US20020187427A1 - Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates - Google Patents

Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates Download PDF

Info

Publication number
US20020187427A1
US20020187427A1 US09/861,126 US86112601A US2002187427A1 US 20020187427 A1 US20020187427 A1 US 20020187427A1 US 86112601 A US86112601 A US 86112601A US 2002187427 A1 US2002187427 A1 US 2002187427A1
Authority
US
United States
Prior art keywords
additive composition
water
acid
rinse water
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/861,126
Inventor
Ulrich Fiebag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodak Graphics Holding Inc
Original Assignee
Kodak Graphics Holding Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodak Graphics Holding Inc filed Critical Kodak Graphics Holding Inc
Priority to US09/861,126 priority Critical patent/US20020187427A1/en
Assigned to KODAK POLYCHROME GRAPHICS LLC reassignment KODAK POLYCHROME GRAPHICS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIEBAG, ULRICH
Priority to EP02010210A priority patent/EP1260866A3/en
Priority to US10/272,762 priority patent/US6660454B2/en
Publication of US20020187427A1 publication Critical patent/US20020187427A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/006Cleaning, washing, rinsing or reclaiming of printing formes other than intaglio formes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3092Recovery of material; Waste processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the invention relates to additive compositions suitable for rinse water used for processing lithographic printing plates, particularly to additive compositions for rinse water in water recycling systems. Further, the invention refers to aqueous concentrates of said additive compositions, to a method of processing an imagewise exposed lithographic printing plate by using rinse water containing said additive composition, and to printing plates obtained by said method.
  • the art of lithographic printing is based upon the immiscibility of oil and water, in which oily material or ink is preferentially retained by the image areas and the water or fountain solution is preferentially retained by the non-image areas of the printing plate.
  • oily material or ink is preferentially retained by the image areas and the water or fountain solution is preferentially retained by the non-image areas of the printing plate.
  • the background or non-image areas retain the water and repel the ink while the image areas accept the ink and repel the water.
  • the ink on the image areas is then transferred to the surface of a material upon which the image is to be reproduced, such as paper, cloth and plastics.
  • the ink is transferred to an intermediate material called the blanket, which in turn transfers the ink to the surface of the material upon which the image is to be reproduced.
  • Lithographic printing plates can be either negative-working or positive-working, and comprise one or more radiation-sensitive layers on a suitable substrate, such as metal or polymeric support.
  • the radiation-sensitive layer generally includes one or more radiation-sensitive components that may be dispersed in a suitable binder. Alternatively, the radiation-sensitive component can also be the binder material. Certain useful printing plates can be used either as positive-working or negative-working.
  • a negative-working printing plate generally has a light sensitive layer composed of a radiation-sensitive component such as an unsaturated resin on a suitable substrate. Upon imagewise exposure to light, the exposed areas are hardened, leaving non-exposed areas removable during development.
  • Certain negative-working printing plates contain novolac resins, a cross-linking agent, and a radiation-sensitive component that produces acid on exposure. By subsequently heating the plate, only the exposed areas are cured and the unexposed areas can be removed by a developer. The exposed, hardened areas are therefore oleophilic and will accept ink while the non-exposed underlying areas of the substrate are hydrophilic.
  • An alkaline developable positive-working printing plate generally has a light sensitive layer comprising a novolac resin and a radiation-sensitive component such as an o-diazoquinone or diazonaphthoquinone compound. Upon imagewise exposure to imaging radiation, the radiation-sensitive component is converted to the corresponding carboxylic acid.
  • the use of an alkaline developer will remove only the exposed areas of the radiation-sensitive layer, leaving the surface of the support. Because the surface of the support is hydrophilic, the uncovered non-image area attracts water and repels the oily ink. The image area remaining after development is oleophilic thereby repelling water and attracting the printing ink.
  • the invention is an additive composition that can be added to the rinse water used to rinse an imagewise exposed and developed lithographic printing plate (also known as a printing plate precursor), an aqueous concentrate comprising the additive composition, a rinse water, a method of for processing an imagewise exposed lithographic printing plate using the rinse water, and an exposed and developed lithographic printing plate (also called a printing form) produced by the method of the invention.
  • the additive composition comprises:
  • the additive composition further comprises at least one pH regulating agent capable of maintaining the pH value of an aqueous solution at about 7 or below.
  • One essential component of the additive composition is at least one film-forming water-soluble polymer.
  • Typical examples of such polymers include natural substances and modified products thereof like gum arabic, starch derivatives, for instance, dextrin, wasted dextrine, enzyme-modified dextrin, etherified enzyme-modified dextrin, carboxymethylated starch and starch phosphate, octenyl succinated starch, alginates or cellulose derivatives, for instance, carboxymethyl cellulose, carboxyethyl cellulose, hydroxyethyl cellulose, methyl cellulose and hydroxypropyl methyl cellulose; and synthetic substances like polyvinyl alcohol and derivatives thereof, polyvinyl pyrrolidone, polyacrylamide and copolymers thereof, polyacrylic acid and copolymers thereof, styrene/maleic anhydride copolymers, vinyl methyl ether/maleic anhydride copolymer and vinyl acetate/maleic anhydride copolymers.
  • Another essential component of the additive composition is at least one component selected from the group consisting of phosphonic acid derivatives of formula I
  • alkyl As used herein the terms “alkyl”, “alkylene” and “alkoxy” include both straight-chain and branched-chain groups.
  • Preferred additive compositions comprises hydroxyethanediphosphonic acid or suitable salts thereof, hexamethylenediamino-tetra(methylenephosphonic acid) or suitable salts thereof, aminotri(methyl-enephosphonic acid) or suitable salts thereof, as phosphonic acid derivative of formula 1.
  • Sodium salts thereof are especially preferred. Besides single compounds, mixtures of two or more thereof can be used.
  • the amount of the at least one phosphonic acid derivative is not limited, but in preferred embodiments the amount is from about 0.1 to 30 wt %, especially preferred is from about 3 to 20 wt %, based on the total amount of additives.
  • the additive composition of the invention preferably contains a pH regulating agent, or buffer, capable of maintaining the pH of an aqueous solution at about pH 7 or below (preferably in the range of about pH 5 to pH 6), i.e. capable of compensating hydroxide ions from the alkali developer.
  • Suitable pH regulating agents comprise, for example, citric acid, citrates (citric acid salts, preferably alkali metal salts of citric acid), boric acid, acetic acid, propionic acid, succinic acid, phosphates, phosphoric acid and aminotris-(methylene-phosphonic acid). They are preferably used in a concentration of about 0.01 to 1 mol per 100 g additive composition, more preferably about 0.01 to 0.5 mol.
  • the pH regulating agent should be capable of keeping the pH of an aqueous composition at about 7 or below as long as possible when hydroxide ions are added.
  • water as used herein includes tap water, well water, demineralized (deionized) water and recirculated rinse water, unless defined otherwise.
  • the additive composition of the invention optionally comprises at least one further additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
  • Suitable antifoaming agents are for instance Silicone Antifoam emulsion SE57 (Wacker), TRITON® CF32 (Rohm & Haas), AKYPO® LF2 (ether carbonic acid, Chem Y), Agitan 190 (Müinzing Chemie), TEGO® Foamese 825 (modified polysiloxane, TEGO Chemie Service GmbH, DE). Silicone-based antifoaming agents are preferred. They can be either emulsion-dispersible or soluble in water.
  • the amount of silicon-based antifoaming agents is about 0.005 to 5 wt % based on the total amount of additives; more preferably about 0.005 to 1 wt %.
  • the amount of other antifoaming agents is preferably about 0.1 to 5 wt %, more preferably about 0.5 to 3 wt % based on the total amount of additives. It is possible to use a single antifoaming agent or a combination of two or more thereof.
  • biocide should be effective against bacteria, fungi and/or yeasts.
  • Suitable biocides are N-methylol-chloroacetamide, benzoic acid, phenol or its derivatives, formalin, imidazole derivatives, sodium dehydro-acetate, isothiazolinone derivatives, benzotriazole derivatives, amidines, guanidine derivatives, quaternary ammonium salts, pyridine, quinoline derivatives, diazine, triazole derivatives, oxazoles and oxazine derivatives, and mixtures thereof.
  • the amount varies depending on the kind of bacteria, fungi and/or yeasts, it is preferably about 1 to 80 wt % based on the total amount of additives, more preferably about 30 to 80 wt %. It is possible to use a single biocide or a mixture of two or more.
  • Suitable examples of corrosion inhibitors are magnesium nitrate, zinc nitrate, calcium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, ammonium nitrate and mixtures thereof. Typically they are used in an amount of about 0.5 to 10 wt % based on the total amount of additives, more preferably about 1 to 5 wt %.
  • the inhibitors can be used individually or as a mixture of two or more thereof.
  • Suitable chelating agents include aminopolycarboxylic acid and salts thereof such as ethylenediamine-tetraacetic acid and potassium or sodium salt thereof, diethylenetriamine-pentaacetic acid and potassium or sodium salt thereof, triethylenetetramine-hexaacetic acid and potassium or sodium salt thereof, hydroxyethyl ethylenediamine-triacetic acid and potassium or sodium salt thereof, nitrilotriacetic acid and potassium or sodium salt thereof, 1,2-diaminocyclohexane-tetraacetic acid and potassium or sodium salt thereof and 1,3-diamino-2-propanol tetraacetic acid and potassium or sodium salt thereof; and an organophosphonic acid, phosphonoalkane tricarboxylic acid or salts thereof such as 2-phosphonobutanetricarboxylic acid-1,2,4 and potassium or sodium salt thereof, 2-phosphonobutane-tricarboxylic acid-2,3,4 and potassium or sodium salt thereof,
  • Organic amine salts of the foregoing chelating agents may be used effectively instead of potassium and sodium salts thereof.
  • These chelating agents are preferably used in an amount ranging from about 0.1 to 30% by weight, more preferably about 3 to 10% by weight on the basis of the total amount of additives. Since the phosphonic acid derivatives of formula I are able to form a complex with for instance magnesium and calcium ions it is not necessary to use one of the chelating agents above. However, depending on for instance the hardness of the rinse water to which the additive composition is added, it might be advantageous to use a chelating agent in addition to the phosphonic acid derivatives of formula I.
  • Suitable surfactants include anionic surfactants like fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, dialkyl sulfosuccinate salts, alkyl naphthalenesulfonate salts, alkyl-phenoxy polyoxyethylenepropylsulfonate salts, polyoxyethylene alkylsulfophenyl ether salts, sodium salt of N-methyl-N-oleyltaurine, disodium salt of N-alkylsulfosuccinic acid amide, petroleum sulfonic acid salts, sulfated castor oil, sulfated tallow, sulfuric acid ester salts of fatty acid alkyl esters, alkylsulfate ester salts, polyoxyethylene alkyl ether sulfuric acid ester salts, fatty acid monoglyceride sulfuric acid ester salts, polyoxyethylene alkylphenyl ether sulfuric acid ester salt
  • the surfactants are preferably used in an amount of about 0.5 to 50 wt % based on the total amount of additives, more preferably about 5 to 20 wt %. Besides the use of a single surfactant, it is also possible to use a combination of two or more thereof.
  • composition can for instance be formulated as powder, tablet, paste, emulsion, suspension or solution.
  • the additive composition can be incorporated into water in order to obtain an aqueous concentrate thereof.
  • the amount of additive composition incorporated is about 40 to 90 wt % based on the amount of water used, more preferably about 50 to 80 wt %.
  • the invention also relates to a method for processing an imagewise exposed lithographic printing plate. Said method comprises
  • rinse water water which contains the additive composition according to the invention
  • the method can be used for processing any positive or negative working lithographic printing plate that is developed by means of a developer solution.
  • the developer can be any developer useful for removing the non-image areas of an imagewise exposed plate.
  • the developer can be any developer useful for removing the non-image areas of an imagewise exposed plate.
  • a person skilled in the art is able to select a suitable developer for the imagewise exposed plate.
  • Alkaline developers are disclosed, for example, in Yamasue, U.S. Pat. No. 4,259,434; Miller, U.S. Pat. No. 5,851,735; Hall, U.S. Pat. No. 5,122,243; West, U.S. Pat. No. 5,368,974; and Fiebag, U.S. Pat. No. 6,143,479.
  • the amount of additive composition and aqueous concentrate, respectively added to the rinse water depends on the m 2 plates to be rinsed and the type of plate. The amounts of components given below are suitable for most applications.
  • the rinse water used in the method according to the invention comprises about 0.0004 to 8 wt % based on the rinse water of the at least one film-forming polymer, more preferably about 0.02 to 4 wt %, most preferably about 0.25 to 1.5 wt %.
  • the pH regulating agent it is preferred to use about 1 to 100 mmole/L of rinse water, more preferably about 1 to 50 mmole/L.
  • the pH of the recirculated rinse water should be kept at about 7 or below as long as possible.
  • the rinse water can, however, still be used for processing when the pH is above 7 as long as the pH is not higher than about 9.5.
  • At least one phosphonic acid derivative is preferably present in an amount of about 0.0004 to 3 wt % based on the rinse water, more preferably about 0.01 to 2 wt %, most preferably about 0.15 to 0.8 wt %.
  • the rinse water can optionally contain about 0 to 0.5 wt %, based on the amount of rinse water, of antifoaming agent, more preferably the amount is about 0.00002 to 0,1 wt % for silicone-based agents and about 0.0002 to 0.3 wt % for other antifoaming agents.
  • At least one corrosion inhibitor is preferably present in an amount of about 0 to 2 wt %, based on the amount of rinse water, more preferably about 0.004 to 0.5 wt %, most preferably about 0.1 to 0.5 wt %.
  • the chelating agent it is preferred to use about 0 to 3 wt % based on the rinse water, more preferably about 0.01 to 1 wt %, most preferably about 0.05 to 0.5 wt %.
  • the rinse water contains about 0 to 5 wt %, based on the amount of rinse water, of at least one surfactant, more preferably about 0.02 to 2 wt %, most preferably about 0.05 to 0.5 wt %.
  • the rinse water containing the additives can be prepared by adding a suitable amount of the additive composition according to the invention to the rinse water or by adding a suitable amount of the additive concentrate according to the invention.
  • the water used can be selected from the group consisting of tap water, well water, demineralized water and recirculated rinse water.
  • a person skilled in the art is able to select a suitable amount of the additive composition and additive concentrate, respectively and he/she is also able to select a suitable additive composition concentrate depending on the processor used, the type of water, type of developer and type of radiation-sensitive layer on the printing plate.
  • the rinse water is recirculated with a conventional water recycling system.
  • the additive composition of the invention it is possible to re-use the rinse water several times without any decrease in the rinsing efficiency and/or any negative effect on the printing plate qualities.
  • the amount of m 2 of plate which can be rinsed depends on the kind of developer used, the kind of plate to be rinsed and the additive composition.
  • the rinse water can be recirculated and re-used until its pH value is about 9.5. A higher pH value deteriorates the plate and is therefore not suitable; by the buffering agent present in the additive composition of the invention the time until the pH of the rinse water reaches pH 9.5 is prolonged.
  • the plate obtained by the method according to the invention need not to be subjected to a subsequent gumming step. However, it is within the scope of the present application that the obtained plate is subjected to a subsequent gumming step.
  • the plate surface is additionally sealed and protected against fingerprints, etc. by the water-soluble film-forming resin. Dirt particles that may have been dragged-in are bound and cannot penetrate into the plate surface. Any conventionally used processing equipment can be used for carrying out the method of the invention.
  • Aqueous concentrates of the invention were prepared by mixing each of compositions 1 to 3 with water (200 hardness). Additionally, a mixture of water and MERGAL® K9N was prepared for comparative reasons (concentrate 4). Details of the concentrates are summarized in Table 2. TABLE 2 Concentrate 4 Concentrate 1 Concentrate 2 Concentrate 3 (Comparative) Component wt % wt % wt % wt % Composition 1 66.6 — — — Composition 2 — 69.71 — — MERGAL ® K9N* — — — 50 Composition 3 — — 62.16 — Water 33.4 30.29 37.84 50 (demineralized)) Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
  • Kodak Polychrome Graphics WINNER® plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system.
  • the processor was filled with 30 liters of Kodak Polychrome Graphics Negative Developer 956 and 60 liters circulation water.
  • Kodak Polychrome Graphics VirageTM plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system.
  • the processor was filled with 30 liters of Kodak Polychrome Graphics Positive Developer 4030 and 60 liters circulation water.
  • Processing speed 100 cm/min.
  • Kodak Polychrome Graphics Thermal News plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system.
  • the processor was filled with 30 liters of Kodak Polychrome Graphics Developer 980 and 60 liters circulation water.
  • Processing speed 80 cm/min.
  • Kodak Polychrome Graphics VirageTM plates were developed in a processor, type Sprinter 72 iK of Kodak Polychrome Graphics which is equipped with a water recycling system.
  • the processor was filled with 30 liters of Kodak Polychrome Graphics Positive Developer 4030 and 60 liters circulation water.
  • the additive needs to have an antifoaming agent.

Abstract

Additive compositions suitable for rinse water used for processing lithographic printing plates, particularly to additive compositions for rinse water in water recycling systems, are disclosed. The additive compositions contain at least one water-soluble film-forming polymer; optionally, at least one pH regulating agent capable of maintaining the pH value of an aqueous solution at about 7 or below; and at least one compound selected from the group consisting of phosphonic acid derivatives of formula I.
Figure US20020187427A1-20021212-C00001
in which X is C2-C6 alkylene or
Figure US20020187427A1-20021212-C00002
in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10 to 20; R1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8, and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2.

Description

    FIELD OF THE INVENTION
  • The invention relates to additive compositions suitable for rinse water used for processing lithographic printing plates, particularly to additive compositions for rinse water in water recycling systems. Further, the invention refers to aqueous concentrates of said additive compositions, to a method of processing an imagewise exposed lithographic printing plate by using rinse water containing said additive composition, and to printing plates obtained by said method. [0001]
  • BACKGROUND OF THE INVENTION
  • The art of lithographic printing is based upon the immiscibility of oil and water, in which oily material or ink is preferentially retained by the image areas and the water or fountain solution is preferentially retained by the non-image areas of the printing plate. When a suitably prepared surface is moistened with water and ink is applied, the background or non-image areas retain the water and repel the ink while the image areas accept the ink and repel the water. The ink on the image areas is then transferred to the surface of a material upon which the image is to be reproduced, such as paper, cloth and plastics. Commonly, the ink is transferred to an intermediate material called the blanket, which in turn transfers the ink to the surface of the material upon which the image is to be reproduced. [0002]
  • Lithographic printing plates can be either negative-working or positive-working, and comprise one or more radiation-sensitive layers on a suitable substrate, such as metal or polymeric support. The radiation-sensitive layer generally includes one or more radiation-sensitive components that may be dispersed in a suitable binder. Alternatively, the radiation-sensitive component can also be the binder material. Certain useful printing plates can be used either as positive-working or negative-working. [0003]
  • A negative-working printing plate generally has a light sensitive layer composed of a radiation-sensitive component such as an unsaturated resin on a suitable substrate. Upon imagewise exposure to light, the exposed areas are hardened, leaving non-exposed areas removable during development. Certain negative-working printing plates contain novolac resins, a cross-linking agent, and a radiation-sensitive component that produces acid on exposure. By subsequently heating the plate, only the exposed areas are cured and the unexposed areas can be removed by a developer. The exposed, hardened areas are therefore oleophilic and will accept ink while the non-exposed underlying areas of the substrate are hydrophilic. [0004]
  • An alkaline developable positive-working printing plate generally has a light sensitive layer comprising a novolac resin and a radiation-sensitive component such as an o-diazoquinone or diazonaphthoquinone compound. Upon imagewise exposure to imaging radiation, the radiation-sensitive component is converted to the corresponding carboxylic acid. The use of an alkaline developer will remove only the exposed areas of the radiation-sensitive layer, leaving the surface of the support. Because the surface of the support is hydrophilic, the uncovered non-image area attracts water and repels the oily ink. The image area remaining after development is oleophilic thereby repelling water and attracting the printing ink. [0005]
  • After subjecting the imagewise exposed printing plate to a suitable developer solution the plate is rinsed with water (“rinse water”) in order to remove the developer solution adhering thereto. Subsequently, the plate is usually subjected to a gumming step in order to protect the plate against air and pollution during storage before being used for printing. [0006]
  • The rinsing of the plate with fresh water results in a high consumption of water. In addition to the high costs for the fresh water, there is an additional high cost for waste-water treatment, because a large amount of waste water contaminated with both the organic substances of the radiation-sensitive layer and the ingredients of the used developer has to be treated. Therefore, there is a tendency to use a water recycling system in order to save water and costs. This means that the printing plates are no longer rinsed with fresh water (like tap water and well water) but with water that is permanently in circulation. However, due to the permanent recycling the water quality decreases by the uptake of developer solution and coating components during the rinsing step; consequently the rinsing efficiency decreases and the image and non-image areas of the plate might be interfered. [0007]
  • Furthermore, it is time consuming to carry out the rinsing and gumming subsequently in separate process steps. Therefore, it would be desirable to overcome the necessity of a separate gumming step. [0008]
  • Therefore, a need exists for a method of processing an imagewise exposed printing plate in which the rinse water can be recirculated without a decrease of rinsing efficiency, which does not require of a separate gumming step, and which can be carried out by the use of conventional processors, i.e. which does not require new and/or additional equipment. [0009]
  • SUMMARY OF THE INVENTION
  • The invention is an additive composition that can be added to the rinse water used to rinse an imagewise exposed and developed lithographic printing plate (also known as a printing plate precursor), an aqueous concentrate comprising the additive composition, a rinse water, a method of for processing an imagewise exposed lithographic printing plate using the rinse water, and an exposed and developed lithographic printing plate (also called a printing form) produced by the method of the invention. The additive composition comprises: [0010]
  • (a) at least one water-soluble film-forming polymer; and [0011]
  • (b) at least one compound selected from the group consisting of phosphonic acid derivatives of formula I [0012]
    Figure US20020187427A1-20021212-C00003
  • in which X is C[0013] 2-C6 alkylene or
    Figure US20020187427A1-20021212-C00004
  • in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10 to 20; R[0014] 1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8, and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2. Preferably, the additive composition further comprises at least one pH regulating agent capable of maintaining the pH value of an aqueous solution at about 7 or below.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One essential component of the additive composition is at least one film-forming water-soluble polymer. Typical examples of such polymers include natural substances and modified products thereof like gum arabic, starch derivatives, for instance, dextrin, wasted dextrine, enzyme-modified dextrin, etherified enzyme-modified dextrin, carboxymethylated starch and starch phosphate, octenyl succinated starch, alginates or cellulose derivatives, for instance, carboxymethyl cellulose, carboxyethyl cellulose, hydroxyethyl cellulose, methyl cellulose and hydroxypropyl methyl cellulose; and synthetic substances like polyvinyl alcohol and derivatives thereof, polyvinyl pyrrolidone, polyacrylamide and copolymers thereof, polyacrylic acid and copolymers thereof, styrene/maleic anhydride copolymers, vinyl methyl ether/maleic anhydride copolymer and vinyl acetate/maleic anhydride copolymers. These water-soluble polymers may be used alone or in combination and the amount thereof in the additive composition of the invention preferably ranges from about 0.1 to 80% by weight, more preferably about 5 to 30% by weight on the basis of the total amount of additives. [0015]
  • Another essential component of the additive composition is at least one component selected from the group consisting of phosphonic acid derivatives of formula I [0016]
    Figure US20020187427A1-20021212-C00005
  • in which X is C[0017] 2-C6 alkylene or
    Figure US20020187427A1-20021212-C00006
  • in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10 to 20; R[0018] 1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8, and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2.
  • As used herein the terms “alkyl”, “alkylene” and “alkoxy” include both straight-chain and branched-chain groups. [0019]
  • Preferred additive compositions comprises hydroxyethanediphosphonic acid or suitable salts thereof, hexamethylenediamino-tetra(methylenephosphonic acid) or suitable salts thereof, aminotri(methyl-enephosphonic acid) or suitable salts thereof, as phosphonic acid derivative of formula 1. Sodium salts thereof are especially preferred. Besides single compounds, mixtures of two or more thereof can be used. [0020]
  • The amount of the at least one phosphonic acid derivative is not limited, but in preferred embodiments the amount is from about 0.1 to 30 wt %, especially preferred is from about 3 to 20 wt %, based on the total amount of additives. [0021]
  • The additive composition of the invention preferably contains a pH regulating agent, or buffer, capable of maintaining the pH of an aqueous solution at about pH 7 or below (preferably in the range of about pH 5 to pH 6), i.e. capable of compensating hydroxide ions from the alkali developer. Suitable pH regulating agents comprise, for example, citric acid, citrates (citric acid salts, preferably alkali metal salts of citric acid), boric acid, acetic acid, propionic acid, succinic acid, phosphates, phosphoric acid and aminotris-(methylene-phosphonic acid). They are preferably used in a concentration of about 0.01 to 1 mol per 100 g additive composition, more preferably about 0.01 to 0.5 mol. The pH regulating agent should be capable of keeping the pH of an aqueous composition at about 7 or below as long as possible when hydroxide ions are added. [0022]
  • The term “water” as used herein includes tap water, well water, demineralized (deionized) water and recirculated rinse water, unless defined otherwise. [0023]
  • The additive composition of the invention optionally comprises at least one further additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants. [0024]
  • Suitable antifoaming agents are for instance Silicone Antifoam emulsion SE57 (Wacker), TRITON® CF32 (Rohm & Haas), AKYPO® LF2 (ether carbonic acid, Chem Y), Agitan 190 (Müinzing Chemie), TEGO® Foamese 825 (modified polysiloxane, TEGO Chemie Service GmbH, DE). Silicone-based antifoaming agents are preferred. They can be either emulsion-dispersible or soluble in water. Preferably, the amount of silicon-based antifoaming agents is about 0.005 to 5 wt % based on the total amount of additives; more preferably about 0.005 to 1 wt %. The amount of other antifoaming agents is preferably about 0.1 to 5 wt %, more preferably about 0.5 to 3 wt % based on the total amount of additives. It is possible to use a single antifoaming agent or a combination of two or more thereof. [0025]
  • The biocide should be effective against bacteria, fungi and/or yeasts. Suitable biocides are N-methylol-chloroacetamide, benzoic acid, phenol or its derivatives, formalin, imidazole derivatives, sodium dehydro-acetate, isothiazolinone derivatives, benzotriazole derivatives, amidines, guanidine derivatives, quaternary ammonium salts, pyridine, quinoline derivatives, diazine, triazole derivatives, oxazoles and oxazine derivatives, and mixtures thereof. Although their amount varies depending on the kind of bacteria, fungi and/or yeasts, it is preferably about 1 to 80 wt % based on the total amount of additives, more preferably about 30 to 80 wt %. It is possible to use a single biocide or a mixture of two or more. [0026]
  • Suitable examples of corrosion inhibitors are magnesium nitrate, zinc nitrate, calcium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, ammonium nitrate and mixtures thereof. Typically they are used in an amount of about 0.5 to 10 wt % based on the total amount of additives, more preferably about 1 to 5 wt %. The inhibitors can be used individually or as a mixture of two or more thereof. [0027]
  • Examples of suitable chelating agents include aminopolycarboxylic acid and salts thereof such as ethylenediamine-tetraacetic acid and potassium or sodium salt thereof, diethylenetriamine-pentaacetic acid and potassium or sodium salt thereof, triethylenetetramine-hexaacetic acid and potassium or sodium salt thereof, hydroxyethyl ethylenediamine-triacetic acid and potassium or sodium salt thereof, nitrilotriacetic acid and potassium or sodium salt thereof, 1,2-diaminocyclohexane-tetraacetic acid and potassium or sodium salt thereof and 1,3-diamino-2-propanol tetraacetic acid and potassium or sodium salt thereof; and an organophosphonic acid, phosphonoalkane tricarboxylic acid or salts thereof such as 2-phosphonobutanetricarboxylic acid-1,2,4 and potassium or sodium salt thereof, 2-phosphonobutane-tricarboxylic acid-2,3,4 and potassium or sodium salt thereof, 1-phosphonoethane-tricarboxylic acid-2,2,2 and potassium or sodium salt thereof, aminotris-(methylene-phosphonic acid) and potassium or sodium salt thereof and sodium gluconate; the chelating agents can be used singly or in combination of two or more thereof. Organic amine salts of the foregoing chelating agents may be used effectively instead of potassium and sodium salts thereof. These chelating agents are preferably used in an amount ranging from about 0.1 to 30% by weight, more preferably about 3 to 10% by weight on the basis of the total amount of additives. Since the phosphonic acid derivatives of formula I are able to form a complex with for instance magnesium and calcium ions it is not necessary to use one of the chelating agents above. However, depending on for instance the hardness of the rinse water to which the additive composition is added, it might be advantageous to use a chelating agent in addition to the phosphonic acid derivatives of formula I. [0028]
  • Suitable surfactants include anionic surfactants like fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, dialkyl sulfosuccinate salts, alkyl naphthalenesulfonate salts, alkyl-phenoxy polyoxyethylenepropylsulfonate salts, polyoxyethylene alkylsulfophenyl ether salts, sodium salt of N-methyl-N-oleyltaurine, disodium salt of N-alkylsulfosuccinic acid amide, petroleum sulfonic acid salts, sulfated castor oil, sulfated tallow, sulfuric acid ester salts of fatty acid alkyl esters, alkylsulfate ester salts, polyoxyethylene alkyl ether sulfuric acid ester salts, fatty acid monoglyceride sulfuric acid ester salts, polyoxyethylene alkylphenyl ether sulfuric acid ester salts, polyoxyethylene styrylphenyl ether sulfuric acid ester salts, alkylphosphate ester salts, polyoxyethylene alkyl ether phosphoric acid ester salts, polyoxyethylene alkylphenyl ether phosphoric acid ester salts, partially saponified styrene-maleic anhydride copolymers, partially saponified olefin-maleic anhydride copolymers and condensates of naphthalene sulfonic acid salt and formalin; alkylbenzene sulfonates, alkane sulfonates, alkylsulfates and alkylethersulfates, nonionic surfactants like glycerin, ethylene glycol, triethylene glycol, sorbitan fatty acid ester, alkyl phenolethoxylates, fatty alcohol ethoxylates, alkyl polyglucosides and N-methylglucamides; and cationic surfactants like quaternary ammonium compounds with one or two hydrophobic groups and salts of long chain primary amines. [0029]
  • The surfactants are preferably used in an amount of about 0.5 to 50 wt % based on the total amount of additives, more preferably about 5 to 20 wt %. Besides the use of a single surfactant, it is also possible to use a combination of two or more thereof. [0030]
  • Depending on the particular components used for the additive composition and their amounts the composition can for instance be formulated as powder, tablet, paste, emulsion, suspension or solution. [0031]
  • Furthermore, the additive composition can be incorporated into water in order to obtain an aqueous concentrate thereof. Preferably the amount of additive composition incorporated is about 40 to 90 wt % based on the amount of water used, more preferably about 50 to 80 wt %. [0032]
  • The invention also relates to a method for processing an imagewise exposed lithographic printing plate. Said method comprises [0033]
  • (i) applying a developer to the exposed plate and [0034]
  • (ii) rinsing the plate thereafter with water (so called rinse water) which contains the additive composition according to the invention [0035]
  • The method can be used for processing any positive or negative working lithographic printing plate that is developed by means of a developer solution. [0036]
  • The developer can be any developer useful for removing the non-image areas of an imagewise exposed plate. [0037]
  • The developer can be any developer useful for removing the non-image areas of an imagewise exposed plate. Depending on the kind of plate (i.e. the ingredients of the radiation-sensitive composition) a person skilled in the art is able to select a suitable developer for the imagewise exposed plate. Alkaline developers are disclosed, for example, in Yamasue, U.S. Pat. No. 4,259,434; Miller, U.S. Pat. No. 5,851,735; Hall, U.S. Pat. No. 5,122,243; West, U.S. Pat. No. 5,368,974; and Fiebag, U.S. Pat. No. 6,143,479. [0038]
  • The amount of additive composition and aqueous concentrate, respectively added to the rinse water depends on the m[0039] 2 plates to be rinsed and the type of plate. The amounts of components given below are suitable for most applications.
  • It is preferred that the rinse water used in the method according to the invention comprises about 0.0004 to 8 wt % based on the rinse water of the at least one film-forming polymer, more preferably about 0.02 to 4 wt %, most preferably about 0.25 to 1.5 wt %. [0040]
  • Concerning the pH regulating agent, it is preferred to use about 1 to 100 mmole/L of rinse water, more preferably about 1 to 50 mmole/L. The pH of the recirculated rinse water should be kept at about 7 or below as long as possible. The rinse water can, however, still be used for processing when the pH is above 7 as long as the pH is not higher than about 9.5. [0041]
  • At least one phosphonic acid derivative is preferably present in an amount of about 0.0004 to 3 wt % based on the rinse water, more preferably about 0.01 to 2 wt %, most preferably about 0.15 to 0.8 wt %. [0042]
  • The rinse water can optionally contain about 0 to 0.5 wt %, based on the amount of rinse water, of antifoaming agent, more preferably the amount is about 0.00002 to 0,1 wt % for silicone-based agents and about 0.0002 to 0.3 wt % for other antifoaming agents. [0043]
  • For inhibiting the growth of bacteria, fungi, yeast and algae it is preferred to use about 0 to 8 wt %, based on the amount of rinse water, of at least one biocide, more preferably about 0.12 to 8 wt %, most preferably about 1.5 to 5 wt %. [0044]
  • At least one corrosion inhibitor is preferably present in an amount of about 0 to 2 wt %, based on the amount of rinse water, more preferably about 0.004 to 0.5 wt %, most preferably about 0.1 to 0.5 wt %. [0045]
  • Concerning the chelating agent, it is preferred to use about 0 to 3 wt % based on the rinse water, more preferably about 0.01 to 1 wt %, most preferably about 0.05 to 0.5 wt %. [0046]
  • It is preferred that the rinse water contains about 0 to 5 wt %, based on the amount of rinse water, of at least one surfactant, more preferably about 0.02 to 2 wt %, most preferably about 0.05 to 0.5 wt %. [0047]
  • The rinse water containing the additives can be prepared by adding a suitable amount of the additive composition according to the invention to the rinse water or by adding a suitable amount of the additive concentrate according to the invention. The water used can be selected from the group consisting of tap water, well water, demineralized water and recirculated rinse water. [0048]
  • A person skilled in the art is able to select a suitable amount of the additive composition and additive concentrate, respectively and he/she is also able to select a suitable additive composition concentrate depending on the processor used, the type of water, type of developer and type of radiation-sensitive layer on the printing plate. [0049]
  • According to a preferred embodiment the rinse water is recirculated with a conventional water recycling system. By the use of the additive composition of the invention it is possible to re-use the rinse water several times without any decrease in the rinsing efficiency and/or any negative effect on the printing plate qualities. The amount of m[0050] 2 of plate which can be rinsed depends on the kind of developer used, the kind of plate to be rinsed and the additive composition. The rinse water can be recirculated and re-used until its pH value is about 9.5. A higher pH value deteriorates the plate and is therefore not suitable; by the buffering agent present in the additive composition of the invention the time until the pH of the rinse water reaches pH 9.5 is prolonged.
  • The plate obtained by the method according to the invention need not to be subjected to a subsequent gumming step. However, it is within the scope of the present application that the obtained plate is subjected to a subsequent gumming step. [0051]
  • The use of the additive composition and additive concentrate, respectively, provides the following advantages: [0052]
  • The additive composition in the rinse water leads to an absolutely clean development of plates, that means that all problems caused by developer drag-in (carry over) are inhibited. Plates are optimally prepared for press without the need for a further gumming step (hydrophilic properties, corrosion protection, pH-value). [0053]
  • If the circulation water is used to rinse off image remover (for example, a Sprinter 72iK water recycling system from Kodak Polychrome Graphics) all corrected image areas become hydrophilic again. [0054]
  • Scratches on the plate's surface become hydrophilic again. [0055]
  • The problem of algae and bacteria growth upon the effect of light or temperature or caused by prolonged bath life of the rinse water is prevented. [0056]
  • There are no deposits of calcium and magnesium salts, which may cause major problems on press (like blinding and toning). [0057]
  • Dragged-out alkaline developer components are neutralized so that there is no decrease in rinsing efficiency. [0058]
  • The anti-corrosive properties of the phosphonates and phosphates lead to a resealing of the plate surface upon rinsing, which is an optimum preparation for printing. The results are very good hydrophilic properties, excellent water-ink balance, fast roll-up on press and no toning. [0059]
  • The plate surface is additionally sealed and protected against fingerprints, etc. by the water-soluble film-forming resin. Dirt particles that may have been dragged-in are bound and cannot penetrate into the plate surface. Any conventionally used processing equipment can be used for carrying out the method of the invention. [0060]
  • The following examples serve to provide a more detailed explanation of the invention without limiting it.[0061]
  • EXAMPLES
  • Additive Compositions [0062]
  • Two additive compositions according to the invention as well as one comparative composition were prepared by mixing the components in the desired amounts. The components of each composition as well as the amounts of all components are shown in Table 1. [0063]
    TABLE 1
    Compound Composition 1 wt % Composition 2 wt % Composition 3 wt %
    DEQUEST ® 2000 1) 4.20 4.02
    DEQUEST ® 2006 2) 8.86 8.46 10
    MERGAL ® K6N 3) 75.07  70.44 
    Parmetol B70 5) 0.40
    PROXEL ® GXL 6) 71.73  1.61
    PREVENTOL ® ON extra 7) 0.24
    boric acid 0.72 0.80
    TRITON ® GR5 8) 0.30
    DOWFAX ® 8390 9) 0.72 0.40
    dextrine 14.34  16.09 
    hydroxy ethyl cellulose 11.55 
    silicone antifoaming agent 0.02 0.01 0.02
    Total 100 100 100
  • 1) aminotris-(methylene-phosphonic acid) available from Brenntag, Germany [0064]
  • 2) aminotris-(methylene-phosphonic acid), sodium salt available from Brenntag, Germany [0065]
  • 3) N-methylole-chloroacetamide available from Honeywell, USA [0066]
  • 4) combination of bactericide and fungicide available from Schülke & Mayr GmbH, Germany [0067]
  • 5) 1,2-benzisothiazoline-3-on available from Zeneca Biocides, Manchester, UK [0068]
  • 6) sodium-2-phenyl-phenolate available from Bayer, Germany [0069]
  • 7) dioctyl sodium sulfosuccinate available from Union Carbide [0070]
  • 8) sodium n-hexadecyl diphenyloxide disulfonate available from Dow [0071]
  • Aqueous Concentrates [0072]
  • Aqueous concentrates of the invention were prepared by mixing each of compositions 1 to 3 with water (200 hardness). Additionally, a mixture of water and MERGAL® K9N was prepared for comparative reasons (concentrate 4). Details of the concentrates are summarized in Table 2. [0073]
    TABLE 2
    Concentrate 4
    Concentrate 1 Concentrate 2 Concentrate 3 (Comparative)
    Component wt % wt % wt % wt %
    Composition 1 66.6
    Composition 2 69.71
    MERGAL ® K9N* 50
    Composition 3 62.16
    Water 33.4 30.29 37.84 50
    (demineralized))
    Total 100 100 100 100
  • Rinsing with standard water recycling unit [0074]
  • a) Negative working lithographic printing plates [0075]
  • Kodak Polychrome Graphics WINNER® plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system. [0076]
  • Processing speed: 80 cm/min. [0077]
  • The processor was filled with 30 liters of Kodak Polychrome Graphics Negative Developer 956 and 60 liters circulation water. [0078]
  • 5% (based on the amount of circulation water; 3000 mL) of concentrates 1 to 4 and water with 20° hardness, respectively, were added to the circulation water. [0079]
  • 5 m[0080] 2 printing plates were developed per liter rinse water.
  • b) Positive working lithographic printing plates [0081]
  • Kodak Polychrome Graphics Virage™ plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system. [0082]
  • The processor was filled with 30 liters of Kodak Polychrome Graphics Positive Developer 4030 and 60 liters circulation water. [0083]
  • The developer strength was kept constant by means of top up with developer 4030. [0084]
  • Processing speed: 100 cm/min. [0085]
  • 5% (3000 mL) of concentrates 1 to 4 comparative concentrates and water with 20° hardness, respectively, were added to the circulation water. [0086]
  • 5 m[0087] 2 printing plates were developed per liter rinse water.
  • c) Digital newspaper plates [0088]
  • Kodak Polychrome Graphics Thermal News plates were developed in a processor, type Sprinter 72 N of Kodak Polychrome Graphics, equipped with a standard water recycling system. [0089]
  • The processor was filled with 30 liters of Kodak Polychrome Graphics Developer 980 and 60 liters circulation water. [0090]
  • Processing speed: 80 cm/min. [0091]
  • 5% (3000 mL) of concentrates 1 to 4 and water with 200 hardness, respectively, were added to the circulation water. [0092]
  • 5 m[0093] 2 printing plates were developed per liter rinse water.
  • In the Kodak Polychrome Graphics processor Sprinter 72 N the developed printing plates a, b and c were thoroughly squeezed by rubber rollers and then rinsed by circulation water. [0094]
  • Per m[0095] 2 plate about 10 to 12 L rinse water were used.
  • After rinsing with circulation water, plates were squeezed again by rubber rollers, dried with infrared and stored for 24 hours and put on press. [0096]
  • Printing test with the developed plates [0097]
  • The printing plates obtained after the rinsing described above were mounted on a press and used for printing. The results are shown in Table 3. [0098]
    TABLE 3
    ADDITIVE WINNER ® Virage ™ Thermal News ™
    (5 wt % addition) developed with 956 developed with 4030 developed with 980
    Concentrate 1 Ok Ok Ok
    Concentrate 2 Ok Ok Ok
    Concentrate 3 Ok Ok Ok
    Concentrate 4 toning toning toning
    (comparison)
    Water with 20° toning toning toning
    hardness
    (comparison)
  • As apparent from the above table, no printing problems arise when recirculated rinse water that contains an additive composition according to the invention is used. Contrary thereto toning occurs during printing when the recirculated water does not contain any additive or contains an additive composition that is not according to the invention. [0099]
  • Rinsing with Water Recycling System iK and Print test with the developed plates [0100]
  • Kodak Polychrome Graphics Virage™ plates were developed in a processor, type Sprinter 72 iK of Kodak Polychrome Graphics which is equipped with a water recycling system. [0101]
  • The processor was filled with 30 liters of Kodak Polychrome Graphics Positive Developer 4030 and 60 liters circulation water. [0102]
  • The developer strength was kept constant by means of top up with developer 4030. [0103]
  • Processing speed: 100 cm/min. [0104]
  • The developed and dried printing plates were corrected with the Kodak Polychrome Graphics Image Remover 243. [0105]
  • Plates were run through the second in-feed of the Sprinter 72N and the image remover was rinsed off by the water recycling system iK. Residues of the image remover that had been dragged in were filtered by a filter cloth. The corrected areas did not pick up ink on press. However, plates that had been rinsed with tap water showed toning in the corrected areas, which could only be removed by a subsequent treatment with plate cleaner. [0106]
  • As the water recycling system iK works with a high-pressure pump, the additive needs to have an antifoaming agent. [0107]
  • Although the invention has been particularly shown and described with reference to the preferred embodiments, those skilled in the art will appreciate that various modifications and changes in form and details may be made without departing from the spirit and scope of the invention. Having described the invention, we now claim the following and their equivalents. [0108]

Claims (53)

What I claim:
1. An additive composition comprising:
(a) at least one water-soluble film-forming polymer; and,
(b) at least one compound selected from the group consisting of phosphonic acid derivatives of formula I
Figure US20020187427A1-20021212-C00007
in which X is C2-C6 alkylene, or
Figure US20020187427A1-20021212-C00008
in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10-20; R1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH, or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5 )q—, in which q is 0 or 1, n is an integer from 0 to 8 and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2.
2. The additive composition of claim 1 further comprising:
(c) at least one pH regulating agent capable of maintaining the pH value of an aqueous solution at about 7 or below.
3. The additive composition of claim 2 in which:
(a) the water-soluble film-forming polymer comprises about 0.1 to about 80 wt % of the additive composition, based on the total additive composition;
(b) the compound selected from phosphonic acid derivatives of formula I comprises about 0.1 to 30 wt % of the additive composition, based on the total additive composition; and
(c) the pH regulating agent comprises about 0.01 to about 1 mol of the pH regulating agent per 100 g of total additive composition.
4. The additive composition of claim 1 or claim 2 further comprising at least one additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
5. The additive composition of claim 4 in which:
(d) the antifoaming agent comprises about 0 to 5 wt % of the additive composition, of based on the total additive composition;
(e) the biocide comprises about 0 to 80 wt % of the additive composition, based on the total additive composition;
(f) the corrosion inhibitor comprises about 0 to 10 wt % of the additive composition, based on the total additive composition;
(g) the chelating agent comprises about 0 to 30 wt % of the additive composition, based on the total additive composition; and
(h) the surfactant comprises about 0 to 50 wt % of the of the additive composition, based on the total additive composition.
6. The additive composition of claim 5 in which the water-soluble film-forming polymer is selected from the group consisting of gum arabic, dextrin, wasted dextrine, enzyme-modified dextrin, etherified enzyme-modified dextrin, carboxymethylated starch, starch phosphate, octenyl succinated starch, alginates, carboxymethyl cellulose, carboxyethyl cellulose, hydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, polyvinyl alcohol and derivatives thereof, polyvinyl pyrrolidone, polyacrylamide and copolymers thereof, polyacrylic acid and copolymers thereof, styrene/maleic anhydride copolymers, vinyl methyl ether/maleic anhydride copolymers, and vinyl acetate/maleic anhydride copolymers.
7. The additive composition of claim 5 in which the pH regulating agent comprises a compound selected from the group consisting of citric acid, citric acid salts, boric acid, acetic acid, propionic acid, succinic acid, phosphates, phosphoric acid, and aminotris-(methylene-phosphonic acid).
8. The additive composition of claim 5 in which the phosphonic acid derivative is selected from the group consisting of hydroxyethanediphosphonic acid and salts thereof, hexamethylenediaminotetra(methylenephosphonic acid) and salts thereof, aminotris(methylenephosphonic acid) and salts thereof, and mixtures thereof.
9. The additive composition of claim 5 in which the antifoaming agent is selected from the group consisting of silicone-based antifoaming agents and mixtures thereof.
10. The additive composition of claim 5 in which the biocide is selected from the group consisting of N-methylol-chloroacetamide, benzoic acid, phenol and its derivatives, formalin, imidazole derivatives, sodium dehydro-acetate, isothiazolinone derivatives, benzotriazole derivatives, amidines, guanidine derivatives, quaternary ammonium salts, pyridine, quinoline derivatives, diazine, triazole derivatives, oxazoles derivatives, and oxazine derivatives, and mixtures thereof.
11. The additive composition of claim 5 in which the corrosion inhibitor is selected from the group consisting of magnesium nitrate, zinc nitrate, calcium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, ammonium nitrate, and mixtures thereof.
12. The additive composition of claim 5 in which the chelating agent is selected from the group consisting of ethylenediamine-tetraacetic acid, the potassium salt thereof, and the sodium salt thereof; diethylenetriamine-pentaacetic acid, the potassium salt thereof, and the sodium salt thereof; triethylenetetramine-hexaacetic acid, the potassium salt thereof, and the sodium salt thereof; hydroxyethyl ethylenediamine-triacetic acid, the potassium salt thereof, and the sodium salt thereof; nitrilotriacetic acid, the potassium salt thereof, and the sodium salt thereof; 1,2-diaminocyclohexane-tetraacetic acid, the potassium salt thereof, and the sodium salt thereof; 1,3-diamino-2-propanol tetraacetic acid, the potassium salt thereof, and the sodium salt thereof; 2-phosphonobutanetricarboxylic acid-1,2,4, the potassium salt thereof, and the sodium salt thereof; 2-phosphonobutane-tricarboxylic acid-2,3,4, the potassium salt thereof, or the sodium salt thereof; 1-phosphonoethane-tricarboxylic acid-2,2,2, the potassium salt thereof, and the sodium salt thereof; aminotri-(methylene-phosphonic acid) the potassium salt threreof, and the sodium salt thereof; sodium gluconate; and mixtures thereof.
13. The additive composition of claim 5 in which the surfactant is selected from the group consisting of fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, dialkyl sulfosuccinate salts, alkyl naphthalenesulfonate salts, alkyl-phenoxy polyoxyethylenepropylsulfonate salts, polyoxyethylene alkylsulfophenyl ether salts, sodium salt of N-methyl-N-oleyltaurine, disodium salt of N-alkylsulfosuccinic acid amide, petroleum sulfonic acid salts, sulfated castor oil, sulfated tallow, sulfuric acid ester salts of fatty acid alkyl esters, alkylsulfate ester salts, polyoxyethylene alkyl ether sulfuric acid ester salts, fatty acid monoglyceride sulfuric acid ester salts, polyoxyethylene alkylphenyl ether sulfuric acid ester salts, polyoxyethylene styrylphenyl ether sulfuric acid ester salts, alkylphosphate ester salts, polyoxyethylene alkyl ether phosphoric acid ester salts, polyoxyethylene alkylphenyl ether phosphoric acid ester salts, partially saponified styrene-maleic anhydride copolymers, partially saponified olefin-maleic anhydride copolymers, condensates of naphthalene sulfonic acid salts and formalin, alkylbenzene sulfonates, alkane sulfonates, alkylsulfates, alkylethersulfates, glycerin, ethylene glycol, triethylene glycol, sorbitan fatty acid esters, alkyl phenolethoxylates, fatty alcohol ethoxylates, alkyl polyglucosides, N-methylglucamides, quaternary ammonium compounds with one or two hydrophobic groups, salts of long chain primary amines, and mixtures thereof.
14. The additive composition of claim 1 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
15. The additive composition of claim 2 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the pH regulating agent comprises about 0.01 to about 0.5 mol of the pH regulating agent per 100 g of the total additive composition;
the pH regulating agent is capable of keeping the pH of the aqueous composition in the range of about pH 5 to pH 6;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
16. An aqueous concentrate comprising:
(i) an additive composition comprising:
(a) at least one water-soluble film-forming polymer; and
(b) at least one compound selected from the group consisting of phosphoric acid derivatives of formula I
Figure US20020187427A1-20021212-C00009
in which X is C2-C6 alkylene or
Figure US20020187427A1-20021212-C00010
in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10-20; R1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH, or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8 and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2; and
(ii) water;
in which the amount of the additive composition is about 40 wt % to about 90 wt %, based on the amount of water used in the concentrate.
17. The aqueous concentrate of claim 16 further comprising:
(c) at least one pH regulating agent capable of maintaining the pH value of an aqueous solution below 7.
18. The aqueous concentrate of claim 17 in which:
(a) the additive composition comprises about 0.1 to about 80 wt % of the water-soluble film-forming polymer, based on the total additive composition;
(b) the additive composition comprises about 0.1 to about 30 wt % of the one or more phosphonic acid derivatives of formula I, based on the total additive composition; and,
(c) the additive composition comprises about 0.01 to about 1 mol of the pH regulating agent per 100 g of the total additive composition.
19. The aqueous concentrate of claim 16 or claim 17 further comprising at least one additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
20. The aqueous concentrate of claim 19 in which:
(d) the antifoaming agent comprises about 0 to 5 wt % of the additive composition, of based on the total additive composition;
(e) the biocide comprises about 0 to 80 wt % of the additive composition, based on the total additive composition;
(f) the corrosion inhibitor comprises about 0 to 10 wt % of the additive composition, based on the total additive composition;
(g) the chelating agent comprises about 0 to 30 wt % of the additive composition, based on the total additive composition; and
(h) the surfactant comprises about 0 to 50 wt % of the of the additive composition, based on the total additive composition.
21. The aqueous concentrate of claim 16 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
22. The aqueous concentrate of claim 17 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the pH regulating agent comprises about 0.01 to about 0.5 mol of the pH regulating agent per 100 g of the total additive composition;
the pH regulating agent is capable of keeping the pH of the aqueous composition in the range of about pH 5 to pH 6;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
23. The aqueous concentrate of claim 22 in which the phosphonic acid derivative is selected from the group consisting of hydroxyethanediphosphonic acid and salts thereof, hexamethylenediaminotetra(methylenephosphonic acid) and salts thereof, aminotris(methylenephosphonic acid) and salts thereof, and mixtures thereof.
24. A method for processing an imagewise exposed lithographic printing plate, the method comprising, in order, the steps of:
(i) applying a developer to the exposed plate; and
(ii) rinsing the plate with rinse water;
in which the rinse water comprises:
(a) at least one water-soluble film-forming polymer;
(b) at least one compound selected from the group consisting of phosphoric acid derivatives of formula I
Figure US20020187427A1-20021212-C00011
in which X is C2-C6 alkylene or
Figure US20020187427A1-20021212-C00012
in which: k is 0 or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10-20; R1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH, or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8 and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2.
25. The method of claim 24 in which the rinse water further comprises:
(c) at least one pH regulating agent capable of maintaining the pH value of an aqueous solution about 7 or below.
26. The method of claim 24 in which the rinse water comprises about 0.0004 to 8 wt % of the water-soluble film-forming polymer, based on the amount of rinse water.
27. The method of claim 24 in which the rinse water comprises about 0.0004 to 3 wt % of the phosphonic acid derivative, based on the amount of rinse water.
28. The method of claim 25 in which the rinse water comprises about 1 to 100 mmole of pH regulating agent per liter of rinse water.
29. The method of claim 25 in which the rinse water is recirculated.
30. The method of claim 25 in which the additive composition additionally comprises at least one additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents, and surfactants.
31. The method of claim 30 in which the amount of the antifoaming agent in the rinse water is about 0 to 0.5 wt % based on the amount of rinse water.
32. The method of claim 30 in which the amount of the biocide in the rinse water is about 0 to 8 wt % based on the amount of rinse water.
33. The method of claim 30 in which the amount of the corrosion inhibitor in the rinse water is about 0 to 1 wt % based on the amount of rinse water.
34. The method of claim 30 in which the amount of the chelating agent in the rinse water is about 0 to 3 wt % based on the amount of rinse water.
35. The method of claim 30 in which the amount of the surfactant in the rinse water is about 0 to 5 wt % based on the amount of rinse water.
36. The method of claim 30 in which the rinse water is recirculated.
37. The method of claim 30 in which the rinse water is prepared by adding the additive composition to water selected from the group consisting of tap water, well water, demineralized water, and recirculated rinse water.
38. The method of claim 24 in which the rinse water is prepared by adding the additive composition to water selected from the group consisting of tap water, well water, demineralized water, and recirculated rinse water.
39. The method of claim 25 in which the rinse water is prepared by adding the additive composition to water selected from the group consisting of tap water, well water, demineralized water, and recirculated rinse water.
40. The method of claim 24 in which:
the rinse water is prepared by adding an aqueous concentrate to water selected from the group consisting of tap water, well water, demineralized water, and recirculated rinse water; and
the aqueous concentrate comprises about 40 to 90 wt % of the additive composition, based on the amount of water in the concentrate.
41. The method of claim 25 in which:
the rinse water is prepared by adding an aqueous concentrate to water selected from the group consisting of tap water, well water, demineralized water, and recirculated rinse water; and
the aqueous concentrate comprises about 40 to 90 wt % of the additive composition, based on the amount of water in the concentrate.
42. The method of claim 25 in which the lithographic printing plate comprises a light-sensitive layer comprising a novolac resin and a radiation-sensitive component that is converted to a carboxylic acid on exposure to radiation.
43. The method of claim 42 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the pH regulating agent comprises about 0.01 to about 0.5 mol of the pH regulating agent per 100 g of the total additive composition;
the pH regulating agent is capable of keeping the pH of the aqueous composition in the range of about pH 5 to pH 6;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
44. The method of claim 43 in which the phosphonic acid derivative is selected from the group consisting of hydroxyethanediphosphonic acid and salts thereof, hexamethylenediaminotetra(methylenephosphonic acid) and salts thereof, aminotris(methylenephosphonic acid) and salts thereof, and mixtures thereof.
45. The method of claim 44 in which the method does not comprise a gumming step.
46. The method of claim 24 in which the method does not comprise a gumming step.
47. A lithographic printing plate, the lithographic printing plate prepared by, in order, the steps of:
(i) applying a developer to an imagewise exposed lithographic printing plate; and
(ii) rinsing the imagewise exposed lithographic printing plate with rinse water;
in which the rinse water comprises:
(a) at least one water-soluble film-forming polymer;
(b) at least one compound selected from the group consisting of phosphoric acid derivatives of formula I
Figure US20020187427A1-20021212-C00013
in which X is C2-C6 alkylene or
Figure US20020187427A1-20021212-C00014
in which: k is 0or 1; m is 1, 2, or 3; p is 1, 2, or 3; r is an integer from 10-20; R1 and R3 are each independently H or C1-C4 alkyl; R2 and R4 are each independently H, OH, or C1-C4 alkoxy; and Y is —R6N—(CH2)n—(NR5)q—, in which q is 0 or 1, n is an integer from 0 to 8 and R5 and R6 are each independently H, C1-C4 alkyl, or —CH2—P(O)(OH)2.
48. The lithographic printing plate of claim 47 in which the rinse water further comprises:
(c) at least one pH regulating agent capable of maintaining the pH value of an aqueous solution about 7 or below.
49. The lithographic printing plate of claim 47 or claim 48 in which the rinse water additionally comprises at least one additive selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents, and surfactants.
50. The lithographic printing plate of claim 47 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
51. The lithographic printing plate of claim 48 in which:
the water-soluble film-forming polymer comprises about 5 to about 30 wt % of the additive composition, based on the total additive composition;
the pH regulating agent comprises about 0.01 to about 0.5 mol of the pH regulating agent per 100 g of the total additive composition;
the pH regulating agent is capable of keeping the pH of the aqueous composition in the range of about pH 5 to pH 6;
the compound selected from phosphonic acid derivatives of formula I comprises about 3 to 20 wt % of the additive composition, based on the total additive composition; and
the additive composition comprises one or more additives selected from the group consisting of antifoaming agents, biocides, corrosion inhibitors, chelating agents and surfactants.
52. The lithographic printing plate of claim 50 in which the method does not comprise a gumming step.
53. The lithographic printing plate of claim 51 in which the method does not comprise a gumming step.
US09/861,126 2001-05-18 2001-05-18 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates Abandoned US20020187427A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/861,126 US20020187427A1 (en) 2001-05-18 2001-05-18 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates
EP02010210A EP1260866A3 (en) 2001-05-18 2002-05-15 Additive composition for rinse water and method for surface treatment of lithographic printing plates
US10/272,762 US6660454B2 (en) 2001-05-18 2002-10-17 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/861,126 US20020187427A1 (en) 2001-05-18 2001-05-18 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/272,762 Division US6660454B2 (en) 2001-05-18 2002-10-17 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates

Publications (1)

Publication Number Publication Date
US20020187427A1 true US20020187427A1 (en) 2002-12-12

Family

ID=25334949

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/861,126 Abandoned US20020187427A1 (en) 2001-05-18 2001-05-18 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates
US10/272,762 Expired - Fee Related US6660454B2 (en) 2001-05-18 2002-10-17 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/272,762 Expired - Fee Related US6660454B2 (en) 2001-05-18 2002-10-17 Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates

Country Status (2)

Country Link
US (2) US20020187427A1 (en)
EP (1) EP1260866A3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243162A1 (en) * 2002-08-09 2006-11-02 Rbp Chemical Technology, Inc. Method of delivering a fountain solution
US20080092763A1 (en) * 2004-08-27 2008-04-24 Kodak Polychrome Graphics, Gmbh Method for Making a Lithographic Plate
US20080160444A1 (en) * 2004-08-27 2008-07-03 Kodak Polychrome Graphics Gmbh Interlayer for Lithographic Printing Plates
KR100927448B1 (en) 2007-10-16 2009-11-19 금호석유화학 주식회사 Photoresist developer
US7910223B2 (en) 2003-07-17 2011-03-22 Honeywell International Inc. Planarization films for advanced microelectronic applications and devices and methods of production thereof
JP2020122983A (en) * 2016-03-31 2020-08-13 富士フイルム株式会社 Treatment liquid for manufacturing semiconductor and pattern forming method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600820A1 (en) * 2004-05-27 2005-11-30 Konica Minolta Opto, Inc. Method for processing light sensitive planographic printing plate material
DE102004041942B3 (en) * 2004-08-30 2006-03-30 Kodak Polychrome Graphics Gmbh Process for producing a lithographic printing plate
DE102005002754B4 (en) * 2005-01-20 2008-07-31 Kodak Graphic Communications Gmbh Phosphono-substituted siloxanes as interlayer for lithographic printing plates
GB0507887D0 (en) * 2005-04-20 2005-05-25 Rohm & Haas Elect Mat Immersion method
US7524615B2 (en) * 2006-08-14 2009-04-28 Gary Ganghui Teng Negative laser sensitive lithographic printing plate having specific photosensitive composition
US20080113298A1 (en) * 2006-11-15 2008-05-15 Harald Baumann Method of preparing lithographic printing plates
DE602007005475D1 (en) * 2007-08-23 2010-05-06 Eastman Kodak Co Processing lithographic printing plates with a developer solution containing a hydrophilic polymer
EP3429850A1 (en) * 2016-03-16 2019-01-23 Agfa Nv Method and apparatus for processing a lithographic printing plate

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755441A (en) 1969-08-28 1971-03-01 Du Pont FINISHING SOLUTIONS FOR LITHOGRAPHIC PLATES
DE2659754A1 (en) 1976-12-31 1978-07-13 Hoechst Ag METHOD AND SOLUTION FOR PRESERVATING FLAT PRINTING FORMS
JPS58193194A (en) * 1982-05-06 1983-11-10 Fuji Photo Film Co Ltd Surface protecting agent for lithographic plate
DE3380173D1 (en) 1982-12-14 1989-08-17 Schwegmann Bernd Gmbh Co Kg Fountain solution additive for lithographic printing
JPS61230990A (en) * 1985-04-05 1986-10-15 Mitsubishi Paper Mills Ltd Desensitizer for offset printing
US4686260A (en) 1985-07-10 1987-08-11 Sun Chemical Corporation Printing ink composition
DE3538703A1 (en) 1985-10-31 1987-05-07 Hoechst Ag HUMIDIFICATION SOLUTION FOR OFFSET PRINTING
DE68913576T2 (en) * 1988-04-07 1994-06-16 Fuji Photo Film Co Ltd Composition for fountain solution for flat printing and fountain additive.
JP2808133B2 (en) 1989-05-12 1998-10-08 富士写真フイルム株式会社 Plate surface protective agent for lithographic printing plates
JP2673586B2 (en) * 1989-08-02 1997-11-05 富士写真フイルム株式会社 Damping water composition for lithographic printing plate, concentrated liquid used therefor and lithographic printing method using the same
JPH03234595A (en) 1990-02-09 1991-10-18 Fuji Photo Film Co Ltd Surface protectant for planographic printing plate
DE69220433T2 (en) * 1991-08-19 1997-10-16 Fuji Photo Film Co Ltd Presensitized plate for the production of a lithographic printing plate
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US5679153A (en) * 1994-11-30 1997-10-21 Cree Research, Inc. Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
US5736256A (en) * 1995-05-31 1998-04-07 Howard A. Fromson Lithographic printing plate treated with organo-phosphonic acid chelating compounds and processes relating thereto
US5994031A (en) * 1996-09-09 1999-11-30 Konica Corporation Method of processing presensitized planographic printing plate
US5895583A (en) * 1996-11-20 1999-04-20 Northrop Grumman Corporation Method of preparing silicon carbide wafers for epitaxial growth
KR100277968B1 (en) * 1998-09-23 2001-03-02 구자홍 Gallium nitride substrate manufacturing method
US6280523B1 (en) * 1999-02-05 2001-08-28 Lumileds Lighting, U.S., Llc Thickness tailoring of wafer bonded AlxGayInzN structures by laser melting
US6410498B1 (en) 1999-04-30 2002-06-25 Procter & Gamble Company Laundry detergent and/or fabric care compositions comprising a modified transferase
US6143479A (en) * 1999-08-31 2000-11-07 Kodak Polychrome Graphics Llc Developing system for alkaline-developable lithographic printing plates

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243162A1 (en) * 2002-08-09 2006-11-02 Rbp Chemical Technology, Inc. Method of delivering a fountain solution
US7381259B2 (en) * 2002-08-09 2008-06-03 Rbp Chemical Technology, Inc. Fountain solution concentrates
US7910223B2 (en) 2003-07-17 2011-03-22 Honeywell International Inc. Planarization films for advanced microelectronic applications and devices and methods of production thereof
US20080092763A1 (en) * 2004-08-27 2008-04-24 Kodak Polychrome Graphics, Gmbh Method for Making a Lithographic Plate
US20080160444A1 (en) * 2004-08-27 2008-07-03 Kodak Polychrome Graphics Gmbh Interlayer for Lithographic Printing Plates
US7553607B2 (en) * 2004-08-27 2009-06-30 Kodak Graphic Communications, Gmbh Interlayer for lithographic printing plates
US7569329B2 (en) * 2004-08-27 2009-08-04 Kodak Graphic Communications Gmbh Method for making a lithographic plate
KR100927448B1 (en) 2007-10-16 2009-11-19 금호석유화학 주식회사 Photoresist developer
JP2020122983A (en) * 2016-03-31 2020-08-13 富士フイルム株式会社 Treatment liquid for manufacturing semiconductor and pattern forming method
US11256173B2 (en) 2016-03-31 2022-02-22 Fujifilm Corporation Treatment liquid for manufacturing semiconductor and pattern forming method

Also Published As

Publication number Publication date
EP1260866A3 (en) 2003-12-17
US20030073012A1 (en) 2003-04-17
EP1260866A2 (en) 2002-11-27
US6660454B2 (en) 2003-12-09

Similar Documents

Publication Publication Date Title
US6660454B2 (en) Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates
EP0336673B1 (en) Dampening water composition for lithographic printing and additive for dampening water
EP0482893B1 (en) Dampening water composition for lithographic printing and method for lithographic printing
EP0732628A1 (en) Aqueous alkaline solution for developing offset printing plate
EP1103859A1 (en) Developing composition for alkaline-developable lithographic printing plates with different interlayers
JP4208755B2 (en) Dampening solution composition for lithographic printing
JP3311874B2 (en) Composition for lithographic printing dampening solution
JP2001138659A (en) Dampening water composition for lithographic printing plate
JP4684806B2 (en) Dampening solution composition for lithographic printing
JP2001138655A (en) Dampening water composition for lithographic printing plate
JP2002192853A (en) Dampening water composition for lithographic printing plate
JP4684825B2 (en) Dampening solution composition for lithographic printing
JP2003039847A (en) Dampening water composition for lithographic printing plate
JP3061713B2 (en) Fountain solution composition for lithographic printing plates
JP2673604B2 (en) Fountain solution composition for lithographic printing
JP2006263981A (en) Lithographic printing dampening water composition
JP4266866B2 (en) Dampening solution composition for lithographic printing
JP3318447B2 (en) A fountain solution composition for lithographic printing
JP2006264251A (en) Lithographic printing dampening water composition
JP4672422B2 (en) Dampening solution composition for lithographic printing
JP2006231765A (en) Concentrated dampening water composition for lithographic printing plate
JPH11105449A (en) Dampening water composition for lithographic printing plate
JPH0377950A (en) Treatment of photosensitive planographic printing plate
JPH0412360A (en) Processing method and processing device for photosensitive planographic printing plate
JP2001138658A (en) Concentrated dampening water composition for lithographic printing

Legal Events

Date Code Title Description
AS Assignment

Owner name: KODAK POLYCHROME GRAPHICS LLC, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIEBAG, ULRICH;REEL/FRAME:012019/0960

Effective date: 20010528

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION