in the drinking water for 10 days.
  • Six groups consisted of negative controls given water alone, positive controls given DSS alone, test groups given irrelevant rat IgG2a antibody, FIB21, MECA-367, and FIB21 with MECA-367.
  • FIG. 3 is a graph depicting the histologic scores ( ⁇ 1 SEM) for villus fusion obtained from jejunal biopsy samples of common marmosets before and on the 14th day of treatment with 2 mg/kg/day of ACT-1 monoclonal antibody.
  • FIG. 4 is a graph depicting the histologic scores ( ⁇ 1 SEM) for villus atrophy obtained from jejunal biopsy samples of common marmosets before and on the 14th day of treatment with 2 mg/kg/day of ACT-1 monoclonal antibody.
  • FIGS. 5 and 6 are graphic illustrations of the stool consistency and inflammatory activity in colitic animals (cotton-top tamarins) treated with ACT-1 antibody.
  • the invention relates to the discovery that diseases associated with leukocyte recruitment to the gastrointestinal tract, such as IBD, or other mucosal tissues can be treated by inhibiting MAdCAM binding to the ⁇ 4 ⁇ 7 integrin or triggering of ⁇ 4 ⁇ 7-mediated cellular responses.
  • Compounds which inhibit binding include antibodies or antigen binding fragments thereof which bind MAdCAM and/or the ⁇ 4 ⁇ 7 integrin.
  • Antibodies which can be used in the method include recombinant or non-recombinant polyclonal, monoclonal, chimeric, humanized and/or anti-idiotypic antibodies.
  • MECA 367 is an anti-MAdCAM antibody of the IgG2a subtype and is described in Gallatin et al., Nature, 304:30 (1983) and Michie et al., Am. J. Pathol. 143:1688-1698 (1993).
  • ACT-1 is a monoclonal antibody which binds the ⁇ 4 ⁇ 7 integrin (Lazarovits et al., Journal of Immunology, 133:1857 (1984) and Schweighoffer et al., Journal of Immunology, 151:717-729 (1993)).
  • FIB 21 binds the ⁇ 7 chain is described and characterized in Berlin et al., Cell 74:184-195 (1993); Andrew, D. P. et al., J. Immunol. 153:3847-3861 (1994)).
  • Other monoclonal antibodies such as antibodies which bind to the same or similar epitopes as the antibodies described above, can be made according to methods known in the art, such as Kohler et al., Nature, 256:495-497 (1975), Harlow et al., 1988, Antibodies: A Laboratory Manual, (Cold Spring Harbor, N.Y.) or Current Protocols in Molecular Biology, Vol. 2 (Supplemental 27, Summer '94), Ausubel et al., Eds.
  • antibodies can be raised against an appropriate immunogen in a suitable mammal.
  • Immunogens include, for example, MAdCAM ⁇ 4 ⁇ 7 or immunogenic fragments thereof.
  • the mammal can be a mouse, rat, rabbit or sheep, for example.
  • the antibody-producing cell e.g., a lymphocyte
  • the cell can then be fused to a suitable immortalized cell (e.g., a myeloma cell line), thereby forming a hybridoma.
  • the fused cells can be isolated employing selective culturing techniques. Cells which produce antibodies with the desired specificity can be selected by a suitable assay (e.g., ELISA).
  • the immunogen can be an antibody which binds, for example, MAdCAM ⁇ 4 ⁇ 7 or immunogenic fragments thereof.
  • the antibody raised thereby can be an anti-idiotypic antibody, which can also be used in the present invention.
  • Single chain antibodies, and chimeric, humanized or primatized (CDR-grafted or resurfaced, such as, according to EP 592406, Apr. 13, 1994) antibodies, as well as chimeric or CDR-grafted single chain antibodies, comprising portions derived from different species, can also be used in the invention.
  • the various portions of these antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques.
  • nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent No.
  • functional fragments of antibodies including fragments of chimeric, humanized, primatized or single chain antibodies, can also be produced.
  • Functional fragments of the foregoing antibodies retain at least one binding function of the full-length antibody from which they are derived and, preferably, retains the ability to inhibit interaction.
  • antibody fragments capable of binding to the ⁇ 4 ⁇ 7 integrin; MAdCAM or portion thereof include, but are not limited to, Fv, Fab, Fab′ and F(ab′) 2 fragments.
  • Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For instance, papain or pepsin cleavage can generate Fab or F(ab′) 2 fragments, respectively.
  • antibodies can be produced in a variety of truncated forms using antibody genes in which one or more stop codons has been introduced upstream of the natural stop site.
  • a chimeric gene encoding a F(ab′) 2 heavy chain portion can be designed to include DNA sequences encoding the CH 1 domain and hinge region of the heavy chain.
  • Antibodies and antigen binding fragments thereof which can be used in the claimed method include antibodies which bind to MAdCAM and/or ⁇ 4 ⁇ 7, such as the ⁇ 7 chain.
  • antibodies from the group including FIB 21, FIB 30, FIB 504 and ACT-1 and mixtures thereof can be administered.
  • antigen fragments of these antibodies can be administered.
  • Compounds which inhibit the binding of MAdCAM and the ⁇ 4 ⁇ 7 integrin can be administered according to the claimed method in the treatment of diseases which are associated with leukocyte (such as lymphocyte or monocyte) recruitment to the gastrointestinal tract or other tissues as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM.
  • Diseases which can be treated accordingly include inflammatory bowel disease, such as ulcerative colitis, Crohn's disease, Celiac disease (nontropical Sprue), enteropathy associated with seronegative arthropathies, microscopic or collagenous colitis, eosinophilic gastroenteritis, or pouchitis resulting after proctocolectomy and ileoanal anastomosis.
  • more than one monoclonal antibody which inhibits the binding of leukocytes to endothelial MAdCAM is administered.
  • a monoclonal antibody which inhibits the binding of leukocytes to endothelial ligands is administered in addition to an anti-MAdCAM or anti- ⁇ 7 antibody.
  • an antibody that inhibits the binding of leukocytes to an endothelial ligand other than MAdCAM such as an anti-ICAM-1 or anti-VCAM-1 antibody can also be administered.
  • an additional pharmacologically active ingredient such as a steroid
  • a variety of routes of administration are possible including, but not necessarily limited to parenteral (e.g., intravenous, intraarterial, intramuscular, subcutaneous injection), oral (e.g., dietary), topical, inhalation (e.g., intrabronchial, intranasal or oral inhalation, intranasal drops), or rectal, depending on the disease or condition to be treated.
  • parenteral e.g., intravenous, intraarterial, intramuscular, subcutaneous injection
  • oral e.g., dietary
  • topical inhalation
  • inhalation e.g., intrabronchial, intranasal or oral inhalation, intranasal drops
  • rectal e.g., rectal, depending on the disease or condition to be treated.
  • Parenteral administration is a preferred mode of administration.
  • Formulation of a compound to be administered will vary according to the route of administration selected (e.g., solution, emulsion, capsule).
  • An appropriate composition comprising the compound to be administered can be prepared in a physiologically acceptable vehicle or carrier.
  • suitable carriers include, for example, aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Parenteral vehicles can include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils.
  • Intravenous vehicles can include various additives, preservatives, or fluid, nutrient or electrolyte replenishers (See, generally, Remington's Pharmaceutical Science, 16th Edition, Mack, Ed. 1980).
  • a suitable dispenser for administration e.g., an atomizer, nebulizer or pressurized aerosol dispenser.
  • the compound is administered in an amount which will inhibit binding of MAdCAM to the ⁇ 4 ⁇ 7 integrin.
  • the compounds can be administered in a single dose or multiple doses.
  • the dosage can be determined by methods known in the art and is dependent, for example, upon the individual's age, sensitivity, tolerance and overall well-being. Suitable dosages can be from 0.1-1.0 mg/kg body weight per treatment.
  • mice were given access to a 5% solution of dextran sodium sulfate (DSS) in their drinking water for a period of 10 days, as previously described ( Lab. Invest. 69:238-249, 1993). During this time period, the mice developed clinical symptoms of colitis including softening of stools and bloody diarrhea. Multifocal epithelial injury and ulceration, similar to ulcerative colitis in humans, was evident on histologic examination of colonic mucosa from affected mice. Moreover, affected mice lost 20-30% of their initial body weight by day 10.
  • DSS dextran sodium sulfate
  • mice were given daily intraperitoneal (i.p.) injections of 100 ⁇ g of monoclonal antibodies against ⁇ 7, consisting of either FIB21 or FIB30 in saline, as previously characterized and described (Berlin, C., et al., Cell 74:185-195, 1993; Michie, S. A., et al, Am. J. Pathol. 143:1688-1698, 1993; Hamann, A., et al., J. Immunol. 152:3282-3293, 1994) or an isotype-matched control rat monoclonal antibody at the same dose (Andrew et al., supra) over the 10 day course of DSS treatment.
  • FIB21 or FIB30 in saline
  • mice were placed on 5% DSS for 9 days (instead of 10) and on day 8, mice were given i.p. injections of 100 ⁇ g of FIB21 (anti- ⁇ 7), MECA-367 (anti-MAdCAM), a mixture of both, or an isotype-matched control monoclonal antibody in saline.
  • mesenteric lymph node cells were isolated from donor syngeneic BALB/c mice, labeled with 51 Cr, and 5.0 ⁇ 10 6 cells/mouse were incubated for 30 minutes at 37° C. with 500 ⁇ g control antibody, 250 ⁇ g of MECA-367, 500 ⁇ g FIB21, or both (total amount is 750 ⁇ g) in saline.
  • the labeled cells and antibody were then injected intravenously (i.v.) into the DSS-treated recipient mice.
  • Full-length colons were harvested from all experimental animals 1 hour after injection, and ⁇ -irradiation was measured using a ⁇ -counter.
  • Lymphocyte recruitment to inflamed colon was then quantitatively assessed using radiolabeled mesenteric lymphocytes taken from syngeneic donors.
  • radiolabeled mesenteric lymphocytes taken from syngeneic donors.
  • One hour after injection of these cells in DSS-treated recipients there was a trend towards a reduction in the number of 51 Cr-labeled cells recruited to colon in mice that were treated with either ⁇ 7-specific antibodies or the MAdCAM-specific antibodies, but not in mice treated with the isotope-matched control antibodies (FIG. 2).
  • Common marmosets ( Callithrix jacchus ) are a new world nonhuman primate that, under captive conditions at the New England Regional Primate Research Center (NERPRC), develop a steroid-nonresponsive, spontaneous malabsorption syndrome characterized by weight loss, diarrhea, and small intestinal mucosal changes consistent with loss of absorptive capacity. These histologic changes include small intestinal villus atrophy and fusion, and a mononuclear leukocyte infiltrate within the lamina intestinal similar to Celiac disease (nontropical sprue) in humans. Retrospective analysis from the pathology archive files at NERPRC demonstrated that up to 80% of common marmosets have, to various degrees, malabsorptive enteritis at the time of postmortem examination.
  • NERPRC New England Regional Primate Research Center
  • villus architecture was scored according to the following grading criteria: Villus atrophy 0 normal mucosal thickness and villus height 1 mild atrophy; slight shortening of villi; height approximately 75% of normal 2 moderate atrophy; villi approximately 33-50% normal height 3 severe atrophy; short ( ⁇ 33% normal) or no observable villi Villus fusion 0 normal; no fusion 1 1-2 villi in specimen fused 2 Between 1-2 and 50% of villi in specimen fused 3 >50% villi in specimen fused
  • FIGS. 3 and 4 The mean scores for villus fusion and atrophy before and after antibody therapy with the ACT-1 monoclonal antibody are shown in FIGS. 3 and 4, respectively. As demonstrated, there was almost complete resolution of villus atrophy (P ⁇ 0.01) and a trend for improvement of villus fusion after a two-week course of therapy with the ACT-1 antibody. The effect was not secondary to nonspecific effects of exposure to foreign immunoglobulin since other animals treated with various monoclonal antibodies directed against epitopes other than that recognized by ACT-1 were ineffective in reducing villus fusion and atrophy scores.
  • the cotton-top tamarin ( Saguinus oedipus ) is a New World nonhuman primate which develops a spontaneous colitis similar to ulcerative colitis in man.
  • ACT-1 was known to cross-react in the tamarin because of immunohistologic staining with ACT-1 antibody of colitic mucosa from affected animals.
  • Colitic animals were chosen from the colony-at-large based upon gross observation of diarrhea and weight loss. All candidate animals were then subjected to colon biopsy to confirm the presence of colitis, as defined as a histologic inflammatory activity score of 2 or 3.
  • the scoring system used was originally described in Madara, J. L. et al., Gastroenterology 88:13-19 (1985). Briefly, inflammatory activity scores were based upon the relative numbers of neutrophils within the lamina intestinal, crypt lumena, crypt epithelium, and surface epithelium. All biopsy samples were scored and categorized into four groups, with 0 representing normal mucosa and 3 representing the most severe and inflamed mucosa. Scores of 0 and 1 do not represent symptomatic colitis, while scores of 2 to 3 represent mild to severe colitic activity. Within 5 days of confirmation of colitis, the animals began immunotherapy with ACT-1 monoclonal antibody.
  • Colon biopsies were again obtained at the time of the first antibody infusion (Day 0) and on days 5, 10 and 20. The biopsies were evaluated by an independent pathologist. Additional colon biopsies were frozen for immunohistology. Animal caretakers evaluated stool consistency on a daily basis by categorizing stool as diarrhea, semi-solid, or solid. Animals were weighed every other day, while blood was drawn at the same intervals for flow cytometry, hematology, and storage of serum or plasma for further analyses, such as antibody concentration, anti-mouse IgG titer, clinical chemistry, or acute phase proteins.
  • All four animals maintained either a grade 2 or 3 colitic inflammatory activity in both the pre-treatment and Day 0 biopsy samples, which for 3 animals was separated by 5 days.
  • changes within the mucosal architecture of all four animals demonstrated that these four animals had colitis of a long-lasting nature. Therefore, all animals appeared to have a chronic disease course.

Abstract

The invention relates to the treatment of individuals suffering from a disease associated with leukocyte recruitment to the gastrointestinal tract or other tissues as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM (such as inflammatory bowel disease), comprising administering to the individual an effective amount of an antibody which inhibits the binding of leukocytes to endothelial MAdCAM.

Description

    RELATED APPLICATION
  • This application is a continuation of U.S. application Ser. No. 08/386,857, filed Feb. 10, 1995. The entire teachings of the above application are incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, for example, can be a debilitating and progressive disease involving inflammation of the gastrointestinal tract affecting an estimated two million people in the United States. Symptoms include abdominal pain, cramping, diarrhea and rectal bleeding. IBD treatments have included anti-inflammatory drugs (such as, corticosteroids and sulfasalazine), immunosuppressive drugs (such as, 6-mercaptopurine, cyclosporine and azathioprine) and surgery (such as, colectomy). Podolsky, [0002] The New England Journal of Medicine, 325:928-937 (1991) and Podolsky, The New England Journal of Medicine, 325:1008-1016 (1991).
  • Some studies have suggested that the cell adhesion molecule, ICAM-1, mediates leukocyte recruitment to inflammatory sites through adhesion to leukocyte surface ligands, i.e. Mac-1, LFA-1 or α4β2 (Springer, [0003] Nature, 346:425-434 (1990)). In addition, vascular cell adhesion molecule-1 (VCAM-1), recognizing the α4β1 integrin (VLA-4), has been reported to play a role in in vivo leukocyte recruitment as well (Silber et al., J. Clin. Invest. 93:1554-1563 (1994)). It has been proposed that IBD can be treated by blocking the interaction of ICAM-1 with LFA-1 or Mac-1 or VCAM-1 with α4β1 (e.g., WO 93/15764). However, these therapeutic targets are likely involved in inflammatory processes in multiple organs, and a functional blockade would likely result in systemic immune dysfunction.
  • Mucosal addressin MAdCAM, a mucosal vascular adhesion molecule, is a 58-66K glycoprotein adhesion receptor for lymphocytes which is distinct from VCAM-1 and ICAM-1 (Briskin et al., [0004] Nature, 363:461-463 (1993)). In contrast to VCAM-1 and ICAM- 1, MAdCAM is preferentially expressed in the gastrointestinal tract, binds the α4β7 integrin (also called LPAM-1 and CD49d/CD) found on lymphocytes, and participates in the homing of these cells to mucosal sites, such as Peyer's patches in the intestinal wall (Hamann et al., Journal of Immunology, 152:3282-3293 (1994)). The use of inhibitors to the binding of MAdCAM to the receptor, α4β7, in the treatment of diseases such as IBD has not been suggested.
  • SUMMARY OF THE INVENTION
  • The invention relates to the treatment of individuals suffering from a disease associated with leukocyte recruitment to the gastrointestinal tract as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM, comprising administering to the individual an effective amount of a compound, such as an antibody, which inhibits the binding of leukocytes to endothelial MAdCAM. The antibody is preferably monoclonal, chimeric and/or humanized or an antigen binding fragment thereof, and inhibits adhesion of leukocytes expressing an integrin containing the β7 chain (such as α4β7) to endothelium expressing MAdCAM. In one embodiment, the monoclonal antibody or antigen binding fragment thereof has the antigenic specificity of a monoclonal antibody selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1. Inflammatory bowel diseases, such as but not limited to ulcerative colitis, Crohn's disease, Pouchitis, celiac disease, microscopic or collagenous colitis, and eosinophilic gastroenteritis can be treated according to the claimed method.[0005]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1[0006] a and 1 b are graphic illustrations of histologic scores of inflammatory activity and epithelial injury from left (descending) and right (ascending) colon of mice exposed to 10 days of DSS in their drinking water. Three groups of mice are shown, consisting of groups receiving an irrelevant rat IgG2a antibody, FIB21, or FIB30 antibodies.
  • FIG. 2 is a graph of γ counts per minute (cpm) (±1 SEM) as a percentage of input from mice given DSS in the drinking water for 10 days. Six groups consisted of negative controls given water alone, positive controls given DSS alone, test groups given irrelevant rat IgG2a antibody, FIB21, MECA-367, and FIB21 with MECA-367. [0007]
  • FIG. 3 is a graph depicting the histologic scores (±1 SEM) for villus fusion obtained from jejunal biopsy samples of common marmosets before and on the 14th day of treatment with 2 mg/kg/day of ACT-1 monoclonal antibody. [0008]
  • FIG. 4 is a graph depicting the histologic scores (±1 SEM) for villus atrophy obtained from jejunal biopsy samples of common marmosets before and on the 14th day of treatment with 2 mg/kg/day of ACT-1 monoclonal antibody. [0009]
  • FIGS. [0010] 5 and 6 are graphic illustrations of the stool consistency and inflammatory activity in colitic animals (cotton-top tamarins) treated with ACT-1 antibody.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention relates to the discovery that diseases associated with leukocyte recruitment to the gastrointestinal tract, such as IBD, or other mucosal tissues can be treated by inhibiting MAdCAM binding to the α4β7 integrin or triggering of α4β7-mediated cellular responses. Compounds which inhibit binding include antibodies or antigen binding fragments thereof which bind MAdCAM and/or the α4β7 integrin. Antibodies which can be used in the method include recombinant or non-recombinant polyclonal, monoclonal, chimeric, humanized and/or anti-idiotypic antibodies. [0011]
  • Monoclonal antibodies that bind MAdCAM or α4β7 have been described. For example, MECA 367 is an anti-MAdCAM antibody of the IgG2a subtype and is described in Gallatin et al., [0012] Nature, 304:30 (1983) and Michie et al., Am. J. Pathol. 143:1688-1698 (1993). ACT-1 is a monoclonal antibody which binds the α4β7 integrin (Lazarovits et al., Journal of Immunology, 133:1857 (1984) and Schweighoffer et al., Journal of Immunology, 151:717-729 (1993)). FIB 21 binds the β7 chain is described and characterized in Berlin et al., Cell 74:184-195 (1993); Andrew, D. P. et al., J. Immunol. 153:3847-3861 (1994)). Other monoclonal antibodies, such as antibodies which bind to the same or similar epitopes as the antibodies described above, can be made according to methods known in the art, such as Kohler et al., Nature, 256:495-497 (1975), Harlow et al., 1988, Antibodies: A Laboratory Manual, (Cold Spring Harbor, N.Y.) or Current Protocols in Molecular Biology, Vol. 2 (Supplemental 27, Summer '94), Ausubel et al., Eds. (John Wiley & Sons: New York, N.Y.), Chapter 11 (1991). For example, antibodies can be raised against an appropriate immunogen in a suitable mammal. Immunogens include, for example, MAdCAM α4β7 or immunogenic fragments thereof. The mammal can be a mouse, rat, rabbit or sheep, for example. The antibody-producing cell (e.g., a lymphocyte) can be isolated from, for example, the lymph nodes or spleen of the mammal. The cell can then be fused to a suitable immortalized cell (e.g., a myeloma cell line), thereby forming a hybridoma. The fused cells can be isolated employing selective culturing techniques. Cells which produce antibodies with the desired specificity can be selected by a suitable assay (e.g., ELISA).
  • In one embodiment, the immunogen can be an antibody which binds, for example, MAdCAM α4β7 or immunogenic fragments thereof. The antibody raised thereby can be an anti-idiotypic antibody, which can also be used in the present invention. [0013]
  • Single chain antibodies, and chimeric, humanized or primatized (CDR-grafted or resurfaced, such as, according to EP 592406, Apr. 13, 1994) antibodies, as well as chimeric or CDR-grafted single chain antibodies, comprising portions derived from different species, can also be used in the invention. The various portions of these antibodies can be joined together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques. For example, nucleic acids encoding a chimeric or humanized chain can be expressed to produce a contiguous protein. See, e.g., Cabilly et al., U.S. Pat. No. 4,816,567; Cabilly et al., European Patent No. 0,125,023 B1; Boss et al., U.S. Pat. No. 4,816,397; Boss et al., European Patent No. 0,120,694 B1; Neuberger, M. S. et al., WO 86/01533; Neuberger, M. S. et al., European Patent No. 0,194,276 B1; Winter, U.S. Pat. No. 5,225,539; and Winter, European Patent No. 0,239,400 B1. See also, Newman, R. et al., [0014] BioTechnology, 10:1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Pat. No. 4,946,778 and Bird, R. E. et al., Science, 242:423-426 (1988)) regarding single chain antibodies.
  • In addition, functional fragments of antibodies, including fragments of chimeric, humanized, primatized or single chain antibodies, can also be produced. Functional fragments of the foregoing antibodies retain at least one binding function of the full-length antibody from which they are derived and, preferably, retains the ability to inhibit interaction. For example, antibody fragments capable of binding to the α4β7 integrin; MAdCAM or portion thereof include, but are not limited to, Fv, Fab, Fab′ and F(ab′)[0015] 2 fragments. Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For instance, papain or pepsin cleavage can generate Fab or F(ab′)2 fragments, respectively. Alternatively, antibodies can be produced in a variety of truncated forms using antibody genes in which one or more stop codons has been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab′)2 heavy chain portion can be designed to include DNA sequences encoding the CH1 domain and hinge region of the heavy chain.
  • Antibodies and antigen binding fragments thereof which can be used in the claimed method include antibodies which bind to MAdCAM and/or α4β7, such as the β7 chain. For example, antibodies from the [0016] group including FIB 21, FIB 30, FIB 504 and ACT-1 and mixtures thereof can be administered. Alternatively or in addition, antigen fragments of these antibodies can be administered.
  • Compounds which inhibit the binding of MAdCAM and the α4β7 integrin can be administered according to the claimed method in the treatment of diseases which are associated with leukocyte (such as lymphocyte or monocyte) recruitment to the gastrointestinal tract or other tissues as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM. Diseases which can be treated accordingly include inflammatory bowel disease, such as ulcerative colitis, Crohn's disease, Celiac disease (nontropical Sprue), enteropathy associated with seronegative arthropathies, microscopic or collagenous colitis, eosinophilic gastroenteritis, or pouchitis resulting after proctocolectomy and ileoanal anastomosis. In one embodiment, more than one monoclonal antibody which inhibits the binding of leukocytes to endothelial MAdCAM is administered. Alternatively, a monoclonal antibody which inhibits the binding of leukocytes to endothelial ligands is administered in addition to an anti-MAdCAM or anti-β7 antibody. For example, an antibody that inhibits the binding of leukocytes to an endothelial ligand other than MAdCAM, such as an anti-ICAM-1 or anti-VCAM-1 antibody can also be administered. In another embodiment, an additional pharmacologically active ingredient (such as a steroid) can be administered in conjunction with the antibody of the present invention. [0017]
  • A variety of routes of administration are possible including, but not necessarily limited to parenteral (e.g., intravenous, intraarterial, intramuscular, subcutaneous injection), oral (e.g., dietary), topical, inhalation (e.g., intrabronchial, intranasal or oral inhalation, intranasal drops), or rectal, depending on the disease or condition to be treated. Parenteral administration is a preferred mode of administration. [0018]
  • Formulation of a compound to be administered will vary according to the route of administration selected (e.g., solution, emulsion, capsule). An appropriate composition comprising the compound to be administered can be prepared in a physiologically acceptable vehicle or carrier. For solutions or emulsions, suitable carriers include, for example, aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles can include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles can include various additives, preservatives, or fluid, nutrient or electrolyte replenishers (See, generally, [0019] Remington's Pharmaceutical Science, 16th Edition, Mack, Ed. 1980). For inhalation, the compound is solubilized and loaded into a suitable dispenser for administration (e.g., an atomizer, nebulizer or pressurized aerosol dispenser).
  • The compound is administered in an amount which will inhibit binding of MAdCAM to the α4β7 integrin. The compounds can be administered in a single dose or multiple doses. The dosage can be determined by methods known in the art and is dependent, for example, upon the individual's age, sensitivity, tolerance and overall well-being. Suitable dosages can be from 0.1-1.0 mg/kg body weight per treatment. [0020]
  • The subject invention will now be illustrated by the following examples, which are not intended to be limiting in any way. [0021]
  • EXEMPLIFICATION EXAMPLE 1 Inhibition of Lymphocyte Recruitment to Colon Induction of Colitis in Mice
  • BALB/c mice were given access to a 5% solution of dextran sodium sulfate (DSS) in their drinking water for a period of 10 days, as previously described ([0022] Lab. Invest. 69:238-249, 1993). During this time period, the mice developed clinical symptoms of colitis including softening of stools and bloody diarrhea. Multifocal epithelial injury and ulceration, similar to ulcerative colitis in humans, was evident on histologic examination of colonic mucosa from affected mice. Moreover, affected mice lost 20-30% of their initial body weight by day 10.
  • Antibody blockade of β7 and MAdCAM Interactions
  • To determine the efficacy of β7-specific antibodies in blocking the recruitment of lymphocytes to the colon, BALB/c mice were given daily intraperitoneal (i.p.) injections of 100 μg of monoclonal antibodies against β7, consisting of either FIB21 or FIB30 in saline, as previously characterized and described (Berlin, C., et al., [0023] Cell 74:185-195, 1993; Michie, S. A., et al, Am. J. Pathol. 143:1688-1698, 1993; Hamann, A., et al., J. Immunol. 152:3282-3293, 1994) or an isotype-matched control rat monoclonal antibody at the same dose (Andrew et al., supra) over the 10 day course of DSS treatment.
  • Methods of Evaluation
  • Two methods were used to evaluate efficacy of the antibody therapy to inhibit leukocyte infiltration and mucosal injury in the colitic mouse. In the first method, treatment was judged histologically by two blinded observers using a scoring system for the evaluation of epithelial injury and degree of leukocyte cellular infiltration (Table 1). For this assessment, colon tissue was first fixed in 10% neutral buffered formalin, dehydrated, embedded in paraffin, sectioned, and the sections were stained with hematoxylin and eosin prior to examination. [0024]
    TABLE
    PATHOLOGY EVALUATION
    Grade Definition
    INFLAMMATION
    Normal (0) Absence of clusters of polymorphonoclear
    leukocytes (PMNs) or mononuclear cells in the
    lamina propria; absence of intraepithelial
    PMNs
    Mild (1) Focal aggregates of PMNs and/or mononuclear
    cells in the lamina propria (equivocal or slight)
    or presence of isolated intraepithelial PMNs in
    3 or fewer crypts per cross-section
    Moderate (2) Focal aggregates of PMNs and/or mononuclear
    cells in the lamina propria (multi-focal or
    diffuse 2-5X) or intraepithelial PMNs in more
    than 3 crypts per cross-section
    Severe (3) Diffuse infiltration of PMNs or mononuclear
    cells in the lamina propria (diffuse > 5X) or
    crypt abscesses
    STRUCTURAL OR EPITHELIAL
    ALTERATIONS
    Normal (0) Tight crypts, no erosion, columnar epithelial
    cells
    Mild (1) Epithelial immaturity; equivocal irregularity of
    epithelial surface
    Moderate (2) At least two foci of crypt branching or loss of
    crypts (<50%); loss of surface epithelium
    Severe (3) Diffuse or multifocal branching or loss of
    crypts (>50%); fibrosis; complete loss of
    epithelium (focal)
    # nonspecific antibody binding sites were blocked with 10% normal rabbit serum diluted in PBS for 10 min, followed in sequence with washes by FIB21 antibody at 20 μg/ml in PBS for 30 min at room temperature (RT), biotinylated rabbit anti-rat polyclonal antibody, avidinperoxidase complexes, and finally the chromogen, diaminobenzidine and hydrogen peroxide diluted in Tris buffer.
  • In the second method, recruitment of lymphocytes to the colon was quantitatively assessed using radiolabeled mesenteric lymph node lymphocytes from syngeneic donor mice. The experimental design of the animal experiments was similar to that described above except that BALB/c mice were placed on 5% DSS for 9 days (instead of 10) and on [0025] day 8, mice were given i.p. injections of 100 μg of FIB21 (anti-β7), MECA-367 (anti-MAdCAM), a mixture of both, or an isotype-matched control monoclonal antibody in saline. On day 9, mesenteric lymph node cells were isolated from donor syngeneic BALB/c mice, labeled with 51Cr, and 5.0×106 cells/mouse were incubated for 30 minutes at 37° C. with 500 μg control antibody, 250 μg of MECA-367, 500 μg FIB21, or both (total amount is 750 μg) in saline. The labeled cells and antibody were then injected intravenously (i.v.) into the DSS-treated recipient mice. Full-length colons were harvested from all experimental animals 1 hour after injection, and γ-irradiation was measured using a γ-counter.
  • Data Analysis
  • Differences between mean scores obtained for each group of animals were assessed for statistical significance using a paired Student's t-test. Differences between means were considered significant when P<0.05. [0026]
  • Results
  • Histologically, inflammation and epithelial injury to the mucosa were most severe in the descending colon, rectum and cecum. Analysis of frozen tissue sections of colon by immunohistochemistry revealed that the most significant recruitment of β7[0027] + lymphocytes was to the right colon. In addition, the level of expression of the mucosal vascular addressin, MAdCAM-1, was found to be expressed only at low levels in vessels in the intestinal mucosa early in DSS treatment (3 days), but increased dramatically after 9 days of DSS treatment, supporting the conclusion that β7 and MAdCAM-1 interactions are relevant to the inflammatory process in the colonic mucosa during DSS-induced colitis.
  • Histologic evaluation of mice exposed to a 10-day course of DSS and daily therapy using β7-specific antibodies demonstrated that substantial reductions of leukocyte recruitment (P<0.01 for FIB30 and P<0.001 for FIB21) and epithelial injury (P<0.05) occurred in right (ascending) colon compared to animals receiving a control antibody at the same dose (FIGS. 1[0028] a and 1 b). Furthermore, analysis using immunohistochemistry of frozen sections from these animals suggested that the number of β7+ cells recruited to the right colon, but not other sections of colon, during DSS treatment was reduced.
  • Lymphocyte recruitment to inflamed colon was then quantitatively assessed using radiolabeled mesenteric lymphocytes taken from syngeneic donors. One hour after injection of these cells in DSS-treated recipients, there was a trend towards a reduction in the number of [0029] 51Cr-labeled cells recruited to colon in mice that were treated with either β7-specific antibodies or the MAdCAM-specific antibodies, but not in mice treated with the isotope-matched control antibodies (FIG. 2).
  • EXAMPLE 2 Resolution of Villus Alterations in the Common Marmoset (Callithrix jacchus) with Malabsorptive Enteritis Description of Model
  • Common marmosets ([0030] Callithrix jacchus) are a new world nonhuman primate that, under captive conditions at the New England Regional Primate Research Center (NERPRC), develop a steroid-nonresponsive, spontaneous malabsorption syndrome characterized by weight loss, diarrhea, and small intestinal mucosal changes consistent with loss of absorptive capacity. These histologic changes include small intestinal villus atrophy and fusion, and a mononuclear leukocyte infiltrate within the lamina propria similar to Celiac disease (nontropical sprue) in humans. Retrospective analysis from the pathology archive files at NERPRC demonstrated that up to 80% of common marmosets have, to various degrees, malabsorptive enteritis at the time of postmortem examination.
  • Antibody Therapy Protocol
  • Adult common marmosets were selected for study from the colony-at-large at NERPRC. Base-line studies on all animals included physical examination, complete blood count (CBC), blood chemistry profile, serum B12, c-reactive protein, and full-thickness jejunal biopsy by laparotomy. Following recovery from abdominal surgery, the animals were treated for 14 days with 2 mg/kg/day of ACT-1 monoclonal antibody, a blocking monoclonal antibody against a conformational epitope of α4β7 (Schweighoffer, T., et al., [0031] J. Immunol. 151:717-729, 1993). Previous studies indicated that this antibody cross-reacted to Callithrix α4β7. All assessments that were performed prior to antibody therapy were repeated between the 10th and 14th day of antibody therapy.
  • Analysis of Jejunal Biopsies
  • Full-thickness jejunal biopsies from each marmoset were evaluated histologically by two independent pathologists, and villus architecture was scored according to the following grading criteria: [0032]
    Villus atrophy
    0 normal mucosal thickness and villus height
    1 mild atrophy; slight shortening of villi; height approximately 75%
    of normal
    2 moderate atrophy; villi approximately 33-50% normal height
    3 severe atrophy; short (<33% normal) or no observable villi
    Villus fusion
    0 normal; no fusion
    1 1-2 villi in specimen fused
    2 Between 1-2 and 50% of villi in specimen fused
    3 >50% villi in specimen fused
  • Data Analysis
  • Differences between mean scores obtained for each group of animals were assessed for statistical significance using a paired Student's t-test. Differences between means were considered significant when P<0.05. [0033]
  • Results
  • The mean scores for villus fusion and atrophy before and after antibody therapy with the ACT-1 monoclonal antibody are shown in FIGS. 3 and 4, respectively. As demonstrated, there was almost complete resolution of villus atrophy (P<0.01) and a trend for improvement of villus fusion after a two-week course of therapy with the ACT-1 antibody. The effect was not secondary to nonspecific effects of exposure to foreign immunoglobulin since other animals treated with various monoclonal antibodies directed against epitopes other than that recognized by ACT-1 were ineffective in reducing villus fusion and atrophy scores. [0034]
  • EXAMPLE 3 Resolution of Colitis in the Cotton Top Tamarin Description of Model
  • The cotton-top tamarin ([0035] Saguinus oedipus) is a New World nonhuman primate which develops a spontaneous colitis similar to ulcerative colitis in man.
  • ACT-1 was known to cross-react in the tamarin because of immunohistologic staining with ACT-1 antibody of colitic mucosa from affected animals. These initial pilot studies demonstrated that from 40-80% of mononuclear cells within the lamina propria of colon from affected animals were α4β7+ similar to human colitic mucosa. [0036]
  • Methods
  • Colitic animals were chosen from the colony-at-large based upon gross observation of diarrhea and weight loss. All candidate animals were then subjected to colon biopsy to confirm the presence of colitis, as defined as a histologic inflammatory activity score of 2 or 3. The scoring system used was originally described in Madara, J. L. et al., [0037] Gastroenterology 88:13-19 (1985). Briefly, inflammatory activity scores were based upon the relative numbers of neutrophils within the lamina propria, crypt lumena, crypt epithelium, and surface epithelium. All biopsy samples were scored and categorized into four groups, with 0 representing normal mucosa and 3 representing the most severe and inflamed mucosa. Scores of 0 and 1 do not represent symptomatic colitis, while scores of 2 to 3 represent mild to severe colitic activity. Within 5 days of confirmation of colitis, the animals began immunotherapy with ACT-1 monoclonal antibody.
  • Four colitic animals received ACT-1 monoclonal antibody at a dose of 2 mg/kg/day intravenously (I.V.) the first day followed by intramuscularly (I.M.) injections for 7 consecutive days thereafter. The dosing regime was the same as that used in the common marmoset study above. [0038]
  • Colon biopsies were again obtained at the time of the first antibody infusion (Day 0) and on [0039] days 5, 10 and 20. The biopsies were evaluated by an independent pathologist. Additional colon biopsies were frozen for immunohistology. Animal caretakers evaluated stool consistency on a daily basis by categorizing stool as diarrhea, semi-solid, or solid. Animals were weighed every other day, while blood was drawn at the same intervals for flow cytometry, hematology, and storage of serum or plasma for further analyses, such as antibody concentration, anti-mouse IgG titer, clinical chemistry, or acute phase proteins.
  • Results/Progress
  • All four animals maintained either a [0040] grade 2 or 3 colitic inflammatory activity in both the pre-treatment and Day 0 biopsy samples, which for 3 animals was separated by 5 days. In addition, changes within the mucosal architecture of all four animals demonstrated that these four animals had colitis of a long-lasting nature. Therefore, all animals appeared to have a chronic disease course.
  • With respect to stool consistency, diarrhea resolved in all four animals by [0041] day 8 of ACT-1 immunotherapy (FIG. 4). All animals maintained solid stools for approximately 1 week after termination of antibody injections (FIG. 4). One animal (Sgo 63-93) has had solid stool from Day 4 until the end of the protocol at Day 20 (FIG. 4). Two animals (Sgo 129-91 and Sgo 17-85) had slight relapses to semi-solid stools after Day 14 in the study (FIG. 4). The fourth animal (Sgo 326-84) showed a persistent improvement/resolution of diarrhea from Day 6 to Day 20.
  • With respect to histologic changes, all four animals have shown improvement in inflammatory activity during or after ACT-1 immunotherapy. The colitis in two animals (Sgo 129-91 and Sgo 17-85) completely resolved by Day 10 (FIG. 6). Another animal (Sgo 63-93) did not show complete abrogation of colitis activity until Day 20 (FIG. 6), while mucosal biopsy scores from the fourth animal (Sgo 326-84) showed improvement during the entire study period (FIG. 6; two biopsies on [0042] day 20 in Sgo 326-84 were scored as 0 and 1). Furthermore, animal 326-84 gained 20% of its original body weight during the study period.
  • To detect antibody administered in vivo, flow cytometry and immunohistology were performed. Flow cytometry without a primary antibody showed excellent labeling to peripheral blood lymphocytes in animals at all time points after antibody administration. Immunohistology on colon biopsies using no primary antibody in the sequence from three animals on samples up to and including [0043] Day 10 showed excellent labeling of lymphocytes within the lamina propria on the samples from Days 5 and 10 but not, as expected, from Day 0 prior to antibody infusion. Collectively, these results showed that ACT-1 antibody localized to the target site, namely lymphocytes within the peripheral blood and specifically to the extravascular compartment within colitic mucosa.
  • Summary
  • By histologic criteria and stool consistency, ACT-1 was efficacious in improving colitis in the cotton top tamarin. [0044]
  • There appeared to be a good correlation between histologic inflammatory activity scores and stool consistency. Noteworthy is the observation that stool consistency generally improved in 1-2 days in animals receiving ACT-1 antibody. [0045]
  • Equivalents
  • Those skilled in the art will know, or be able to ascertain, using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. These and all other equivalents are intended to be encompassed by the following claims. [0046]

Claims (37)

What is claimed is:
1. A method for treating an individual having a disease associated with leukocyte recruitment to the gastrointestinal tract or other tissues as a result of binding of leukocytes to gut-associated endothelium expressing the molecule MAdCAM, comprising:
administering to the individual an effective amount of an antibody which inhibits the binding of leukocytes to endothelial MAdCAM.
2. The method of claim 1 wherein antibody is a monoclonal antibody or an antigen binding fragment thereof.
3. The method of claim 2 wherein the monoclonal antibody or antigen binding fragment thereof inhibits adhesion of leukocytes expressing an integrin containing the β7 chain and endothelium expressing MAdCAM.
4. The method of claim 3 wherein the monoclonal antibody or antigen binding fragment thereof binds α4β7 integrin.
5. The method of claim 4 wherein the monoclonal antibody or antigen binding fragment thereof binds β7.
6. The method of claim 3 wherein the monoclonal antibody or antigen binding fragment thereof binds MAdCAM.
7. The method of claim 3 wherein the monoclonal antibody or antigen binding fragment thereof has the antigenic specificity of a monoclonal antibody selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1.
8. The method of claim 7 wherein the monoclonal antibody or antigen binding fragment thereof is selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1 or antigen binding fragments thereof.
9. The method of claim 8 wherein the monoclonal antibody is ACT-1.
10. The method of claim 3 wherein the monoclonal antibody is selected from the group consisting of a chimeric antibody and a humanized antibody.
11. The method of claim 3 wherein the leukocytes are lymphocytes.
12. The method of claim 3 wherein the leukocytes are monocytes.
13. The method of claim 3 wherein the disease is inflammatory bowel disease.
14. The method of claim 13 wherein the disease is ulcerative colitis.
15. The method of claim 13 wherein the disease is Crohn's disease.
16. The method of claim 13 wherein the disease is Celiac disease, enteropathy associated with seronegative arthropathies, microscopic or collagenous colitis, eosinophilic gastroenteritis, or pouchitis.
17. The method of claim 13 wherein the monoclonal antibody or antigen binding fragment thereof binds α4β7.
18. The method of claim 13 wherein the monoclonal antibody or antigen binding fragment thereof binds MAdCAM.
19. The method of claim 13 wherein the monoclonal antibody or antigen binding fragment thereof has the antigenic specificity of a monoclonal antibody selected from the group consisting of FIB 21, FIB30, FIB 504 and ACT-1.
20. The method of claim 19 wherein the monoclonal antibody or antigen binding fragment thereof is selected from the group consisting of FIB 21, FIB30, FIB 504 and ACT-1 or antigen binding fragments thereof.
21. The method of claim 20 wherein the monoclonal antibody is ACT-1.
22. The method of claim 13 wherein the monoclonal antibody is selected from the group consisting of a chimeric antibody and a humanized antibody.
23. The method of claim 13 wherein more than one monoclonal antibody which inhibits the binding of leukocytes to endothelial MAdCAM is administered.
24. The method of claim 13 wherein more than one monoclonal antibody which inhibits the binding of leukocytes to endothelial ligands is administered.
25. The method of claim 24 wherein at least one monoclonal antibody inhibits the binding of leukocytes to an endothelial ligand other than MAdCAM.
26. A method for treating inflammatory bowel disease in an individual comprising administering to the individual an effective amount of an antibody which binds endothelial MAdCAM or the α4β7 integrin.
27. The method of claim 26 wherein antibody is a monoclonal antibody or an antigen binding fragment thereof.
28. The method of claim 27 wherein the monoclonal antibody or antigen binding fragment thereof binds α4β7 integrin.
29. The method of claim 28 wherein the monoclonal antibody or antigen binding fragment thereof binds β7.
30. The method of claim 27 wherein the monoclonal antibody or antigen binding fragment thereof binds MAdCAM.
31. The method of claim 27 wherein the monoclonal antibody or antigen binding fragment thereof has the antigenic specificity of a monoclonal antibody selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1.
32. The method of claim 31 wherein the monoclonal antibody or antigen binding fragment thereof is selected from the group consisting of FIB 21, FIB 30, FIB 504 and ACT-1 or antigen binding fragments thereof.
33. The method of claim 32 wherein the monoclonal antibody is ACT-1.
34. The method of claim 27 wherein the monoclonal antibody is selected from the group consisting of a chimeric antibody and a humanized antibody.
35. The method of claim 27 wherein the disease is ulcerative colitis.
36. The method of claim 27 wherein the disease is Crohn's disease.
37. The method of claim 27 wherein the disease is Celiac disease, enteropathy associated with seronegative arthropathies, microscopic or collagenous colitis, eosinophilic gastroenteritis, or pouchitis.
US10/118,600 1995-02-10 2002-04-08 Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM Abandoned US20020172679A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/118,600 US20020172679A1 (en) 1995-02-10 2002-04-08 Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM
US11/264,627 US20060057135A1 (en) 1995-02-10 2005-11-01 Mucosal vascular addressins and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/386,857 US6551593B1 (en) 1995-02-10 1995-02-10 Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
US10/118,600 US20020172679A1 (en) 1995-02-10 2002-04-08 Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/386,857 Continuation US6551593B1 (en) 1995-02-10 1995-02-10 Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/264,627 Continuation-In-Part US20060057135A1 (en) 1995-02-10 2005-11-01 Mucosal vascular addressins and uses thereof

Publications (1)

Publication Number Publication Date
US20020172679A1 true US20020172679A1 (en) 2002-11-21

Family

ID=23527358

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/386,857 Expired - Fee Related US6551593B1 (en) 1995-02-10 1995-02-10 Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
US10/118,600 Abandoned US20020172679A1 (en) 1995-02-10 2002-04-08 Treatment of inflammatory bowel disease by inhibiting binding and/or signalling through alpha4beta7 and its ligands and MAdCAM

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/386,857 Expired - Fee Related US6551593B1 (en) 1995-02-10 1995-02-10 Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam

Country Status (2)

Country Link
US (2) US6551593B1 (en)
JP (1) JP2008231112A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176304A1 (en) * 1999-04-06 2004-09-09 Nijkamp Franciscus Petrus Compound for inhibiting the influx of polymorphonuclear leukocytes (PMNS) in a tissue, its selection, pharmaceutical compositions and use
US20060057135A1 (en) * 1995-02-10 2006-03-16 Briskin Michael J Mucosal vascular addressins and uses thereof
US20070166308A1 (en) * 2004-01-09 2007-07-19 Nicholas Pullen Antibodies to MAdCAM
US9663579B2 (en) 2011-05-02 2017-05-30 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US10040855B2 (en) 2011-05-02 2018-08-07 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US10851163B2 (en) 2015-01-09 2020-12-01 Pfizer Inc. Dosage regimen for MAdCAM antagonists
CN114225025A (en) * 2021-12-29 2022-03-25 北京创世客生物技术有限公司 Use of probiotic-containing formulations for the treatment of gastrointestinal disorders
US11802156B2 (en) 2017-07-14 2023-10-31 Pfizer Inc. Antibodies to MAdCAM

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551593B1 (en) * 1995-02-10 2003-04-22 Millennium Pharmaceuticals, Inc. Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
US7147851B1 (en) * 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
US7090845B2 (en) * 1998-05-13 2006-08-15 Genentech, Inc. Diagnosis and treatment of hepatic disorders
US20010046496A1 (en) * 2000-04-14 2001-11-29 Brettman Lee R. Method of administering an antibody
US20040070518A1 (en) * 2002-10-04 2004-04-15 Carroll Whittle Emergency vehicular traffic signal control
AU2004207536B2 (en) 2003-01-24 2010-05-20 Elan Pharmaceuticals Inc. Composition for and treatment of demyelinating diseases and paralysis by administration of remyelinating agents
WO2005076843A2 (en) 2004-02-06 2005-08-25 Elan Pharmaceuticals, Inc. Methods and compositions for treating tumors and metastatic disease
PT1784426E (en) * 2004-09-03 2012-03-06 Genentech Inc Humanized anti-beta7 antagonists and uses therefor
CN101227923A (en) * 2005-07-08 2008-07-23 辉瑞有限公司 Use of anti-MAdCAM antibodies for the treatment of coeliac disease and tropical sprue
WO2007007160A2 (en) * 2005-07-11 2007-01-18 Pfizer Limited Anti-madcam antibodies to treat fever
EP1948691A1 (en) * 2005-11-17 2008-07-30 Millennium Pharmaceuticals, Inc. HUMANIZED IMMUNOGLOBULIN REACTIVE WITH a4ß7INTEGRIN
JP2009528359A (en) 2006-02-28 2009-08-06 エラン ファーマシューティカルズ,インコーポレイテッド Methods of treating inflammatory and autoimmune diseases with natalizumab
EP2007392A4 (en) * 2006-02-28 2010-04-07 Elan Pharm Inc Methods of treating inflammatory and autoimmune diseases with alpha-4 inhibitory compounds
CA2644110A1 (en) 2006-03-03 2007-09-13 Elan Pharmaceuticals, Inc. Methods of treating inflammatory and autoimmune diseases with natalizumab
SI2279004T1 (en) * 2008-05-16 2015-05-29 F. Hoffmann-La Roche Ag Use of biomarkers for assessing treatment of gastrointestinal inflammatory disorders with beta7integrin antagonists
US20120258093A1 (en) 2009-08-20 2012-10-11 Institut National De La Sante Et De La Recherche Medicale (Inserm) Vla-4 as a biomarker for prognosis and target for therapy in duchenne muscular dystrophy
US11287423B2 (en) 2010-01-11 2022-03-29 Biogen Ma Inc. Assay for JC virus antibodies
RS63744B1 (en) 2010-01-11 2022-12-30 Biogen Ma Inc Assay for jc virus antibodies
US10119976B2 (en) 2013-05-28 2018-11-06 Biogen Ma Inc. Method of assessing risk of PML
CN107257693A (en) * 2015-02-26 2017-10-17 豪夫迈·罗氏有限公司 Treat the integrin beta 7 antagonists and method of Crohn diseases
AU2018274749A1 (en) * 2017-05-26 2019-12-19 Millennium Pharmaceuticals, Inc. Methods for the treatment of chronic pouchitis

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699880A (en) * 1984-09-25 1987-10-13 Immunomedics, Inc. Method of producing monoclonal anti-idiotype antibody
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5223392A (en) * 1988-01-25 1993-06-29 Exocell, Inc. Monoclonal antibodies against glycated albumin, hybrid cell lines producing these antibodies, and use therefore
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5225538A (en) * 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
US5403919A (en) * 1987-08-11 1995-04-04 Board Of Trustees Of The Leland Stanford Junior University Stanford University Method to control leukocyte extravasation
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5538724A (en) * 1987-08-11 1996-07-23 The Board Of Trustees For The Leland Stanford Junior Univ. Method of control leukocyte extravasation
US5558864A (en) * 1991-03-06 1996-09-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies
US5565335A (en) * 1987-10-02 1996-10-15 Genentech, Inc. Adhesion variants
US5594120A (en) * 1994-02-18 1997-01-14 Brigham And Women's Hospital, Inc. Integrin alpha subunit
US5599676A (en) * 1992-05-21 1997-02-04 Center For Blood Research, Inc. Method for isolating a novel receptor for α4 integrins
US5610281A (en) * 1994-05-03 1997-03-11 Brigham & Women's Hospital, Inc. Antibodies for modulating heterotypic E-cadherin interactions with human T lymphocytes
US5624821A (en) * 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5730978A (en) * 1989-09-01 1998-03-24 Fred Hutchinson Cancer Research Center Inhibition of lymphocyte adherence with α4β1-specific antibodies
US5840299A (en) * 1994-01-25 1998-11-24 Athena Neurosciences, Inc. Humanized antibodies against leukocyte adhesion molecule VLA-4
US5932214A (en) * 1994-08-11 1999-08-03 Biogen, Inc. Treatment for inflammatory bowel disease with VLA-4 blockers
US6037324A (en) * 1996-01-04 2000-03-14 Leukosite, Inc. Inhibitors of MAdCAM-1-mediated interactions and methods of use therefor
US6551593B1 (en) * 1995-02-10 2003-04-22 Millennium Pharmaceuticals, Inc. Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3852236T2 (en) 1987-08-11 1995-04-06 Univ Leland Stanford Junior Procedure for controlling leukocyte extravasation.
EP0462111A4 (en) 1988-12-23 1992-07-08 The Board Of Trustees Of The Leland Stanford Junior University Homing sequences and their uses
GB8928874D0 (en) 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
GB9115364D0 (en) 1991-07-16 1991-08-28 Wellcome Found Antibody
ES2103468T3 (en) 1992-02-12 1997-09-16 Biogen Inc TREATMENT OF INTESTINAL INFLAMMATION.
AU5675794A (en) 1992-12-15 1994-07-04 Board Of Trustees Of The Leland Stanford Junior University Mucosal vascular addressin, dna and expression
CA2153692C (en) 1993-01-12 2011-11-08 Roy R. Lobb Recombinant anti-vla4 antibody molecules
DK0682529T4 (en) 1993-02-09 2006-05-15 Biogen Idec Inc Antibody for the treatment of insulin-requiring diabetes
JPH06303990A (en) 1993-04-24 1994-11-01 Kanebo Ltd Monoclonal antibody, hybridoma capable of producing the same and production of the same antibody
PT804237E (en) 1994-01-25 2006-10-31 Elan Pharm Inc HUMANIZED ANTIBODIES AGAINST THE VLA-4 LEUCOCITARY ADHESION MOLECULE

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4699880A (en) * 1984-09-25 1987-10-13 Immunomedics, Inc. Method of producing monoclonal anti-idiotype antibody
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5648260A (en) * 1987-03-18 1997-07-15 Scotgen Biopharmaceuticals Incorporated DNA encoding antibodies with altered effector functions
US5624821A (en) * 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5403919A (en) * 1987-08-11 1995-04-04 Board Of Trustees Of The Leland Stanford Junior University Stanford University Method to control leukocyte extravasation
US5538724A (en) * 1987-08-11 1996-07-23 The Board Of Trustees For The Leland Stanford Junior Univ. Method of control leukocyte extravasation
US5565335A (en) * 1987-10-02 1996-10-15 Genentech, Inc. Adhesion variants
US5223392A (en) * 1988-01-25 1993-06-29 Exocell, Inc. Monoclonal antibodies against glycated albumin, hybrid cell lines producing these antibodies, and use therefore
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5585089A (en) * 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
US5225538A (en) * 1989-02-23 1993-07-06 Genentech, Inc. Lymphocyte homing receptor/immunoglobulin fusion proteins
US5428130A (en) * 1989-02-23 1995-06-27 Genentech, Inc. Hybrid immunoglobulins
US5714147A (en) * 1989-02-23 1998-02-03 Genentech Inc. Hybrid immunoglobulins
US5730978A (en) * 1989-09-01 1998-03-24 Fred Hutchinson Cancer Research Center Inhibition of lymphocyte adherence with α4β1-specific antibodies
US5558864A (en) * 1991-03-06 1996-09-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies
US5599676A (en) * 1992-05-21 1997-02-04 Center For Blood Research, Inc. Method for isolating a novel receptor for α4 integrins
US5840299A (en) * 1994-01-25 1998-11-24 Athena Neurosciences, Inc. Humanized antibodies against leukocyte adhesion molecule VLA-4
US5594120A (en) * 1994-02-18 1997-01-14 Brigham And Women's Hospital, Inc. Integrin alpha subunit
US5610281A (en) * 1994-05-03 1997-03-11 Brigham & Women's Hospital, Inc. Antibodies for modulating heterotypic E-cadherin interactions with human T lymphocytes
US5932214A (en) * 1994-08-11 1999-08-03 Biogen, Inc. Treatment for inflammatory bowel disease with VLA-4 blockers
US6551593B1 (en) * 1995-02-10 2003-04-22 Millennium Pharmaceuticals, Inc. Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
US6037324A (en) * 1996-01-04 2000-03-14 Leukosite, Inc. Inhibitors of MAdCAM-1-mediated interactions and methods of use therefor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057135A1 (en) * 1995-02-10 2006-03-16 Briskin Michael J Mucosal vascular addressins and uses thereof
US20070178089A1 (en) * 1995-09-01 2007-08-02 Briskin Michael J Mucosal vascular addressins and uses thereof
US8277808B2 (en) 1995-09-01 2012-10-02 Millennium Pharmaceuticals, Inc. Mucosal vascular addressins and uses thereof
US7410806B2 (en) 1999-04-06 2008-08-12 Fornix Biosciences N.V. Compound for inhibiting the influx of polymorphonuclear leukocytes (PMNs) in a tissue, its selection, pharmaceutical compositions and use
US6960565B2 (en) * 1999-04-06 2005-11-01 Fornix Biosciences N.V. Compound for inhibiting the influx of polymorphonuclear leukocytes (PMNS) in a tissue, its selection, pharmaceutical compositions and use
US20060046963A1 (en) * 1999-04-06 2006-03-02 Nijkamp Franciscus P Compound for inhibiting the influx of polymorphonuclear leukocytes (PMNs) in a tissue, its selection, pharmaceutical compositions and use
US20040176304A1 (en) * 1999-04-06 2004-09-09 Nijkamp Franciscus Petrus Compound for inhibiting the influx of polymorphonuclear leukocytes (PMNS) in a tissue, its selection, pharmaceutical compositions and use
USRE45847E1 (en) 2004-01-09 2016-01-19 Pfizer Inc. Antibodies to MAdCAM
US10259872B2 (en) 2004-01-09 2019-04-16 Pfizer, Inc. Antibodies to MAdCAM
US20080124339A1 (en) * 2004-01-09 2008-05-29 Nicholas Pullen Antibodies to MAdCAM
US20070166308A1 (en) * 2004-01-09 2007-07-19 Nicholas Pullen Antibodies to MAdCAM
US9328169B2 (en) 2004-01-09 2016-05-03 Pfizer Inc. Human antibodies that bind human MAdCAM
US7932372B2 (en) 2004-01-09 2011-04-26 Amgen Fremont Inc. Antibodies to MAdCAM
US9764033B2 (en) 2011-05-02 2017-09-19 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US10004808B2 (en) 2011-05-02 2018-06-26 Millennium Pharmaceuticals, Inc. Methods of treating ulcerative colitis
US10040855B2 (en) 2011-05-02 2018-08-07 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US10143752B2 (en) 2011-05-02 2018-12-04 Millennium Pharmaceuticals, Inc. Methods of treating ulcerative colitis
US9663579B2 (en) 2011-05-02 2017-05-30 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US11560434B2 (en) 2011-05-02 2023-01-24 Millennium Pharmaceuticals, Inc. Formulation for anti-α4β7 antibody
US10851163B2 (en) 2015-01-09 2020-12-01 Pfizer Inc. Dosage regimen for MAdCAM antagonists
US11884726B2 (en) 2015-01-09 2024-01-30 Pfizer Inc. Dosage regimen for MAdCAM antagonists
US11802156B2 (en) 2017-07-14 2023-10-31 Pfizer Inc. Antibodies to MAdCAM
CN114225025A (en) * 2021-12-29 2022-03-25 北京创世客生物技术有限公司 Use of probiotic-containing formulations for the treatment of gastrointestinal disorders

Also Published As

Publication number Publication date
JP2008231112A (en) 2008-10-02
US6551593B1 (en) 2003-04-22

Similar Documents

Publication Publication Date Title
US6551593B1 (en) Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam
Hesterberg et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin a4b7
Glassock et al. Autologous immune complex nephritis induced with renal tubular antigen: II. The pathogenetic mechanism
Nishikawa et al. Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis.
Clagett et al. Interstitial immune complex thyroiditis in mice: the role of autoantibody to thyroglobulin
Berden et al. Analysis of vascular lesions in murine SLE. I. Association with serologic abnormalities.
US8277808B2 (en) Mucosal vascular addressins and uses thereof
JP2015083603A (en) ANTIBODY α4 β7 INTEGRIN AND ITS USE TO TREAT INFLAMMATORY BOWEL DISEASE
JP2703764B2 (en) Monoclonal antibody against complement component C5a
JP2010280659A (en) Diagnosis and treatment of hepatic disorders
Cunningham et al. Glomerular complement regulation is overwhelmed in passive Heymann nephritis
World Health Organization The role of immune complexes in disease: report of a WHO scientific group [meeting held in Geneva from 22 to 28 September 1976]
Niaudet Nephrotic syndrome in children
Neale et al. Spontaneous glomerulonephritis in rabbits: role of a glomerular capillary antigen
Kimura et al. Monoclonal antibody against lymphocyte function‐associated antigen 1 inhibits the formation of primary biliary cirrhosis‐like lesions induced by murine graft‐versus‐host reaction
Kashgarian et al. Renal disease.
Madaio et al. Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane
Fujigaki et al. Glomerular injury induced by cationic 70‐kD staphylococcal protein; specific immune response is not involved in early phase in rats
Péfaur et al. Early and late humoral rejection: a clinicopathologic entity in two times
Gris et al. Antiglomerular basement membrane nephritis induced by IgA1 antibodies
US7750137B2 (en) Mucosal vascular addressins
Syre IGA mesangial glomerulonephritis; significance and pathogenesis of segmental-focal glomerular lesions
Nakazawa et al. Proteolytic enzyme treatment reduces glomerular immune deposits and proteinuria in passive Heymann nephritis.
Dantal et al. Glomerulonephritis recurrences after kidney transplantation
Francis et al. Membranous nephropathy and kidney transplantation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION