US20020188387A1 - Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management - Google Patents

Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management Download PDF

Info

Publication number
US20020188387A1
US20020188387A1 US09/852,075 US85207501A US2002188387A1 US 20020188387 A1 US20020188387 A1 US 20020188387A1 US 85207501 A US85207501 A US 85207501A US 2002188387 A1 US2002188387 A1 US 2002188387A1
Authority
US
United States
Prior art keywords
battery
strategy
vehicle
vehicle location
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/852,075
Other versions
US6487477B1 (en
Inventor
Joanne Woestman
Prabhakar Patil
Ross Stuntz
Thomas Pilutti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to FORD GLOBAL TECHNOLOGIES, INC. reassignment FORD GLOBAL TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FORD MOTOR COMPANY
Assigned to FORD MOTOR COMPANY reassignment FORD MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOESTMAN, JOANNE T., PATIL, PRABHAKAR B., PILUTTI, THOMAS E., STUNTZ, ROSS M.
Priority to US09/852,075 priority Critical patent/US6487477B1/en
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE60238368T priority patent/DE60238368D1/en
Priority to EP02252871A priority patent/EP1256476B1/en
Priority to CA002385952A priority patent/CA2385952A1/en
Priority to JP2002133500A priority patent/JP4637443B2/en
Publication of US6487477B1 publication Critical patent/US6487477B1/en
Application granted granted Critical
Publication of US20020188387A1 publication Critical patent/US20020188387A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0058Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to externally generated signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/56Temperature prediction, e.g. for pre-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/40Altitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates generally to electric vehicles (EVs) and hybrid electric vehicles (HEVs), and specifically to using an on-board navigation system for energy management.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • HEV is described in a variety of configurations. Many HEV patents disclose systems where an operator is required to select between electric and internal combustion operation. In other configurations, the electric motor drives one set of wheels and the ICE drives a different set.
  • a series hybrid electric vehicle (SHEV) configuration is a vehicle with an engine (most typically an ICE) connected to an electric motor called a generator.
  • the generator provides electricity to a battery and another motor, called a traction motor.
  • the traction motor is the sole source of wheel torque.
  • the engine most typically an ICE
  • the motor can be used as a generator to charge the battery from the power produced by the ICE.
  • a parallel/series hybrid electric vehicle has characteristics of both PHEV and SHEV configurations and is sometimes referred to as a “powersplit” configuration.
  • the ICE is mechanically coupled to two electric motors in a planetary gear-set transaxle.
  • a first electric motor, the generator is connected to a sun gear.
  • the ICE is connected to a carrier.
  • a second electric motor, a traction motor is connected to a ring (output) gear via additional gearing in a transaxle.
  • Engine torque can power the generator to charge the battery.
  • the generator can also contribute to the necessary wheel (output shaft) torque if the system has a one-way clutch.
  • the traction motor is used to contribute wheel torque and to recover braking energy to charge the battery.
  • the generator can selectively provide a reaction torque that may be used to control engine speed.
  • the engine, generator motor and traction motor can provide a continuous variable transmission (CVT) effect.
  • CVT continuous variable transmission
  • the PSHEV presents an opportunity to better control engine idle speed over conventional vehicles by using the generator to control engine speed.
  • a successful energy management strategy must balance fuel economy, maintain critical vehicle function capacity, (i.e., assuring sufficient stored electrical energy) , while always meeting driver demand for power.
  • the control system needs to maintain the battery state-of-charge (SOC) at a level to meet performance requirements while allowing it to accept any upcoming regenerative braking energy. Without knowledge of the possible upcoming power requirements or regenerative braking events, the control system has to conservatively predict and compromise battery SOC.
  • SOC battery state-of-charge
  • VSC vehicle system controller
  • GPS global positioning system
  • U.S. Pat. No. 5,892,346 to Moroto et al. generates an electric power schedule for an EV or an HEV based on a starting point and a destination.
  • a navigation system acts as an arbitrator for feasible routes based on distance traveled en route to the destination compared to the distance capacity of the vehicle.
  • This invention uses the navigation system as a pre-trip planning tool that would, for example, reject the longest proposed routes. See also, U.S. Pat. Nos. 5,832,396 and 5,778,326 to Moroto et al.
  • U.S. Pat. No. 5,927,415 to Ibaraki et al. allows the use of a navigation system in advance as a pre-trip planning tool for an HEV to assure power demands are met.
  • U.S. Pat. No. 6,202,024 to Yokoyama et al. discloses the use of a navigational system on a continuous basis to provide a “best drive route.”
  • the invention is not concerned with energy management, nor is it concerned with electric vehicles.
  • it can use a bi-directional navigation system to develop, among other things, a database of road conditions in any given area based on receipt of the same road condition data from a plurality of vehicles in the same area. If several vehicles are reporting use of anti-lock braking systems or air bag deployment, the “best drive route” would be diverted from that area.
  • a vehicle control system for an EV or HEV that can tightly integrate a navigational system, such as a GPS with a map database, for continuous vehicle energy management is needed.
  • the present invention integrates an on-board navigation system to provide energy management for an electric vehicle (EV) and a hybrid electric vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the present invention provides a system and method to manage energy in a vehicle with an electric traction motor comprising, a powertrain with at least one motor and an engine, a battery connected to the motor, a vehicle system controller (VSC) connected to the vehicle powertrain, a device connected to the VSC to continuously locate a present vehicle location and infer expectations of driver demand, and a strategy to continuously accommodate fuel economy, driver demand for power and function of the battery.
  • VSC vehicle system controller
  • the system can be configured to include as part of its present vehicle location data on road patterns, geography with date and time, altitude changes, speed limits, identification of intersections with traffic control features such as stop signs and traffic lights, driving patterns of a vehicle driver, and weather.
  • the strategy can be configured to use discrete control laws, fuzzy logic, or neural networks.
  • Driver demand or expectation can be based on a driver communicating an intended drive route, or through the use of a search of maps for the locale of the vehicle.
  • FIG. 1 illustrates a general hybrid electric vehicle (HEV) configuration.
  • FIG. 2 illustrates the overall vehicle system control energy management strategy of the present invention with integrated navigation system.
  • FIG. 3 illustrates the logic flow of the energy management control strategy of the present invention.
  • the present invention relates to electric vehicles (EVs) and hybrid electric vehicles (HEVs).
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • the proposed strategy can be applied to both EVs and HEVs, but for purposes of illustration only, the preferred embodiment is configured for an HEV.
  • the HEV control strategy of the present invention balances the goals of fuel economy while always meeting driver demand for power and maintaining the functionality of the traction motor battery system.
  • An integrated navigation system (such as a GPS or other device to detect the present location of a vehicle with respect to a map database) can help achieve this goal by providing information about what driver demand to expect. In one embodiment, this information can be provided by the driver communicating an intended drive route to the system or in an alternate embodiment by a predicted path search of maps for the locale of the vehicle. While the strategies are likely to be similar for the two implementations, it may be possible to enact a more aggressive strategy in the case where the route is known.
  • FIG. 1 illustrates a parallel/series hybrid electric vehicle (powersplit) configuration that has an internal combustion engine and at least one motor.
  • a planetary gear set 20 mechanically couples a carrier gear 22 to an engine 24 via a one way clutch 26 .
  • the planetary gear set 20 also mechanically couples a sun gear 28 to a generator motor 30 and a ring (output) gear 32 .
  • the generator motor 30 also mechanically links to a generator brake 34 and is electrically linked to a battery 36 .
  • a traction motor 38 is mechanically coupled to the ring gear 32 of the planetary gear set 20 via a second gear set 40 and is electrically linked to the battery 36 .
  • the ring gear 32 of the planetary gear set 20 and the traction motor 38 are mechanically coupled to drive wheels 42 via an output shaft 44 .
  • the planetary gear set 20 splits the engine 24 output energy into a series path from the engine 24 to the generator motor 30 and a parallel path from the engine 24 to the drive wheels 42 .
  • Engine 24 speed can be controlled by varying the split to the series path while maintaining the mechanical connection through the parallel path.
  • the traction motor 38 augments the engine 24 power to the drive wheels 42 on the parallel path through the second gear set 40 .
  • the traction motor 38 also provides the opportunity to use energy directly from the series path, essentially running off power created by the generator motor 30 . This reduces losses associated with converting energy into and out of chemical energy in the battery 36 and allows all engine 24 energy, minus conversion losses, to reach the drive wheels 42 .
  • a vehicle system controller (VSC) 46 controls many components in this HEV configuration by connecting to each component's controller.
  • An engine control unit (ECU) 48 connects to the engine 24 via a hardwire interface. All vehicle controllers can be physically combined in any combination or can stand as separate units. They are described as separate units here because they each have distinct functionality.
  • the VSC 46 communicates with the ECU 48 , as well as a battery control unit (BCU) 50 and a transaxle management unit (TMU) 52 through a communication network such as a controller area network (CAN) 54 .
  • the BCU 50 connects to the battery 36 via a hardwire interface.
  • the TMU 52 controls the generator motor 30 and traction motor 38 via a hardwire interface.
  • One way to regulate the use of the battery 36 is to control it to a target state-of charge (SOC).
  • SOC target state-of charge
  • the traction motor 38 can be used more intensely to deliver power to the vehicle powertrain when the SOC is above the target and is more aggressively charged either directly from the engine 24 or indirectly from regenerative braking whenever the SOC is below the target.
  • the VSC 46 can include battery 36 conditioning strategies to maintain battery 36 functionality while extending useful life.
  • Some possible battery 36 conditioning strategies used by various battery parameter controllers include the following: charging the battery to a high state of charge to balance the charge across multiple cells; discharging or charging the battery to a very low or very high state of charge to calibrate the state of charge estimation routine; changing the charging/discharging pattern of the battery by, for example, moving the target SOC, to erase any memory effects; removing all loads from the battery to allow re-zeroing of the battery system current sensor; or cooling the battery with a cooling system (not shown) such as a radiator or air-conditioner.
  • a cooling system not shown
  • the present invention is the combination of the VSC 46 with information from a navigational system such as a global positioning system (GPS) with a digital map database.
  • GPS global positioning system
  • a GPS/Map integrated VSC 46 can adapt to local geography, possibly including (but not limited to) grade, terrain, traffic and road pattern which can add far more precision to this balance.
  • the strategy of the present invention may use the traction motor 38 whenever it is more efficient or whenever the engine 24 cannot meet driver demand alone.
  • the strategy needs to manage the battery 36 state of charge (SOC) so that SOC never goes too low to meet any upcoming performance requirement while never getting too high to accept any upcoming regenerative braking energy. If navigation-based information is integrated into the VSC 46 strategy decisions, less conservative strategy decisions are possible while still ensuring upcoming demands can be met.
  • SOC state of charge
  • the VSC 46 can use more of the battery 36 SOC range to meet its efficiency goals with confidence that it will meet all its near term grade performance goals.
  • the navigation system derived data indicates mountainous terrain in the direction of the vehicle, the VSC 46 can protect for likely upcoming grade performance needs with strategy modifications.
  • the navigation system indicates the vehicle is likely to be entering a highway, it can choose to turn on the engine 24 to prepare for an expected demand for a sudden increase in acceleration as the vehicle merges into the highway.
  • the VSC 46 integrated with navigation system derived information indicates frequent intersections with traffic lights, or heavy traffic in the vicinity, the strategy can assume that a slow, stop and go driving pattern is likely in the near future and can alter its operating strategy accordingly.
  • the second general goal of the strategy of the present invention is maintenance of the battery 36 state of charge (SOC).
  • SOC battery 36 state of charge
  • the VSC 46 maintains battery 36 SOC from current operating conditions, such as accelerator position and other associated vehicle loads such as the air conditioner. These monitored conditions reflect the current and past operating regime, and are used to predict the future energy needs. When past conditions match the future conditions, energy management based on past data can be accomplished acceptably. However, when the future conditions vary significantly from the past, energy management assumptions based on past data can lead to compromised vehicle performance.
  • a route guidance system such as the global positioning system with an integrated map navigation system integrated within the VSC 46 can reduce compromised battery 36 SOC conditions by adding knowledge of upcoming vehicle elevation gradients.
  • the amount of starts and stops through intersections could be anticipated.
  • traffic density can also be considered in energy management.
  • the VSC 46 tightly integrates the navigation system information with energy management while en route to a known destination (i.e., not as merely a pre-trip prior art planing tool).
  • the approach takes the next logical step, and uses road network information from the map database to influence charge/recharge strategies.
  • One approach is to take the navigation route and plan charge/recharge cycles based on elevation gradient, or other factors that can be extracted from the map database that would be of use to the energy management controller. In this way, the energy management controller can schedule appropriate power level cycling.
  • An alternative embodiment provides a route preview of a specified distance or time, which would enable the energy management controller to effect accessory load decisions based on, for example, downhill (or uphill) grade expected ahead as well as traffic conditions. Real-time use of navigation system derived information will allow more efficient use of energy for accessory loads and regenerative braking while driving.
  • GPS/Map data make the comprehensive energy management approach of the present invention possible.
  • the following table shows some examples of the information available from a GPS navigation system and the driver demand expectations that the VSC 46 could infer from it.
  • Navigation System Inferred Expectations of Information Driver Demand Altitude change Grade expectations Road pattern (interstate Speed expectations highway, rural, city) or speed limit Road pattern (interstate, Braking expectations highway, rural, city) or stop light/sign locations
  • Driver driving patterns Braking and speed expectations
  • Intersection density and Braking and speed traffic control information expectations Weather Speed expectations Geography and time/date Temperature expectations
  • FIG. 2 illustrates the overall VSC 46 energy management strategy of the present invention with integrated navigation system.
  • a GPS and map navigation system 56 can be used by the VSC 46 to manage the battery 36 and regenerative braking systems 62 so that vehicle fuel economy and range are increased.
  • the GPS and map navigation system 56 has as inputs desired departure, arrival times and locations. It can also receive traffic updates, road conditions and terrain information. The GPS and map navigation system 56 can estimate the number of vehicle starts/stops, and accelerations/decelerations from these input data. That data with the estimated vehicle speed from a vehicle speed sensor (not shown) can input to an energy management controller 58 .
  • the energy management controller 58 is a functional part of the VSC 46 ,but is shown separate in the figure to aid in understanding the invention.
  • the energy management controller 58 can determine any output parameters to adjust the output of the regenerative braking process to best match the upcoming driving cycle to a regenerative brake system controller 60 , which interacts with the regenerative braking system (RBS) 62 .
  • the energy management controller 58 can also output to the VSC 46 and BCU 50 the ideal SOC target range.
  • an anticipated route with high speeds and long ascents and descents would need an aggressive regenerative strategy, and as much headroom in the battery 36 to store energy as possible.
  • a route at a nearly constant speed over flat terrain would require a SOC as high as possible to facilitate passing assist boost with little opportunity to regenerate energy.
  • controllers try to match a fixed SOC target band (e.g., between 40 percent and 70 percent) to be sure the battery always has some room to collect regenerated energy while never too low to start the vehicle.
  • the present invention allows multiple SOC target ranges.
  • the hilly high-speed cycle might be best matched with a 40 percent to 60 percent target window.
  • the high speed, flat terrain cycle might be best matched by a 60% to 80% target window.
  • the present invention can be implemented utilizing classic, discrete control laws, fuzzy logic, or neural networks.
  • Fuzzy logic control is an approach that incorporates a rule-based strategy in the control hierarchy.
  • Neural network control uses a network of cells that are trained with prior examples to model future outputs based on learned training data.
  • FIG. 3 illustrates the logic flow of the energy management control strategy of the present invention using classic discrete logic controls.
  • the energy management controller 58 within the VSC 46 can take actions based on the inferred expectations of driver demand outlined in the table above to ensure that the system can optimize its fuel economy, protect its traction battery functionality and meet the driver demand.
  • the following assumptions within the strategy are provided as follows:
  • the VSC can control the battery SOC to a high value so that when the driver power demand increases to cause the vehicle to climb the hill, there exists sufficient battery power to provide electric assist and to allow the engine to remain on its optimal efficiency curve.
  • the strategy can control battery SOC to a low value so that when the driver demand for negative (braking) power occurs to cause the vehicle to descend the grade in a controlled manner, the strategy is able to maximize the amount of regenerative braking energy that it is able to capture.
  • the strategy can expect a significant amount of stop and go driving that would cause significant battery power throughput and it can choose to operate in a more load following manner to protect the functionality of the battery.
  • the strategy can choose to operate in a more load following manner to protect the functionality of the battery.
  • control strategy can choose to enact some battery conditioning strategies during this time, confident that the demand on the electric strategy is unlikely to change during the strategy enactment.
  • control strategy can choose to operate in a load leveling strategy, providing quick response without severe wear on the traction battery.
  • the strategy may choose to operate at a lower target SOC to reduce self-discharging when the vehicle is turned off and left sitting.
  • the strategy may choose to operate at a higher target SOC to ensure that sufficient energy will be available to restart the vehicle after the vehicle is turned off and left sitting (this is particularly important if the traction battery also serves as the source of engine starting power).
  • the strategy may choose to prepare for an increase in driver demanded power either by turning the IC engine on if it is not already or by charging up the battery if the engine is already on.
  • the strategy receives drive route information input from the navigation system (generated from either the driver or local maps).
  • the strategy commands an analysis of the drive route to determine system expectations at Step 72 and assumes a load following strategy with average SOC target and no battery conditioning at Step 74 .
  • Step 76 the strategy determines if significant grade variations or frequent stop and go events are expected. If yes, the strategy accommodates this expectation at Step 78 by, for example, moving toward a load following to protect the battery, then returning to Step 70 . If no, the strategy determines if significant downhill grades or decelerations from high speed are expected at Step 80 . If yes, the strategy changes to accommodate this expectation by, for example, discharging the battery at Step 82 , then returning to Step 70 . If no, the strategy determines if significant uphill grades or accelerations onto a highway are expected at Step 84 . If yes, the strategy changes to accommodate this expectation by, for example, charging the battery at Step 86 , then returning to step 70 .
  • the strategy next determines whether extended light loads are expected at Step 88 . If yes, the strategy must make an additional determination of whether battery conditioning is required at Step 90 . If yes, the strategy enacts battery-conditioning strategies at Step 92 , then returns to Step 70 . If battery conditioning is not required at Step 90 , the strategy changes to accommodate this expectation by, for example, moving toward load leveling for improved fuel economy at Step 94 , then returning to step 70 .
  • the strategy determines at Step 96 whether high ambient temperatures are expected. If yes, the strategy further determines at Step 98 whether the vehicle is likely to be turned off soon. If yes at Step 98 , the strategy changes to accommodate this expectation by, for example, decreasing battery SOC at Step 100 , then returning to Step 70 . If Step 96 or Step 98 are no, the strategy at Step 102 determines whether low ambient temperatures are expected. If yes at Step 102 , again the strategy changes to accommodate this expectation at Step 106 , then returning to Step 70 . If the determination at Step 102 is no, the strategy next makes a determination of whether an increase in vehicle speed is anticipated such as whether entrance to a highway is expected at Step 104 . If yes, the strategy can turn on the engine and charge the battery at Step 108 , then return to Step 70 . Otherwise, the strategy simply returns to Step 70 .

Abstract

The present invention integrates an on-board navigation system to provide energy management for an electric vehicle (EV) and a hybrid electric vehicle (HEV). The HEV control strategy of the present invention accommodates the goals of fuel economy while always meeting driver demand for power and maintaining the functionality of the traction motor battery system using battery parameter controllers. In the preferred embodiment of the present strategy, a vehicle system controller tightly integrates the navigation system information with energy management while en route to a known destination. Present vehicle location is continuously monitored, expectations of driver demand are determined, and vehicle accommodations are made. The system can be configured to includes as part of its present vehicle location data on road patterns, geography with date and time, altitude changes, speed limits, driving patterns of a vehicle driver, and weather. The vehicle accommodations can be configured to use discrete control laws, fuzzy logic, or neural networks.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to electric vehicles (EVs) and hybrid electric vehicles (HEVs), and specifically to using an on-board navigation system for energy management. [0002]
  • 2. Discussion of the Prior Art [0003]
  • The need to reduce fossil fuel consumption and emissions in automobiles and other vehicles predominately powered by internal combustion engines (ICEs) is well known. Vehicles powered by electric motors attempt to address these needs. Another alternative solution is to combine a smaller ICE with electric motors into one vehicle. Such vehicles combine the advantages of an ICE vehicle and an electric vehicle and are typically called hybrid electric vehicles (HEVs). See generally, U.S. Pat. No. 5,343,970 to Severinsky. [0004]
  • The HEV is described in a variety of configurations. Many HEV patents disclose systems where an operator is required to select between electric and internal combustion operation. In other configurations, the electric motor drives one set of wheels and the ICE drives a different set. [0005]
  • Other, more useful, configurations have developed. For example, a series hybrid electric vehicle (SHEV) configuration is a vehicle with an engine (most typically an ICE) connected to an electric motor called a generator. The generator, in turn, provides electricity to a battery and another motor, called a traction motor. In the SHEV, the traction motor is the sole source of wheel torque. There is no mechanical connection between the engine and the drive wheels. A parallel hybrid electrical vehicle (PHEV) configuration has an engine (most typically an ICE) and an electric motor that work together in varying degrees to provide the necessary wheel torque to drive the vehicle. Additionally, in the PHEV configuration, the motor can be used as a generator to charge the battery from the power produced by the ICE. [0006]
  • A parallel/series hybrid electric vehicle (PSHEV) has characteristics of both PHEV and SHEV configurations and is sometimes referred to as a “powersplit” configuration. In one of several types of PSHEV configurations, the ICE is mechanically coupled to two electric motors in a planetary gear-set transaxle. A first electric motor, the generator, is connected to a sun gear. The ICE is connected to a carrier. A second electric motor, a traction motor, is connected to a ring (output) gear via additional gearing in a transaxle. Engine torque can power the generator to charge the battery. The generator can also contribute to the necessary wheel (output shaft) torque if the system has a one-way clutch. The traction motor is used to contribute wheel torque and to recover braking energy to charge the battery. In this configuration, the generator can selectively provide a reaction torque that may be used to control engine speed. In fact, the engine, generator motor and traction motor can provide a continuous variable transmission (CVT) effect. Further, the PSHEV presents an opportunity to better control engine idle speed over conventional vehicles by using the generator to control engine speed. [0007]
  • The desirability of electric motor powered vehicles (EVs) and combining an ICE with electric motors (HEVs) is clear. Fuel consumption and emissions can be reduced with no appreciable loss of vehicle performance or drive-ability. The HEV allows the use of smaller engines, regenerative braking, electric boost, and even operating the vehicle with the engine shutdown. Nevertheless, new ways must be developed to optimize EVs and HEVs potential benefits. [0008]
  • One way to optimize electric powered vehicles is efficient energy management. A successful energy management strategy must balance fuel economy, maintain critical vehicle function capacity, (i.e., assuring sufficient stored electrical energy) , while always meeting driver demand for power. For example, the control system needs to maintain the battery state-of-charge (SOC) at a level to meet performance requirements while allowing it to accept any upcoming regenerative braking energy. Without knowledge of the possible upcoming power requirements or regenerative braking events, the control system has to conservatively predict and compromise battery SOC. [0009]
  • A possible solution to assist a vehicle system controller (VSC) to predict and adapt to upcoming vehicle power requirements and regenerative braking is the use of a navigational system that uses a global positioning system (GPS) and a digital map database. While this idea is known in the prior art, such systems do not utilize the full potential of navigation system derived information for energy management and efficiency. [0010]
  • U.S. Pat. No. 5,892,346 to Moroto et al. generates an electric power schedule for an EV or an HEV based on a starting point and a destination. A navigation system acts as an arbitrator for feasible routes based on distance traveled en route to the destination compared to the distance capacity of the vehicle. This invention uses the navigation system as a pre-trip planning tool that would, for example, reject the longest proposed routes. See also, U.S. Pat. Nos. 5,832,396 and 5,778,326 to Moroto et al. Similarly, U.S. Pat. No. 5,927,415 to Ibaraki et al., allows the use of a navigation system in advance as a pre-trip planning tool for an HEV to assure power demands are met. [0011]
  • U.S. Pat. No. 6,202,024 to Yokoyama et al. discloses the use of a navigational system on a continuous basis to provide a “best drive route.” The invention is not concerned with energy management, nor is it concerned with electric vehicles. For example, it can use a bi-directional navigation system to develop, among other things, a database of road conditions in any given area based on receipt of the same road condition data from a plurality of vehicles in the same area. If several vehicles are reporting use of anti-lock braking systems or air bag deployment, the “best drive route” would be diverted from that area. [0012]
  • A vehicle control system for an EV or HEV that can tightly integrate a navigational system, such as a GPS with a map database, for continuous vehicle energy management is needed. [0013]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention integrates an on-board navigation system to provide energy management for an electric vehicle (EV) and a hybrid electric vehicle (HEV). [0014]
  • The present invention provides a system and method to manage energy in a vehicle with an electric traction motor comprising, a powertrain with at least one motor and an engine, a battery connected to the motor, a vehicle system controller (VSC) connected to the vehicle powertrain, a device connected to the VSC to continuously locate a present vehicle location and infer expectations of driver demand, and a strategy to continuously accommodate fuel economy, driver demand for power and function of the battery. [0015]
  • The system can be configured to include as part of its present vehicle location data on road patterns, geography with date and time, altitude changes, speed limits, identification of intersections with traffic control features such as stop signs and traffic lights, driving patterns of a vehicle driver, and weather. [0016]
  • The strategy can be configured to use discrete control laws, fuzzy logic, or neural networks. [0017]
  • Driver demand or expectation can be based on a driver communicating an intended drive route, or through the use of a search of maps for the locale of the vehicle. [0018]
  • Other objects of the present invention will become more apparent to persons having ordinary skill in the art to which the present invention pertains from the following description taken in conjunction with the accompanying figures. [0019]
  • BRIEF DESCRIPTION OF THE FIGURES
  • The foregoing objects, advantages, and features, as well as other objects and advantages, will become apparent with reference to the description and figures below, in which like numerals represent like elements and in which: [0020]
  • FIG. 1 illustrates a general hybrid electric vehicle (HEV) configuration. [0021]
  • FIG. 2 illustrates the overall vehicle system control energy management strategy of the present invention with integrated navigation system. [0022]
  • FIG. 3 illustrates the logic flow of the energy management control strategy of the present invention.[0023]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention relates to electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed strategy can be applied to both EVs and HEVs, but for purposes of illustration only, the preferred embodiment is configured for an HEV. [0024]
  • The HEV control strategy of the present invention balances the goals of fuel economy while always meeting driver demand for power and maintaining the functionality of the traction motor battery system. An integrated navigation system (such as a GPS or other device to detect the present location of a vehicle with respect to a map database) can help achieve this goal by providing information about what driver demand to expect. In one embodiment, this information can be provided by the driver communicating an intended drive route to the system or in an alternate embodiment by a predicted path search of maps for the locale of the vehicle. While the strategies are likely to be similar for the two implementations, it may be possible to enact a more aggressive strategy in the case where the route is known. [0025]
  • To better understand the present invention, FIG. 1 illustrates a parallel/series hybrid electric vehicle (powersplit) configuration that has an internal combustion engine and at least one motor. In this basic HEV example, a planetary gear set [0026] 20 mechanically couples a carrier gear 22 to an engine 24 via a one way clutch 26. The planetary gear set 20 also mechanically couples a sun gear 28 to a generator motor 30 and a ring (output) gear 32. The generator motor 30 also mechanically links to a generator brake 34 and is electrically linked to a battery 36. A traction motor 38 is mechanically coupled to the ring gear 32 of the planetary gear set 20 via a second gear set 40 and is electrically linked to the battery 36. The ring gear 32 of the planetary gear set 20 and the traction motor 38 are mechanically coupled to drive wheels 42 via an output shaft 44.
  • The planetary gear set [0027] 20, splits the engine 24 output energy into a series path from the engine 24 to the generator motor 30 and a parallel path from the engine 24 to the drive wheels 42. Engine 24 speed can be controlled by varying the split to the series path while maintaining the mechanical connection through the parallel path. The traction motor 38 augments the engine 24 power to the drive wheels 42 on the parallel path through the second gear set 40. The traction motor 38 also provides the opportunity to use energy directly from the series path, essentially running off power created by the generator motor 30. This reduces losses associated with converting energy into and out of chemical energy in the battery 36 and allows all engine 24 energy, minus conversion losses, to reach the drive wheels 42.
  • A vehicle system controller (VSC) [0028] 46 controls many components in this HEV configuration by connecting to each component's controller. An engine control unit (ECU) 48 connects to the engine 24 via a hardwire interface. All vehicle controllers can be physically combined in any combination or can stand as separate units. They are described as separate units here because they each have distinct functionality. The VSC 46 communicates with the ECU 48, as well as a battery control unit (BCU) 50 and a transaxle management unit (TMU) 52 through a communication network such as a controller area network (CAN) 54. The BCU 50 connects to the battery 36 via a hardwire interface. The TMU 52 controls the generator motor 30 and traction motor 38 via a hardwire interface.
  • One way to regulate the use of the [0029] battery 36 is to control it to a target state-of charge (SOC). The traction motor 38 can be used more intensely to deliver power to the vehicle powertrain when the SOC is above the target and is more aggressively charged either directly from the engine 24 or indirectly from regenerative braking whenever the SOC is below the target.
  • There are at least two distinct operational strategies that can be applied in HEVs. In either case, the driver demand for power from the system varies with time and the [0030] VSC 46 needs a strategy to determine how to deliver this power. In a “load-leveling” strategy, the engine 24 power is held relatively constant and the traction motor 38 power is varied to ensure that the sum of the powers equals driver demanded power. This allows the engine 24 to operate at an efficient operating point leading to high fuel economy. In addition, it provides responsive driving feel since the electric drive system can respond quite quickly. In a “load-following” strategy, engine 24 power changes more quickly to nearly follow the driver demanded power and the traction motor 38 is used only when the engine 24 is off or when the engine 24 power can not be changed fast enough to meet driver demand. This reduces the battery 36 power throughput thereby reducing wear. This extends battery 36 while still providing responsive driving feel.
  • The [0031] VSC 46 can include battery 36 conditioning strategies to maintain battery 36 functionality while extending useful life. Some possible battery 36 conditioning strategies used by various battery parameter controllers (not shown) include the following: charging the battery to a high state of charge to balance the charge across multiple cells; discharging or charging the battery to a very low or very high state of charge to calibrate the state of charge estimation routine; changing the charging/discharging pattern of the battery by, for example, moving the target SOC, to erase any memory effects; removing all loads from the battery to allow re-zeroing of the battery system current sensor; or cooling the battery with a cooling system (not shown) such as a radiator or air-conditioner.
  • In general, the present invention is the combination of the [0032] VSC 46 with information from a navigational system such as a global positioning system (GPS) with a digital map database. A GPS/Map integrated VSC 46 can adapt to local geography, possibly including (but not limited to) grade, terrain, traffic and road pattern which can add far more precision to this balance.
  • To balance the goals of achieving high fuel economy and delivering required performance, the strategy of the present invention may use the [0033] traction motor 38 whenever it is more efficient or whenever the engine 24 cannot meet driver demand alone. At the same time the strategy needs to manage the battery 36 state of charge (SOC) so that SOC never goes too low to meet any upcoming performance requirement while never getting too high to accept any upcoming regenerative braking energy. If navigation-based information is integrated into the VSC 46 strategy decisions, less conservative strategy decisions are possible while still ensuring upcoming demands can be met.
  • By way of general examples of meeting performance demands, if the [0034] VSC 46 knows, from incoming navigation system position data, there are no significant changes in grade in the vicinity of the vehicle, it can use more of the battery 36 SOC range to meet its efficiency goals with confidence that it will meet all its near term grade performance goals. Conversely, if the navigation system derived data indicates mountainous terrain in the direction of the vehicle, the VSC 46 can protect for likely upcoming grade performance needs with strategy modifications. Also, if the navigation system indicates the vehicle is likely to be entering a highway, it can choose to turn on the engine 24 to prepare for an expected demand for a sudden increase in acceleration as the vehicle merges into the highway. And finally, if the VSC 46 integrated with navigation system derived information indicates frequent intersections with traffic lights, or heavy traffic in the vicinity, the strategy can assume that a slow, stop and go driving pattern is likely in the near future and can alter its operating strategy accordingly.
  • The second general goal of the strategy of the present invention is maintenance of the [0035] battery 36 state of charge (SOC). Generally, the VSC 46 maintains battery 36 SOC from current operating conditions, such as accelerator position and other associated vehicle loads such as the air conditioner. These monitored conditions reflect the current and past operating regime, and are used to predict the future energy needs. When past conditions match the future conditions, energy management based on past data can be accomplished acceptably. However, when the future conditions vary significantly from the past, energy management assumptions based on past data can lead to compromised vehicle performance.
  • For example, a route guidance system such as the global positioning system with an integrated map navigation system integrated within the [0036] VSC 46 can reduce compromised battery 36 SOC conditions by adding knowledge of upcoming vehicle elevation gradients. In urban driving, the amount of starts and stops through intersections could be anticipated. Additionally, with real-time traffic information, traffic density can also be considered in energy management.
  • In the preferred embodiment of the present strategy, the [0037] VSC 46 tightly integrates the navigation system information with energy management while en route to a known destination (i.e., not as merely a pre-trip prior art planing tool). The approach takes the next logical step, and uses road network information from the map database to influence charge/recharge strategies. One approach is to take the navigation route and plan charge/recharge cycles based on elevation gradient, or other factors that can be extracted from the map database that would be of use to the energy management controller. In this way, the energy management controller can schedule appropriate power level cycling.
  • An alternative embodiment provides a route preview of a specified distance or time, which would enable the energy management controller to effect accessory load decisions based on, for example, downhill (or uphill) grade expected ahead as well as traffic conditions. Real-time use of navigation system derived information will allow more efficient use of energy for accessory loads and regenerative braking while driving. [0038]
  • GPS/Map data make the comprehensive energy management approach of the present invention possible. The following table shows some examples of the information available from a GPS navigation system and the driver demand expectations that the [0039] VSC 46 could infer from it.
    Navigation System Inferred Expectations of
    Information Driver Demand
    Altitude change Grade expectations
    Road pattern (interstate Speed expectations
    highway, rural, city) or
    speed limit
    Road pattern (interstate, Braking expectations
    highway, rural, city) or
    stop light/sign locations
    Driver driving patterns Braking and speed
    expectations
    Intersection density and Braking and speed
    traffic control information expectations
    Weather Speed expectations
    Geography and time/date Temperature expectations
  • FIG. 2 illustrates the [0040] overall VSC 46 energy management strategy of the present invention with integrated navigation system. A GPS and map navigation system 56 can be used by the VSC 46 to manage the battery 36 and regenerative braking systems 62 so that vehicle fuel economy and range are increased.
  • The GPS and [0041] map navigation system 56 has as inputs desired departure, arrival times and locations. It can also receive traffic updates, road conditions and terrain information. The GPS and map navigation system 56 can estimate the number of vehicle starts/stops, and accelerations/decelerations from these input data. That data with the estimated vehicle speed from a vehicle speed sensor (not shown) can input to an energy management controller 58. The energy management controller 58 is a functional part of the VSC 46 ,but is shown separate in the figure to aid in understanding the invention.
  • The [0042] energy management controller 58 can determine any output parameters to adjust the output of the regenerative braking process to best match the upcoming driving cycle to a regenerative brake system controller 60, which interacts with the regenerative braking system (RBS) 62. The energy management controller 58 can also output to the VSC 46 and BCU 50 the ideal SOC target range.
  • For example purposes only, an anticipated route with high speeds and long ascents and descents would need an aggressive regenerative strategy, and as much headroom in the [0043] battery 36 to store energy as possible. Alternately, a route at a nearly constant speed over flat terrain would require a SOC as high as possible to facilitate passing assist boost with little opportunity to regenerate energy.
  • Chassis dynamometer tests over urban cycles (Federal Urban Driving Schedule) and high-speed (Highway Driving Schedule) cycles have confirmed the benefits of energy management to match the driving cycle. In less interactive battery systems (and thus more conservative), controllers try to match a fixed SOC target band (e.g., between 40 percent and 70 percent) to be sure the battery always has some room to collect regenerated energy while never too low to start the vehicle. [0044]
  • The present invention allows multiple SOC target ranges. For example, the hilly high-speed cycle might be best matched with a 40 percent to 60 percent target window. Whereas the high speed, flat terrain cycle might be best matched by a 60% to 80% target window. [0045]
  • The present invention can be implemented utilizing classic, discrete control laws, fuzzy logic, or neural networks. Fuzzy logic control is an approach that incorporates a rule-based strategy in the control hierarchy. Neural network control uses a network of cells that are trained with prior examples to model future outputs based on learned training data. [0046]
  • FIG. 3 illustrates the logic flow of the energy management control strategy of the present invention using classic discrete logic controls. The [0047] energy management controller 58 within the VSC 46 can take actions based on the inferred expectations of driver demand outlined in the table above to ensure that the system can optimize its fuel economy, protect its traction battery functionality and meet the driver demand. To better understand the logic decisions illustrated in FIG. 3, the following assumptions within the strategy are provided as follows:
  • If a steep uphill grade is expected, the VSC can control the battery SOC to a high value so that when the driver power demand increases to cause the vehicle to climb the hill, there exists sufficient battery power to provide electric assist and to allow the engine to remain on its optimal efficiency curve. [0048]
  • If a steep downhill grade is expected, the strategy can control battery SOC to a low value so that when the driver demand for negative (braking) power occurs to cause the vehicle to descend the grade in a controlled manner, the strategy is able to maximize the amount of regenerative braking energy that it is able to capture. [0049]
  • If extended city road patterns are expected, the strategy can expect a significant amount of stop and go driving that would cause significant battery power throughput and it can choose to operate in a more load following manner to protect the functionality of the battery. [0050]
  • Similarly, if extended hilly road patterns are expected with frequent uphill and downhill grades that would cause significant battery power throughput, the strategy can choose to operate in a more load following manner to protect the functionality of the battery. [0051]
  • If extended light load conditions are expected, as inferred by moderately high speed on flat highway surfaces, the control strategy can choose to enact some battery conditioning strategies during this time, confident that the demand on the electric strategy is unlikely to change during the strategy enactment. [0052]
  • Similarly, if extended light load conditions are expected, as inferred by moderately high speed on flat highway surfaces, the control strategy can choose to operate in a load leveling strategy, providing quick response without severe wear on the traction battery. [0053]
  • If extended high temperature is expected (particularly if it knows that the vehicle is likely to be turned off in the near future, as inferred, for example by the imminent completion of the specified trip), the strategy may choose to operate at a lower target SOC to reduce self-discharging when the vehicle is turned off and left sitting. [0054]
  • Similarly, if extended low temperature is expected, SOC (particularly if it knows that the vehicle is likely to be turned off in the near future, as inferred, for example by the imminent completion of the specified trip), the strategy may choose to operate at a higher target SOC to ensure that sufficient energy will be available to restart the vehicle after the vehicle is turned off and left sitting (this is particularly important if the traction battery also serves as the source of engine starting power). [0055]
  • If entrance to a highway is expected, the strategy may choose to prepare for an increase in driver demanded power either by turning the IC engine on if it is not already or by charging up the battery if the engine is already on. [0056]
  • Turning back to logic flow diagram in FIG. 3, at [0057] Step 70, the strategy receives drive route information input from the navigation system (generated from either the driver or local maps). The strategy commands an analysis of the drive route to determine system expectations at Step 72 and assumes a load following strategy with average SOC target and no battery conditioning at Step 74.
  • Next, at [0058] Step 76, the strategy determines if significant grade variations or frequent stop and go events are expected. If yes, the strategy accommodates this expectation at Step 78 by, for example, moving toward a load following to protect the battery, then returning to Step 70. If no, the strategy determines if significant downhill grades or decelerations from high speed are expected at Step 80. If yes, the strategy changes to accommodate this expectation by, for example, discharging the battery at Step 82, then returning to Step 70. If no, the strategy determines if significant uphill grades or accelerations onto a highway are expected at Step 84. If yes, the strategy changes to accommodate this expectation by, for example, charging the battery at Step 86, then returning to step 70. If no, the strategy next determines whether extended light loads are expected at Step 88. If yes, the strategy must make an additional determination of whether battery conditioning is required at Step 90. If yes, the strategy enacts battery-conditioning strategies at Step 92, then returns to Step 70. If battery conditioning is not required at Step 90, the strategy changes to accommodate this expectation by, for example, moving toward load leveling for improved fuel economy at Step 94, then returning to step 70.
  • If extended light loads are not expected at [0059] Step 88, the strategy determines at Step 96 whether high ambient temperatures are expected. If yes, the strategy further determines at Step 98 whether the vehicle is likely to be turned off soon. If yes at Step 98, the strategy changes to accommodate this expectation by, for example, decreasing battery SOC at Step 100, then returning to Step 70. If Step 96 or Step 98 are no, the strategy at Step 102 determines whether low ambient temperatures are expected. If yes at Step 102, again the strategy changes to accommodate this expectation at Step 106, then returning to Step 70. If the determination at Step 102 is no, the strategy next makes a determination of whether an increase in vehicle speed is anticipated such as whether entrance to a highway is expected at Step 104. If yes, the strategy can turn on the engine and charge the battery at Step 108, then return to Step 70. Otherwise, the strategy simply returns to Step 70.
  • The above-described embodiment(s) of the invention is/are provided purely for purposes of example. Many other variations, modifications, and applications of the invention may be made. [0060]

Claims (36)

We claim:
1. A system to manage energy in a vehicle with an electric traction motor comprising:
a powertrain comprising at least one motor and an engine;
a battery connected to the motor;
a vehicle system controller (VSC) connected to the vehicle powertrain;
a device connected to the VSC to continuously locate a present vehicle location and infer expectations of driver demand; and
the VSC further comprising a strategy to continuously accommodate fuel economy, driver demand for power and functionality of the battery.
2. The system of claim 1 wherein present vehicle location further comprises data on road patterns.
3. The system of claim 1 wherein present vehicle location further comprises data on geography with date and time.
4. The system of claim 1 wherein present vehicle location further comprises data on altitude changes.
5. The system of claim 1 wherein present vehicle location further comprises data on speed limits.
6. The system of claim 1 wherein present vehicle location further comprises data on driving patterns of a vehicle driver.
7. The system of claim 1 wherein present vehicle location further comprises data on weather.
8. The system of claim 1 wherein the strategy uses discrete control laws.
9. The system of claim 1 wherein the strategy uses fuzzy logic.
10. The system of claim 1 wherein the strategy uses neural networks.
11. The system of claim 1 wherein expectations of driver demand are inferred by a driver communicating an intended drive route.
12. The system of claim 1 wherein expectations of driver demand are inferred by a search of maps for the locale of the vehicle.
13. The system of claim 1 wherein the strategy accommodates functionality of the battery with battery parameter controllers.
14. The system of claim 13 wherein the battery parameter controllers control battery state of charge.
15. The system of claim 13 wherein the battery parameter controllers control battery charge rate.
16. The system of claim 13 wherein the battery parameter controllers control battery discharge rate.
17. The system of claim 13 wherein the battery parameter controllers control battery temperature.
18. The system of claim 13 wherein battery parameter controllers remove all loads from the battery
19. A method of managing energy in a vehicle comprised of a powertrain comprising a motor, an engine, and a battery connected to the motor, comprising the steps of;
locating continuously a present vehicle location;
inferring expectations of driver demand based on present vehicle location; and
accommodating continuously fuel economy, driver demand for power and functionality of the battery.
20. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on road patterns.
21. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on geography with date and time.
22. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on altitude changes.
23. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on speed limits.
24. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on driving patterns of a vehicle driver.
25. The method of claim 19 wherein the step of locating continuously the present vehicle location comprises data on weather.
26. The method of claim 19 wherein accommodating continuously fuel economy, driver demand for power and functionality of the battery uses discrete control laws.
27. The method of claim 19 wherein accommodating continuously fuel economy, driver demand for power and functionality of the battery uses fuzzy logic.
28. The method of claim 19 wherein accommodating continuously fuel economy, driver demand for power and functionality of the battery uses neural networks.
29. The method of claim 19 wherein inferring expectations of driver demand comprises the step of a driver communicating an intended drive route.
30. The method of claim 19 wherein inferring expectations of driver demand comprises the step of a searching of maps for the locale of the vehicle.
31. The method of claim 19 wherein accommodating continuously the functionality of the battery comprises the step of controlling battery parameters.
32. The method of claim 31 wherein the step of controlling battery parameters comprises controlling battery state of charge.
33. The method of claim 31 wherein the step of controlling battery parameters comprises controlling battery charge rate.
34. The method of claim 31 wherein the step of controlling battery parameters comprises controlling battery discharge rate.
35. The method of claim 31 wherein the step of controlling battery parameters comprises controlling battery temperature.
36. The method of claim 31 wherein the step of controlling battery parameters comprises removing all loads from the battery.
US09/852,075 2001-05-09 2001-05-09 Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management Expired - Lifetime US6487477B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/852,075 US6487477B1 (en) 2001-05-09 2001-05-09 Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
DE60238368T DE60238368D1 (en) 2001-05-09 2002-04-24 Energy flow management system for a hybrid vehicle
EP02252871A EP1256476B1 (en) 2001-05-09 2002-04-24 Hybrid electric vehicle energy management
CA002385952A CA2385952A1 (en) 2001-05-09 2002-05-08 Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
JP2002133500A JP4637443B2 (en) 2001-05-09 2002-05-09 Vehicle control system and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/852,075 US6487477B1 (en) 2001-05-09 2001-05-09 Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management

Publications (2)

Publication Number Publication Date
US6487477B1 US6487477B1 (en) 2002-11-26
US20020188387A1 true US20020188387A1 (en) 2002-12-12

Family

ID=25312441

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/852,075 Expired - Lifetime US6487477B1 (en) 2001-05-09 2001-05-09 Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management

Country Status (5)

Country Link
US (1) US6487477B1 (en)
EP (1) EP1256476B1 (en)
JP (1) JP4637443B2 (en)
CA (1) CA2385952A1 (en)
DE (1) DE60238368D1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020069000A1 (en) * 2000-12-04 2002-06-06 Yoshitada Nakao Apparatus for controlling hybrid electric vehicle
US20040030471A1 (en) * 2001-06-13 2004-02-12 Ian Faye Method and device for triggering a hybrid vehicle
US6697717B2 (en) * 2001-09-28 2004-02-24 Pioneer Corporation Hybrid car
US20050228553A1 (en) * 2004-03-30 2005-10-13 Williams International Co., L.L.C. Hybrid Electric Vehicle Energy Management System
US20060278449A1 (en) * 2005-06-10 2006-12-14 Torre-Bueno Jose D L Inputs for optimizing performance in hybrid vehicles
US20070029121A1 (en) * 2004-01-16 2007-02-08 Mikio Saitou Hybrid vehicle
US20070208467A1 (en) * 2006-03-06 2007-09-06 Gm Global Technology Operations, Inc. Hybrid vehicle powertrain control method and apparatus
EP1842757A1 (en) 2006-04-03 2007-10-10 Harman Becker Automotive Systems GmbH Method for controlling a hybrid vehicle and system thereof
EP1842758A1 (en) 2006-04-03 2007-10-10 Harman Becker Automotive Systems GmbH Route determination for a hybrid vehicle and system therefor
US20070284162A1 (en) * 2006-06-07 2007-12-13 Zettel Andrew M Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US20070295543A1 (en) * 2003-10-06 2007-12-27 Jochen Fassnacht Method for Regulating the State of Charge of an Energy Accumulator in a Vehicle Having a Hybrid Drive Unit
US20080147260A1 (en) * 2004-12-01 2008-06-19 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric and Hybrid- Hydraulic Vehicles
US20080254938A1 (en) * 2007-04-16 2008-10-16 Honda Motor Co., Ltd. Vehicle clutch engagement control system and method
GB2448972A (en) * 2007-05-03 2008-11-05 Ford Motor Co A System and Method for Controlling the Operation of a Vehicle
US20080300743A1 (en) * 2006-11-28 2008-12-04 Gm Global Technology Operations, Inc. Control system for a hybrid powertrain system
FR2923438A1 (en) * 2007-11-12 2009-05-15 Renault Sas METHOD AND SYSTEM FOR MANAGING THE OPERATION OF A MOTOR VEHICLE BASED ON ROLLING CONDITIONS
US20090192660A1 (en) * 2008-01-25 2009-07-30 Ford Motor Company Method and system for controlling a motive power system of an automotive vehicle
US20090259363A1 (en) * 2008-04-15 2009-10-15 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
US20090302940A1 (en) * 2008-06-04 2009-12-10 Nortel Networks Limited Predistortion with sectioned basis functions
US20100042304A1 (en) * 2008-08-13 2010-02-18 Gm Global Technology Operations, Inc. Method of managing power flow in a vehicle
US20100042277A1 (en) * 2008-08-13 2010-02-18 Gm Global Technology Operations, Inc. Method of managing power flow in a vehicle
US20100088011A1 (en) * 2008-10-02 2010-04-08 Alan Eugene Bruce Optimal vehicle router with energy management system
US20100121590A1 (en) * 2008-11-11 2010-05-13 Aisin Aw Co., Ltd. Travel support system, method, and program
US20100138099A1 (en) * 2007-11-01 2010-06-03 Toyota Jidosha Kabushiki Kaisha Travel trace generation method and travel trace generation device
US20100145562A1 (en) * 2004-12-01 2010-06-10 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric Vehicles
US20100185471A1 (en) * 2009-01-16 2010-07-22 Henry Chen Analyzing voyage efficiencies
WO2010132769A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Inc Modular powertrain systems, and methods
US20100291418A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Battery packs, systems, and methods
DE102009046568A1 (en) * 2009-11-10 2011-05-12 SB LiMotive Company Ltd., Suwon Method and arrangement for operating vehicles with electric drive and a corresponding computer program and a corresponding computer-readable storage medium
US20110118930A1 (en) * 2008-07-31 2011-05-19 Werner Hauptmann Method and Device for Operating a Motor Vehicle
US20110115439A1 (en) * 2009-11-17 2011-05-19 Hyundai Motor Company Battery's state-of-charge balancing control method for hybrid vehicle
US20110130885A1 (en) * 2009-12-01 2011-06-02 Bowen Donald J Method and system for managing the provisioning of energy to or from a mobile energy storage device
US20110166740A1 (en) * 2010-01-07 2011-07-07 Lane David Desborough Method, system, and apparatus for operating a vehicle
US20110166725A1 (en) * 2010-01-10 2011-07-07 Lewis Booth Charge utilization control system and method
US20110184600A1 (en) * 2010-01-25 2011-07-28 Ford Global Technologies, Llc Adaptive Initial Estimation and Dynamic Determination and Update of Distance Until Charge of a Plug-In Hybrid Electric Vehicle
US20110208382A1 (en) * 2008-11-13 2011-08-25 Toyota Jidosha Kabushiki Kaisha Vehicle battery diagnosis system, and vehicle
US20110246012A1 (en) * 2010-04-05 2011-10-06 Continental Automotive Systems, Inc. Intelligent regenerative braking utilizing environmental data
DE102010015342A1 (en) * 2010-04-17 2011-10-20 Albrecht Kretzschmar Energy navigation map for e.g. hybrid vehicle, has gradient values measured and/or calculated along route and driving direction, where gradient values and sum value are utilized to display energy- and consumption-optimized routing
US20110313610A1 (en) * 2010-06-17 2011-12-22 Gm Global Technology Operations, Inc. Method and a system for providing a driving-range forecast for a vehicle
US20120065828A1 (en) * 2009-05-26 2012-03-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and travel mode setting method of hybrid vehicle
DE102010045032A1 (en) * 2010-09-10 2012-03-15 Audi Hungaria Motor Kft. Automobile with electric drive and battery and method for operating a device for charging a battery
US20120143413A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Device and method for calculating distance to empty of electric vehicle
CN102529856A (en) * 2010-10-12 2012-07-04 罗伯特·博世有限公司 Recuperator system for use on board of motor vehicle, has electrical energy storage and recuperator for converting kinetic energy of motor vehicle into electrical energy
CN102729822A (en) * 2011-04-08 2012-10-17 罗伯特·博世有限公司 Device and method for operating vehicle
CN102781751A (en) * 2010-03-04 2012-11-14 戴姆勒股份公司 Motor vehicle drive device
US20120296502A1 (en) * 2011-05-20 2012-11-22 GM Global Technology Operations LLC Forward-looking hybrid vehicle control strategy
US20120316712A1 (en) * 2011-06-08 2012-12-13 GM Global Technology Operations LLC Thermal conditioning of vehicle rechargeable energy storage systems
US20130116870A1 (en) * 2011-11-07 2013-05-09 Honda Motor Co., Ltd. Method of optimizing energy use of a power plant using geographical information without user input to the navigation system
US20130151047A1 (en) * 2011-12-09 2013-06-13 Kia Motors Corporation System and method of assisting driver in driving electric vehicle in more environmentally efficient manner
US8486283B2 (en) 2010-11-02 2013-07-16 Sinoelectric Powertrain Corporation Method of making fusible links
DE102012001740A1 (en) * 2012-01-28 2013-08-01 Volkswagen Aktiengesellschaft Method for operating a hybrid drive unit for a motor vehicle and hybrid drive unit
DE202013102636U1 (en) 2012-06-20 2013-08-14 Eeuwe Durk Kooi Vehicle with hybrid engine
CN103298642A (en) * 2011-01-11 2013-09-11 丰田自动车株式会社 Vehicle control apparatus
DE102012011996A1 (en) * 2012-06-16 2013-12-19 Volkswagen Aktiengesellschaft Method for optimization of operation of electric motor-driven vehicle, involves determining state of charge of energy accumulator and driving strategy of vehicle for certain sections of route by using trip planning
US8641273B2 (en) 2010-11-02 2014-02-04 Sinoelectric Powertrain Corporation Thermal interlock for battery pack, device, system and method
US8659261B2 (en) 2010-07-14 2014-02-25 Sinoelectric Powertrain Corporation Battery pack enumeration method
US8676400B2 (en) * 2012-02-03 2014-03-18 Volkswagen Ag Navigation system and method for an electric vehicle travelling from a starting point to a destination
US8779728B2 (en) 2010-04-08 2014-07-15 Sinoelectric Powertrain Corporation Apparatus for preheating a battery pack before charging
US8829848B2 (en) 2009-05-27 2014-09-09 Nissan Motor Co., Ltd. Battery charging control device and battery charging control method for electric vehicle
GB2512428A (en) * 2012-12-10 2014-10-01 Jaguar Land Rover Ltd Vehicle and method of control thereof
US20140316628A1 (en) * 2011-11-18 2014-10-23 Toyota Jidosha Kabushiki Kaisha Driving environment prediction device, vehicle control device and methods thereof
CN104340218A (en) * 2013-08-06 2015-02-11 福特全球技术公司 Real-time fuel consumption estimation
US9056556B1 (en) * 2014-02-25 2015-06-16 Elwha Llc System and method for configuration and management of an energy storage system for a vehicle
US9079505B1 (en) * 2014-02-25 2015-07-14 Elwah LLC System and method for management of a fleet of vehicles having an energy storage system
US20150203096A1 (en) * 2014-01-22 2015-07-23 Ford Global Technologies, Llc System and Method for Controlling Battery Power Based on Predicted Battery Energy Usage
US9102334B2 (en) 2012-10-29 2015-08-11 Deere & Company Methods and apparatus to control motors
CN104908733A (en) * 2014-03-13 2015-09-16 通用汽车环球科技运作有限责任公司 Hybrid vehicle and method of controlling a hybrid vehicle with mode selection based on look ahead data
US20150298680A1 (en) * 2014-04-22 2015-10-22 Alcatel-Lucent Usa Inc. System and method for control of a hybrid vehicle with regenerative braking using location awareness
US9172120B2 (en) 2010-07-14 2015-10-27 Sinoelectric Powertrain Corporation Battery pack fault communication and handling
US20160052420A1 (en) * 2014-08-25 2016-02-25 Hyundai Motor Company Device and method for controlling battery soc of hybrid vehicle
US9334013B2 (en) 2011-06-14 2016-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Power management method for an electrically-assisted vehicle
US20160137184A1 (en) * 2014-11-18 2016-05-19 Toyota Jidosha Kabushiki Kaisha Vehicular information processing device
US20160272193A1 (en) * 2015-03-20 2016-09-22 Hyundai Motor Company Engine clutch control system for hybrid vehicle and method thereof
CN106004425A (en) * 2016-08-03 2016-10-12 广西玉柴机器股份有限公司 Power assembly system for movable electricity generation vehicle
CN106043088A (en) * 2016-08-03 2016-10-26 广西玉柴机器股份有限公司 Movable power generation vehicle system
US9616879B2 (en) * 2015-05-14 2017-04-11 Ford Global Technologies, Llc Battery state of charge control with preview information classification
US9744873B2 (en) 2011-10-12 2017-08-29 Volkswagen Ag Method and control device for charging a battery of a vehicle
US9878631B2 (en) 2014-02-25 2018-01-30 Elwha Llc System and method for predictive control of an energy storage system for a vehicle
US20180054069A1 (en) * 2016-08-18 2018-02-22 Pavel Trnka Battery pack cell active balancing
US20180236898A1 (en) * 2017-02-22 2018-08-23 Hyundai Motor Company Electric vehicle and control method thereof
US10065628B2 (en) 2011-05-09 2018-09-04 Ford Global Technologies, Llc Location enhanced distance until charge (DUC) estimation for a plug-in hybrid electric vehicle (PHEV)
US10086822B2 (en) * 2014-11-07 2018-10-02 Valeo Systemes De Controle Moteur Engine control system
US20180339694A1 (en) * 2017-05-25 2018-11-29 Ford Global Technologies, Llc System and method for adjusting battery state of charge parameters
US10245968B2 (en) * 2012-02-03 2019-04-02 International Business Machines Corporation System and method of charging a vehicle using a dynamic power grid, and system and method of managing power consumption in the vehicle
CN110667540A (en) * 2019-11-15 2020-01-10 吉林工程技术师范学院 Electronic power control power system for electric automobile and control method thereof
WO2020099133A1 (en) * 2018-11-12 2020-05-22 Robert Bosch Gmbh Method for operating an electric vehicle
US10668916B2 (en) * 2017-12-05 2020-06-02 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
US11001248B2 (en) * 2018-10-08 2021-05-11 GM Global Technology Operations LLC Method for enhancing powertrain efficiency and driveline quality through dynamic mission planning optimization
US20220032925A1 (en) * 2020-07-31 2022-02-03 Uatc, Llc Vehicle Trajectory Dynamics Validation and Interpolation
US20220196418A1 (en) * 2020-12-22 2022-06-23 Nissan North America, Inc. Navigation Map Learning for Intelligent Hybrid-Electric Vehicle Planning
DE102021205861A1 (en) 2021-06-10 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Method for the targeted reduction of a battery charge level of a chargeable vehicle battery of a vehicle
DE102011055563B4 (en) 2010-11-22 2023-02-09 Denso Corporation Method for a control device for a vehicle

Families Citing this family (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622804B2 (en) * 2001-01-19 2003-09-23 Transportation Techniques, Llc. Hybrid electric vehicle and method of selectively operating the hybrid electric vehicle
US20020163198A1 (en) * 2001-05-03 2002-11-07 Gee Thomas Scott Fail-safe engine cooling control algorithm for hybrid electric vehicle
US20100241342A1 (en) * 2009-03-18 2010-09-23 Ford Global Technologies, Llc Dynamic traffic assessment and reporting
AU2003202226A1 (en) * 2002-01-08 2003-07-24 Hypercar, Inc. Advanced composite hybrid-electric vehicle
US20030230439A1 (en) * 2002-06-18 2003-12-18 Ford Motor Company System and method to control a switchable powertrain mount
JP2004106663A (en) * 2002-09-17 2004-04-08 Toyota Motor Corp Integrated drive control system and integrated drive control method
JP4186723B2 (en) 2003-06-20 2008-11-26 トヨタ自動車株式会社 Energy management apparatus and energy management method
CN1298572C (en) * 2003-09-26 2007-02-07 清华大学 MPC500 process type electric car multi-energy power assembly control device
US7076350B2 (en) * 2003-12-19 2006-07-11 Lear Corporation Vehicle energy management system using prognostics
US20050205313A1 (en) * 2004-03-19 2005-09-22 Gilmore Curt D Hybrid vehicle with power assisted prop shaft
DE102004028353A1 (en) * 2004-06-11 2006-01-12 Siemens Ag Energy management system of a transport device
US7689330B2 (en) * 2004-12-01 2010-03-30 Ise Corporation Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles
EP1666321A1 (en) * 2004-12-06 2006-06-07 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Method and device for braking, and vehicle with such a device
US7665557B2 (en) * 2005-06-16 2010-02-23 Eaton Corporation Hybrid electric powertrain with anti-idle function
DE502005008328D1 (en) * 2005-07-06 2009-11-26 Ford Global Tech Llc Method for predicting driving situations in a motor vehicle
US7573241B2 (en) * 2005-08-02 2009-08-11 Ford Global Technologies, Llc Vehicle having a battery with multiple cells and method for operating such a battery
DE102005037553A1 (en) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Method for controlling a hybrid vehicle and hybrid vehicle
DE102005047513A1 (en) * 2005-10-04 2007-04-05 Siemens Ag Motor vehicle system for controlling hybrid drive, has navigation system, and electronic control unit processing data provided by navigation system, where data has map data and information about surroundings of vehicle and/or traffic data
DE102005050753A1 (en) * 2005-10-22 2007-04-26 Zf Friedrichshafen Ag Method and device for controlling and / or regulating an automatic system of a motor vehicle
US11186173B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Electric vehicle power management system
US11207981B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system
US8712650B2 (en) 2005-11-17 2014-04-29 Invent.Ly, Llc Power management systems and designs
US11267339B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Vehicle power management system
US11254211B2 (en) 2005-11-17 2022-02-22 Invently Automotive Inc. Electric vehicle power management system
US11207980B2 (en) 2005-11-17 2021-12-28 Invently Automotive Inc. Vehicle power management system responsive to traffic conditions
US11186175B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11220179B2 (en) 2005-11-17 2022-01-11 Invently Automotive Inc. Vehicle power management system determining route segment length
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US11279233B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Electric vehicle power management system
US11247564B2 (en) 2005-11-17 2022-02-15 Invently Automotive Inc. Electric vehicle power management system
US11186174B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Vehicle power management system
US11230190B2 (en) 2005-11-17 2022-01-25 Invently Automotive Inc. Electric vehicle power management system
US11370302B2 (en) 2005-11-17 2022-06-28 Invently Automotive Inc. Electric vehicle power management system
US11225144B2 (en) 2005-11-17 2022-01-18 Invently Automotive Inc. Vehicle power management system
US11084377B2 (en) 2005-11-17 2021-08-10 Invently Automotive Inc. Vehicle power management system responsive to voice commands from a Gps enabled device
US11390165B2 (en) 2005-11-17 2022-07-19 Invently Automotive Inc. Electric vehicle power management system
US11325468B2 (en) 2005-11-17 2022-05-10 Invently Automotive Inc. Vehicle power management system
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11279234B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Vehicle power management system
US11285810B2 (en) 2005-11-17 2022-03-29 Invently Automotive Inc. Vehicle power management system
US10882399B2 (en) 2005-11-17 2021-01-05 Invently Automotive Inc. Electric vehicle power management system
US11351863B2 (en) 2005-11-17 2022-06-07 Invently Automotive Inc. Vehicle power management system
US11267338B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Electric vehicle power management system
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
US7860808B2 (en) 2006-01-05 2010-12-28 International Business Machines Corporation System and method for hybrid conservation of fossil fuel
JP4307455B2 (en) * 2006-02-21 2009-08-05 株式会社豊田中央研究所 Control device for hybrid vehicle
US7696719B2 (en) 2006-03-07 2010-04-13 Fujitsu Ten Limited Power control apparatus, power control method
US7603228B2 (en) * 2006-05-25 2009-10-13 Ford Global Technologies, Llc Haptic apparatus and coaching method for improving vehicle fuel economy
US7730984B2 (en) * 2006-06-07 2010-06-08 Gm Global Technology Operations, Inc. Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device
US7647205B2 (en) 2006-06-07 2010-01-12 Gm Global Technology Operations, Inc. Method and apparatus for management of an electric energy storage device to achieve a target life objective
DE102006034933B4 (en) * 2006-07-28 2016-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for controlling a hybrid vehicle drive
US7806210B2 (en) * 2006-08-03 2010-10-05 Ford Global Technologies, Llc Congestion-based control of vehicle hybrid propulsion system
FR2904592B1 (en) * 2006-08-04 2008-10-10 Peugeot Citroen Automobiles Sa ENERGY SAVING SYSTEM AND METHOD FOR VEHICLE
US7426435B2 (en) * 2006-09-21 2008-09-16 Ford Global Technologies, Llc Engine control system and method
US7659698B2 (en) * 2006-10-02 2010-02-09 Ford Global Technologies, Llc System and method for controlling a state of charge of an energy storage system
US7669676B2 (en) * 2006-10-24 2010-03-02 Larry D. Miller Trust Hybrid propulsion system and method for its operation
JP4663620B2 (en) * 2006-12-07 2011-04-06 日立オートモティブシステムズ株式会社 In-vehicle information terminal, map server, and in-vehicle system
EP1935712A1 (en) 2006-12-22 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Vehicle system and method
JP2008184077A (en) 2007-01-31 2008-08-14 Hitachi Ltd Hybrid cruising control system
US7660660B2 (en) * 2007-02-09 2010-02-09 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for regulation of engine variables
US7895135B2 (en) * 2007-02-12 2011-02-22 Deere & Company Human perception model for speed control performance
US8498796B2 (en) * 2007-02-12 2013-07-30 Deere & Company Perception model for trajectory following autonomous and human augmented speed control
US7769512B2 (en) * 2007-02-12 2010-08-03 Deere & Company Vehicle steering control method and performance
US8195364B2 (en) 2007-02-12 2012-06-05 Deere & Company Perception model for trajectory following autonomous and human augmented steering control
US9242633B2 (en) * 2007-05-10 2016-01-26 Volvo Construction Equipment Ab Method and a control system for controlling a work machine
US7849944B2 (en) * 2007-06-12 2010-12-14 Ut-Battelle, Llc Self-learning control system for plug-in hybrid vehicles
US8849485B2 (en) * 2007-07-06 2014-09-30 Bayerische Motoren Werke Aktiengesellscahft Utilization of navigation information for intelligent hybrid operating strategy
US8022674B2 (en) * 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
JP4789883B2 (en) * 2007-07-24 2011-10-12 トヨタ自動車株式会社 Vehicle communication device
US8108136B2 (en) * 2007-08-09 2012-01-31 Ford Global Technologies, Llc. Driver advisory system for fuel economy improvement of a hybrid electric vehicle
WO2009039454A1 (en) * 2007-09-20 2009-03-26 Shai Agassi Electric vehicle network
US8054048B2 (en) * 2007-10-04 2011-11-08 GM Global Technology Operations LLC Power grid load management for plug-in vehicles
US9726088B2 (en) * 2007-10-30 2017-08-08 Ford Global Technologies, Llc System and method for obtaining an adjustable accelerator pedal response in a vehicle powertrain
FR2923187B1 (en) * 2007-11-05 2009-11-13 Renault Sas METHOD FOR MANAGING ENERGY IN A MOTOR VEHICLE
DE102007054453A1 (en) * 2007-11-13 2009-05-14 Bayerische Motoren Werke Aktiengesellschaft Method for determination of probability for proceeding forthcoming overhauling action for motor vehicle, particularly hybrid vehicle following preceding vehicle, involves determining probability as function of actual driven vehicle speed
DE102007060646A1 (en) * 2007-12-15 2009-06-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Display device e.g. tachometer, for displaying drive-train-referred value e.g. current speed, of hybrid vehicle, has ring segment, trailing pointer and circle sector to display drive-train-referred value corresponding to possible power
WO2009081234A1 (en) * 2007-12-26 2009-07-02 Renault Trucks Method for managing fuel consumption of a hybrid vehicle and vehicle adapted to such a method
FR2926048B1 (en) * 2008-01-09 2010-04-30 Peugeot Citroen Automobiles Sa METHOD OF CHECKING THE ACCELERATIONS OF A HYBRID VEHICLE.
JP4492702B2 (en) * 2008-01-11 2010-06-30 トヨタ自動車株式会社 Anomaly detection device
ATE509414T1 (en) 2008-02-12 2011-05-15 Magneti Marelli Spa SYSTEM AND METHOD FOR ENERGY MANAGEMENT IN A MOTOR VEHICLE AND FOR DISPLAYING INFORMATION RELATING TO ENERGY MANAGEMENT
US9233622B2 (en) * 2008-03-11 2016-01-12 General Electric Company System and method for managing an amount of stored energy in a powered system
US7928693B2 (en) * 2008-03-13 2011-04-19 International Business Machines Corporation Plugin hybrid electric vehicle with V2G optimization system
KR100906911B1 (en) 2008-03-19 2009-07-08 현대자동차주식회사 Learning type unitary apparatus for controlling generater
JP4513882B2 (en) 2008-03-21 2010-07-28 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP4930446B2 (en) * 2008-04-14 2012-05-16 トヨタ自動車株式会社 Vehicle travel control device
DE102008025852A1 (en) * 2008-05-29 2009-12-03 Daimler Ag vehicle system
US8531162B2 (en) * 2008-06-16 2013-09-10 International Business Machines Corporation Network based energy preference service for managing electric vehicle charging preferences
US8266075B2 (en) 2008-06-16 2012-09-11 International Business Machines Corporation Electric vehicle charging transaction interface for managing electric vehicle charging transactions
US20090313034A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Generating Dynamic Energy Transaction Plans
US20090313032A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Maintaining Energy Principal Preferences for a Vehicle by a Remote Preferences Service
US9751416B2 (en) * 2008-06-16 2017-09-05 International Business Machines Corporation Generating energy transaction plans
US20090313174A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Approving Energy Transaction Plans Associated with Electric Vehicles
US8498763B2 (en) * 2008-06-16 2013-07-30 International Business Machines Corporation Maintaining energy principal preferences in a vehicle
US8918376B2 (en) * 2008-08-19 2014-12-23 International Business Machines Corporation Energy transaction notification service for presenting charging information of an electric vehicle
US8725551B2 (en) * 2008-08-19 2014-05-13 International Business Machines Corporation Smart electric vehicle interface for managing post-charge information exchange and analysis
US8918336B2 (en) * 2008-08-19 2014-12-23 International Business Machines Corporation Energy transaction broker for brokering electric vehicle charging transactions
US7993155B2 (en) 2008-09-19 2011-08-09 Better Place GmbH System for electrically connecting batteries to electric vehicles
US8006793B2 (en) 2008-09-19 2011-08-30 Better Place GmbH Electric vehicle battery system
DE102008055898A1 (en) * 2008-11-05 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Brake light controlling method for e.g. electric vehicle, involves activating brake light when torque supplied by machine exceeds preset threshold, and deactivating activated brake light when torque falls below another preset threshold
DE102009000043A1 (en) * 2009-01-07 2010-07-08 Robert Bosch Gmbh Method for energy-efficient charging of a vehicle battery
DE102009000098A1 (en) * 2009-01-09 2010-07-15 Robert Bosch Gmbh Method for controlling an electric vehicle with auxiliary drive
US8155867B2 (en) * 2009-01-29 2012-04-10 General Motors Llc System and method for communicating with a vehicle about then-current vehicle operating conditions using a telematics unit
US8180509B2 (en) * 2009-03-12 2012-05-15 Ford Global Technologies, Llc Tail pipe emissions mode control for hybrid electric vehicles
US8640629B2 (en) 2009-05-01 2014-02-04 Norfolk Southern Corporation Battery-powered all-electric and/or hybrid locomotive and related locomotive and train configurations
US20100305798A1 (en) * 2009-05-29 2010-12-02 Ford Global Technologies, Llc System And Method For Vehicle Drive Cycle Determination And Energy Management
SE533838C2 (en) 2009-06-10 2011-02-01 Scania Cv Ab Method and system for operating an electric machine in a hybrid vehicle
US20110004523A1 (en) * 2009-07-06 2011-01-06 Ford Global Technologies, Llc Method and Apparatus for Preferential Determination and Display of Points of Interest
DE102009027553A1 (en) * 2009-07-08 2011-01-20 Robert Bosch Gmbh Method for operating a recuperation device of a motor vehicle
US20110010844A1 (en) * 2009-07-18 2011-01-20 Quy That Ton Spa apparatus having footrest-hose combination device
US9683854B2 (en) * 2009-07-19 2017-06-20 Aaron T. Emigh Pricing by historical comparison
US20110022254A1 (en) * 2009-07-24 2011-01-27 Michael Johas Teener Method and system for location assisted power management
DE102009028751A1 (en) * 2009-08-20 2011-02-24 Robert Bosch Gmbh Navigation device and a method therefor
US20110054768A1 (en) * 2009-08-27 2011-03-03 Sullivan Joshua Ward Systems and methods for optimizing vehicle fuel efficiency
US8118147B2 (en) 2009-09-11 2012-02-21 Better Place GmbH Cable dispensing system
US8548660B2 (en) * 2009-09-11 2013-10-01 Alte Powertrain Technologies, Inc. Integrated hybrid vehicle control strategy
US7972167B2 (en) 2009-09-14 2011-07-05 Better Place GmbH Electrical connector with a flexible blade-shaped housing with a handle with an opening
WO2011039770A2 (en) 2009-09-15 2011-04-07 Kpit Cummins Infosystems Ltd. Method of converting vehicle into hybrid vehicle
JP5774592B2 (en) 2009-09-15 2015-09-09 ケーピーアイティ テクノロジーズ リミテッド Hybrid vehicle motor assistance based on predicted driving range
US8423214B2 (en) 2009-09-15 2013-04-16 Kpit Cummins Infosystems, Ltd. Motor assistance for a hybrid vehicle
MX2012003116A (en) 2009-09-15 2012-06-19 Kpit Cummins Infosystems Ltd Method of providing assistance for a hybrid vehicle based on user input.
US8825243B2 (en) * 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
KR20120091282A (en) * 2009-11-03 2012-08-17 티엠4 인코포레이티드 Hybrid vehicle transmission
DE102009047395A1 (en) 2009-12-02 2011-06-09 Robert Bosch Gmbh Method and control unit for controlling a hybrid drive of a vehicle
WO2011070390A1 (en) * 2009-12-08 2011-06-16 Renault Trucks Method for controlling operation of a hybrid automotive vehicle and vehicle adapted to such a method
GB2476107A (en) * 2009-12-14 2011-06-15 Gm Global Tech Operations Inc A battery charging system for hybrid vehicles
FR2954257B1 (en) * 2009-12-18 2012-04-13 Solution F HYBRID POWERTRAIN GROUP.
US20110184642A1 (en) * 2009-12-18 2011-07-28 Daimler Trucks North America Llc Fuel efficient routing system and method
US9971865B2 (en) * 2010-03-01 2018-05-15 GM Global Technology Operations LLC Method for operating a hybrid vehicle
US8634975B2 (en) 2010-04-16 2014-01-21 The Boeing Company Vessel performance optimization reporting tool
US8594866B1 (en) 2010-04-16 2013-11-26 The Boeing Company Remote sensing and determination of tactical ship readiness
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US8731814B2 (en) 2010-07-02 2014-05-20 Ford Global Technologies, Llc Multi-modal navigation system and method
US8612077B2 (en) 2010-07-07 2013-12-17 Massachusetts Institute Of Technology Hybrid electric vehicle and method of path dependent receding horizon control
SE535514C2 (en) * 2010-07-08 2012-09-04 Scania Cv Ab Energy control system and method for a hybrid vehicle
US8035341B2 (en) 2010-07-12 2011-10-11 Better Place GmbH Staged deployment for electrical charge spots
US9846046B2 (en) 2010-07-30 2017-12-19 Ford Global Technologies, Llc Vehicle navigation method and system
US8543272B2 (en) * 2010-08-05 2013-09-24 Ford Global Technologies, Llc Distance oriented energy management strategy for a hybrid electric vehicle
US8335643B2 (en) 2010-08-10 2012-12-18 Ford Global Technologies, Llc Point of interest search, identification, and navigation
US8849552B2 (en) 2010-09-29 2014-09-30 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
US8521424B2 (en) 2010-09-29 2013-08-27 Ford Global Technologies, Llc Advanced map information delivery, processing and updating
DE102010048326A1 (en) * 2010-10-13 2012-04-19 Man Truck & Bus Ag Method and device for operating a vehicle, in particular a motor vehicle or utility vehicle
US8549838B2 (en) 2010-10-19 2013-10-08 Cummins Inc. System, method, and apparatus for enhancing aftertreatment regeneration in a hybrid power system
US8942919B2 (en) * 2010-10-27 2015-01-27 Honda Motor Co., Ltd. BEV routing system and method
US8626381B2 (en) * 2010-12-16 2014-01-07 GM Global Technology Operations LLC Increasing vehicle range by minimizing trapped HVAC energy
US8833496B2 (en) 2010-12-20 2014-09-16 Cummins Inc. System, method, and apparatus for battery pack thermal management
US8742701B2 (en) 2010-12-20 2014-06-03 Cummins Inc. System, method, and apparatus for integrated hybrid power system thermal management
US8473177B2 (en) 2010-12-31 2013-06-25 Cummins, Inc. Apparatuses, methods, and systems for thermal management of hybrid vehicle SCR aftertreatment
US9096207B2 (en) 2010-12-31 2015-08-04 Cummins Inc. Hybrid vehicle powertrain cooling system
US9043060B2 (en) 2010-12-31 2015-05-26 Cummins Inc. Methods, systems, and apparatuses for driveline load management
CN106926839B (en) 2011-01-13 2019-08-06 卡明斯公司 For controlling system, the method and apparatus of the distribution of the power output in hybrid powertrain
KR20130033449A (en) 2011-01-24 2013-04-03 도요타지도샤가부시키가이샤 Power storage system
US8818589B2 (en) 2011-01-28 2014-08-26 Ford Global Technologies, Llc System and method for controlling a vehicle
US9542846B2 (en) * 2011-02-28 2017-01-10 GM Global Technology Operations LLC Redundant lane sensing systems for fault-tolerant vehicular lateral controller
US11132650B2 (en) 2011-04-22 2021-09-28 Emerging Automotive, Llc Communication APIs for remote monitoring and control of vehicle systems
US9123035B2 (en) 2011-04-22 2015-09-01 Angel A. Penilla Electric vehicle (EV) range extending charge systems, distributed networks of charge kiosks, and charge locating mobile apps
US10289288B2 (en) 2011-04-22 2019-05-14 Emerging Automotive, Llc Vehicle systems for providing access to vehicle controls, functions, environment and applications to guests/passengers via mobile devices
US9348492B1 (en) 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for providing access to specific vehicle controls, functions, environment and applications to guests/passengers via personal mobile devices
US11270699B2 (en) 2011-04-22 2022-03-08 Emerging Automotive, Llc Methods and vehicles for capturing emotion of a human driver and customizing vehicle response
US10824330B2 (en) 2011-04-22 2020-11-03 Emerging Automotive, Llc Methods and systems for vehicle display data integration with mobile device data
US9104537B1 (en) 2011-04-22 2015-08-11 Angel A. Penilla Methods and systems for generating setting recommendation to user accounts for registered vehicles via cloud systems and remotely applying settings
US9536197B1 (en) 2011-04-22 2017-01-03 Angel A. Penilla Methods and systems for processing data streams from data producing objects of vehicle and home entities and generating recommendations and settings
US11203355B2 (en) 2011-04-22 2021-12-21 Emerging Automotive, Llc Vehicle mode for restricted operation and cloud data monitoring
US9288270B1 (en) 2011-04-22 2016-03-15 Angel A. Penilla Systems for learning user preferences and generating recommendations to make settings at connected vehicles and interfacing with cloud systems
US9189900B1 (en) 2011-04-22 2015-11-17 Angel A. Penilla Methods and systems for assigning e-keys to users to access and drive vehicles
US9648107B1 (en) 2011-04-22 2017-05-09 Angel A. Penilla Methods and cloud systems for using connected object state data for informing and alerting connected vehicle drivers of state changes
US9697503B1 (en) 2011-04-22 2017-07-04 Angel A. Penilla Methods and systems for providing recommendations to vehicle users to handle alerts associated with the vehicle and a bidding market place for handling alerts/service of the vehicle
US10286919B2 (en) 2011-04-22 2019-05-14 Emerging Automotive, Llc Valet mode for restricted operation of a vehicle and cloud access of a history of use made during valet mode use
US9365188B1 (en) 2011-04-22 2016-06-14 Angel A. Penilla Methods and systems for using cloud services to assign e-keys to access vehicles
US9171268B1 (en) 2011-04-22 2015-10-27 Angel A. Penilla Methods and systems for setting and transferring user profiles to vehicles and temporary sharing of user profiles to shared-use vehicles
US9346365B1 (en) 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for electric vehicle (EV) charging, charging unit (CU) interfaces, auxiliary batteries, and remote access and user notifications
US9493130B2 (en) 2011-04-22 2016-11-15 Angel A. Penilla Methods and systems for communicating content to connected vehicle users based detected tone/mood in voice input
US9180783B1 (en) 2011-04-22 2015-11-10 Penilla Angel A Methods and systems for electric vehicle (EV) charge location color-coded charge state indicators, cloud applications and user notifications
US9818088B2 (en) 2011-04-22 2017-11-14 Emerging Automotive, Llc Vehicles and cloud systems for providing recommendations to vehicle users to handle alerts associated with the vehicle
US9371007B1 (en) 2011-04-22 2016-06-21 Angel A. Penilla Methods and systems for automatic electric vehicle identification and charging via wireless charging pads
US9229905B1 (en) 2011-04-22 2016-01-05 Angel A. Penilla Methods and systems for defining vehicle user profiles and managing user profiles via cloud systems and applying learned settings to user profiles
US9230440B1 (en) 2011-04-22 2016-01-05 Angel A. Penilla Methods and systems for locating public parking and receiving security ratings for parking locations and generating notifications to vehicle user accounts regarding alerts and cloud access to security information
US9581997B1 (en) 2011-04-22 2017-02-28 Angel A. Penilla Method and system for cloud-based communication for automatic driverless movement
US9215274B2 (en) 2011-04-22 2015-12-15 Angel A. Penilla Methods and systems for generating recommendations to make settings at vehicles via cloud systems
US10572123B2 (en) 2011-04-22 2020-02-25 Emerging Automotive, Llc Vehicle passenger controls via mobile devices
US9285944B1 (en) 2011-04-22 2016-03-15 Angel A. Penilla Methods and systems for defining custom vehicle user interface configurations and cloud services for managing applications for the user interface and learned setting functions
US9139091B1 (en) 2011-04-22 2015-09-22 Angel A. Penilla Methods and systems for setting and/or assigning advisor accounts to entities for specific vehicle aspects and cloud management of advisor accounts
US9809196B1 (en) 2011-04-22 2017-11-07 Emerging Automotive, Llc Methods and systems for vehicle security and remote access and safety control interfaces and notifications
US10217160B2 (en) 2012-04-22 2019-02-26 Emerging Automotive, Llc Methods and systems for processing charge availability and route paths for obtaining charge for electric vehicles
US11370313B2 (en) 2011-04-25 2022-06-28 Emerging Automotive, Llc Methods and systems for electric vehicle (EV) charge units and systems for processing connections to charge units
US11294551B2 (en) 2011-04-22 2022-04-05 Emerging Automotive, Llc Vehicle passenger controls via mobile devices
DE102011102766A1 (en) 2011-05-28 2012-11-29 Audi Ag Hybrid vehicle and method for operating a device for charging a battery in a hybrid vehicle
US8718891B2 (en) 2011-06-06 2014-05-06 Honda Motor Co., Ltd. Smart feel regenerative braking
US8688321B2 (en) 2011-07-11 2014-04-01 Ford Global Technologies, Llc Traffic density estimation
US9014888B2 (en) 2011-07-21 2015-04-21 Saturna Green Systems Inc. Vehicle communication, analysis and operation system
CN103930937B (en) * 2011-11-14 2016-03-16 丰田自动车株式会社 Drive supporting device
US9157746B2 (en) 2011-11-16 2015-10-13 The Boeing Company Vessel routing system
FR2984570B1 (en) * 2011-12-14 2015-09-04 Renault Sa POWER MANAGEMENT METHOD FOR AN ELECTRIC VEHICLE
US8838385B2 (en) 2011-12-20 2014-09-16 Ford Global Technologies, Llc Method and apparatus for vehicle routing
SE1100957A1 (en) * 2011-12-23 2013-06-24 Bae Systems Haegglunds Ab Procedure and system for controlling a vehicle's propulsion
US9108640B2 (en) 2012-01-31 2015-08-18 Google Inc. Systems and methods for monitoring and reporting road quality
US8706416B2 (en) 2012-04-03 2014-04-22 Ford Global Technologies, Llc System and method for determining a vehicle route
US20130282202A1 (en) * 2012-04-19 2013-10-24 Hon Hai Precision Industry Co., Ltd. Vehicle control system and method
US9855947B1 (en) 2012-04-22 2018-01-02 Emerging Automotive, Llc Connected vehicle communication with processing alerts related to connected objects and cloud systems
CN102717722B (en) * 2012-06-01 2015-05-20 北京航空航天大学 Auxiliary power unit for electric vehicle
CN102717797B (en) * 2012-06-14 2014-03-12 北京理工大学 Energy management method and system of hybrid vehicle
GB201211848D0 (en) * 2012-07-02 2012-08-15 Imp Innovations Ltd A parallel drive train for a hybrid electric vehicle and a method of operating such a drive train
US9090255B2 (en) 2012-07-12 2015-07-28 Honda Motor Co., Ltd. Hybrid vehicle fuel efficiency using inverse reinforcement learning
US9669724B2 (en) 2012-08-31 2017-06-06 Johnson Controls Technology Center Optimized fuzzy logic controller for energy management in micro and mild hybrid electric vehicles
JP6013857B2 (en) * 2012-09-28 2016-10-25 株式会社神戸製鋼所 Secondary battery charge / discharge controller for construction machinery
CN102963353B (en) * 2012-11-16 2015-03-04 同济大学 Hybrid power system energy management method based on neural network
US9296301B2 (en) * 2012-11-24 2016-03-29 Ford Global Technologies, Llc Environment-aware regenerative braking energy calculation method
US9043085B2 (en) 2013-01-11 2015-05-26 Johnson Controls Technology Company Vehicle accessory load controller and method
CN103072572B (en) * 2013-01-18 2016-08-10 浙江吉利汽车研究院有限公司杭州分公司 Chargeable hybrid power vehicle remotely optimizes system
US9713963B2 (en) 2013-02-18 2017-07-25 Ford Global Technologies, Llc Method and apparatus for route completion likelihood display
US9863777B2 (en) 2013-02-25 2018-01-09 Ford Global Technologies, Llc Method and apparatus for automatic estimated time of arrival calculation and provision
US9266529B2 (en) * 2013-03-05 2016-02-23 Toyota Motor Engineering & Manufacturing North America, Inc. Known route HV control compensation
US9047774B2 (en) 2013-03-12 2015-06-02 Ford Global Technologies, Llc Method and apparatus for crowd-sourced traffic reporting
US8977479B2 (en) 2013-03-12 2015-03-10 Ford Global Technologies, Llc Method and apparatus for determining traffic conditions
US9673653B2 (en) * 2013-03-13 2017-06-06 Ford Global Technologies, Llc Control of power flow in battery cells of a vehicle
US9874452B2 (en) 2013-03-14 2018-01-23 Ford Global Technologies, Llc Method and apparatus for enhanced driving experience including dynamic POI identification
US9709969B2 (en) 2013-03-15 2017-07-18 Deere & Company Methods and apparatus to control machine configurations
US10995047B2 (en) 2013-03-15 2021-05-04 The Chemours Company Fc, Llc Process for the reduction of RƒC≡CX impurities in fluoroolefins
US20140265559A1 (en) * 2013-03-15 2014-09-18 Levant Power Corporation Vehicular high power electrical system
BR112015024902B1 (en) 2013-03-27 2021-07-20 Volvo Truck Corporation CONTROL METHOD FOR A DRIVE TRAIN FOR A VEHICLE AND CORRESPONDENTLY CONTROLLED DRIVE TRAIN
US9448073B2 (en) 2013-06-10 2016-09-20 Google Inc. System and method for assessing road quality using data collected from a mobile device
DE102013220426B3 (en) * 2013-10-10 2015-03-19 Continental Automotive Gmbh Method for operating a vehicle and driver assistance system for a vehicle
US9676289B2 (en) * 2013-10-11 2017-06-13 Ford Global Technologies, Llc System and method for adjusting battery pack state of charge thresholds
US9409563B2 (en) * 2013-10-31 2016-08-09 Ford Global Technologies, Llc PHEV energy management control with trip-oriented energy consumption preplanning
AT515193B1 (en) * 2013-11-04 2017-09-15 Avl List Gmbh Method for operating a hybrid vehicle
US9488493B2 (en) 2014-01-16 2016-11-08 Ford Global Technologies, Llc Method and apparatus for electric vehicle trip and recharge planning
JP6007929B2 (en) * 2014-02-24 2016-10-19 トヨタ自動車株式会社 Movement support device, movement support method, and driving support system
CN103863318B (en) * 2014-03-25 2017-03-01 河南理工大学 A kind of hybrid vehicle energy-conservation forecast Control Algorithm based on car-following model
US10002470B2 (en) 2014-04-30 2018-06-19 Ford Global Technologies, Llc Method and apparatus for predictive driving demand modeling
GB2529802B (en) * 2014-08-18 2019-01-09 Jaguar Land Rover Ltd A controller and method for enhanced battery charging in a hybrid electric vehicle
CN104249736B (en) * 2014-08-25 2016-06-22 河南理工大学 The energy-conservation forecast Control Algorithm of hybrid vehicle based on platoon driving
FR3027259B1 (en) * 2014-10-21 2018-06-15 Renault S.A.S. METHOD FOR CONTROLLING AND THERMALLY REGULATING A SYSTEM FOR EXTENDING AUTONOMY OF A MOTOR VEHICLE
US9758052B2 (en) * 2014-11-13 2017-09-12 Ford Global Technologies, Llc Power spike mitigation
US9702718B2 (en) 2015-05-08 2017-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for improving energy efficiency of a vehicle based on route prediction
KR101713735B1 (en) * 2015-07-10 2017-03-08 현대자동차 주식회사 Method for controlling output of low voltage DC-DC converter in green car, and low voltage DC-DC converter of green car
US9889764B2 (en) * 2015-09-17 2018-02-13 Hyundai Motor Company Apparatus and method for controlling battery of green car
CN105857114A (en) * 2016-06-27 2016-08-17 北京新能源汽车股份有限公司 Control method and device of electric vehicle energy recycling system
US10780885B2 (en) * 2016-11-18 2020-09-22 Ford Global Technologies, Llc Vehicle systems and methods for electrified vehicle battery thermal management based on anticipated power requirements
WO2018099561A1 (en) * 2016-12-01 2018-06-07 Volvo Truck Corporation A method and system for controlling a battery in a vehicle
US10457271B2 (en) 2016-12-13 2019-10-29 Ford Global Technologies, Llc Enhanced engine and battery operation
US10688981B2 (en) 2016-12-16 2020-06-23 Hyundai Motor Company Hybrid vehicle and method of controlling mode transition
US10288439B2 (en) 2017-02-22 2019-05-14 Robert D. Pedersen Systems and methods using artificial intelligence for routing electric vehicles
US11361595B2 (en) * 2019-03-14 2022-06-14 Ford Global Technologies, Llc Systems and methods for providing predictive distance-to-empty for vehicles
DE102019213749A1 (en) * 2019-09-10 2021-03-11 Zf Friedrichshafen Ag Method for maintaining an optimal speed specification for a distance to be covered by a vehicle
WO2021078390A1 (en) 2019-10-25 2021-04-29 Zf Friedrichshafen Ag Model-based predictive control of a drive machine of the powertrain of a motor vehicle and at least one vehicle component which influences the energy efficiency of the motor vehicle
WO2021078391A1 (en) 2019-10-25 2021-04-29 Zf Friedrichshafen Ag Model-based predictive regulation of an electric machine in a drivetrain of a motor vehicle
WO2021093953A1 (en) 2019-11-14 2021-05-20 Zf Friedrichshafen Ag Model predictive control of multiple components of a motor vehicle
JP7327198B2 (en) * 2020-02-17 2023-08-16 トヨタ自動車株式会社 VEHICLE CONTROL DATA GENERATION METHOD, VEHICLE CONTROL DEVICE, VEHICLE CONTROL SYSTEM, AND VEHICLE LEARNING DEVICE
CN113276828A (en) * 2020-02-19 2021-08-20 北京亿华通科技股份有限公司 Energy management method of fuel cell vehicle
CN112373457B (en) * 2020-05-15 2021-09-28 吉林大学 Energy and heat integrated model of hybrid electric vehicle for energy-saving control
CN112339756B (en) * 2020-10-14 2021-10-15 天津大学 New energy automobile traffic light intersection energy recovery optimization speed planning algorithm based on reinforcement learning
CN112455420B (en) * 2020-10-23 2022-04-22 西安交通大学 Hybrid power system energy control method based on fuzzy neural network
JP7338616B2 (en) * 2020-12-03 2023-09-05 トヨタ自動車株式会社 HYBRID VEHICLE CONTROL DEVICE AND HYBRID VEHICLE CONTROL METHOD
DE102021202468A1 (en) 2021-03-15 2022-09-15 Zf Friedrichshafen Ag Device and method for model-based predicted control of a component of a vehicle
CN114670661B (en) * 2021-04-02 2024-04-02 北京新能源汽车股份有限公司 Energy recovery torque control method and device and electric automobile
CN114475566B (en) * 2022-03-01 2024-01-30 重庆科技学院 Intelligent network allies oneself with inserts electric hybrid vehicle energy management real-time control strategy
CN115214605B (en) * 2022-09-21 2023-02-10 临工重机股份有限公司 Control method and system for series hybrid vehicle, vehicle and storage medium
CN117261621B (en) * 2023-11-21 2024-02-02 上海复通软件技术有限公司 Vehicle driving energy distribution control method and device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343970A (en) 1992-09-21 1994-09-06 Severinsky Alex J Hybrid electric vehicle
JPH06225405A (en) * 1993-01-21 1994-08-12 Toyota Motor Corp Controller for engine-driven generator of electric motor vehicle
JP3336777B2 (en) 1994-10-25 2002-10-21 株式会社エクォス・リサーチ Hybrid vehicle and hybrid vehicle control method
JPH08237810A (en) * 1995-02-27 1996-09-13 Aqueous Res:Kk Hybrid vehicle
JP3264123B2 (en) * 1995-03-06 2002-03-11 三菱自動車工業株式会社 Navigation system for hybrid electric vehicles
EP0774647B1 (en) 1995-05-10 2002-08-07 Equos Research Co. Ltd. Car navigator
JP3094872B2 (en) 1995-10-20 2000-10-03 トヨタ自動車株式会社 Control device for hybrid vehicles
JP3612828B2 (en) * 1995-11-30 2005-01-19 株式会社エクォス・リサーチ Hybrid vehicle
JP3256657B2 (en) * 1996-04-10 2002-02-12 本田技研工業株式会社 Hybrid vehicle control device
JPH10215503A (en) * 1997-01-29 1998-08-11 Nissan Motor Co Ltd Device for controlling hybrid electric vehicle
US6202024B1 (en) 1998-03-23 2001-03-13 Kabushikikaisha Equos Research Communicatory navigation system
JP3864560B2 (en) * 1998-06-03 2007-01-10 日産自動車株式会社 Battery control device
JP2000032606A (en) * 1998-07-14 2000-01-28 Toyota Motor Corp Vehicle
JP2000134719A (en) * 1998-10-29 2000-05-12 Isuzu Motors Ltd Battery charging controller for parallel hybrid electric vehicle
JP3903628B2 (en) * 1999-01-13 2007-04-11 日産自動車株式会社 Control device for hybrid vehicle
JP3536703B2 (en) * 1999-02-09 2004-06-14 株式会社日立製作所 Hybrid vehicle control method, hybrid vehicle control device, and hybrid vehicle
JP3395708B2 (en) * 1999-04-27 2003-04-14 株式会社日立製作所 Hybrid vehicle
JP3928300B2 (en) * 1999-05-06 2007-06-13 日産自動車株式会社 Control device for hybrid vehicle
JP2000320364A (en) * 1999-05-10 2000-11-21 Hitachi Ltd Control device for hybrid automobile
JP3654048B2 (en) * 1999-05-20 2005-06-02 日産自動車株式会社 Drive control apparatus for hybrid vehicle
DE19937381A1 (en) * 1999-08-07 2001-03-22 Daimler Chrysler Ag Motor vehicle with hybrid drive has event detector generating signals identifying external event; control signal affecting engine and/or motor can be generated depending on event signal
JP2001069605A (en) * 1999-08-24 2001-03-16 Hitachi Ltd Hybrid car control method
JP3374802B2 (en) * 1999-09-24 2003-02-10 株式会社日立製作所 Hybrid vehicle
JP3455145B2 (en) * 1999-09-30 2003-10-14 本田技研工業株式会社 Hybrid vehicle fan control device

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020069000A1 (en) * 2000-12-04 2002-06-06 Yoshitada Nakao Apparatus for controlling hybrid electric vehicle
US6856866B2 (en) * 2000-12-04 2005-02-15 Matsushita Electric Industrial Co., Ltd. Apparatus for controlling hybrid electric vehicle
US20040030471A1 (en) * 2001-06-13 2004-02-12 Ian Faye Method and device for triggering a hybrid vehicle
US6697717B2 (en) * 2001-09-28 2004-02-24 Pioneer Corporation Hybrid car
US7934573B2 (en) * 2003-10-06 2011-05-03 Robert Bosch Gmbh Method for regulating the state of charge of an energy accumulator in a vehicle having a hybrid drive unit
US20070295543A1 (en) * 2003-10-06 2007-12-27 Jochen Fassnacht Method for Regulating the State of Charge of an Energy Accumulator in a Vehicle Having a Hybrid Drive Unit
US20070029121A1 (en) * 2004-01-16 2007-02-08 Mikio Saitou Hybrid vehicle
US20050228553A1 (en) * 2004-03-30 2005-10-13 Williams International Co., L.L.C. Hybrid Electric Vehicle Energy Management System
US20080021628A1 (en) * 2004-03-30 2008-01-24 Williams International Co., L.L.C. Hybrid electric vehicle energy management system
US20080027639A1 (en) * 2004-03-30 2008-01-31 Williams International Co., L.L.C. Method of anticipating a vehicle destination
US20080177434A1 (en) * 2004-12-01 2008-07-24 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric and Hybrid- Hydraulic Vehicles
US7680568B2 (en) 2004-12-01 2010-03-16 Ise Corporation Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles
US20080147260A1 (en) * 2004-12-01 2008-06-19 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric and Hybrid- Hydraulic Vehicles
US20100145562A1 (en) * 2004-12-01 2010-06-10 Ise Corporation Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric Vehicles
US7657351B2 (en) 2004-12-01 2010-02-02 Ise Corporation Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles
US20060278449A1 (en) * 2005-06-10 2006-12-14 Torre-Bueno Jose D L Inputs for optimizing performance in hybrid vehicles
US20100217467A1 (en) * 2005-06-10 2010-08-26 De La Torre Bueno Jose Inputs for optimizing performance in hybrid vehicles
US7665559B2 (en) 2005-06-10 2010-02-23 De La Torre-Bueno Jose Inputs for optimizing performance in hybrid vehicles
WO2006135868A3 (en) * 2005-06-10 2007-04-12 Jose De La Torre-Bueno Inputs for optimizing performance in hyprid vehicles
WO2006135868A2 (en) * 2005-06-10 2006-12-21 Jose De La Torre-Bueno Inputs for optimizing performance in hyprid vehicles
US7958958B2 (en) * 2005-06-10 2011-06-14 Jose de la Torre-Bueno Inputs for optimizing performance in hybrid vehicles
US20070208467A1 (en) * 2006-03-06 2007-09-06 Gm Global Technology Operations, Inc. Hybrid vehicle powertrain control method and apparatus
US7539562B2 (en) * 2006-03-06 2009-05-26 Gm Global Technology Operations, Inc. Hybrid vehicle powertrain control method and apparatus
US20070294026A1 (en) * 2006-04-03 2007-12-20 Harman Becker Automotive Systems Gmbh Route determination system for a hybrid vehicle
EP1842757A1 (en) 2006-04-03 2007-10-10 Harman Becker Automotive Systems GmbH Method for controlling a hybrid vehicle and system thereof
EP1842758A1 (en) 2006-04-03 2007-10-10 Harman Becker Automotive Systems GmbH Route determination for a hybrid vehicle and system therefor
US8091667B2 (en) * 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US20070284162A1 (en) * 2006-06-07 2007-12-13 Zettel Andrew M Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US8234025B2 (en) * 2006-11-28 2012-07-31 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US20080300743A1 (en) * 2006-11-28 2008-12-04 Gm Global Technology Operations, Inc. Control system for a hybrid powertrain system
US20080254938A1 (en) * 2007-04-16 2008-10-16 Honda Motor Co., Ltd. Vehicle clutch engagement control system and method
US7917268B2 (en) 2007-04-16 2011-03-29 Honda Motor Co., Ltd Vehicle clutch engagement control system and method
GB2448972A (en) * 2007-05-03 2008-11-05 Ford Motor Co A System and Method for Controlling the Operation of a Vehicle
US7865298B2 (en) 2007-05-03 2011-01-04 Ford Motor Company System and method for providing route information to a driver of a vehicle
GB2448972B (en) * 2007-05-03 2012-05-02 Ford Motor Co A system and method for controlling the operation of a hybrid vehicle
US20080275644A1 (en) * 2007-05-03 2008-11-06 Ford Motor Company System and method for providing route information to a driver of a vehicle
US20100138099A1 (en) * 2007-11-01 2010-06-03 Toyota Jidosha Kabushiki Kaisha Travel trace generation method and travel trace generation device
US8428812B2 (en) * 2007-11-01 2013-04-23 Toyota Jidosha Kabushiki Kaisha Travel trace generation method and travel trace generation device
US20100299054A1 (en) * 2007-11-12 2010-11-25 Renault S.A.S. Method and system for managing the operation of a motor vehicle as a function of driving conditions
FR2923438A1 (en) * 2007-11-12 2009-05-15 Renault Sas METHOD AND SYSTEM FOR MANAGING THE OPERATION OF A MOTOR VEHICLE BASED ON ROLLING CONDITIONS
WO2009068783A2 (en) * 2007-11-12 2009-06-04 Renault S.A.S Method and system for managing the operation of a motor vehicle as a function of driving conditions
WO2009068783A3 (en) * 2007-11-12 2009-07-23 Renault Sa Method and system for managing the operation of a motor vehicle as a function of driving conditions
US20090192660A1 (en) * 2008-01-25 2009-07-30 Ford Motor Company Method and system for controlling a motive power system of an automotive vehicle
US8005587B2 (en) 2008-01-25 2011-08-23 Ford Motor Company Method and system for controlling a motive power system of an automotive vehicle
US8190318B2 (en) * 2008-04-15 2012-05-29 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
US20090259355A1 (en) * 2008-04-15 2009-10-15 The Uwm Research Foundation, Inc. Power management of a hybrid vehicle
US20090259363A1 (en) * 2008-04-15 2009-10-15 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
WO2009129106A1 (en) * 2008-04-15 2009-10-22 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
US8369447B2 (en) 2008-06-04 2013-02-05 Apple Inc. Predistortion with sectioned basis functions
US20090302940A1 (en) * 2008-06-04 2009-12-10 Nortel Networks Limited Predistortion with sectioned basis functions
US8489268B2 (en) 2008-07-31 2013-07-16 Continental Automotive Gmbh Method and device for operating a motor vehicle
US20110118930A1 (en) * 2008-07-31 2011-05-19 Werner Hauptmann Method and Device for Operating a Motor Vehicle
US8073605B2 (en) * 2008-08-13 2011-12-06 GM Global Technology Operations LLC Method of managing power flow in a vehicle
US8260481B2 (en) * 2008-08-13 2012-09-04 GM Global Technology Operations LLC Method of managing power flow in a vehicle
US20100042277A1 (en) * 2008-08-13 2010-02-18 Gm Global Technology Operations, Inc. Method of managing power flow in a vehicle
US20100042304A1 (en) * 2008-08-13 2010-02-18 Gm Global Technology Operations, Inc. Method of managing power flow in a vehicle
US20100088011A1 (en) * 2008-10-02 2010-04-08 Alan Eugene Bruce Optimal vehicle router with energy management system
US8108138B2 (en) * 2008-10-02 2012-01-31 The Boeing Company Optimal vehicle router with energy management system
US8412476B2 (en) 2008-11-11 2013-04-02 Aisin Aw Co., Ltd. Travel support system, method, and program
US20100121590A1 (en) * 2008-11-11 2010-05-13 Aisin Aw Co., Ltd. Travel support system, method, and program
CN101734248A (en) * 2008-11-11 2010-06-16 爱信艾达株式会社 Travel support system, method, and program
US8594871B2 (en) * 2008-11-13 2013-11-26 Toyota Jidosha Kabushiki Kaisha Vehicle battery diagnosis system, and vehicle
US20110208382A1 (en) * 2008-11-13 2011-08-25 Toyota Jidosha Kabushiki Kaisha Vehicle battery diagnosis system, and vehicle
US8935174B2 (en) 2009-01-16 2015-01-13 The Boeing Company Analyzing voyage efficiencies
US20100185471A1 (en) * 2009-01-16 2010-07-22 Henry Chen Analyzing voyage efficiencies
US20100291427A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Modular powertrain, systems, and methods
WO2010132769A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Inc Modular powertrain systems, and methods
US20100291418A1 (en) * 2009-05-15 2010-11-18 Sinoelectric Powertrain Corporation Battery packs, systems, and methods
US20120065828A1 (en) * 2009-05-26 2012-03-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and travel mode setting method of hybrid vehicle
US10315641B2 (en) * 2009-05-26 2019-06-11 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and travel mode setting method of hybrid vehicle
US8829848B2 (en) 2009-05-27 2014-09-09 Nissan Motor Co., Ltd. Battery charging control device and battery charging control method for electric vehicle
DE102009046568A1 (en) * 2009-11-10 2011-05-12 SB LiMotive Company Ltd., Suwon Method and arrangement for operating vehicles with electric drive and a corresponding computer program and a corresponding computer-readable storage medium
US20110115439A1 (en) * 2009-11-17 2011-05-19 Hyundai Motor Company Battery's state-of-charge balancing control method for hybrid vehicle
US8330424B2 (en) 2009-11-17 2012-12-11 Hyundai Motor Company Battery's state-of-charge balancing control method for hybrid vehicle
DE102010029122B4 (en) 2009-11-17 2022-06-15 Hyundai Motor Company Control adjustment procedure for the state of charge of a battery for a hybrid vehicle
US20110130885A1 (en) * 2009-12-01 2011-06-02 Bowen Donald J Method and system for managing the provisioning of energy to or from a mobile energy storage device
US20110166740A1 (en) * 2010-01-07 2011-07-07 Lane David Desborough Method, system, and apparatus for operating a vehicle
US8392105B2 (en) * 2010-01-07 2013-03-05 General Electric Company Method, system, and apparatus for operating a vehicle
US8463473B2 (en) * 2010-01-10 2013-06-11 Ford Global Technologies, Llc Charge utilization control system and method
US20110166725A1 (en) * 2010-01-10 2011-07-07 Lewis Booth Charge utilization control system and method
US20110184600A1 (en) * 2010-01-25 2011-07-28 Ford Global Technologies, Llc Adaptive Initial Estimation and Dynamic Determination and Update of Distance Until Charge of a Plug-In Hybrid Electric Vehicle
US9459110B2 (en) 2010-01-25 2016-10-04 Ford Global Technologies, Llc Adaptive initial estimation and dynamic determination and update of distance until charge of a plug-in hybrid electric vehicle
US20130013141A1 (en) * 2010-03-04 2013-01-10 Konstantin Neiss Motor vehicle hybrid drive arrangement
CN102781751A (en) * 2010-03-04 2012-11-14 戴姆勒股份公司 Motor vehicle drive device
US20110246012A1 (en) * 2010-04-05 2011-10-06 Continental Automotive Systems, Inc. Intelligent regenerative braking utilizing environmental data
US8779728B2 (en) 2010-04-08 2014-07-15 Sinoelectric Powertrain Corporation Apparatus for preheating a battery pack before charging
DE102010015342A1 (en) * 2010-04-17 2011-10-20 Albrecht Kretzschmar Energy navigation map for e.g. hybrid vehicle, has gradient values measured and/or calculated along route and driving direction, where gradient values and sum value are utilized to display energy- and consumption-optimized routing
US8332096B2 (en) * 2010-06-17 2012-12-11 GM Global Technology Operations LLC Method and a system for providing a driving-range forecast for a vehicle
US20110313610A1 (en) * 2010-06-17 2011-12-22 Gm Global Technology Operations, Inc. Method and a system for providing a driving-range forecast for a vehicle
US9172120B2 (en) 2010-07-14 2015-10-27 Sinoelectric Powertrain Corporation Battery pack fault communication and handling
US8659261B2 (en) 2010-07-14 2014-02-25 Sinoelectric Powertrain Corporation Battery pack enumeration method
DE102010045032A1 (en) * 2010-09-10 2012-03-15 Audi Hungaria Motor Kft. Automobile with electric drive and battery and method for operating a device for charging a battery
CN102529856A (en) * 2010-10-12 2012-07-04 罗伯特·博世有限公司 Recuperator system for use on board of motor vehicle, has electrical energy storage and recuperator for converting kinetic energy of motor vehicle into electrical energy
US8486283B2 (en) 2010-11-02 2013-07-16 Sinoelectric Powertrain Corporation Method of making fusible links
US9023218B2 (en) 2010-11-02 2015-05-05 Sinoelectric Powertrain Corporation Method of making fusible links
US8641273B2 (en) 2010-11-02 2014-02-04 Sinoelectric Powertrain Corporation Thermal interlock for battery pack, device, system and method
DE102011055563B4 (en) 2010-11-22 2023-02-09 Denso Corporation Method for a control device for a vehicle
US8798831B2 (en) * 2010-12-03 2014-08-05 Hyundai Motor Company Device and method for calculating distance to empty of electric vehicle
US20120143413A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Device and method for calculating distance to empty of electric vehicle
US20130289815A1 (en) * 2011-01-11 2013-10-31 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
CN103298642A (en) * 2011-01-11 2013-09-11 丰田自动车株式会社 Vehicle control apparatus
CN102729822A (en) * 2011-04-08 2012-10-17 罗伯特·博世有限公司 Device and method for operating vehicle
US10065628B2 (en) 2011-05-09 2018-09-04 Ford Global Technologies, Llc Location enhanced distance until charge (DUC) estimation for a plug-in hybrid electric vehicle (PHEV)
US8565952B2 (en) * 2011-05-20 2013-10-22 GM Global Technology Operations LLC Forward-looking hybrid vehicle control strategy
US20120296502A1 (en) * 2011-05-20 2012-11-22 GM Global Technology Operations LLC Forward-looking hybrid vehicle control strategy
US8600598B2 (en) * 2011-06-08 2013-12-03 GM Global Technology Operations LLC Thermal conditioning of vehicle rechargeable energy storage systems
US20120316712A1 (en) * 2011-06-08 2012-12-13 GM Global Technology Operations LLC Thermal conditioning of vehicle rechargeable energy storage systems
US9409622B2 (en) 2011-06-14 2016-08-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Power management in an electrically-assisted vehicle
US9334013B2 (en) 2011-06-14 2016-05-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Power management method for an electrically-assisted vehicle
US9744873B2 (en) 2011-10-12 2017-08-29 Volkswagen Ag Method and control device for charging a battery of a vehicle
US9045126B2 (en) * 2011-11-07 2015-06-02 Honda Motor Co., Ltd. Method of optimizing energy use of a power plant using geographical information without user input to the navigation system
US20130116870A1 (en) * 2011-11-07 2013-05-09 Honda Motor Co., Ltd. Method of optimizing energy use of a power plant using geographical information without user input to the navigation system
US9827925B2 (en) * 2011-11-18 2017-11-28 Toyota Jidosha Kabushiki Kaisha Driving environment prediction device, vehicle control device and methods thereof
US20140316628A1 (en) * 2011-11-18 2014-10-23 Toyota Jidosha Kabushiki Kaisha Driving environment prediction device, vehicle control device and methods thereof
US20130151047A1 (en) * 2011-12-09 2013-06-13 Kia Motors Corporation System and method of assisting driver in driving electric vehicle in more environmentally efficient manner
US9114727B2 (en) * 2011-12-09 2015-08-25 Hyundai Motor Company System and method of assisting driver in driving electric vehicle in more environmentally efficient manner
DE102012001740A1 (en) * 2012-01-28 2013-08-01 Volkswagen Aktiengesellschaft Method for operating a hybrid drive unit for a motor vehicle and hybrid drive unit
US10336205B2 (en) * 2012-02-03 2019-07-02 International Business Machines Corporation System and method of charging a vehicle using a dynamic power grid, and system and method of managing power consumption in the vehicle
US8676400B2 (en) * 2012-02-03 2014-03-18 Volkswagen Ag Navigation system and method for an electric vehicle travelling from a starting point to a destination
US10245968B2 (en) * 2012-02-03 2019-04-02 International Business Machines Corporation System and method of charging a vehicle using a dynamic power grid, and system and method of managing power consumption in the vehicle
DE102012011996B4 (en) 2012-06-16 2023-03-30 Volkswagen Aktiengesellschaft Method and device for optimizing operation of a vehicle and vehicle itself
DE102012011996A1 (en) * 2012-06-16 2013-12-19 Volkswagen Aktiengesellschaft Method for optimization of operation of electric motor-driven vehicle, involves determining state of charge of energy accumulator and driving strategy of vehicle for certain sections of route by using trip planning
DE202013102636U1 (en) 2012-06-20 2013-08-14 Eeuwe Durk Kooi Vehicle with hybrid engine
US9102334B2 (en) 2012-10-29 2015-08-11 Deere & Company Methods and apparatus to control motors
GB2512428B (en) * 2012-12-10 2016-03-09 Jaguar Land Rover Ltd Vehicle and method of control thereof
GB2512428A (en) * 2012-12-10 2014-10-01 Jaguar Land Rover Ltd Vehicle and method of control thereof
US10513255B2 (en) 2012-12-10 2019-12-24 Jaguar Land Rover Limited Hybrid electric vehicle control system and method
US20150314775A1 (en) * 2012-12-10 2015-11-05 Jaguar Land Rover Limited Hybrid electric vehicle control system and method
US9815451B2 (en) * 2012-12-10 2017-11-14 Jaguar Land Rover Limited Hybrid electric vehicle control system and method
CN104340218A (en) * 2013-08-06 2015-02-11 福特全球技术公司 Real-time fuel consumption estimation
US9114806B2 (en) * 2014-01-22 2015-08-25 Ford Global Technologies, Llc System and method for controlling battery power based on predicted battery energy usage
US20150203096A1 (en) * 2014-01-22 2015-07-23 Ford Global Technologies, Llc System and Method for Controlling Battery Power Based on Predicted Battery Energy Usage
US9056556B1 (en) * 2014-02-25 2015-06-16 Elwha Llc System and method for configuration and management of an energy storage system for a vehicle
US9878631B2 (en) 2014-02-25 2018-01-30 Elwha Llc System and method for predictive control of an energy storage system for a vehicle
US9079505B1 (en) * 2014-02-25 2015-07-14 Elwah LLC System and method for management of a fleet of vehicles having an energy storage system
CN104908733A (en) * 2014-03-13 2015-09-16 通用汽车环球科技运作有限责任公司 Hybrid vehicle and method of controlling a hybrid vehicle with mode selection based on look ahead data
US9440654B2 (en) 2014-03-13 2016-09-13 GM Global Technology Operations LLC Hybrid vehicle and method of controlling a hybrid vehicle with mode selection based on look ahead data
US20150298680A1 (en) * 2014-04-22 2015-10-22 Alcatel-Lucent Usa Inc. System and method for control of a hybrid vehicle with regenerative braking using location awareness
US9327712B2 (en) * 2014-04-22 2016-05-03 Alcatel Lucent System and method for control of a hybrid vehicle with regenerative braking using location awareness
US9527399B2 (en) * 2014-08-25 2016-12-27 Hyundai Motor Company Device and method for controlling battery SOC of hybrid vehicle
US20160052420A1 (en) * 2014-08-25 2016-02-25 Hyundai Motor Company Device and method for controlling battery soc of hybrid vehicle
US10086822B2 (en) * 2014-11-07 2018-10-02 Valeo Systemes De Controle Moteur Engine control system
US9643589B2 (en) * 2014-11-18 2017-05-09 Toyota Jidosha Kabushiki Kaisha Vehicular information processing device
US20160137184A1 (en) * 2014-11-18 2016-05-19 Toyota Jidosha Kabushiki Kaisha Vehicular information processing device
US9975546B2 (en) * 2015-03-20 2018-05-22 Hyundai Motor Company Engine clutch control system for hybrid vehicle and method thereof
US20160272193A1 (en) * 2015-03-20 2016-09-22 Hyundai Motor Company Engine clutch control system for hybrid vehicle and method thereof
US9616879B2 (en) * 2015-05-14 2017-04-11 Ford Global Technologies, Llc Battery state of charge control with preview information classification
CN106043088A (en) * 2016-08-03 2016-10-26 广西玉柴机器股份有限公司 Movable power generation vehicle system
CN106004425A (en) * 2016-08-03 2016-10-12 广西玉柴机器股份有限公司 Power assembly system for movable electricity generation vehicle
US20180054069A1 (en) * 2016-08-18 2018-02-22 Pavel Trnka Battery pack cell active balancing
US10500973B2 (en) * 2017-02-22 2019-12-10 Hyundai Motor Company Electric vehicle and control method thereof
US20180236898A1 (en) * 2017-02-22 2018-08-23 Hyundai Motor Company Electric vehicle and control method thereof
US20180339694A1 (en) * 2017-05-25 2018-11-29 Ford Global Technologies, Llc System and method for adjusting battery state of charge parameters
US10556497B2 (en) * 2017-05-25 2020-02-11 Ford Global Technologies, Llc System and method for adjusting battery state of charge parameters
US10668916B2 (en) * 2017-12-05 2020-06-02 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
US11001248B2 (en) * 2018-10-08 2021-05-11 GM Global Technology Operations LLC Method for enhancing powertrain efficiency and driveline quality through dynamic mission planning optimization
WO2020099133A1 (en) * 2018-11-12 2020-05-22 Robert Bosch Gmbh Method for operating an electric vehicle
CN110667540A (en) * 2019-11-15 2020-01-10 吉林工程技术师范学院 Electronic power control power system for electric automobile and control method thereof
US20220032925A1 (en) * 2020-07-31 2022-02-03 Uatc, Llc Vehicle Trajectory Dynamics Validation and Interpolation
US11518393B2 (en) * 2020-07-31 2022-12-06 Uatc, Llc Vehicle trajectory dynamics validation and interpolation
US20220196418A1 (en) * 2020-12-22 2022-06-23 Nissan North America, Inc. Navigation Map Learning for Intelligent Hybrid-Electric Vehicle Planning
US11946760B2 (en) * 2020-12-22 2024-04-02 Nissan North America, Inc. Navigation map learning for intelligent hybrid-electric vehicle planning
DE102021205861A1 (en) 2021-06-10 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung Method for the targeted reduction of a battery charge level of a chargeable vehicle battery of a vehicle

Also Published As

Publication number Publication date
JP4637443B2 (en) 2011-02-23
EP1256476A2 (en) 2002-11-13
US6487477B1 (en) 2002-11-26
CA2385952A1 (en) 2002-11-09
JP2003047110A (en) 2003-02-14
EP1256476B1 (en) 2010-11-24
EP1256476A3 (en) 2006-08-16
DE60238368D1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US6487477B1 (en) Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
KR100949260B1 (en) Battery prediction control algorism for hybrid electric vehicle
US8374740B2 (en) Self-learning satellite navigation assisted hybrid vehicle controls system
US7849944B2 (en) Self-learning control system for plug-in hybrid vehicles
US9043061B2 (en) Methods, systems, and apparatuses for driveline load management
US6687581B2 (en) Control device and control method for hybrid vehicle
CN106394546B (en) Control device
CN100368243C (en) Hybrid power sources distribution management
CN102826084B (en) Method for controlling drive system of vehicle
US6314347B1 (en) Driving control apparatus of hybrid vehicle and method thereof
JP3624839B2 (en) Control device for hybrid vehicle
US9539996B2 (en) Energy management control of a plug-in hybrid electric vehicle
US7659698B2 (en) System and method for controlling a state of charge of an energy storage system
US8447511B2 (en) Method for controlling a hybrid vehicle and hybrid vehicle
US20130024055A1 (en) Adaptive energy management in a hybrid vehicle
US20040030471A1 (en) Method and device for triggering a hybrid vehicle
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
US11370411B2 (en) Control device of vehicle
JP2000324609A (en) Controlling device for hybrid vehicle
KR102518600B1 (en) Method for controlling deceleration of environmentally friendly vehicle
CN115071665A (en) Vehicle control device, vehicle control method, and storage medium
CN114715121A (en) Regenerative braking control system for hybrid or electric vehicles
JP2003070102A (en) Controller for hybrid vehicle
Vajedi et al. Traction-motor power ratio and speed trajectory optimization for power split PHEVs using route information
JP3912362B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORD MOTOR COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOESTMAN, JOANNE T.;PATIL, PRABHAKAR B.;STUNTZ, ROSS M.;AND OTHERS;REEL/FRAME:011803/0363;SIGNING DATES FROM 20010502 TO 20010508

Owner name: FORD GLOBAL TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD MOTOR COMPANY;REEL/FRAME:011807/0048

Effective date: 20010508

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12