US20020193844A1 - Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit - Google Patents

Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit Download PDF

Info

Publication number
US20020193844A1
US20020193844A1 US10/208,223 US20822302A US2002193844A1 US 20020193844 A1 US20020193844 A1 US 20020193844A1 US 20822302 A US20822302 A US 20822302A US 2002193844 A1 US2002193844 A1 US 2002193844A1
Authority
US
United States
Prior art keywords
electrode
battery assembly
battery
electrodes
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/208,223
Inventor
Steve Michelson
Jeffrey Mannheimer
Robert Leon
Osvaldo Romero
Jerald Selevan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES
Original Assignee
CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/350,426 external-priority patent/US6445955B1/en
Application filed by CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES filed Critical CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES
Priority to US10/208,223 priority Critical patent/US20020193844A1/en
Assigned to CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES reassignment CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEON, ROBERT, MANNHEIMER, JEFFREY S., MICHELSON, STEPHEN A., ROMERO, OSVALDO D., SELEVAN, JERALD A.
Publication of US20020193844A1 publication Critical patent/US20020193844A1/en
Assigned to Lott & Friedland, P.A. reassignment Lott & Friedland, P.A. CHARGING AND RETAINING LIEN Assignors: CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES, INC., LEON, ROBERT, MANNHEIMER, JEFFREY S., MICHELSON, STEPHEN A., ROMERO, OSVALDO D., SELEVAN, JERALD A.
Priority to US11/434,453 priority patent/US20070060975A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply

Definitions

  • the invention relates generally to transcutaneous electrical neuro-stimulation (TENS) units and this invention particularly relates to an electrode-battery assembly for a miniaturized wireless TENS unit capable of being pre-programmed to achieve a variety of waveforms, with or without the use of a remote controller means, each waveform having unique features capable of masking pain or promoting functional restoration in a user's body.
  • TENS transcutaneous electrical neuro-stimulation
  • TENS devices have been traditionally prescribed in the medical industry for chronic pain. While patients experiencing acute pain are prescribed anti-inflammatories and narcotic agents, the treatment of chronic pain, usually defined as unrelieved pain for at least 30 days, has usually been dealt with via TENS-related prescriptions. However, TENS devices have been shown to provide rapid and effective relief for acute pain without side effects or the possibility of addiction. TENS does not utilize anesthesia or narcosis. Patients remain awake, alert and functional, and retain the protective qualities of increased pain perception.
  • TENS is commonly used for acute pain management by physical therapists in comprehensive rehabilitation programs in conjunction with other treatments. TENS devices are usually large as well as being complex, expensive and require lead wires running to each electrode, making them difficult for use at home, at work or at play.
  • the '470 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion.
  • the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse.
  • the first and second phase duration and initial first phase amplitude are predetermined values.
  • the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient.
  • the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient.
  • the '454 patent to Cameron et al. describes an electrotherapy method and apparatus for delivering a multiphasic waveform from an energy source to a patient.
  • the preferred embodiment of the method comprises the steps of charging the energy source to an initial level; discharging the energy source across the electrodes to deliver electrical energy to the patient in a multiphasic waveform; monitoring a patient-dependent electrical parameter during the discharging step; shaping the waveform of the delivered electrical energy based on a value of the monitored electrical parameter, wherein the relative duration of the phases of the multiphasic waveform is dependent on the value of the monitored electrical parameter.
  • the preferred apparatus comprises an energy source; two electrodes adapted to make electrical contact with a patient; a connecting mechanism forming an electrical circuit with the energy source and the electrodes when the electrodes are attached to a patient; and a controller operating the connecting mechanism to deliver electrical energy from the energy source to the electrodes in a multiphasic waveform, the relative phase durations of which are based on an electrical parameter monitored during delivery of the electrical energy.
  • the preferred defibrillator apparatus weighs less than 4 pounds and has a volume less than 150 cubic inches, and most preferably, weighs approximately three pounds or less and has a volume of approximately 141 cu. in.
  • the '612 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion.
  • the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse.
  • the first and second phase duration and initial first phase amplitude are predetermined values.
  • the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient.
  • the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient.
  • the '427 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion.
  • the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse.
  • the first and second phase duration and initial first phase amplitude are predetermined values.
  • the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient.
  • the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient.
  • the '863 patent to Rauch et al. describes a system for tissue-impedance matched pulsed radio frequency (PRF) electrotherapy, which includes a power supply, an excitation board for generating PRF signals of a selectable frequency, the board having an input from the power supply.
  • the system also includes a power amplifier for signals from the excitation board. Included is a subsystem for controlling pulse width duration, pulse burst repetition rate, and amplitude of the PRF signals, the controlling system having an input from the power supply.
  • a subsystem for continually comparing the amplitude of the PRF signals outputted from the amplifier to a reference value including a feedback circuit responsive to difference information between the compared signals and the reference value, the difference information inputted to the controlling subsystem for adjustment of the amplitude and impedance of the PRF signals from the excitation board, the comparing system including an output of power and impedance compensated PRF signals.
  • the system also includes a variable reactance athermapeutic applicator having, as a coaxial cable input, the power and impedance compensated PRF signals outputted from the comparing subassembly, the applicator including a treatment surface having an effective physiologic impedance in the range of 25 to 75 ohms.
  • the '060 patent to Pohl et al. describes a reconfigurable physical therapy apparatus and a method of providing operator-selected stimuli to a patient are provided.
  • the apparatus preferably has a physical therapy applicator including a transducer for applying a therapeutic treatment to a patient, and a memory for storing identification data representative of a plurality of physical ailments for each of a plurality of human body areas and a set of transducer operational parameters associated with each predetermined physical ailment and each predetermined body area.
  • the apparatus also has an ailment display screen responsive to the memory device for displaying at least one of the identification data representative of a plurality of physical ailments, which are associated with at least one of the identified human body areas.
  • An ailment selector is positioned in electrical communication with at least the memory device and being responsive to operator selection of one of the identified physical ailments, which are associated with human body areas for obtaining the associated transducer operational parameters.
  • the apparatus further has a transducer reconfigurer positioned in electrical communication with the transducer of the applicator and being responsive to the ailment selector for reconfiguring the transducer to provide therapeutic treatment to the identified body part according to the obtained transducer operational parameters
  • the '552 patent to Hansjurgens describes an apparatus for electrotherapeutic applications operating in the medium-frequency range between 1000 Hz and 100,000 Hz where, in relation to a body part to be treated, a circuit with medium-frequency current (MF current) is applied across two electrodes, the invention proposes to keep the amplitude of the MF current constant and to modulate the frequency by one thousand to several thousand Hz (corner frequencies) with a modulation frequency of >0 to several hundred Hz (for instance 200 Hz) in order to generate in synchronism with the modulation frequency action potentials in the treatment area.
  • MF current medium-frequency current
  • the '656 patent to Reiss describes a combined dual channel electromuscular stimulator for directing electrical pulses into the skin and a dual channel electromyograph for detecting electrical signals generated in muscles.
  • the electromuscular stimulator includes electronic circuitry for generating electrical pulses, controlling the pulse rate and intensity and controlling various pulse characteristics.
  • the pulses are administered by skin contacting electrodes.
  • the electromyograph includes skin contacting electrodes for receiving input signals from the skin and electronic circuitry for receiving detected signals without interference with the stimulator output signals, amplifying, filtering and displaying the input signals.
  • a control panel includes switches and controls for varying the various system parameters.
  • the '165 patent to Malaugh et al. describes an electrotherapy stimulation unit having a high voltage pulsed current (HVPC) electrotherapy stimulation device providing short duration low amperage high voltage constant charge HVPC pulses to a patient to reduce pain, and a neuromuscular stimulation (NMS) electrotherapy device providing constant current NMS pulses to a patient to re-educate and prevent atrophy of muscle tissue.
  • HVPC device has a voltage source and at least one HVPC output circuit having a coil, a switching device, and a holding capacitor. When the switching device is turned on, an increasing current is drawn through the coil. When the switching device is turned off, a voltage spike results across the coil, charging the holding capacitor. Thereafter, the charge dissipates into the patient.
  • the HVPC device senses the voltage provided by the voltage source and calculates the period of time the switching device is turned on based upon the sensed voltage and the pre-selected peak voltage of the voltage spike.
  • the HVPC device provides a train of HVPC pulses, each HVPC pulse comprising first and second voltage spikes.
  • the HVPC device detects whether a patient is properly connected to the HVPC output of the output circuit. If the second voltage spike is larger than the first by a predetermined value, a patient is not connected to the HVPC output circuit, and the output circuit is disabled.
  • the '481 patent to Schöndorf describes an electrotherapeutic field stimulator includes at least a pair of electrodes for applying the electricity to the body in the form of an electric field and a generator for providing the electricity to the electrodes in the form of at least two superimposed alternating current fields of different frequencies to provide the treatment waveform.
  • the '231 patent to Sporer describes a method of microcurrent electrotherapy utilizing a combination of specified values for selected parameters including electrical stimulus wave form, direction, magnitude, voltage, polarity and frequency to provide a variety of therapeutic enhancements.
  • the '338 patent to Grey et al. describes an electrotherapy device for delivering electrical energy to subcutaneous, excitable tissues in and around the joints of the human body for the purposes of pain control and the promotion of tissue healing post injury is provided.
  • the device includes a housing containing at least one pair of electrodes connected to an electronics unit.
  • the device is specifically designed to be small, portable and lightweight so as to not interfere with user movements and/or function.
  • the electronics unit consists of a housing that contains batteries, a microcontroller integrated circuit (including associated control software) coupled to a transistor-based intensity stage, which is then coupled to a transformer-based output stage coupled to subminiature jacks used to connect the electronics unit to the electrodes.
  • Control software monitors user-controlled mechanical switches for the selection of one of six operational modes (TENS, MENS, or iontophoresis) and one of six discrete intensity levels within each operational mode.
  • the housing is a flexible, elastic sleeve that conforms to joint anatomy and has the electrodes sewn into specific positions such that when the user puts on the sleeve, the electrodes are placed at the correct anatomic position over the affected joint.
  • the '283 patent to Flick describes an electrical therapeutic apparatus (10) for the treatment of body pain and edema.
  • the apparatus has an electrical pulse-producing device (11) coupled to wrap (12) by conductor (13).
  • the wrap is comprised of nylon coated with silver, which forms an electrode.
  • a second electrode (14) is coupled by conductors (15) to the device.
  • the '320 patent to Schaldach et al describes a neurostimulator for generating stimulation pulses for the central or peripheral nervous system, particularly against pain in the region of the spinal cord and includes a control circuit for generating stimulation pulses with a pulse generator whose output is connected with stimulation electrodes.
  • the stimulation pulses are generated at periodic intervals with an activity period corresponding essentially to an effective duration corresponding to a biological half-lifetime of a body's own active substances.
  • the control circuit creates a respective rest period corresponding to a time required by the body's own active substances to regenerate themselves for a corresponding activity period.
  • the '207 patent to Stromer describes an improved electro-stimulator apparatus, comprises first and second electrodes spaced-apart a predetermined distance, an electrical signal generator for providing pulses of predetermined width and repetition rate to the spaced-apart electrodes, and an LED providing a beam of light projecting between the spaced-apart electrodes toward the object intended to be electro-stimulated.
  • the electrodes have substantially co-planar external faces approximately perpendicular to the light beam.
  • the electrodes, signal generator and LED are mounted in an elongated housing having a longitudinal central axis. The electrodes are exposed on an end and the light beam is emitted from the same end and substantially parallel to the central axis.
  • An ON/OFF switch actuates the signal generator and the LED when turned ON. It automatically turns OFF state when released so that the signal generator and the LED are always ON or OFF together.
  • the '041 patent to Toriu et al. describes a transcutaneous electric nerve stimulator having a plurality of treatment modes and producing a low-frequency pulse of a frequency corresponding to a selected treatment mode is provided with a plurality of indicators in association with the respective treatment modes such that one of the indicators corresponding to the selected treatment mode is caused to blink in synchronism with the produced low-frequency pulse.
  • the '605 patent to Rossen describes an improved transcutaneous electrical nerve stimulator (TENS) involving a microcurrent (typically 25 to 900 microamps) monophase D.C. carrier signal (typically 10,000 to 19,000 Hz, preferably 15,000 Hz) that is modulated on and off in time (typically at 0.3 Hz up to 10,000 Hz, preferably 9.125 Hz followed by 292 Hz) and further inverted about every second by reversing the polarity of the signal at the electrodes.
  • a microcurrent typically 25 to 900 microamps
  • monophase D.C. carrier signal typically 10,000 to 19,000 Hz, preferably 15,000 Hz
  • time typically at 0.3 Hz up to 10,000 Hz, preferably 9.125 Hz followed by 292 Hz
  • Such a device has been found to be useful in alleviating pain very rapidly.
  • the '368 patent to Spanton et al. describes a transcutaneous nerve stimulating device is provided having a plurality of operating modes, namely burst, normal (single amplitude/single pulse width), rate modulation, amplitude modulation and strength-duration/rate modulation.
  • burst normal (single amplitude/single pulse width)
  • rate modulation amplitude modulation
  • strength-duration/rate modulation strength-duration/rate modulation.
  • the rate modulation control circuitry acts independently of the inter-related amplitude and pulse width modulations to result in a means of nerve stimulation obviating the phenomenon of accommodation.
  • the '143 patent to Dufresne et al. describes an electrical stimulator for biological tissue having remote control.
  • a remote element communicates an operator response to the electrical stimulator.
  • a control element samples the communication from the remote element and adjusts one or more of certain of sets of stimulus parameters maintained in a storage element and utilizes the adjusted stimulus parameters to generate an electrical stimulus signal or utilizes the communciation from the remote element to trigger the generation of an electrical stimulus signal based upon the stored stimulus parameters.
  • the '545 patent to Wilson describes a bandage to be applied adjacent to an injured portion of a patient's body contains electronic circuitry which delivers electric pulses into the body to block or mask the pain arising from the injury.
  • the bandage includes an inner unit adapted to be applied directly onto the patient's skin and an outer unit adapted to be removably applied upon the inner unit.
  • the inner unit includes spaced apart conductive portions, which contact the patient's skin.
  • the outer unit includes a power source and an electronic circuit, which applies a voltage output to the conductive portions of the inner unit. The voltage output is transmitted through the conductive portions to the patient's skin to cause low current electrical pulses within the patient's body to block or mask the pain arising from the injury.
  • an electrode-battery assembly used in a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit comprising a plurality of electrodes each having an internal and external side, a plurality of batteries each having a positive and negative pole, a flexible conductive carrier with a hydrogel, which carries current to a pain site or other area on a user's body via the electrodes, conductive film comprised of three current carrier runners, wherein two of the runners are in direct contact with each of the positive and negative poles of the battery and a third said runner is in direct contact with the hydrogel, and a mechanical battery clip which secures the runners to the positive and negative battery poles.
  • the electrode-battery assembly is disposable and can be replaced upon depletion of the battery.
  • the conductive film of the electrode-battery assembly is comprised of a silver alloy film, a silver conductive ink channel or some other flexible low impedance material.
  • the external side of the electrode-battery assembly is covered by a molded cover comprised of a cosmetically appealing molded foam or elastomer.
  • the electrode-battery assembly is rechargeable.
  • FIG. 1 shows an overhead view of the electrode-battery assembly 18 .
  • FIG. 2 shows an end view of the electrode-battery assembly 18 of FIG. 1.
  • FIG. 3 shows a side view of the electrode-battery assembly 18 of FIG. 1.
  • FIGS. 4 a and 4 b show usage of a conductive adhesive.
  • FIG. 1 shows the assembly 18 comprised of a plurality of electrodes 5 each having an internal and external side and a plurality of batteries 22 each having a positive pole 23 and a negative pole 24 .
  • Current carrying runners 25 comprise a conductive film 26 . Two of these runners 25 make direct contact to the positive 23 and negative 24 poles of the battery 22 , while the third makes contact with conductive hydrogel 27 , which carries the stimulating current to the patient via each electrode 5 .
  • Contact to the battery poles is secured either by a conductive adhesive 28 as seen in FIG.
  • the conductive film 26 may be a silver alloy film or other flexible low impedance material.
  • the external side 41 of the electrode 5 is covered by soft cosmetically appealing molded foam or elastomer as seen in FIG. 3.
  • a docking station (not shown) which can be used for recharging the TENS device when it is not in use.
  • the docking station provides the patient flexibility in selecting the appropriate battery configuration given varying factors including cost, size and time of use. Many docking station configurations exist, however each contains battery contacts for battery 22 connection and electrode contacts for electrode 5 connections.
  • the typical docking station configuration comprises button cell or cylindrical cell batteries; a housing with mating features to the electronics module 20 , and which houses the batteries; a circuit board with battery contacts for connection to the electronics module 20 and the batteries; and a voltage regulator and female jacks for accepting lead wires from the electrodes 5 .
  • mechanical clamping means are used to attach electrode conductive material directly to the circuit board, as opposed to lead wires.
  • the batteries are placed directly over the electrodes 5 as an assembly of the electrodes 5 . This can be accomplished either with or without the use of lead wires.
  • another docking station configuration comprises a lithium polymer battery assembled as a flexible layer uniquely integrated as part of the electrode-battery assembly 18 .
  • Replacing the traditional batteries 22 of the traditional electrode-battery assembly 18 described above is a lithium polymer battery assembled as a flexible lithium-ion polymer battery layer, and an insulation layer.
  • the advantage of this assembly 18 is its low-profile design that makes the batteries virtually invisible to the user.
  • the assembly 18 is lightweight, flexible and has superior conformability and rechargeability features.
  • the disposable electrodes 5 can be removed and replaced by peeling the durable lithium polymer layer away from the insulation layer.
  • any of the above docking station configurations can be used as an integral assembly to a standard splint, bandage, manufactured brace, or cast 36 .
  • Electrodes for a standard splint, bandage, manufactured brace, or cast would attach and detach from electrode-battery assembly and offer different stimulation modes.
  • the electrode-battery assembly could be disposable and the electronics module reusable.

Abstract

A combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular stimulation unit is provided, which is capable of being removably attached. The assembly is generally comprised of two sided electrodes, batteries, various conductive transmission materials and a mechanical means for securing the conductive materials to the batteries In addition, the assembly can be rechargeable or disposable.

Description

    CLAIM OF PRIORITY
  • This application is a continuation in part of U.S. application Ser. No. 09/350,426, filed on Jul. 8, 1999, the contents of which are incorporated herein by reference.[0001]
  • TECHNICAL FIELD
  • The invention relates generally to transcutaneous electrical neuro-stimulation (TENS) units and this invention particularly relates to an electrode-battery assembly for a miniaturized wireless TENS unit capable of being pre-programmed to achieve a variety of waveforms, with or without the use of a remote controller means, each waveform having unique features capable of masking pain or promoting functional restoration in a user's body. [0002]
  • BACKGROUND OF THE INVENTION
  • TENS devices have been traditionally prescribed in the medical industry for chronic pain. While patients experiencing acute pain are prescribed anti-inflammatories and narcotic agents, the treatment of chronic pain, usually defined as unrelieved pain for at least 30 days, has usually been dealt with via TENS-related prescriptions. However, TENS devices have been shown to provide rapid and effective relief for acute pain without side effects or the possibility of addiction. TENS does not utilize anesthesia or narcosis. Patients remain awake, alert and functional, and retain the protective qualities of increased pain perception. [0003]
  • TENS is commonly used for acute pain management by physical therapists in comprehensive rehabilitation programs in conjunction with other treatments. TENS devices are usually large as well as being complex, expensive and require lead wires running to each electrode, making them difficult for use at home, at work or at play. [0004]
  • Previous attempts have been made to design improved electrotherapy devices, certain features of which are generally described in U.S. Pat. No. 5,620,470 to Gliner et al.; U.S. Pat. No. 5,607,454 to Cameron et al.; U.S. Pat. No. 5,601,612 to Gliner et al.; U.S. Pat. No. 5,593,427 to Gliner et al.; U.S. Pat. No. 5,584,863 to Rauch et al.; U.S. Pat. No. 5,578,060 to Pohl et al.; U.S. Pat. No. 5,573,552 to Hansjurgens; U.S. Pat. No. 5,549,656 to Reiss; U.S. Pat. No. 5,514,165 to Malaugh et al.; U.S. Pat. No. 5,476,481 to Schöndorf; U.S. Pat. No. 5,387,231 to Sporer; U.S. Pat. No. 5,397,338 to Grey et al.; U.S. Pat. No. 5,374,283 to Flick; U.S. Pat. No. 5,354,320 to Schaldach et al.; U.S. Pat. No. 5,304,207 to Stromer; U.S. Pat. No. 5,183,041 to Toriu et al.; U.S. Pat. No. 4,989,605 to Rossen; U.S. Pat. No. 4,759,368 to Spanton et al.; U.S. Pat. No. 4,699,143 to Dufresne et al.; and U.S. Pat. No. 4,398,545 to Wilson, all of which are incorporated herein by reference. [0005]
  • The '470 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator. [0006]
  • The '454 patent to Cameron et al. describes an electrotherapy method and apparatus for delivering a multiphasic waveform from an energy source to a patient. The preferred embodiment of the method comprises the steps of charging the energy source to an initial level; discharging the energy source across the electrodes to deliver electrical energy to the patient in a multiphasic waveform; monitoring a patient-dependent electrical parameter during the discharging step; shaping the waveform of the delivered electrical energy based on a value of the monitored electrical parameter, wherein the relative duration of the phases of the multiphasic waveform is dependent on the value of the monitored electrical parameter. The preferred apparatus comprises an energy source; two electrodes adapted to make electrical contact with a patient; a connecting mechanism forming an electrical circuit with the energy source and the electrodes when the electrodes are attached to a patient; and a controller operating the connecting mechanism to deliver electrical energy from the energy source to the electrodes in a multiphasic waveform, the relative phase durations of which are based on an electrical parameter monitored during delivery of the electrical energy. The preferred defibrillator apparatus weighs less than 4 pounds and has a volume less than 150 cubic inches, and most preferably, weighs approximately three pounds or less and has a volume of approximately 141 cu. in. [0007]
  • The '612 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator. [0008]
  • The '427 patent to Gliner et al. describes an external defibrillator and defibrillation method that automatically compensates for patient-to-patient impedance differences in the delivery of electrotherapeutic pulses for defibrillation and cardioversion. In a preferred embodiment, the defibrillator has an energy source that may be discharged through electrodes on the patient to provide a biphasic voltage or current pulse. In one aspect of the invention, the first and second phase duration and initial first phase amplitude are predetermined values. In a second aspect of the invention, the duration of the first phase of the pulse may be extended if the amplitude of the first phase of the pulse fails to fall to a threshold value by the end of the predetermined first phase duration, as might occur with a high impedance patient. In a third aspect of the invention, the first phase ends when the first phase amplitude drops below a threshold value or when the first phase duration reaches a threshold time value, whichever comes first, as might occur with a low to average impedance patient. This method and apparatus of altering the delivered biphasic pulse thereby compensates for patient impedance differences by changing the nature of the delivered electrotherapeutic pulse, resulting in a smaller, more efficient and less expensive defibrillator. [0009]
  • The '863 patent to Rauch et al. describes a system for tissue-impedance matched pulsed radio frequency (PRF) electrotherapy, which includes a power supply, an excitation board for generating PRF signals of a selectable frequency, the board having an input from the power supply. The system also includes a power amplifier for signals from the excitation board. Included is a subsystem for controlling pulse width duration, pulse burst repetition rate, and amplitude of the PRF signals, the controlling system having an input from the power supply. Further provided is a subsystem for continually comparing the amplitude of the PRF signals outputted from the amplifier to a reference value, this including a feedback circuit responsive to difference information between the compared signals and the reference value, the difference information inputted to the controlling subsystem for adjustment of the amplitude and impedance of the PRF signals from the excitation board, the comparing system including an output of power and impedance compensated PRF signals. The system also includes a variable reactance athermapeutic applicator having, as a coaxial cable input, the power and impedance compensated PRF signals outputted from the comparing subassembly, the applicator including a treatment surface having an effective physiologic impedance in the range of 25 to 75 ohms. [0010]
  • The '060 patent to Pohl et al. describes a reconfigurable physical therapy apparatus and a method of providing operator-selected stimuli to a patient are provided. The apparatus preferably has a physical therapy applicator including a transducer for applying a therapeutic treatment to a patient, and a memory for storing identification data representative of a plurality of physical ailments for each of a plurality of human body areas and a set of transducer operational parameters associated with each predetermined physical ailment and each predetermined body area. The apparatus also has an ailment display screen responsive to the memory device for displaying at least one of the identification data representative of a plurality of physical ailments, which are associated with at least one of the identified human body areas. An ailment selector is positioned in electrical communication with at least the memory device and being responsive to operator selection of one of the identified physical ailments, which are associated with human body areas for obtaining the associated transducer operational parameters. The apparatus further has a transducer reconfigurer positioned in electrical communication with the transducer of the applicator and being responsive to the ailment selector for reconfiguring the transducer to provide therapeutic treatment to the identified body part according to the obtained transducer operational parameters [0011]
  • The '552 patent to Hansjurgens describes an apparatus for electrotherapeutic applications operating in the medium-frequency range between 1000 Hz and 100,000 Hz where, in relation to a body part to be treated, a circuit with medium-frequency current (MF current) is applied across two electrodes, the invention proposes to keep the amplitude of the MF current constant and to modulate the frequency by one thousand to several thousand Hz (corner frequencies) with a modulation frequency of >0 to several hundred Hz (for instance 200 Hz) in order to generate in synchronism with the modulation frequency action potentials in the treatment area. [0012]
  • The '656 patent to Reiss describes a combined dual channel electromuscular stimulator for directing electrical pulses into the skin and a dual channel electromyograph for detecting electrical signals generated in muscles. The electromuscular stimulator includes electronic circuitry for generating electrical pulses, controlling the pulse rate and intensity and controlling various pulse characteristics. The pulses are administered by skin contacting electrodes. The electromyograph includes skin contacting electrodes for receiving input signals from the skin and electronic circuitry for receiving detected signals without interference with the stimulator output signals, amplifying, filtering and displaying the input signals. A control panel includes switches and controls for varying the various system parameters. [0013]
  • The '165 patent to Malaugh et al. describes an electrotherapy stimulation unit having a high voltage pulsed current (HVPC) electrotherapy stimulation device providing short duration low amperage high voltage constant charge HVPC pulses to a patient to reduce pain, and a neuromuscular stimulation (NMS) electrotherapy device providing constant current NMS pulses to a patient to re-educate and prevent atrophy of muscle tissue. The HVPC device has a voltage source and at least one HVPC output circuit having a coil, a switching device, and a holding capacitor. When the switching device is turned on, an increasing current is drawn through the coil. When the switching device is turned off, a voltage spike results across the coil, charging the holding capacitor. Thereafter, the charge dissipates into the patient. The HVPC device senses the voltage provided by the voltage source and calculates the period of time the switching device is turned on based upon the sensed voltage and the pre-selected peak voltage of the voltage spike. The HVPC device provides a train of HVPC pulses, each HVPC pulse comprising first and second voltage spikes. The HVPC device detects whether a patient is properly connected to the HVPC output of the output circuit. If the second voltage spike is larger than the first by a predetermined value, a patient is not connected to the HVPC output circuit, and the output circuit is disabled. [0014]
  • The '481 patent to Schöndorf describes an electrotherapeutic field stimulator includes at least a pair of electrodes for applying the electricity to the body in the form of an electric field and a generator for providing the electricity to the electrodes in the form of at least two superimposed alternating current fields of different frequencies to provide the treatment waveform. [0015]
  • The '231 patent to Sporer describes a method of microcurrent electrotherapy utilizing a combination of specified values for selected parameters including electrical stimulus wave form, direction, magnitude, voltage, polarity and frequency to provide a variety of therapeutic enhancements. [0016]
  • The '338 patent to Grey et al. describes an electrotherapy device for delivering electrical energy to subcutaneous, excitable tissues in and around the joints of the human body for the purposes of pain control and the promotion of tissue healing post injury is provided. The device includes a housing containing at least one pair of electrodes connected to an electronics unit. The device is specifically designed to be small, portable and lightweight so as to not interfere with user movements and/or function. The electronics unit consists of a housing that contains batteries, a microcontroller integrated circuit (including associated control software) coupled to a transistor-based intensity stage, which is then coupled to a transformer-based output stage coupled to subminiature jacks used to connect the electronics unit to the electrodes. Control software monitors user-controlled mechanical switches for the selection of one of six operational modes (TENS, MENS, or iontophoresis) and one of six discrete intensity levels within each operational mode. The housing is a flexible, elastic sleeve that conforms to joint anatomy and has the electrodes sewn into specific positions such that when the user puts on the sleeve, the electrodes are placed at the correct anatomic position over the affected joint. [0017]
  • The '283 patent to Flick describes an electrical therapeutic apparatus (10) for the treatment of body pain and edema. The apparatus has an electrical pulse-producing device (11) coupled to wrap (12) by conductor (13). The wrap is comprised of nylon coated with silver, which forms an electrode. A second electrode (14) is coupled by conductors (15) to the device. [0018]
  • The '320 patent to Schaldach et al describes a neurostimulator for generating stimulation pulses for the central or peripheral nervous system, particularly against pain in the region of the spinal cord and includes a control circuit for generating stimulation pulses with a pulse generator whose output is connected with stimulation electrodes. The stimulation pulses are generated at periodic intervals with an activity period corresponding essentially to an effective duration corresponding to a biological half-lifetime of a body's own active substances. The control circuit creates a respective rest period corresponding to a time required by the body's own active substances to regenerate themselves for a corresponding activity period. [0019]
  • The '207 patent to Stromer describes an improved electro-stimulator apparatus, comprises first and second electrodes spaced-apart a predetermined distance, an electrical signal generator for providing pulses of predetermined width and repetition rate to the spaced-apart electrodes, and an LED providing a beam of light projecting between the spaced-apart electrodes toward the object intended to be electro-stimulated. The electrodes have substantially co-planar external faces approximately perpendicular to the light beam. The electrodes, signal generator and LED are mounted in an elongated housing having a longitudinal central axis. The electrodes are exposed on an end and the light beam is emitted from the same end and substantially parallel to the central axis. An ON/OFF switch actuates the signal generator and the LED when turned ON. It automatically turns OFF state when released so that the signal generator and the LED are always ON or OFF together. [0020]
  • The '041 patent to Toriu et al. describes a transcutaneous electric nerve stimulator having a plurality of treatment modes and producing a low-frequency pulse of a frequency corresponding to a selected treatment mode is provided with a plurality of indicators in association with the respective treatment modes such that one of the indicators corresponding to the selected treatment mode is caused to blink in synchronism with the produced low-frequency pulse. [0021]
  • The '605 patent to Rossen describes an improved transcutaneous electrical nerve stimulator (TENS) involving a microcurrent (typically 25 to 900 microamps) monophase D.C. carrier signal (typically 10,000 to 19,000 Hz, preferably 15,000 Hz) that is modulated on and off in time (typically at 0.3 Hz up to 10,000 Hz, preferably 9.125 Hz followed by 292 Hz) and further inverted about every second by reversing the polarity of the signal at the electrodes. Such a device has been found to be useful in alleviating pain very rapidly. [0022]
  • The '368 patent to Spanton et al. describes a transcutaneous nerve stimulating device is provided having a plurality of operating modes, namely burst, normal (single amplitude/single pulse width), rate modulation, amplitude modulation and strength-duration/rate modulation. In the lattermost mode, the rate modulation control circuitry acts independently of the inter-related amplitude and pulse width modulations to result in a means of nerve stimulation obviating the phenomenon of accommodation. [0023]
  • The '143 patent to Dufresne et al. describes an electrical stimulator for biological tissue having remote control. A remote element communicates an operator response to the electrical stimulator. A control element samples the communication from the remote element and adjusts one or more of certain of sets of stimulus parameters maintained in a storage element and utilizes the adjusted stimulus parameters to generate an electrical stimulus signal or utilizes the communciation from the remote element to trigger the generation of an electrical stimulus signal based upon the stored stimulus parameters. [0024]
  • The '545 patent to Wilson describes a bandage to be applied adjacent to an injured portion of a patient's body contains electronic circuitry which delivers electric pulses into the body to block or mask the pain arising from the injury. The bandage includes an inner unit adapted to be applied directly onto the patient's skin and an outer unit adapted to be removably applied upon the inner unit. The inner unit includes spaced apart conductive portions, which contact the patient's skin. The outer unit includes a power source and an electronic circuit, which applies a voltage output to the conductive portions of the inner unit. The voltage output is transmitted through the conductive portions to the patient's skin to cause low current electrical pulses within the patient's body to block or mask the pain arising from the injury. [0025]
  • However, none of these references, either alone or in combination with others, describes a miniature, wireless transcutaneous neuro stimulation device with or without a remote controlled configuration that has pre-programmable waveform modes and includes a unique detachable electrode-battery assembly. [0026]
  • Consequently there is a need in the art for a combination electrode-battery assembly for a miniaturized, wireless TENS device that can be utilized by the patient without the embarrassment of unsightly wires protruding through clothing [0027]
  • There is a further need in the art for such a device that can be placed on a variety of sites on the patient's body, [0028]
  • There is a further need in the art for such a device that can be virtually unseen. [0029]
  • There is a further need in the art for such a device that can be controlled by a controller means to transmit pulses at different intensities and frequencies adaptable to the patient's particular physical malady. [0030]
  • There is a further need in the art for a combination electrode-battery assembly for a miniature, wireless TENS-related device that can easily be programmed by the user, with or without the use of a remote controller, [0031]
  • There is a further need in the art for such a device that can provide a variety of waveforms at various programmable intensities to a number of pain sites on the user's body, and which [0032]
  • There is a further need in the art for such a device that can be easily adaptable for use with splints, braces and bandages. [0033]
  • SUMMARY OF THE INVENTION
  • These needs are met by providing an electrode-battery assembly used in a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit comprising a plurality of electrodes each having an internal and external side, a plurality of batteries each having a positive and negative pole, a flexible conductive carrier with a hydrogel, which carries current to a pain site or other area on a user's body via the electrodes, conductive film comprised of three current carrier runners, wherein two of the runners are in direct contact with each of the positive and negative poles of the battery and a third said runner is in direct contact with the hydrogel, and a mechanical battery clip which secures the runners to the positive and negative battery poles. [0034]
  • In an alternate embodiment, the electrode-battery assembly is disposable and can be replaced upon depletion of the battery. [0035]
  • In another alternate embodiment, the conductive film of the electrode-battery assembly is comprised of a silver alloy film, a silver conductive ink channel or some other flexible low impedance material. [0036]
  • In another alternate embodiment, the external side of the electrode-battery assembly is covered by a molded cover comprised of a cosmetically appealing molded foam or elastomer. [0037]
  • In another alternate embodiment, the electrode-battery assembly is rechargeable. [0038]
  • Therefore, it is an object of the present invention to provide a combination electrode-battery assembly for a miniaturized, wireless TENS device that can be utilized by the patient without the embarrassment of unsightly wires protruding through clothing [0039]
  • It is a further object to provide a device that can be placed on a variety of sites on the patient's body, [0040]
  • It is a further object to provide a device that can be virtually unseen. [0041]
  • It is a further object to provide a device that can be controlled by a controller means to transmit pulses at different intensities and frequencies adaptable to the patient's particular physical malady. [0042]
  • It is a further object to provide a combination electrode-battery assembly for a miniature, wireless TENS-related device that can easily be programmed by the user, with or without the use of a remote controller, [0043]
  • It is a further object to provide a device that can provide a variety of waveforms at various programmable intensities to a number of pain sites on the user's body, and which [0044]
  • It is a further object to provide a device that can be easily adaptable for use with splints, braces and bandages.[0045]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an overhead view of the electrode-[0046] battery assembly 18.
  • FIG. 2 shows an end view of the electrode-[0047] battery assembly 18 of FIG. 1.
  • FIG. 3 shows a side view of the electrode-[0048] battery assembly 18 of FIG. 1.
  • FIGS. 4[0049] a and 4 b show usage of a conductive adhesive.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Turning now to the drawings, in which like numerals indicate like elements throughout the several views a disposable electrode-[0050] battery assembly 18, as seen in FIGS. 1, 2 and 3, resides within the housing 2 of the present invention. FIG. 1 shows the assembly 18 comprised of a plurality of electrodes 5 each having an internal and external side and a plurality of batteries 22 each having a positive pole 23 and a negative pole 24. Current carrying runners 25 comprise a conductive film 26. Two of these runners 25 make direct contact to the positive 23 and negative 24 poles of the battery 22, while the third makes contact with conductive hydrogel 27, which carries the stimulating current to the patient via each electrode 5. Contact to the battery poles is secured either by a conductive adhesive 28 as seen in FIG. 4 or a mechanical clip 29 as seen in FIG. 2. in order to apply the required pressure. The conductive film 26 may be a silver alloy film or other flexible low impedance material. The external side 41 of the electrode 5 is covered by soft cosmetically appealing molded foam or elastomer as seen in FIG. 3. Once the battery 22 is depleted, the entire electrode-battery assembly 18 can be disposed of or replaced. The unique advantage provided by the electrode-battery assembly 18 is its ability to combine both the electrodes 5 and batteries 22 in one separate housing thereby supporting different battery technologies. Therefore, the housing 2 can be produced in large quantities regardless of the type of battery configuration utilized as long as the housing 2 is designed with the requirement that two 1.5 batteries, one on each electrode, or a single 3 volt battery are to be provided to it.
  • Also accompanying the TENS device, with which the electrode-battery assembly is a part, is a docking station (not shown) which can be used for recharging the TENS device when it is not in use. The docking station provides the patient flexibility in selecting the appropriate battery configuration given varying factors including cost, size and time of use. Many docking station configurations exist, however each contains battery contacts for [0051] battery 22 connection and electrode contacts for electrode 5 connections.
  • The typical docking station configuration comprises button cell or cylindrical cell batteries; a housing with mating features to the [0052] electronics module 20, and which houses the batteries; a circuit board with battery contacts for connection to the electronics module 20 and the batteries; and a voltage regulator and female jacks for accepting lead wires from the electrodes 5. In an alternate embodiment of the docking station described above, mechanical clamping means are used to attach electrode conductive material directly to the circuit board, as opposed to lead wires. In yet another embodiment of the docking station, the batteries are placed directly over the electrodes 5 as an assembly of the electrodes 5. This can be accomplished either with or without the use of lead wires.
  • Of particular relevance here, another docking station configuration comprises a lithium polymer battery assembled as a flexible layer uniquely integrated as part of the electrode-[0053] battery assembly 18. Replacing the traditional batteries 22 of the traditional electrode-battery assembly 18 described above is a lithium polymer battery assembled as a flexible lithium-ion polymer battery layer, and an insulation layer. The advantage of this assembly 18 is its low-profile design that makes the batteries virtually invisible to the user. The assembly 18 is lightweight, flexible and has superior conformability and rechargeability features. The disposable electrodes 5 can be removed and replaced by peeling the durable lithium polymer layer away from the insulation layer.
  • Finally, any of the above docking station configurations can be used as an integral assembly to a standard splint, bandage, manufactured brace, or cast [0054] 36.
  • Electronics for a standard splint, bandage, manufactured brace, or cast would attach and detach from electrode-battery assembly and offer different stimulation modes. In this embodiment, the electrode-battery assembly could be disposable and the electronics module reusable. Incidentally, in this embodiment there is no controller for a standard splint, bandage, manufactured brace, or cast, it is self-contained. [0055]
  • Accordingly, it will be understood that the preferred embodiment of the present invention has been disclosed by way of example and that other modifications and alterations may occur to those skilled in the art without departing from the scope and spirit of the appended claims. [0056]

Claims (5)

We claim:
1. An electrode-battery assembly to be used in a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit comprising:
a plurality of electrodes each having an internal and external side;
a plurality of batteries each having a positive and negative pole;
a flexible conductive carrier with a hydrogel which carries current to a pain site or other area on a user's body via said electrodes;
conductive film comprised of three current carrier runners wherein two of said runners are in direct contact with each of said positive and negative poles of said battery and a third said runner is in direct contact with said hydrogel; and
a mechanical battery clip which secures said runners to said positive and negative battery poles.
2. The electrode-battery assembly of claim 1 wherein said electrode-battery assembly is disposable and can be replaced upon depletion of said battery.
3. The electrode-battery assembly of claim 1 wherein said conductive film is comprised of a silver alloy film, silver ink channel, or some other flexible low impedance material.
4. The electrode-battery assembly of claim 1 wherein said external side of said electrode is covered by a molded cover comprised of a cosmetically appealing molded foam or elastomer.
5. The electrode-battery assembly of claim 1 wherein said electrode-battery assembly is rechargeable.
US10/208,223 1999-07-08 2002-07-30 Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit Abandoned US20020193844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/208,223 US20020193844A1 (en) 1999-07-08 2002-07-30 Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US11/434,453 US20070060975A1 (en) 1999-07-08 2006-05-15 Combination electrode-battery and programming assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/350,426 US6445955B1 (en) 1999-07-08 1999-07-08 Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US10/208,223 US20020193844A1 (en) 1999-07-08 2002-07-30 Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/350,426 Continuation-In-Part US6445955B1 (en) 1999-07-08 1999-07-08 Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/434,453 Continuation-In-Part US20070060975A1 (en) 1999-07-08 2006-05-15 Combination electrode-battery and programming assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit

Publications (1)

Publication Number Publication Date
US20020193844A1 true US20020193844A1 (en) 2002-12-19

Family

ID=46204549

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/208,223 Abandoned US20020193844A1 (en) 1999-07-08 2002-07-30 Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit

Country Status (1)

Country Link
US (1) US20020193844A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048300A1 (en) * 2001-08-29 2004-03-11 Anup Sood Terminal phosphate blocked nucleoside polyphosphates
US20050049654A1 (en) * 2003-08-28 2005-03-03 Peter Lathrop Ultralight pre-programmed microprocessor based electrotherapy technology
US20070088419A1 (en) * 2005-10-13 2007-04-19 Fiorina Mark A Conductive pad assembly for electrical therapy device
US20070119741A1 (en) * 2005-11-30 2007-05-31 Wenger William K Medical device packaging system
US20070156184A1 (en) * 2005-12-15 2007-07-05 Root Michael J Method and apparatus for flexible battery for implantable device
US20070156197A1 (en) * 2005-12-15 2007-07-05 Cardiac Pacemakers, Inc. Method and apparatus for improved medical device profile
US7463927B1 (en) 2004-09-02 2008-12-09 Intelligent Neurostimulation Microsystems, Llc Self-adaptive system for the automatic detection of discomfort and the automatic generation of SCS therapies for chronic pain control
US20090054952A1 (en) * 2007-08-23 2009-02-26 Arkady Glukhovsky System for transmitting electrical current to a bodily tissue
US20100076533A1 (en) * 2007-08-23 2010-03-25 Amit Dar System for transmitting electrical current to a bodily tissue
US20100198102A1 (en) * 2008-09-19 2010-08-05 Terry William Burton Moore Method and device for reducing muscle tension through electrical manipulation
US20100324626A1 (en) * 2009-06-23 2010-12-23 Management Technologies, Inc. Electrotherapy Stimilator for Osteoarthritis
US20110004265A1 (en) * 2005-11-30 2011-01-06 Medtronic, Inc. Medical device packaging system
US20120088984A1 (en) * 2010-09-28 2012-04-12 Ammar Al-Ali Megnetic electrical connector for patient monitors
US20120245667A1 (en) * 2009-08-27 2012-09-27 Wound Solutions Ltd. Electrode pad and connectors for electrotherapy devices
US8406886B2 (en) 2004-01-22 2013-03-26 Rehabtronics, Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
US8483820B2 (en) 2006-10-05 2013-07-09 Bioness Inc. System and method for percutaneous delivery of electrical stimulation to a target body tissue
WO2014020368A1 (en) 2012-07-31 2014-02-06 Life Care Medical Devices, Ltd. Pain management device
US8972016B2 (en) 2012-01-13 2015-03-03 Modular Therapeutx, Llc Portable TENS apparatus and method of use thereof
US9114258B2 (en) 2011-01-04 2015-08-25 Kato Medical Systems Llc Electrokinetic nerve stimulator
US9227076B2 (en) 2011-11-04 2016-01-05 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US9409020B2 (en) 2014-05-20 2016-08-09 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9669226B2 (en) 2010-09-07 2017-06-06 Empi, Inc. Methods and systems for reducing interference in stimulation treatment
US9757554B2 (en) 2007-08-23 2017-09-12 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9764133B2 (en) 2012-01-13 2017-09-19 Modular Therapeutx, Llc Portable TENS apparatus and method of use thereof
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods
US11839764B2 (en) * 2013-01-15 2023-12-12 Electrocore, Inc. Systems and methods for treating a medical condition with an electrical stimulation treatment regimen

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398545A (en) * 1979-10-10 1983-08-16 Cyclotechnical Medical Industries, Inc. Pain-blocking bandage
US4474570A (en) * 1981-07-10 1984-10-02 Kabushikikaisya Advance Kaihatsu Kenkyujo Iontophoresis device
US4699143A (en) * 1985-06-17 1987-10-13 Minnesota Mining And Manufacturing Company Electrical simulator for biological tissue having remote control
US4759368A (en) * 1986-12-02 1988-07-26 Medical Designs, Inc. Transcutaneous nerve stimulator
US4834103A (en) * 1980-08-08 1989-05-30 Darox Corporation Disposable physiological electrode set
US4989605A (en) * 1989-03-31 1991-02-05 Joel Rossen Transcutaneous electrical nerve stimulation (TENS) device
US5183041A (en) * 1988-08-11 1993-02-02 Omron Tateisi Electronics Co. Transcutaneous electric nerve stimulator
US5304207A (en) * 1992-02-05 1994-04-19 Merrill Stromer Electrostimulator with light emitting device
US5354320A (en) * 1991-09-12 1994-10-11 Biotronik Mess- Und Therapiegerate Gmbh & Co., Ingenieurburo Berlin Neurostimulator for production of periodic stimulation pulses
US5374283A (en) * 1993-12-01 1994-12-20 Flick; A. Bart Electrical therapeutic apparatus
US5387189A (en) * 1993-12-02 1995-02-07 Alza Corporation Electrotransport delivery device and method of making same
US5387231A (en) * 1992-07-21 1995-02-07 Sporer; Patsy Electrotherapy method
US5397338A (en) * 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5476481A (en) * 1991-11-15 1995-12-19 Robert Ley Electrotherapy apparatus with superimposed AC fields
US5514165A (en) * 1993-12-23 1996-05-07 Jace Systems, Inc. Combined high voltage pulsed current and neuromuscular stimulation electrotherapy device
US5520683A (en) * 1994-05-16 1996-05-28 Physiometrix, Inc. Medical electrode and method
US5549656A (en) * 1993-08-16 1996-08-27 Med Serve Group, Inc. Combination neuromuscular stimulator and electromyograph system
US5573552A (en) * 1992-09-05 1996-11-12 Hansjurgens; Achim Electrotherapeutic apparatus
US5578060A (en) * 1995-06-23 1996-11-26 Chattanooga Group, Inc. Physical therapy apparatus having an interactive interface, and method of configuring same
US5584863A (en) * 1993-06-24 1996-12-17 Electropharmacology, Inc. Pulsed radio frequency electrotherapeutic system
US5593427A (en) * 1993-08-06 1997-01-14 Heartstream, Inc. Electrotherapy method
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5899875A (en) * 1994-11-16 1999-05-04 Laboratoires D'hygiene Et De Dietetique (L.H.D.) Device for percutaneous administration of medicaments for treating male impotence
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6385473B1 (en) * 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398545A (en) * 1979-10-10 1983-08-16 Cyclotechnical Medical Industries, Inc. Pain-blocking bandage
US4834103A (en) * 1980-08-08 1989-05-30 Darox Corporation Disposable physiological electrode set
US4474570A (en) * 1981-07-10 1984-10-02 Kabushikikaisya Advance Kaihatsu Kenkyujo Iontophoresis device
US4699143A (en) * 1985-06-17 1987-10-13 Minnesota Mining And Manufacturing Company Electrical simulator for biological tissue having remote control
US4759368A (en) * 1986-12-02 1988-07-26 Medical Designs, Inc. Transcutaneous nerve stimulator
US5183041A (en) * 1988-08-11 1993-02-02 Omron Tateisi Electronics Co. Transcutaneous electric nerve stimulator
US4989605A (en) * 1989-03-31 1991-02-05 Joel Rossen Transcutaneous electrical nerve stimulation (TENS) device
US5354320A (en) * 1991-09-12 1994-10-11 Biotronik Mess- Und Therapiegerate Gmbh & Co., Ingenieurburo Berlin Neurostimulator for production of periodic stimulation pulses
US5476481A (en) * 1991-11-15 1995-12-19 Robert Ley Electrotherapy apparatus with superimposed AC fields
US5304207A (en) * 1992-02-05 1994-04-19 Merrill Stromer Electrostimulator with light emitting device
US5387231A (en) * 1992-07-21 1995-02-07 Sporer; Patsy Electrotherapy method
US5573552A (en) * 1992-09-05 1996-11-12 Hansjurgens; Achim Electrotherapeutic apparatus
US5397338A (en) * 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5584863A (en) * 1993-06-24 1996-12-17 Electropharmacology, Inc. Pulsed radio frequency electrotherapeutic system
US5607454A (en) * 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5593427A (en) * 1993-08-06 1997-01-14 Heartstream, Inc. Electrotherapy method
US5601612A (en) * 1993-08-06 1997-02-11 Heartstream, Inc. Method for applying a multiphasic waveform
US5620470A (en) * 1993-08-06 1997-04-15 Heartstream, Inc. Electrotherapy method
US5549656A (en) * 1993-08-16 1996-08-27 Med Serve Group, Inc. Combination neuromuscular stimulator and electromyograph system
US5374283A (en) * 1993-12-01 1994-12-20 Flick; A. Bart Electrical therapeutic apparatus
US5387189A (en) * 1993-12-02 1995-02-07 Alza Corporation Electrotransport delivery device and method of making same
US5514165A (en) * 1993-12-23 1996-05-07 Jace Systems, Inc. Combined high voltage pulsed current and neuromuscular stimulation electrotherapy device
US5520683A (en) * 1994-05-16 1996-05-28 Physiometrix, Inc. Medical electrode and method
US5899875A (en) * 1994-11-16 1999-05-04 Laboratoires D'hygiene Et De Dietetique (L.H.D.) Device for percutaneous administration of medicaments for treating male impotence
US5578060A (en) * 1995-06-23 1996-11-26 Chattanooga Group, Inc. Physical therapy apparatus having an interactive interface, and method of configuring same
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6385473B1 (en) * 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048300A1 (en) * 2001-08-29 2004-03-11 Anup Sood Terminal phosphate blocked nucleoside polyphosphates
US10507329B2 (en) 2002-12-31 2019-12-17 Cardiac Pacemakers, Inc. Implantable medical device with proximal capture feature
US20050049654A1 (en) * 2003-08-28 2005-03-03 Peter Lathrop Ultralight pre-programmed microprocessor based electrotherapy technology
US9072886B2 (en) 2004-01-22 2015-07-07 Rehabtronics, Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
US8406886B2 (en) 2004-01-22 2013-03-26 Rehabtronics, Inc. Method of routing electrical current to bodily tissues via implanted passive conductors
US7463927B1 (en) 2004-09-02 2008-12-09 Intelligent Neurostimulation Microsystems, Llc Self-adaptive system for the automatic detection of discomfort and the automatic generation of SCS therapies for chronic pain control
US20070088419A1 (en) * 2005-10-13 2007-04-19 Fiorina Mark A Conductive pad assembly for electrical therapy device
US8224447B2 (en) * 2005-11-30 2012-07-17 Medtronic, Inc. Medical device packaging system
US8219200B2 (en) * 2005-11-30 2012-07-10 Medtronic, Inc. Medical device packaging system
US20110004265A1 (en) * 2005-11-30 2011-01-06 Medtronic, Inc. Medical device packaging system
US20070119741A1 (en) * 2005-11-30 2007-05-31 Wenger William K Medical device packaging system
US20070156184A1 (en) * 2005-12-15 2007-07-05 Root Michael J Method and apparatus for flexible battery for implantable device
US20070156197A1 (en) * 2005-12-15 2007-07-05 Cardiac Pacemakers, Inc. Method and apparatus for improved medical device profile
US20110134593A1 (en) * 2005-12-15 2011-06-09 Root Michael J Medical device profile modeled using fluid dynamics
US7985500B2 (en) 2005-12-15 2011-07-26 Cardiac Pacemakers, Inc. Method and apparatus for flexible battery for implantable device
US11207533B2 (en) 2005-12-15 2021-12-28 Cardiac Pacemakers, Inc. Implantable medical device with proximal capture feature
US8483820B2 (en) 2006-10-05 2013-07-09 Bioness Inc. System and method for percutaneous delivery of electrical stimulation to a target body tissue
US9072896B2 (en) 2007-08-23 2015-07-07 Bioness Inc. System for transmitting electrical current to a bodily tissue
US8467880B2 (en) * 2007-08-23 2013-06-18 Bioness Inc. System for transmitting electrical current to a bodily tissue
US20100076533A1 (en) * 2007-08-23 2010-03-25 Amit Dar System for transmitting electrical current to a bodily tissue
US8738137B2 (en) 2007-08-23 2014-05-27 Bioness Inc. System for transmitting electrical current to a bodily tissue
US9757554B2 (en) 2007-08-23 2017-09-12 Bioness Inc. System for transmitting electrical current to a bodily tissue
US20090054952A1 (en) * 2007-08-23 2009-02-26 Arkady Glukhovsky System for transmitting electrical current to a bodily tissue
US20100198102A1 (en) * 2008-09-19 2010-08-05 Terry William Burton Moore Method and device for reducing muscle tension through electrical manipulation
US20100324626A1 (en) * 2009-06-23 2010-12-23 Management Technologies, Inc. Electrotherapy Stimilator for Osteoarthritis
US20120245667A1 (en) * 2009-08-27 2012-09-27 Wound Solutions Ltd. Electrode pad and connectors for electrotherapy devices
US11794019B2 (en) 2010-09-07 2023-10-24 Djo, Llc Methods and systems for reducing interference in stimulation treatment
US11065454B2 (en) 2010-09-07 2021-07-20 Djo, Llc Methods and systems for reducing interference in stimulation treatment
US9669226B2 (en) 2010-09-07 2017-06-06 Empi, Inc. Methods and systems for reducing interference in stimulation treatment
US9775545B2 (en) * 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US20120088984A1 (en) * 2010-09-28 2012-04-12 Ammar Al-Ali Megnetic electrical connector for patient monitors
US9114258B2 (en) 2011-01-04 2015-08-25 Kato Medical Systems Llc Electrokinetic nerve stimulator
US9468759B2 (en) 2011-01-04 2016-10-18 Kato Medical Systems, Llc Electrokinetic nerve stimulator
US9227076B2 (en) 2011-11-04 2016-01-05 Nevro Corporation Molded headers for implantable signal generators, and associated systems and methods
US9764133B2 (en) 2012-01-13 2017-09-19 Modular Therapeutx, Llc Portable TENS apparatus and method of use thereof
US8972016B2 (en) 2012-01-13 2015-03-03 Modular Therapeutx, Llc Portable TENS apparatus and method of use thereof
WO2014020368A1 (en) 2012-07-31 2014-02-06 Life Care Medical Devices, Ltd. Pain management device
US11839764B2 (en) * 2013-01-15 2023-12-12 Electrocore, Inc. Systems and methods for treating a medical condition with an electrical stimulation treatment regimen
US10946204B2 (en) 2013-05-03 2021-03-16 Nevro Corp. Methods for forming implantable signal generators with molded headers
US10065044B2 (en) 2013-05-03 2018-09-04 Nevro Corp. Molded headers for implantable signal generators, and associated systems and methods
US10173062B2 (en) 2014-05-20 2019-01-08 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US11766566B2 (en) 2014-05-20 2023-09-26 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US9409020B2 (en) 2014-05-20 2016-08-09 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US10881857B2 (en) 2014-05-20 2021-01-05 Nevro Corp. Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods
US11090502B2 (en) 2014-10-22 2021-08-17 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9884198B2 (en) 2014-10-22 2018-02-06 Nevro Corp. Systems and methods for extending the life of an implanted pulse generator battery
US9517344B1 (en) 2015-03-13 2016-12-13 Nevro Corporation Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US10780276B1 (en) 2015-03-13 2020-09-22 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US9937348B1 (en) 2015-03-13 2018-04-10 Nevro Corp. Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator
US10420935B2 (en) 2015-12-31 2019-09-24 Nevro Corp. Controller for nerve stimulation circuit and associated systems and methods
US10792495B2 (en) 2016-12-01 2020-10-06 Thimble Bioelectronics, Inc. Neuromodulation device and method for use
US11801383B2 (en) 2016-12-01 2023-10-31 Hinge Health, Inc. Neuromodulation device and method for use
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods
US10933238B2 (en) 2019-01-31 2021-03-02 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods
US11571570B2 (en) 2019-01-31 2023-02-07 Nevro Corp. Power control circuit for sterilized devices, and associated systems and methods

Similar Documents

Publication Publication Date Title
US20020193844A1 (en) Combination electrode-battery assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US20070060975A1 (en) Combination electrode-battery and programming assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US5397338A (en) Electrotherapy device
US5487759A (en) Nerve stimulating device and associated support device
US10328260B2 (en) Electrical stimulation device and method for therapeutic treatment and pain management
US6023642A (en) Compact transcutaneous electrical nerve stimulator
US10661083B2 (en) Cutaneous field stimulation with disposable and rechargeable components
US6445955B1 (en) Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
CA2324540C (en) Electro-nerve stimulator systems and methods
EP1282457B1 (en) Apparatus for electromedical therapy
CA2684995C (en) Smart charger alignment indicator
US6014588A (en) Facet joint pain relief method and apparatus
US9186506B2 (en) Portable unit for treating chronic pain
EP0500552B1 (en) Nausea control device
US5674261A (en) S-shaped electrotherapy massage stick
US6021348A (en) Stimulation and heating device
JP2011505981A (en) Apparatus and method for dermatome stimulation
CA2377557A1 (en) Nerve stimulation method and apparatus for pain relief
US20050181341A1 (en) Self-contained electronic musculoskeletal stimulation apparatus and method of use
CA2480582A1 (en) Muscle stimulation in a cast-immobilized limb
KR100409100B1 (en) Electrical Stimulator using Mobile Phone
CN110721403A (en) Wearable terminal of intermediate frequency electro photoluminescence and wearable system of intermediate frequency electro photoluminescence
CN116672606A (en) Percutaneous spinal cord electric stimulation device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYCLOTEC ADVANCED MEDICAL TECHNOLOGIES, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MICHELSON, STEPHEN A.;MANNHEIMER, JEFFREY S.;LEON, ROBERT;AND OTHERS;REEL/FRAME:013154/0533

Effective date: 20020730

AS Assignment

Owner name: LOTT & FRIEDLAND, P.A., FLORIDA

Free format text: CHARGING AND RETAINING LIEN;ASSIGNORS:MICHELSON, STEPHEN A.;MANNHEIMER, JEFFREY S.;LEON, ROBERT;AND OTHERS;REEL/FRAME:014541/0001

Effective date: 20030922

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION