US20020198599A1 - System for repairing inter-vertebral discs - Google Patents

System for repairing inter-vertebral discs Download PDF

Info

Publication number
US20020198599A1
US20020198599A1 US10/207,285 US20728502A US2002198599A1 US 20020198599 A1 US20020198599 A1 US 20020198599A1 US 20728502 A US20728502 A US 20728502A US 2002198599 A1 US2002198599 A1 US 2002198599A1
Authority
US
United States
Prior art keywords
annulus fibrosus
sealant
bio
defect
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/207,285
Inventor
David Haldimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/207,285 priority Critical patent/US20020198599A1/en
Publication of US20020198599A1 publication Critical patent/US20020198599A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30581Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid
    • A61F2002/30583Special structural features of bone or joint prostheses not otherwise provided for having a pocket filled with fluid, e.g. liquid filled with hardenable fluid, e.g. curable in-situ
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30677Means for introducing or releasing pharmaceutical products, e.g. antibiotics, into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2002/4435Support means or repair of the natural disc wall, i.e. annulus, e.g. using plates, membranes or meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0085Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof hardenable in situ, e.g. epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • A61F2310/00377Fibrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs

Definitions

  • the present invention is directed to a system for repairing tissue defects in intervertebral discs. It more particularly is concerned with repairing the portion of an intervertebral disc that has been subject to damage, such as herniation, as well as to repairing that portion of an intervertebral disc remaining after the performance of a partial discectomy intervention. Such discectomies are conventionally performed to treat a severe hernia of an intervertebral disc.
  • a disc hernia is a radial rupture of the annulus fibrosus of the intervertebral disc that is accompanied by a protrusion (sometimes a very large protrusion) of the annulus fibrosus and/or by an extrusion of disc material through the rupture in the annulus fibrosus.
  • the rupture of the annulus fibrosus is often accompanied by a compression of the spinal canal and pressure on the nerve roots that pass through the disc protrusion or extrusion. This usually leads to strong and progressive pain that emanates from the compromised segment of the spine. This condition may require a surgical intervention.
  • a successful discectomy intervention will result in lasting pain relief for the patient.
  • severe post-discectomy complications may occur in about 6-16% of all surgical interventions. These are often caused by events such as a re-herniation of the disc, extensive epidural scar formation or vascularization and nerve ingrowth into the defect in the annulus fibrosus.
  • nucleus pulposus produces cytokines and inflammatory mediators, such as nitric oxide, that have been shown to be responsible for nerve root irritation and sensitization that can lead to severe radicular pain.
  • cytokines and inflammatory mediators such as nitric oxide
  • nucleus pulposus material may migrate into the epidural space and/or nucleus pulposus-derived cytokines and inflammatory mediators may diffuse into the epidural space through the annulotomy site. Both events may result in post-discectomy complications such as persistent nerve root pain.
  • the intervertebral disc height As a side effect of the volume reduction that is attendant upon a discectomy intervention, the intervertebral disc height, and thus the vertical distance between adjacent vertebral bodies, will be reduced.
  • the decreased intervertebral disc height may be one of the reasons for a re-herniation of the disc.
  • the reduction in intervertebral disc height has been reported to lead to an accelerated mono-segmental degeneration of the annulus fibrosus or of the facet joints of the affected spinal segment.
  • the thus resulting prevention of contact between nucleus pulposus cells, and its cytokines or inflammatory mediators, with nerve roots after discectomy is another object of the invention and will assist to minimize nucleus pulposus-induced nerve root injury and nerve root pain.
  • one aspect of this invention comprises the use of compositions comprising an in-situ curable sealant(s), made of a bio-compatible material, to repair defects in an annulus fibrosus of an intervertebral disc.
  • defects may be fissures and ruptures of the annulus fibrosus due to disc degeneration or disc hernia, as well as injuries due to incisions and punctures of the annulus fibrosus such as from annulotomy or discectomy procedures.
  • defects in the annulus fibrosus have the shape of a complex radial cleft that extends from the innermost edge of the annulus fibrosus, that is at the border of the nucleus pulposus, to the outermost layers of the annulus fibrosus.
  • the defect may originate A) because of a burst canal or rupture of the annulus fibrosus that permitted extrusion there through of material from the nucleus pulposus, or, B) by reason of incisions that had to be made during surgery in order e.g. to remove nucleus pulposus material from within the intervertebral disc that has caused a large bulge or protrusion of the disc.
  • annulus fibrosus tissue has become severely dehydrated and has lost its elasticity.
  • the annulus fibrosus tissue has become brittle, friable and unstable to the extent that tissue fragments may come loose and migrate out of the annulus fibrosus, leaving space through which nucleus pulposus material can exude.
  • These fragments are separated from the main body of the annulus fibrosus by numerous interconnecting fissures and are often held in place only by a thin outer lamella of the annulus fibrosus (see FIG. 3 for illustration). When this thin layer tears, the fragments may migrate into the epidural space and cause pressure on the spinal nerves, that in turn may cause severe pain.
  • FIG. 1 is a cross-sectional view, in the horizontal plane of the lumbar vertebral column, showing a portion of a spinal column and including surrounding soft tissues.
  • the intervertebral disc shown in the lower center has a large defect in its annulus fibrosus that has been closed with a sealant, according to this invention, for the annulus fibrosus.
  • FIG. 2 is a cross-sectional view in the sagittal plane of an intervertebral disc.
  • the annulus fibrosus is shown with a large defect that is filled with a sealant, according to this invention, for the annulus fibrosus.
  • FIG. 3 is a cross-sectional view of a severely degenerated disc. On the right side, fragments from the outer annulus fibrosus are shown to be held in place by a thin lamella. Portions of the disc protrude to the right into the epidural space proximate to the spinal cord (not shown).
  • the sealant composition of this invention may be applied in several ways, depending on the clinical situation with the disc degeneration.
  • a particularly preferred application mode for the present invention is to put up the sealant composition as an injectable material. The composition is then injected into the proximity to the defect, whereupon it fills and closes incisions, clefts or fissures in the annulus fibrosus, such as occur after a disc hernia has been surgically treated. The sealant cures in-situ.
  • the intervertebral disc is sealed in order to prevent a later extrusion of further disc material.
  • This procedure is useful where the remaining nucleus pulposus is comprised of a sufficient amount of viable cells to perform its function. That is, this procedure is most useful where the amount of nucleus pulposus remaining in the disc after effecting repair is sufficient for the disc to continue to perform its intended function.
  • the present invention can be used to patch up or consolidate brittle and friable tissue that exists in the outer annulus fibrosus of a severely degenerated intervertebral disc.
  • the sealant composition of the present invention serves as a putty or cement in order to bind together the remaining tissue fragments of the outer annulus fibrosus.
  • This procedure is preferably used as an alternative to the filling of a crevasse created by surgical intervention, as has been previously mentioned.
  • This aspect of this invention does not particularly envision using the composition of this invention as a sealant for the entire disc, but such use can be accomplished.
  • This application of the practice of this invention could also be described as annulus augmentation or partial annuloplasty, where the brittle annulus fibrosus is reinforced and stabilized through the in-situ curing of a sealant according to this invention.
  • This application of the invention is intended to prevent tissue fragment migration and thus reduces the risk of spinal nerve compression by sequestrated fragments of the degenerated annulus fibrosus.
  • the bio-compatible compositions comprising the in situ curable sealant of this invention, are based on materials that range in viscosity and physical state from an injectable liquid to a visco-elastic solid.
  • the materials are preferably prepared from human or animal origin or may be made through conventional chemical synthesis or by a recombinant DNA technique.
  • it is important that the bio-compatible material compositions have the property of forming, upon curing, a strongly bonding, visco-elastic material that becomes sealed to the annulus fibrosus, or to fragments thereof, within about 2 to 40 minutes, preferably 2 to 10 minutes, after application (by injection or otherwise).
  • the in-situ curing process must work well under wet conditions, at or near physiological pH (e.g.
  • the sealant must cure to create a non-toxic, bio-compatible and strongly tissue adhesive seal of the annulus fibrosus or of materials that make up this feature. It should be of sufficient strength to stay in place without decomposition under permanent cyclic physiological loads.
  • a bio-compatible material that can serve as sealant of the annulus fibrosus has to meet exceptional characteristics with regard to its strength, tissue adhesion properties and bio-compatibility both when strategically placed and after curing. In addition, only an in-situ curing process of the biomaterial will form a sealant that perfectly conforms to the complex shape of a defect or incision in the annulus fibrosus.
  • bio-compatible material compositions have been described in the art. Some of these may be useful as in-situ curable sealants for defects of, or incisions in, the annulus fibrosus. None of the published disclosures of biomaterial compositions describe the potential application of such materials as in-situ curable sealants for use in connection with repair of the annulus fibrosus. Furthermore, none of the applications for the various bio-compatible materials that have been described in the prior art are similar or comparable to the use of such a sealant in connection with damaged annulus fibrosus.
  • this invention provides an annulus fibrosus sealing means, formed from in-situ curable formulations comprising flowable bio-compatible material, that can be caused to cure in situ.
  • Preferred bio-compatible materials for use in the practice of the invention include all bio-compatible, hydrophilic synthetic or naturally occurring polymers that are curable to a visco-elastic end product under physiologic conditions. These polymers are cross-linked by an internal mechanism. That is, in some cases, no outside energy input or material is needed to cause the flowable bio-compatible polymers of this invention to become cured into a relatively permanently placed visco-elastic material. In other situations, the flowable bio-compatible polymers of this invention will need the input of outside influences, such as irradiation and/or heat, to cause them to cross link and become the desired visco-elastic materials.
  • Such heat and/or irradiation can be very localized so as to cause the cross linking and curing to occur exactly where it is needed.
  • the end product cross linked visco-elastic polymer materials will maintain its location, shape and structure, and lend stability and physical strength to a damaged annulus fibrosus. This can be on a permanent basis, that is the repairing sealant will become a permanent part of the annulus fibrosus.
  • the visco-elastic sealant used in this invention will be a temporary material that will bind and repair the damaged annulus fibrosus for a time sufficient to prevent re-injury of this member and to enable scar formation with fibrocartilaginous tissue to occur.
  • This type of sealant will be composited such that it will degrade with time so that by the time the annulus fibrosus has accomplished sufficient self repair, the added sealant will have degraded and be expelled from the body.
  • This cross-linking can be accomplished by making up a flowable mixture of two or more precursors molecules that react with each other over a short time to form the desired in situ cured visco elastic product that has physical and chemical properties that resemble those of the annulus fibrosus sufficiently to perform its function, at least substantially, while the natural annulus fibrosus regenerates itself.
  • This flowable, in situ curable material may be made up of a single precursor that reacts with itself, e.g. by heating, or by irradiation with electromagnetic energy, such as visible or ultra violet light. It is also within the scope of this invention to use a one or plural component curable flowing material that is cured by the action of a catalyst and/or initiator that is included in the composition.
  • Some or all of the chemical compounds, cross linkable polymers, or pre-polymers, that form the precursor materials, or are the building blocks from which the precursor components are formed, can be bio-compatible, hydrophilic synthetic or naturally occurring polymers. Even if some of the precursor components are not especially bio-compatible, since they are intended for use within an animal, especially human, body, it is essential that none of these precursor materials themselves nor the polymers that result from their curing be detrimental to the animal, especially human, host.
  • the cured polymer products are preferably completely bio-compatible, e.g. they do not induce extensive chronic inflammation, do not induce excessive complement activation, and do not induce excessive local cytotoxicity, such as for Example as a result of components that leach out of these cured or uncured materials.
  • the cured polymers be hydrophilic, so as to form materials that are hydrogels, e.g. polymers with absorbed water contents in excess of approximately 25% of their own weight.
  • the tissue specific compatibility of the resulting hydrogels is generally better than is the case with less hydrophilic materials. This is as a result of the water permeability of the hydrogel being similar to that of the surrounding tissue, and because of the better matching of the mechanical properties of the instant sealing material with the surrounding natural annulus fibrosus tissue.
  • the cured polymers that are useful in this invention may be synthetic or naturally occurring. It may be more reliable to ensure the long-term stability of a cured sealant that is based on synthetic polymers.
  • a controlled degradation can be engineered into a synthetic polymer by incorporation of slowly hydrolyzable linkages, such as for Example ester, amide, carbonate or anhydride linkages, into the cured polymer.
  • Naturally occurring polymers generally will form sealing members that become more easily degraded in vivo, and there may be cases in which this is desirable, e.g. when the sealant is intended to be replaced by natural tissue that is being generated as a result of healing in the annulus fibrosus. This may be particularly desirable when the cured sealant member contains a bio-active agent to promote healing.
  • Examples of the type of synthetic polymers that can be used as building blocks in accord with this invention are polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylic acid, polyethoxazoline, polyhydroxyethyl acrylate, and polyhydroxyethyl methacrylate. These materials can be further functionalized in order to increase their ability to form hydrogels gels in situ.
  • Polysaccharides that are useful in the present invention include glycosaminoglycans such as hyaluronic acid, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, keratan sulfate, chitin, chitosan, heparin, and derivatives or mixtures thereof. Further, proteoglycans such as decorin, biglycan and fibromodulin may also be used in the present invention. Proteoglycans are components of the extracellular matrix of cartilage cells and contain one or more glycosaminoglycan molecules bound to a core protein.
  • mixtures of various species of glycosaminoglycans or proteoglycans with various proteins can be used in the practice of the present invention.
  • synthetic polypeptides can also be used in the practice of the present invention.
  • the term “synthetic polypeptide” is intended to encompass polypeptides that have been produced using recombinant DNA techniques, as well as those produced by other methods of chemical synthesis.
  • albumin “collagen” or “elastin” or “fibrin” as used herein refer to any types of these naturally occurring proteins, from any source, including, but not limited to, protein extracted from tissue or fractionated from blood or recombinant proteins. Further, these terms refer to all forms of these naturally occurring proteins, including those that have been processed, denatured or otherwise modified.
  • collagen, elastin, fibrinogen or fibrin from any source may be used in the practice of the present invention.
  • the preparation of purified, non-immunogenic proteins from human or animal tissues as well as recovered by different methods of producing recombinant human collagen or fibrin are thoroughly described in the literature.
  • Collagen of any type including, but not limited to, types II, III, V, VI, IX or any combination thereof, are preferred to be used in the practice of the present invention, although collagens of type I and type II are generally the most preferred types.
  • Collagen for use in the present invention may be in a fibrillar or non-fibrillar form.
  • the preferred form of the preferred collagen for the practice of the present invention is the fibrillar form of collagen due to its higher persistence and mechanical strength.
  • Elastin of any type can be used for the practice of the present invention.
  • Elastin of type I is generally preferred.
  • the sealant for the damaged annulus fibrosus is a bio-compatible polymer composition of viscosity that is sufficiently low to permit injection and which forms a visco-elastic material upon becoming cured.
  • the bio-compatible polymer precursor(s), when implanted in the situs of the defect in the annulus fibrosus, are flowable material(s), preferably a liquid of suitable viscosity such that when the liquid conforms to the damaged area of the annulus fibrosus, it tends to stay in place while it is curing in situ.
  • the preferred material composition for use in the practice of the invention is an in-situ curing, bio-compatible polymer composition that has, when cured, the properties of an elastic, or visco elastic, substantially solid hydrogel.
  • the preferred bio-compatible polymer material composition may include two or more precursor components that are dissolved or dispersed in two different solvents/carriers, A) and B). The solutions/suspensions are suitably mixed immediately prior to the application of the sealant into the situs of the damage.
  • a single solution containing the appropriate bio-compatible material composition can be used in combination with a separate initiator system to start the curing reaction, as for Example the composition disclosed for a different purpose in U.S. Pat. No. 5,626,863.
  • a preferred bio-compatible material composition that is useful for sealing damage to the annulus fibrosus is made of two precursor components, a bio-compatible material solution and an activated crosslinking agent.
  • bio-compatible materials such as collagen or glycosaminoglycans
  • cross linking agents such as synthetic hydrophilic polymers as disclosed for a different purpose in U.S. Pat. Nos. 5,324,775 or 5,328,955
  • Preferred synthetic hydrophilic polymers for use in the invention include bifunctionally activated polyethylene glycols, as disclosed for a different purpose in U.S. Pat. Nos. 5,326,955 or 5,583,114.
  • Another preferred bio-compatible material composition for the sealant of a damaged annulus fibrosus is made of two precursor components, a buffered protein solution and a bifunctional cross linking agent.
  • the protein is preferably be a non-immunogenic, water soluble protein.
  • Materials such as serum albumin or derivatives of elastin, fibrinogen or collagen can be used as protein, and polyethylene glycol, with activated terminal groups may be used as the preferred cross linking agent in this preferred composition.
  • Such a composition is disclosed for other purposes in U.S. Pat. No. 5,583,114.
  • Another preferred bio-compatible material composition that is useful for the sealant of the annulus fibrosus according to this invention is made of a polymerizable component that includes a water soluble core region and polymerizable terminal group(s) or functional group(s).
  • the component may include a biodegradable extension of the core region.
  • a preferred embodiment of this aspect of this invention includes polyethylene glycol as the core region and one or more acrylate moieties as the polymerizable end cap or terminal portion, as disclosed for other purposes in U.S. Pat. No. 5,626,863.
  • a free radical polymerization reaction of the component must be initiated, either after the composition has been placed at the situs, or immediately prior to introduction of the composition into the damaged area(s) of the annulus fibrosus.
  • the polymerizable component may be extruded from a syringe or a piston-driven cartridge and passed through a light or temperature conducting cannula before it reaches the situs of the annulus fibrosus defect.
  • the free radical polymerization reaction may be initiated through photo-initiation by UV or visible light irradiation of the cannula.
  • the cannula may be heated to a controlled temperature that is not higher than about 48° C.
  • a thermal polymerization initiator system that is sensitive to a temperature of about 37° C.
  • chemical initiation systems may be used in the practice of the present, invention. Such systems are disclosed for other purposes in U.S. Pat No. 5,626,863.
  • a particularly preferred bio-compatible material composition that is useful for sealing damage in an annulus fibrosus is made of two precursor components that can co-polymerize in a self-selective manner, such as by a nucleophilic addition reaction, as disclosed in pending U.S. patent application Ser. No. 60/118,093 , filed on or about Feb. 1, 1999 in the names of Jeffrey A. Hubbell, Donald L. Elbert, and Alyssa Panitch, and carrying an attorney's docket number ETH 103.
  • the entire contents of this provisional patent application, which was copending with the parent provisional application of the instant application, is incorporated herein by reference.
  • a hydrophilic linear or crosslinked polymer with two or more terminal unsaturated groups is used as the first precursor component, and another hydrophilic polymer with two or more terminal nucleophilic groups is used as the second precursor component.
  • polyethylene glycol constitutes the hydrophilic polymer, acryloyl moieties are used as unsaturated end groups, and compounds with thiol functional groups are used as the nucleophilic groups.
  • the two precursor components should be quickly mixed immediately prior to use and then applied to the annulus fibrosus defect using a common applicator.
  • the two components may be filled into a dual syringe or a dual-chamber piston-driven cartridge. Both chambers of the syringe, or the cartridge, have openings that merge together into one outlet tube.
  • This tube is fitted with a suitable mixing nozzle, such as a spiral mixer nozzle, that serves as a static mixer for the two components when they are pressed out of the syringe and passed through the nozzle.
  • a suitable mixing nozzle such as a spiral mixer nozzle
  • the mixed bio-compatible material composition prefferably has a low surface tension in relation to physiological materials such as fluids and the annulus fibrosus, and a good intrudability into such systems. These properties permit the bio-compatible material to optimally penetrate into micro-fissures that may be present at the application site of the annulus fibrosus. The intrusion of the biomaterial into micro-fissures and clefts of the damaged annulus fibrosus allows for a strong mechanical interlocking with the natural tissue at the application site and helps to mechanically secure the sealant within the application site during the curing time.
  • the term “intrudability” relates to the ability of a liquid material composition to penetrate into complex microstructures and to fill small voids. This intrusion or penetration into said microstructure may be caused by low injection pressures, gravitation, capillary forces or non-covalent interactions between the liquid and the microstructure.
  • the intrudability of the mixed biomaterial composition can be increased by including one or more bio-compatible fluid lubricants or surfactants, for Example dextrose, maltose, glycogen, dextran, dextran sulphate, hyaluronic acid glycerol, phospholipids polyoxyethylene sorbitan esters or polyethylene/polypropylene glycols.
  • particulate materials may also be incorporated into the bio-compatible material compositions for use in the invention.
  • suitable particulate materials include, without limitation; particulate elastin fibers and crosslinked or non-crosslinked fibrillar collagen.
  • active agents include, without limitation, growth factors, differentiation factors, enzymes, receptor agonists or antagonists, antibodies, hormones, analgesics, local anesthetics, anti-inflammatory drugs, such as Indomethacin and tiaprofenic acid, antibiotics or anti-microbial agents.
  • active agent refers to molecules, usually organic, that exert biological effects in vivo. This term also encompasses combinations or mixtures of two or more active agents.
  • annulus sealing device comprising in-situ curable biomaterial formulations that cure to a visco elastic member that at least partially simulates the structure, physical properties and biomechanical functions of the annulus fibrosus and maintains the integrity of this member permanently or for a time sufficient to enable the regeneration of the natural annulus fibrosus tissue.
  • the sealant of the annulus fibrosus is implanted in a low-viscosity liquid form, thus allowing the implanting material to penetrate into tears and micro-fissures with a width of at least 100 micrometers that are interconnected with a radial rupture or principal defect of the annulus fibrosus.
  • the sealant of this invention for the annulus fibrosus has the property of becoming strongly attached to the surrounding tissue of the annulus fibrosus by close interlocking and entanglement of its shape with the structure of the annulus fibrosus surrounding the defectand by filling cavities in the nucleus that were created during discectomy, thus forming an inner portion of the implant that has a larger cross section than the protrusion canal.
  • the adhesion of the sealant to the surrounding annulus fibrosus tissue is enhanced through polar group interaction or chain inter penetration between the hydrophilic implant material and the surrounding tissue.
  • covalent bonds formed between the preferred hydrogel bio-compatible material and the surrounding annulus fibrosus tissue further increase and secure the attachment of the sealant of this invention to the annulus fibrosus tissue in proximity to the defect in the annulus fibrosus.
  • the annulus sealing material that seals the defects in the annulus fibrosus may be the result of the interaction of at least two bio-material precursor components that react with each other in situ, preferably in a self selective reaction.
  • a single bio-compatible material precursor composition that is activated for polymerization such as for Example by activation either in situ or application immediately prior to implanting, may be used. Both systems result in a sealant that substantially perfectly conforms to the complex and irregular shape of an annulus fibrosus defect and bonds strongly to the tissue surrounding the defect.
  • the self-selectivity of the reaction is an important feature to minimize toxic or denaturing effects of the curing bio-compatible material composition.
  • the sealant of the annulus fibrosus is preferably formed from previously pre-polymerized materials that are employed as prepolymer or macromer precursor components. In this way, the risk of exposing a patient to volatile and toxic residual monomers that may remain after curing of the sealant can be avoided.
  • the sealant of the annulus fibrosus must have adequate impact and tensile strength and must be adequately resistant to fatigue from repetitive loading and unloading or repetitive torsion moments that the annulus fibrosus is conventionally subjected to. This allows the sealant to permanently stay in place and remain intact after implantation.
  • An even more important property of the sealant of the annulus fibrosus is its ability to withstand intradiscal pressures of the nucleus pulposus in the upper physiological range and to efficiently seal the annulus fibrosus so that the nucleus pulposus is contained within the intervertebral disc.
  • the sealant of the annulus fibrosus closes the defect in the annulus fibrosus so as to reduce the risk of a recurrent disc hernia and to prevent the further extrusion of nucleus pulposus material through the defect, , thus avoiding contact between nucleus pulposus cells and its cytokines or mediators with nerve roots after discectomy and preventing or minimizing nucleus pulposus-induced nerve root injury and nerve root pain.
  • the sealant of the annulus fibrosus assists in the restoration of the physiological function of the herniated intervertebral disc.
  • the sealant of the annulus fibrosus assists the nucleus pulposus to restore its hydrodynamic function after a discectomy intervention by being able to gradually build up the physiological intradiscal pressure. This will also allow the intervertebral disc to act as a cushion for physiological cyclic loads and to gradually restore the normal disc height and thus protect the facet joints in the damaged segment from excessive and long term loads.
  • the sealant of the annulus fibrosus has adequate visco-elastic properties due to its water content and strong three dimensional network of interconnecting polymer molecules. This minimizes the creep behavior of the sealant and enables it to withstand cyclic loads under physiological conditions for long periods without significant degradation and without losing elasticity.
  • the material composition for the sealant of the annulus fibrosus may be radio-opaque to a similar degree as a polymethyl-methacrylate based bone cement that is commonly used for the fixation of joint replacement prostheses. This feature is intended to allow the surgeon to monitor the correct implantation of the implanted sealant per-operatively and to identify the implant post-operatively in an X-ray radiograph.
  • the preferred final water content of the cured implant is about 30% to 90%.
  • the final implant water content increases as the concentration of PEG (polyethylene glycol) in the precursor component solutions decreases.
  • the sealant of the annulus fibrosus is highly bio-compatible and is well tolerated in the body due to its following properties: A) it is preferably a hydrogel material that is hydrophilic and water-permeable similar to the surrounding tissues, B) the sealant material is non-toxic and C) the sealant material has a stiffness coefficient, in relation to the application of physiological loads and stresses, such as in compression, tension, and axial rotation, that is the same as or less than the stiffness coefficient of the natural annulus fibrosus tissue.
  • the sealant for the damaged annulus fibrosus may also serve as a carrier and controlled release drug delivery system for topical applications of drugs for anti-inflammatory, antibiotic, analgesic or other therapies.
  • the release mechanism is primarily based on diffusion of the drug through the cross linked sealant and into contact with other elements of the body where therapy is required.
  • the drug release rate will be steady and predictable and will be proportional to the controlled bioerosion of the sealant material over an extended period of time, while newly formed annulus fibers and nucleus tissue gradually replace the sealant material put in place according to this invention.
  • the sealant for the annulus fibrosus may also function as a carrier for the controlled release of various growth and/or differentiation factors, such as basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), transforming growth factor beta (TGF), platelet derived growth factor (PDGF), chondromodulin (ChM), bone morphogenic protein (BMP), etc.
  • bFGF basic fibroblast growth factor
  • IGF insulin-like growth factor
  • TGF transforming growth factor beta
  • PDGF platelet derived growth factor
  • ChoM chondromodulin
  • BMP bone morphogenic protein
  • the precursor components are stored in a piston driven, one or two chamber cartridge that serves as a transport and storage container.
  • Each chamber of the cartridge is closed by a sealing membrane within the extrusion flange at the tip of the cartridge.
  • the sealant application system comprising the application instrument, precursor filled cartridge, mixer nozzle (for two component systems) and injection cannula has to be prepared.
  • the precursor filled cartridge is placed into an application instrument that serves to press the pistons of the cartridge in a reproducible and volume controlled manner.
  • the sealing membrane of the cartridge is broken and a spiral or other mixer nozzle (for two component systems) is attached onto the extrusion flange.
  • An injection cannula with a blunt ended tip is placed on top of the mixer nozzle that allows for precise application of the sealant into even narrow defects of the annulus.
  • electromagnetic radiation such as UV or visible light, or heat is supplied through a light or temperature transparent/conducting cannula before the sealant reaches the application site.
  • the sealant for the damaged annulus fibrosus can be applied post operatively at the end of a standard micro-discectomy surgery with the patient in prone position.
  • the cannula of the prepared application system is placed deep into the defect or incision of the annulus fibrosus in such a way that the tip of the cannula is proximate to the inside edge (that is the edge of the annulus fibrosus that boarders on the nucleus pulposus) of the cavity created by removal of disc tissue during discectomy.
  • This placement is followed by injecting the precursor components of the sealant of this invention into the defect until the defect is completely filled, which typically requires 1 ⁇ 2 to up to about 2 ml of precursor component volume.
  • the precursor components are pressed out of the cartridge, they are mixed in the nozzle and, dependent on the bio-compatible material composition used, the polymerisation or nucleophilic addition reaction, that results in the curing of bio-compatible material composition, is initiated. Because of its low viscosity and low surface tension as compared with physiological fluids, the mixed precursor components are able to penetrate into micro-fissures in the degenerated or remaining (after the discectomy) annulus fibrosus tissue that are interconnected with the radial cleft.
  • the two precursor components of the sealant cure in situ within more than about 2 minutes but less than about 10 minutes to form a solid visco-elastic polymer hydrogel implant that conforms to the shape of the annulus fibrosus defect.
  • the thus formed implant becomes closely interlocked with the annulus fibrosus structure that surrounds the defect and is inherently shaped to conform, when cured, to the shape of the defect in the annulus fibrosus that it has filled.
  • a 105 mg/ml (10.5% W/V) aqueous solution of fibrillar collagen in 0.05 M sodium bicarbonate buffer and 0.15 M sodium chloride is adjusted to pH 9.5. 2.5 ml of this biomaterial solution (solution A) is aspirated into a dual chamber polypropylene cartridge through one of the two extrusion flanges of the cartridge.
  • Both chambers of the cartridge are closed by attaching a spiral mixer nozzle (3.2 mm inner diameter, 6.2 cm length, 0.38 ml void volume) onto the dual extrusion flanges.
  • the cartridge is placed into a manual application instrument that allows for a reproducible and volume controlled extrusion of the bio-material in increments of 0.5 ml per step.
  • a blunt tip aspiration needle (18 gauge, 90 mm length) is placed on the tip of the mixer nozzle.
  • the handle of the application instrument is pressed three times (3 ⁇ 0.5 ml) in order to fill the void of the mixer and needle with the mixed bio-material precursor solutions. About 1 ml of mixed precursor solution flows out of the needle tip and is discarded.
  • the cross linking process is now activated and care must be taken to apply the sealant without delay, i.e. within less than about 60 seconds in this Example.
  • a bovine cadaveric lumbar trunc is placed in prone position (spine axis horizontally with spinal processes facing up) and prepared with a standard posterolateral microdiscectomy approach using a 4 cm outer incision.
  • the annulus fibrosus is incised posterolaterally with a full thickness square incision (fenestration with size: 3 mm ⁇ 3 mm).
  • the loose annulus tissue is then removed from the fenestration site with a 2 mm rongeur, followed by removal of at least one gram or one ml of nucleus pulposus tissue—in order to create the typical operation situs at the end of a lumbar discectomy. All of this is done prior to activating the crosslinking process.
  • the needle tip of the sealant applicator is placed about 2 cm deep into the disc, near the bottom of the nucleus cavity that has been created by the incision.
  • About 1-2 ml of sealant is extruded by pressing the handle of the application instrument (preferably at a rate of about 2 steps per second), until the sealant fluid appears at the outside edge of the incision and forms a convex bulge on the outer periphery of the disc.
  • the needle is then withdrawn from the incision and the sealant allowed to cure for 5 minutes.
  • a 380 mg/ml (38% w/v) aqueous solution of human serum albumin (MW 68000) in 0.1 M sodium bicarbonate buffer and 0.15 M sodium chloride is adjusted to pH 8.2 (solution A buffered protein solution).
  • a 200 mg/ml (25% w/v) aqueous solution of difunctionally activated N-succinimidyl propionate PEG (DSP-PEG, MW 3400) in 0.01 M sodium carbonate/bicarbonate buffer at pH 6.0 is prepared as solution B (cross linking agent). Solutions A and B are placed in the dual chamber cartridge and applied in the animal annulotomy model as described in Example 1. In this Example 2, the application of the sealant without delays is particularly important because of the short curing time of this type of sealant (2-3 minutes).
  • the syringe is placed into a manual application instrument that allows for a reproducible and volume-controlled extrusion of the bio-material in increments of 0.25 ml per step.
  • a blunt tip aspiration needle (18 gauge, 90 mm) is placed on the tip of the heating cylinder.
  • the handle of the application instrument is pressed four times (4 ⁇ 0.25 ml) in order to fill the void of the heating cylinder and needle with the bio-material solution. About 0.2 ml of bio-material solution flows out of the needle tip and is discarded.
  • the heater is turned on and the heater control unit is set at 50° C. As soon as the heater reaches a temperature of 45° C., the polymerization process will start and care must be taken to apply the sealant without delay, i.e. within less than about 15 seconds and at a rate of approximately two steps per minute (0.5 ml of volume/min).
  • PBS pH 9.0 solution 893 mg of pentaerythritol tetrakis (3-mercaptopropionate)(QT) were dissolved.
  • This solution represents solution A (solution of polymer with terminal nucleophilic groups).
  • Solution B was made up of 2.1 g of polyethylene glycol diacrylate having a molecular weight of 570 (PEGDA 570). Both solutions were combined and mixed well by vortexing.
  • Air bubbles were removed by sonicating.
  • the mixture was cast in polypropylene molds to form cylindrical testing samples of biomaterial, and allowed to cure for 60 minutes at room temperature.
  • the resulting cured biomaterial has a solid material content of 75% (w/w) or 72% (v/v), respectively.
  • This biomaterial when tested in displacement controlled compressive stress mode, demonstrated an ultimate strength of more than 2 MPa and withstood deformations of about 35% in compression.
  • Solutions A and B were prepared as described in Example 4. After mixing solutions A and B by vortexing, 100 microliters of the mixture was placed between 20 mm plates of a CVO 120 rheometer with a gap of 100 um. The mixture was maintained at 37° C. while the elastic modulus, complex modulus and viscosity were followed with time using shear at 1 Hz with a strain amplitude of 0.3. With progression of the reaction. the two combined precursors showed a gel point, defined by the time when the elastic modulus becomes greater than the complex modulus. Using these testing conditions, the gel point occurred in about 11 minutes.
  • Mechanical properties of cross-linked hydrogel systems can be manipulated by using bi- or multimodal molecular weight distributions in the material compositions.
  • Including a low molar content of a high molecular weight precursor in a low molecular weight system can synergistically combine properties from either molecular weight component and improve the mechanical properties of the material as compared to gels formed from either molecular weight component alone.
  • a system composed of cross-linked low molecular weight materials may be strong, but may not elastically withstand large deformations (strain) in compression or tension.
  • Systems composed of cross-linked high molecular weight materials with long polymer chains may withstand tremendous strains, but at the cost of decreased strength.
  • a preferred bimodal hydrogel system combines predominately short polymer chains with a small molar ratio of the longer chains and results in biomechanically relevant stress and strain resistance properties.
  • Solution A was prepared as described in Example 4. 1.37 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) and 440 ul of 1-methyl-2-pyrrolidone were mixed and heated to 50° C., while 0.73 g of polyethylene glycol diacrylate with a molecular weight of approx. 20,000 was slowly added and allowed to dissolve. This solution represents solution B. Solutions A and B were mixed and tested as described in Example 4. The resulting hydrogels showed an ultimate strength of more than 3 MPa and withstood deformations of about 60% in compression.
  • Including inorganic particles as components of cross-linked hydrogels is a way to render the sealant of the annulus fibrosus radio-opaque. Furthermore, addition of sub-micrometer sized particles to hydrogels can be used as a way to modulate the mechanical properties of the cured biomaterial gels.
  • Solution A was prepared as described in Example 4.
  • Solution B was made of 2.1 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) that was loaded with 300 mg of BaSO 4 particles type blanc fixe (10% w/w), with an average particle size of 800 nm.
  • Solutions A and B were combined as described in Example 4.
  • the cured biomaterials resulting from addition of the BaSO4 were highly radioopaque and showed a stiffness of 55 N/mm, representing a 30% increase in stiffness over the biomaterials described in Example 4.
  • a similar material composition was prepared that contained 10% of fumed silica particles with an average particle size of 14 nm instead of the above BaSO 4 particles.
  • the cured material resulting from this precursor composition showed significant increases in its ultimate strength. After 100 cycles, with 4 MPa of maximum load in compression stress testing, these materials had not failed.
  • Including lubricants or surfactants into the material composition for the sealant of the annulus fibrosus can be used both to increase the tissue intrudability of the uncured sealant material and to improve the mechanical properties of the cured sealant material.
  • Solution A was prepared as described in EExample 4.
  • Solution B was made of 2.1 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) that was mixed with 30 mg of sorbitan monooleate.
  • Solutions A and B were combined as described in the previous Example 5, resulting in a biomaterial with a final concentration of 1% (w/w) of sorbitan monooleate.
  • the resulting gels exhibited a similar increase in ultimate strength compared to the gels with inorganic particles added, as described in Example 8, but without the associated increase in stiffness.
  • Toxicity and biocompatibility of the low molecular weight components of the material composition for the sealant of the annulus fibrosus according to this invention can be improved by pre-reacting these components, such as to obtain higher molecular weight components with remaining functional groups.
  • the pins were implanted into the right or left lumbar posterior muscles of rabbits. Pins made of polyethylene were implanted on the controlateral side of the animal as reference implants. After 4 weeks, the animals were sacrificed and histological sections of the implants and the surrounding tissue were performed. With both gel types tested, no significant differences were apparent compared to the reference materials. Rare macrophages, fibroblasts and neovessels were associated with the implanted gel pins. No necrosis, degeneration or any other local intolerance signs were induced by these material compositions.
  • the sterile solutions A and B were each filled into 1 ml syringe cartridges and mixed by simultaneously passing the contents of both cartridges through a spiral mixer nozzle element, as described in Example 1. Because of the small volumes of sealant needed in this animal model, the mixture was transferred into a 1 ml syringe and injected into the defect with a 22G needle.

Abstract

An intervertibral disc made up of an annulus fibrosus having at least one defect therein, a cross linked visco-elastic solid polymer in said defect and adhering to remaining annulus fibrosus and thereby closing said defect and a nucleus pulposus.

Description

  • This application is a continuation of application Ser. No. 09/549,332, filed Apr. 14, 2000, which was a continuation in part of provisional application serial No. 60/129,607, filed Apr. 16, 1999, and the entire contents of which are incorporated herein by reference.[0001]
  • INTRODUCTION
  • The present invention is directed to a system for repairing tissue defects in intervertebral discs. It more particularly is concerned with repairing the portion of an intervertebral disc that has been subject to damage, such as herniation, as well as to repairing that portion of an intervertebral disc remaining after the performance of a partial discectomy intervention. Such discectomies are conventionally performed to treat a severe hernia of an intervertebral disc. [0002]
  • REVIEW OF THE STATE OF THE ART
  • A disc hernia is a radial rupture of the annulus fibrosus of the intervertebral disc that is accompanied by a protrusion (sometimes a very large protrusion) of the annulus fibrosus and/or by an extrusion of disc material through the rupture in the annulus fibrosus. The rupture of the annulus fibrosus is often accompanied by a compression of the spinal canal and pressure on the nerve roots that pass through the disc protrusion or extrusion. This usually leads to strong and progressive pain that emanates from the compromised segment of the spine. This condition may require a surgical intervention. [0003]
  • Patients with a symptomatic disc hernia, and indication for a surgical intervention at the disc, normally undergo a partial or total discectomy operation. In a partial discectomy, protruding annulus disc material and a portion of the nucleus pulposus of the disc are removed. The resulting reduction in the volume of disc material within the epidural space leads to decreased pressure on the compressed nerve roots and/or the spinal cord, respectively. Without repair, the radial rupture defect in the annulus fibrosus will remain and will not close, at least it will not close in a relatively short time. Without repair, a considerable risk of post-discectomy complications, such as a re-herniation of the disc, will remain. [0004]
  • A successful discectomy intervention will result in lasting pain relief for the patient. However, it has been shown that severe post-discectomy complications may occur in about 6-16% of all surgical interventions. These are often caused by events such as a re-herniation of the disc, extensive epidural scar formation or vascularization and nerve ingrowth into the defect in the annulus fibrosus. [0005]
  • The cells of the nucleus pulposus produce cytokines and inflammatory mediators, such as nitric oxide, that have been shown to be responsible for nerve root irritation and sensitization that can lead to severe radicular pain. In a post-discectomy situation, without repair of the annulus fibrosus, nucleus pulposus material may migrate into the epidural space and/or nucleus pulposus-derived cytokines and inflammatory mediators may diffuse into the epidural space through the annulotomy site. Both events may result in post-discectomy complications such as persistent nerve root pain. [0006]
  • As a side effect of the volume reduction that is attendant upon a discectomy intervention, the intervertebral disc height, and thus the vertical distance between adjacent vertebral bodies, will be reduced. The decreased intervertebral disc height may be one of the reasons for a re-herniation of the disc. Further, the reduction in intervertebral disc height has been reported to lead to an accelerated mono-segmental degeneration of the annulus fibrosus or of the facet joints of the affected spinal segment. [0007]
  • Dr. Hansen YUAN (Professor of Medicine at Syracuse University) has recently presented a review of the available technology that is currently being exploited in connection with disc repair and replacement (13[0008] th annual meeting of the North American Spine Society, Oct. 30, 1998 in San Francisco, Calif. USA). According to an abstract of this presentation, many different people and groups are working on mechanical disc replacements, hydrogel implant replacements and in situ curable polyurethane disc replacements.
  • OBJECTS AND BRIEF DESCRIPTION OF THE INVENTION
  • It is an important object of this invention to provide means for reducing the incidence of post-discectomy complications by closing the annulus defect that remains after a discectomy surgical intervention. [0009]
  • It is another object of this invention to provide an in-situ curable sealant material that provides the surgeon with means for reducing the risk of re-herniation whilst leaving as much potentially regenerating nucleus pulposus tissue as possible within the disc space. [0010]
  • It is another object of the invention to provide means for closure of a ruptured or incised annulus fibrosus site after discectomy sufficient to seal the compartment restraining and surrounding the nucleus pulposus (portion) of the disc and to prevent later extrusion of further disc material (recurrent disc hernia). [0011]
  • It is another object of the invention to prevent, by sealing the annulus fibrosus, hypertrophic scar formation, vascularization, nerve ingrowth, or infection of the ruptured annulus fibrosus or in the nucleus pulposus cavity. [0012]
  • It is another object of the invention to prevent, by sealing the annulus, migration of nucleus pulposus cells into the epidural space, and to prevent, by sealing the annulus, diffusion of nucleus pulposus-derived cytokines and inflammatory mediators into the epidural space through the annulotomy site. The thus resulting prevention of contact between nucleus pulposus cells, and its cytokines or inflammatory mediators, with nerve roots after discectomy is another object of the invention and will assist to minimize nucleus pulposus-induced nerve root injury and nerve root pain. [0013]
  • It is another object of the invention to provide means to repair a ruptured annulus fibrosus, where the means functions as a sealant for the ruptured annulus fibrosus and, provided the nucleus pulposus contains a sufficient number of viable cells, assists in the restoration of the load-bearing and viscoelastic properties of the defective intervertebral disc. [0014]
  • It is another objective of the invention to provide an implant that minimizes removal of nucleus pulposus material during a discectomy intervention without having an elevated risk of recurrent disc hernia. Since the nucleus pulposus tissue in most disc hernia patients is viable and has regenerative potential, leaving as much nucleus pulposus tissue as possible in the disc space may be conducive to the gradually regeneration of the disc and restoration of its physiological functions. [0015]
  • Other and additional objects of this invention will become apparent from a consideration of this entire specification, drawings and claims. [0016]
  • In accord with and fulfilling these objects, one aspect of this invention comprises the use of compositions comprising an in-situ curable sealant(s), made of a bio-compatible material, to repair defects in an annulus fibrosus of an intervertebral disc. Such defects may be fissures and ruptures of the annulus fibrosus due to disc degeneration or disc hernia, as well as injuries due to incisions and punctures of the annulus fibrosus such as from annulotomy or discectomy procedures. [0017]
  • In general, defects in the annulus fibrosus have the shape of a complex radial cleft that extends from the innermost edge of the annulus fibrosus, that is at the border of the nucleus pulposus, to the outermost layers of the annulus fibrosus. The defect may originate A) because of a burst canal or rupture of the annulus fibrosus that permitted extrusion there through of material from the nucleus pulposus, or, B) by reason of incisions that had to be made during surgery in order e.g. to remove nucleus pulposus material from within the intervertebral disc that has caused a large bulge or protrusion of the disc. [0018]
  • Another type of defect of the annulus fibrosus is often observed in the case of severely degenerated intervertebral discs. In this condition, the disc tissue has become severely dehydrated and has lost its elasticity. As a result, the annulus fibrosus tissue has become brittle, friable and unstable to the extent that tissue fragments may come loose and migrate out of the annulus fibrosus, leaving space through which nucleus pulposus material can exude. These fragments are separated from the main body of the annulus fibrosus by numerous interconnecting fissures and are often held in place only by a thin outer lamella of the annulus fibrosus (see FIG. 3 for illustration). When this thin layer tears, the fragments may migrate into the epidural space and cause pressure on the spinal nerves, that in turn may cause severe pain.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view, in the horizontal plane of the lumbar vertebral column, showing a portion of a spinal column and including surrounding soft tissues. The intervertebral disc shown in the lower center has a large defect in its annulus fibrosus that has been closed with a sealant, according to this invention, for the annulus fibrosus. [0020]
  • FIG. 2 is a cross-sectional view in the sagittal plane of an intervertebral disc. The annulus fibrosus is shown with a large defect that is filled with a sealant, according to this invention, for the annulus fibrosus. [0021]
  • FIG. 3 is a cross-sectional view of a severely degenerated disc. On the right side, fragments from the outer annulus fibrosus are shown to be held in place by a thin lamella. Portions of the disc protrude to the right into the epidural space proximate to the spinal cord (not shown). [0022]
  • In the practice of the present invention, for repairing defects of the annulus fibrosus, the sealant composition of this invention may be applied in several ways, depending on the clinical situation with the disc degeneration. A particularly preferred application mode for the present invention is to put up the sealant composition as an injectable material. The composition is then injected into the proximity to the defect, whereupon it fills and closes incisions, clefts or fissures in the annulus fibrosus, such as occur after a disc hernia has been surgically treated. The sealant cures in-situ. In this particularly preferred application, the intervertebral disc is sealed in order to prevent a later extrusion of further disc material. This procedure is useful where the remaining nucleus pulposus is comprised of a sufficient amount of viable cells to perform its function. That is, this procedure is most useful where the amount of nucleus pulposus remaining in the disc after effecting repair is sufficient for the disc to continue to perform its intended function. [0023]
  • In another preferred application, the present invention can be used to patch up or consolidate brittle and friable tissue that exists in the outer annulus fibrosus of a severely degenerated intervertebral disc. In this application, the sealant composition of the present invention serves as a putty or cement in order to bind together the remaining tissue fragments of the outer annulus fibrosus. This procedure is preferably used as an alternative to the filling of a crevasse created by surgical intervention, as has been previously mentioned. However, it is also within the scope of the instant invention to both fill cracks or openings in the annulus fibrosus and cement together degenerated, but remaining, portions of the annulus fibrosus. This aspect of this invention does not particularly envision using the composition of this invention as a sealant for the entire disc, but such use can be accomplished. This application of the practice of this invention could also be described as annulus augmentation or partial annuloplasty, where the brittle annulus fibrosus is reinforced and stabilized through the in-situ curing of a sealant according to this invention. This application of the invention is intended to prevent tissue fragment migration and thus reduces the risk of spinal nerve compression by sequestrated fragments of the degenerated annulus fibrosus. [0024]
  • The bio-compatible compositions, comprising the in situ curable sealant of this invention, are based on materials that range in viscosity and physical state from an injectable liquid to a visco-elastic solid. The materials are preferably prepared from human or animal origin or may be made through conventional chemical synthesis or by a recombinant DNA technique. In general, it is important that the bio-compatible material compositions have the property of forming, upon curing, a strongly bonding, visco-elastic material that becomes sealed to the annulus fibrosus, or to fragments thereof, within about 2 to 40 minutes, preferably 2 to 10 minutes, after application (by injection or otherwise). The in-situ curing process must work well under wet conditions, at or near physiological pH (e.g. a pH of about 5-10), at or near physiological temperature (e.g. about 4-50° C.) and in the presence of interstitial body fluids (such as spinal fluid and/or blood). The sealant must cure to create a non-toxic, bio-compatible and strongly tissue adhesive seal of the annulus fibrosus or of materials that make up this feature. It should be of sufficient strength to stay in place without decomposition under permanent cyclic physiological loads. [0025]
  • A bio-compatible material that can serve as sealant of the annulus fibrosus has to meet exceptional characteristics with regard to its strength, tissue adhesion properties and bio-compatibility both when strategically placed and after curing. In addition, only an in-situ curing process of the biomaterial will form a sealant that perfectly conforms to the complex shape of a defect or incision in the annulus fibrosus. [0026]
  • Various bio-compatible material compositions have been described in the art. Some of these may be useful as in-situ curable sealants for defects of, or incisions in, the annulus fibrosus. None of the published disclosures of biomaterial compositions describe the potential application of such materials as in-situ curable sealants for use in connection with repair of the annulus fibrosus. Furthermore, none of the applications for the various bio-compatible materials that have been described in the prior art are similar or comparable to the use of such a sealant in connection with damaged annulus fibrosus. There are no disclosures in the prior art that described applications in which an uncured liquid bio-compatible material is caused to flow into a complex three-dimensional tissue defect, and therein to become cured whereby to seal or patch up the defect. There is no disclosure in the prior art that shows using such sealants bio-compatible materials to prevent re-herniation of the annulus fibrosus, or prevent, or at least minimize, annulus fibrosus tissue migration. Thus, this invention provides an annulus fibrosus sealing means, formed from in-situ curable formulations comprising flowable bio-compatible material, that can be caused to cure in situ.[0027]
  • DETAILED DESCRIPTION OF THE INVENTION PREFERRED BIO-MATERIALS
  • Preferred bio-compatible materials for use in the practice of the invention include all bio-compatible, hydrophilic synthetic or naturally occurring polymers that are curable to a visco-elastic end product under physiologic conditions. These polymers are cross-linked by an internal mechanism. That is, in some cases, no outside energy input or material is needed to cause the flowable bio-compatible polymers of this invention to become cured into a relatively permanently placed visco-elastic material. In other situations, the flowable bio-compatible polymers of this invention will need the input of outside influences, such as irradiation and/or heat, to cause them to cross link and become the desired visco-elastic materials. Such heat and/or irradiation can be very localized so as to cause the cross linking and curing to occur exactly where it is needed. In either case, the end product cross linked visco-elastic polymer materials will maintain its location, shape and structure, and lend stability and physical strength to a damaged annulus fibrosus. This can be on a permanent basis, that is the repairing sealant will become a permanent part of the annulus fibrosus. [0028]
  • It is also within the scope of this invention that the visco-elastic sealant used in this invention will be a temporary material that will bind and repair the damaged annulus fibrosus for a time sufficient to prevent re-injury of this member and to enable scar formation with fibrocartilaginous tissue to occur. This type of sealant will be composited such that it will degrade with time so that by the time the annulus fibrosus has accomplished sufficient self repair, the added sealant will have degraded and be expelled from the body. This cross-linking can be accomplished by making up a flowable mixture of two or more precursors molecules that react with each other over a short time to form the desired in situ cured visco elastic product that has physical and chemical properties that resemble those of the annulus fibrosus sufficiently to perform its function, at least substantially, while the natural annulus fibrosus regenerates itself. This flowable, in situ curable material may be made up of a single precursor that reacts with itself, e.g. by heating, or by irradiation with electromagnetic energy, such as visible or ultra violet light. It is also within the scope of this invention to use a one or plural component curable flowing material that is cured by the action of a catalyst and/or initiator that is included in the composition. [0029]
  • Some or all of the chemical compounds, cross linkable polymers, or pre-polymers, that form the precursor materials, or are the building blocks from which the precursor components are formed, can be bio-compatible, hydrophilic synthetic or naturally occurring polymers. Even if some of the precursor components are not especially bio-compatible, since they are intended for use within an animal, especially human, body, it is essential that none of these precursor materials themselves nor the polymers that result from their curing be detrimental to the animal, especially human, host. The cured polymer products are preferably completely bio-compatible, e.g. they do not induce extensive chronic inflammation, do not induce excessive complement activation, and do not induce excessive local cytotoxicity, such as for Example as a result of components that leach out of these cured or uncured materials. It is important that the cured polymers be hydrophilic, so as to form materials that are hydrogels, e.g. polymers with absorbed water contents in excess of approximately 25% of their own weight. The tissue specific compatibility of the resulting hydrogels is generally better than is the case with less hydrophilic materials. This is as a result of the water permeability of the hydrogel being similar to that of the surrounding tissue, and because of the better matching of the mechanical properties of the instant sealing material with the surrounding natural annulus fibrosus tissue. [0030]
  • The cured polymers that are useful in this invention may be synthetic or naturally occurring. It may be more reliable to ensure the long-term stability of a cured sealant that is based on synthetic polymers. [0031]
  • Alternatively, a controlled degradation can be engineered into a synthetic polymer by incorporation of slowly hydrolyzable linkages, such as for Example ester, amide, carbonate or anhydride linkages, into the cured polymer. Naturally occurring polymers generally will form sealing members that become more easily degraded in vivo, and there may be cases in which this is desirable, e.g. when the sealant is intended to be replaced by natural tissue that is being generated as a result of healing in the annulus fibrosus. This may be particularly desirable when the cured sealant member contains a bio-active agent to promote healing. [0032]
  • Examples of the type of synthetic polymers that can be used as building blocks in accord with this invention are polyethylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylic acid, polyethoxazoline, polyhydroxyethyl acrylate, and polyhydroxyethyl methacrylate. These materials can be further functionalized in order to increase their ability to form hydrogels gels in situ. [0033]
  • Polysaccharides that are useful in the present invention include glycosaminoglycans such as hyaluronic acid, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, keratan sulfate, chitin, chitosan, heparin, and derivatives or mixtures thereof. Further, proteoglycans such as decorin, biglycan and fibromodulin may also be used in the present invention. Proteoglycans are components of the extracellular matrix of cartilage cells and contain one or more glycosaminoglycan molecules bound to a core protein. Furthermore, mixtures of various species of glycosaminoglycans or proteoglycans with various proteins, or mixtures of various species of glycosaminoglycans or proteoglycans with proteins can be used in the practice of the present invention. [0034]
  • Various synthetic polypeptides can also be used in the practice of the present invention. The term “synthetic polypeptide” is intended to encompass polypeptides that have been produced using recombinant DNA techniques, as well as those produced by other methods of chemical synthesis. [0035]
  • Various naturally occurring proteins such as albumin, collagen, fibrin and elastin may also be used alone or in combination with other materials in the practice of the present invention. [0036]
  • The terms “albumin” “collagen” or “elastin” or “fibrin” as used herein refer to any types of these naturally occurring proteins, from any source, including, but not limited to, protein extracted from tissue or fractionated from blood or recombinant proteins. Further, these terms refer to all forms of these naturally occurring proteins, including those that have been processed, denatured or otherwise modified. [0037]
  • In general, collagen, elastin, fibrinogen or fibrin from any source may be used in the practice of the present invention. The preparation of purified, non-immunogenic proteins from human or animal tissues as well as recovered by different methods of producing recombinant human collagen or fibrin are thoroughly described in the literature. [0038]
  • Collagen of any type, including, but not limited to, types II, III, V, VI, IX or any combination thereof, are preferred to be used in the practice of the present invention, although collagens of type I and type II are generally the most preferred types. Collagen for use in the present invention may be in a fibrillar or non-fibrillar form. The preferred form of the preferred collagen for the practice of the present invention is the fibrillar form of collagen due to its higher persistence and mechanical strength. [0039]
  • Elastin of any type can be used for the practice of the present invention. Elastin of type I is generally preferred. [0040]
  • PREFERRED BIO-MATERIAL COMPOSITIONS FOR THE SEALANT OF THIS INVENTION
  • In a preferred embodiment of the present invention, the sealant for the damaged annulus fibrosus is a bio-compatible polymer composition of viscosity that is sufficiently low to permit injection and which forms a visco-elastic material upon becoming cured. The bio-compatible polymer precursor(s), when implanted in the situs of the defect in the annulus fibrosus, are flowable material(s), preferably a liquid of suitable viscosity such that when the liquid conforms to the damaged area of the annulus fibrosus, it tends to stay in place while it is curing in situ. [0041]
  • In general, the preferred material composition for use in the practice of the invention is an in-situ curing, bio-compatible polymer composition that has, when cured, the properties of an elastic, or visco elastic, substantially solid hydrogel. The preferred bio-compatible polymer material composition may include two or more precursor components that are dissolved or dispersed in two different solvents/carriers, A) and B). The solutions/suspensions are suitably mixed immediately prior to the application of the sealant into the situs of the damage. Alternatively, a single solution containing the appropriate bio-compatible material composition can be used in combination with a separate initiator system to start the curing reaction, as for Example the composition disclosed for a different purpose in U.S. Pat. No. 5,626,863. [0042]
  • A preferred bio-compatible material composition that is useful for sealing damage to the annulus fibrosus is made of two precursor components, a bio-compatible material solution and an activated crosslinking agent. In this preferred composition, bio-compatible materials, such as collagen or glycosaminoglycans, and cross linking agents, such as synthetic hydrophilic polymers as disclosed for a different purpose in U.S. Pat. Nos. 5,324,775 or 5,328,955, can be used. Preferred synthetic hydrophilic polymers for use in the invention include bifunctionally activated polyethylene glycols, as disclosed for a different purpose in U.S. Pat. Nos. 5,326,955 or 5,583,114. [0043]
  • Another preferred bio-compatible material composition for the sealant of a damaged annulus fibrosus is made of two precursor components, a buffered protein solution and a bifunctional cross linking agent. More specifically, the protein is preferably be a non-immunogenic, water soluble protein. Materials such as serum albumin or derivatives of elastin, fibrinogen or collagen can be used as protein, and polyethylene glycol, with activated terminal groups may be used as the preferred cross linking agent in this preferred composition. Such a composition is disclosed for other purposes in U.S. Pat. No. 5,583,114. [0044]
  • Another preferred bio-compatible material composition that is useful for the sealant of the annulus fibrosus according to this invention is made of a polymerizable component that includes a water soluble core region and polymerizable terminal group(s) or functional group(s). In addition, the component may include a biodegradable extension of the core region. A preferred embodiment of this aspect of this invention includes polyethylene glycol as the core region and one or more acrylate moieties as the polymerizable end cap or terminal portion, as disclosed for other purposes in U.S. Pat. No. 5,626,863. In the practice of using this component as in-situ curable sealant for the damaged annulus fibrosus, a free radical polymerization reaction of the component must be initiated, either after the composition has been placed at the situs, or immediately prior to introduction of the composition into the damaged area(s) of the annulus fibrosus. For initiation of the polymerization immediately prior to application, the polymerizable component may be extruded from a syringe or a piston-driven cartridge and passed through a light or temperature conducting cannula before it reaches the situs of the annulus fibrosus defect. The free radical polymerization reaction may be initiated through photo-initiation by UV or visible light irradiation of the cannula. In the case of a thermal polymerization initiator system, as disclosed in U.S. Pat. No. 5,826,803, the cannula may be heated to a controlled temperature that is not higher than about 48° C. For initiation of the free radical polymerization reaction in situ, either a thermal polymerization initiator system, that is sensitive to a temperature of about 37° C. or, alternatively, chemical initiation systems may be used in the practice of the present, invention. Such systems are disclosed for other purposes in U.S. Pat No. 5,626,863. [0045]
  • A particularly preferred bio-compatible material composition that is useful for sealing damage in an annulus fibrosus is made of two precursor components that can co-polymerize in a self-selective manner, such as by a nucleophilic addition reaction, as disclosed in pending U.S. patent application Ser. No. 60/118,093 , filed on or about Feb. 1, 1999 in the names of Jeffrey A. Hubbell, Donald L. Elbert, and Alyssa Panitch, and carrying an attorney's docket number ETH 103. The entire contents of this provisional patent application, which was copending with the parent provisional application of the instant application, is incorporated herein by reference. In a preferred embodiment, a hydrophilic linear or crosslinked polymer with two or more terminal unsaturated groups is used as the first precursor component, and another hydrophilic polymer with two or more terminal nucleophilic groups is used as the second precursor component. In a particularly preferred embodiment, polyethylene glycol constitutes the hydrophilic polymer, acryloyl moieties are used as unsaturated end groups, and compounds with thiol functional groups are used as the nucleophilic groups. Such compositions are disclosed in this provisional patent application. [0046]
  • When using this embodiment in the practice of the present invention, the two precursor components should be quickly mixed immediately prior to use and then applied to the annulus fibrosus defect using a common applicator. As a preferred embodiment, the two components may be filled into a dual syringe or a dual-chamber piston-driven cartridge. Both chambers of the syringe, or the cartridge, have openings that merge together into one outlet tube. This tube, is fitted with a suitable mixing nozzle, such as a spiral mixer nozzle, that serves as a static mixer for the two components when they are pressed out of the syringe and passed through the nozzle. As the mixed components are pressed out of the tip of the nozzle, they can be directly applied into the operation situs, i.e. the damage or defect site of the annulus fibrosus. [0047]
  • It is desirable for the mixed bio-compatible material composition to have a low surface tension in relation to physiological materials such as fluids and the annulus fibrosus, and a good intrudability into such systems. These properties permit the bio-compatible material to optimally penetrate into micro-fissures that may be present at the application site of the annulus fibrosus. The intrusion of the biomaterial into micro-fissures and clefts of the damaged annulus fibrosus allows for a strong mechanical interlocking with the natural tissue at the application site and helps to mechanically secure the sealant within the application site during the curing time. [0048]
  • The term “intrudability” relates to the ability of a liquid material composition to penetrate into complex microstructures and to fill small voids. This intrusion or penetration into said microstructure may be caused by low injection pressures, gravitation, capillary forces or non-covalent interactions between the liquid and the microstructure. The intrudability of the mixed biomaterial composition can be increased by including one or more bio-compatible fluid lubricants or surfactants, for Example dextrose, maltose, glycogen, dextran, dextran sulphate, hyaluronic acid glycerol, phospholipids polyoxyethylene sorbitan esters or polyethylene/polypropylene glycols. [0049]
  • Various particulate materials may also be incorporated into the bio-compatible material compositions for use in the invention. Suitable particulate materials include, without limitation; particulate elastin fibers and crosslinked or non-crosslinked fibrillar collagen. [0050]
  • Various biologically or pharmaceutically active agents may also be incorporated into the bio-compatible material compositions for use in the invention. Examples of active agents include, without limitation, growth factors, differentiation factors, enzymes, receptor agonists or antagonists, antibodies, hormones, analgesics, local anesthetics, anti-inflammatory drugs, such as Indomethacin and tiaprofenic acid, antibiotics or anti-microbial agents. The term “active agent” as used herein refers to molecules, usually organic, that exert biological effects in vivo. This term also encompasses combinations or mixtures of two or more active agents. [0051]
  • SUMMARY OF DISCLOSED MEDICAL APPLICATIONS OF BIO-COMPATIBLE MATERIAL COMPOSITIONS THAT ARE SUITABLE AS SEALANT FOR THE ANNULUS FIBROSUS
  • The patents listed above describe various methods of using in-situ curable bio-compatible material compositions in the field of soft and hard tissue surgery, such as to position tissue flaps, to attach side grafts, to prevent air leaks in pulmonary surgery, to inhibit bleeding, to avoid unwanted tissue adhesions, to fill and augment any void spaces in the body, or more generally to close undesired lesions and fissures such as fistular orifices or cysts. [0052]
  • However, these prior art patents do not describe or mention an application or method of using such materials as an in-situ curing sealant to treat defects in the annulus fibrosus and thereby to create an annulus sealing device. There is also no prior art that describes applications that are similar or comparable to the specifications and objectives of a sealant for the annulus fibrosus, as described in the following two sections. Specifically, none of the prior art describes applications in which a liquid or semi-solid biomaterial is caused to flow into a complex three dimensional annulus fibrosus tissue defect, to seal or patch up the defect and prevent a re-herniation or annulus tissue migration, and assists to restore, at least partially, the hydrodynamic function of the intervertebral disc. [0053]
  • Thus, there is described an annulus sealing device, comprising in-situ curable biomaterial formulations that cure to a visco elastic member that at least partially simulates the structure, physical properties and biomechanical functions of the annulus fibrosus and maintains the integrity of this member permanently or for a time sufficient to enable the regeneration of the natural annulus fibrosus tissue. [0054]
  • DESCRIPTION OF IMPORTANT FEATURES OF THE SEALANT FOR THE ANNULUS FIBROSUS ACCORDING TO THIS INVENTION
  • Because of the unique bio-mechanical and physiological properties of the intervertebral disc in general and the annulus fibrosus in particular, a functioning and efficient sealant for the annulus fibrosus should meet numerous specifications, even if it replaces just a small portion of the damaged natural tissue of the annulus fibrosus. [0055]
  • The sealant of the annulus fibrosus is implanted in a low-viscosity liquid form, thus allowing the implanting material to penetrate into tears and micro-fissures with a width of at least 100 micrometers that are interconnected with a radial rupture or principal defect of the annulus fibrosus. [0056]
  • The sealant of this invention for the annulus fibrosus has the property of becoming strongly attached to the surrounding tissue of the annulus fibrosus by close interlocking and entanglement of its shape with the structure of the annulus fibrosus surrounding the defectand by filling cavities in the nucleus that were created during discectomy, thus forming an inner portion of the implant that has a larger cross section than the protrusion canal. The adhesion of the sealant to the surrounding annulus fibrosus tissue is enhanced through polar group interaction or chain inter penetration between the hydrophilic implant material and the surrounding tissue. In addition, covalent bonds formed between the preferred hydrogel bio-compatible material and the surrounding annulus fibrosus tissue further increase and secure the attachment of the sealant of this invention to the annulus fibrosus tissue in proximity to the defect in the annulus fibrosus. [0057]
  • The annulus sealing material that seals the defects in the annulus fibrosus may be the result of the interaction of at least two bio-material precursor components that react with each other in situ, preferably in a self selective reaction. Alternatively, a single bio-compatible material precursor composition that is activated for polymerization, such as for Example by activation either in situ or application immediately prior to implanting, may be used. Both systems result in a sealant that substantially perfectly conforms to the complex and irregular shape of an annulus fibrosus defect and bonds strongly to the tissue surrounding the defect. In addition, the self-selectivity of the reaction is an important feature to minimize toxic or denaturing effects of the curing bio-compatible material composition. [0058]
  • The sealant of the annulus fibrosus is preferably formed from previously pre-polymerized materials that are employed as prepolymer or macromer precursor components. In this way, the risk of exposing a patient to volatile and toxic residual monomers that may remain after curing of the sealant can be avoided. [0059]
  • The sealant of the annulus fibrosus must have adequate impact and tensile strength and must be adequately resistant to fatigue from repetitive loading and unloading or repetitive torsion moments that the annulus fibrosus is conventionally subjected to. This allows the sealant to permanently stay in place and remain intact after implantation. An even more important property of the sealant of the annulus fibrosus is its ability to withstand intradiscal pressures of the nucleus pulposus in the upper physiological range and to efficiently seal the annulus fibrosus so that the nucleus pulposus is contained within the intervertebral disc. [0060]
  • The sealant of the annulus fibrosus closes the defect in the annulus fibrosus so as to reduce the risk of a recurrent disc hernia and to prevent the further extrusion of nucleus pulposus material through the defect, , thus avoiding contact between nucleus pulposus cells and its cytokines or mediators with nerve roots after discectomy and preventing or minimizing nucleus pulposus-induced nerve root injury and nerve root pain. [0061]
  • The sealant of the annulus fibrosus assists in the restoration of the physiological function of the herniated intervertebral disc. In particular, the sealant of the annulus fibrosus assists the nucleus pulposus to restore its hydrodynamic function after a discectomy intervention by being able to gradually build up the physiological intradiscal pressure. This will also allow the intervertebral disc to act as a cushion for physiological cyclic loads and to gradually restore the normal disc height and thus protect the facet joints in the damaged segment from excessive and long term loads. [0062]
  • The sealant of the annulus fibrosus has adequate visco-elastic properties due to its water content and strong three dimensional network of interconnecting polymer molecules. This minimizes the creep behavior of the sealant and enables it to withstand cyclic loads under physiological conditions for long periods without significant degradation and without losing elasticity. [0063]
  • The material composition for the sealant of the annulus fibrosus may be radio-opaque to a similar degree as a polymethyl-methacrylate based bone cement that is commonly used for the fixation of joint replacement prostheses. This feature is intended to allow the surgeon to monitor the correct implantation of the implanted sealant per-operatively and to identify the implant post-operatively in an X-ray radiograph. [0064]
  • The preferred final water content of the cured implant is about 30% to 90%. Generally, the final implant water content increases as the concentration of PEG (polyethylene glycol) in the precursor component solutions decreases. [0065]
  • According to this invention, the sealant of the annulus fibrosus is highly bio-compatible and is well tolerated in the body due to its following properties: A) it is preferably a hydrogel material that is hydrophilic and water-permeable similar to the surrounding tissues, B) the sealant material is non-toxic and C) the sealant material has a stiffness coefficient, in relation to the application of physiological loads and stresses, such as in compression, tension, and axial rotation, that is the same as or less than the stiffness coefficient of the natural annulus fibrosus tissue. [0066]
  • By being as strong as, but softer than, the surrounding tissue, friction, if any, between implant and surrounding tissue remains low and stress-shielding of the tissue is avoided. By avoiding friction with the implant and stress-shielding of the surrounding tissue, the conditions for a normal long term remodeling of the annulus tissue are optimized and the risk of gradual implant rejection or hypertrophic tissue reactions is minimized. The sealant for the annulus fibrosus is permeable to water and water soluble substances, such as nutrients, metabolites, drugs and the like. [0067]
  • The sealant for the damaged annulus fibrosus may also serve as a carrier and controlled release drug delivery system for topical applications of drugs for anti-inflammatory, antibiotic, analgesic or other therapies. In the case of a non-biodegradable sealant for the annulus fibrosus, the release mechanism is primarily based on diffusion of the drug through the cross linked sealant and into contact with other elements of the body where therapy is required. In the case of a hydrolytically stable, bioerodible material composition for the sealant, the drug release rate will be steady and predictable and will be proportional to the controlled bioerosion of the sealant material over an extended period of time, while newly formed annulus fibers and nucleus tissue gradually replace the sealant material put in place according to this invention. [0068]
  • Preferably, the sealant for the annulus fibrosus may also function as a carrier for the controlled release of various growth and/or differentiation factors, such as basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), transforming growth factor beta (TGF), platelet derived growth factor (PDGF), chondromodulin (ChM), bone morphogenic protein (BMP), etc. For the successful administration of these auto- or paracrine growth factors, a biologically relevant concentration must be maintained in the disc tissue over an extended period of time. Due to its proximity to the annular lesion, the sealant for the annulus fibrosus, when used as a carrier for the controlled release of growth factors, may allow for an excellent bioavailability of the mentioned growth factors covering a therapeutic window of several weeks or months. [0069]
  • GENERAL MODE OF USE AND ADMINISTRATION OF THE SEALANT
  • In the preferred form of the invention, the precursor components are stored in a piston driven, one or two chamber cartridge that serves as a transport and storage container. Each chamber of the cartridge is closed by a sealing membrane within the extrusion flange at the tip of the cartridge. [0070]
  • In preparation for using the sealant, the sealant application system comprising the application instrument, precursor filled cartridge, mixer nozzle (for two component systems) and injection cannula has to be prepared. To do so, the precursor filled cartridge is placed into an application instrument that serves to press the pistons of the cartridge in a reproducible and volume controlled manner. Immediately prior to the injection of the sealant, the sealing membrane of the cartridge is broken and a spiral or other mixer nozzle (for two component systems) is attached onto the extrusion flange. An injection cannula with a blunt ended tip is placed on top of the mixer nozzle that allows for precise application of the sealant into even narrow defects of the annulus. If necessary, electromagnetic radiation, such as UV or visible light, or heat is supplied through a light or temperature transparent/conducting cannula before the sealant reaches the application site. [0071]
  • The sealant for the damaged annulus fibrosus; can be applied post operatively at the end of a standard micro-discectomy surgery with the patient in prone position. For application of the sealant, the cannula of the prepared application system is placed deep into the defect or incision of the annulus fibrosus in such a way that the tip of the cannula is proximate to the inside edge (that is the edge of the annulus fibrosus that boarders on the nucleus pulposus) of the cavity created by removal of disc tissue during discectomy. This placement is followed by injecting the precursor components of the sealant of this invention into the defect until the defect is completely filled, which typically requires ½ to up to about 2 ml of precursor component volume. As the precursor components are pressed out of the cartridge, they are mixed in the nozzle and, dependent on the bio-compatible material composition used, the polymerisation or nucleophilic addition reaction, that results in the curing of bio-compatible material composition, is initiated. Because of its low viscosity and low surface tension as compared with physiological fluids, the mixed precursor components are able to penetrate into micro-fissures in the degenerated or remaining (after the discectomy) annulus fibrosus tissue that are interconnected with the radial cleft. [0072]
  • In the preferred form of the invention, the two precursor components of the sealant cure in situ within more than about 2 minutes but less than about 10 minutes to form a solid visco-elastic polymer hydrogel implant that conforms to the shape of the annulus fibrosus defect. The thus formed implant becomes closely interlocked with the annulus fibrosus structure that surrounds the defect and is inherently shaped to conform, when cured, to the shape of the defect in the annulus fibrosus that it has filled. [0073]
  • EXAMPLES
  • The following Examples are provided to describe and illustrate the practice of the invention and not to limit or to restrict the scope of the invention. It will be apparent to those skilled in the art that certain changes and modifications may be practiced within the scope of the present invention. [0074]
  • The following protocols, materials and procedures may be partly modifications of procedures and adaptations of materials reported in U.S. Patent Nos. 5,324,776, 5,328,956, 5,626,863, 5,324,775; 5,328,966; 5,583,114; 5,626,863 and the above referred to co-pending provisional patent application. All of these references are incorporated herein by reference, respectively. [0075]
  • Example 1
  • A 105 mg/ml (10.5% W/V) aqueous solution of fibrillar collagen in 0.05 M sodium bicarbonate buffer and 0.15 M sodium chloride is adjusted to pH 9.5. 2.5 ml of this biomaterial solution (solution A) is aspirated into a dual chamber polypropylene cartridge through one of the two extrusion flanges of the cartridge. 2.5 ml of a solution of difunctionally activated N-succinimidyl carbonate PEG (DSC-PEG, MW 3600) in 0.005 M sodium carbonate/bicarbonate buffer and 0.15 M sodium chloride at pH 6.0 and in a 1 to 10 molar ratio of collagen (solution A) to DSG-PEG (solution B) is filled into the second chamber of the cartridge. [0076]
  • Both chambers of the cartridge are closed by attaching a spiral mixer nozzle (3.2 mm inner diameter, 6.2 cm length, 0.38 ml void volume) onto the dual extrusion flanges. The cartridge is placed into a manual application instrument that allows for a reproducible and volume controlled extrusion of the bio-material in increments of 0.5 ml per step. A blunt tip aspiration needle (18 gauge, 90 mm length) is placed on the tip of the mixer nozzle. Immediately prior to this application of the sealant, the handle of the application instrument is pressed three times (3×0.5 ml) in order to fill the void of the mixer and needle with the mixed bio-material precursor solutions. About 1 ml of mixed precursor solution flows out of the needle tip and is discarded. The cross linking process is now activated and care must be taken to apply the sealant without delay, i.e. within less than about 60 seconds in this Example. [0077]
  • A bovine cadaveric lumbar trunc is placed in prone position (spine axis horizontally with spinal processes facing up) and prepared with a standard posterolateral microdiscectomy approach using a 4 cm outer incision. The annulus fibrosus is incised posterolaterally with a full thickness square incision (fenestration with size: 3 mm×3 mm). The loose annulus tissue is then removed from the fenestration site with a 2 mm rongeur, followed by removal of at least one gram or one ml of nucleus pulposus tissue—in order to create the typical operation situs at the end of a lumbar discectomy. All of this is done prior to activating the crosslinking process. The needle tip of the sealant applicator is placed about 2 cm deep into the disc, near the bottom of the nucleus cavity that has been created by the incision. About 1-2 ml of sealant is extruded by pressing the handle of the application instrument (preferably at a rate of about 2 steps per second), until the sealant fluid appears at the outside edge of the incision and forms a convex bulge on the outer periphery of the disc. The needle is then withdrawn from the incision and the sealant allowed to cure for 5 minutes. [0078]
  • Example 2
  • A 380 mg/ml (38% w/v) aqueous solution of human serum albumin (MW 68000) in 0.1 M sodium bicarbonate buffer and 0.15 M sodium chloride is adjusted to pH 8.2 (solution A buffered protein solution). A 200 mg/ml (25% w/v) aqueous solution of difunctionally activated N-succinimidyl propionate PEG (DSP-PEG, MW 3400) in 0.01 M sodium carbonate/bicarbonate buffer at pH 6.0 is prepared as solution B (cross linking agent). Solutions A and B are placed in the dual chamber cartridge and applied in the animal annulotomy model as described in Example 1. In this Example 2, the application of the sealant without delays is particularly important because of the short curing time of this type of sealant (2-3 minutes). [0079]
  • Example 3
  • 180 mg/ml (18% w/v) of PEG tetraacrylate (MW 8200) is dissolved in a buffer of 0.02 M sodium phosphate at pH 7.4 and 0.15 M sodium chloride. Ammonium persulfate (0.01 M) and sodium bisulfite (0.005 M) are added to the solution that now represents the polymerizable bio-material with thermal polymerization initiation system. 5 ml of this bio-material solution is aspirated into a polypropylene syringe that is fitted with a Luer type adapter tip. The syringe is closed by placing a temperature-controlled, flow through heating cylinder, that is connected to a control unit, onto the tip of the syringe. The syringe is placed into a manual application instrument that allows for a reproducible and volume-controlled extrusion of the bio-material in increments of 0.25 ml per step. A blunt tip aspiration needle (18 gauge, 90 mm) is placed on the tip of the heating cylinder. The handle of the application instrument is pressed four times (4×0.25 ml) in order to fill the void of the heating cylinder and needle with the bio-material solution. About 0.2 ml of bio-material solution flows out of the needle tip and is discarded. [0080]
  • Immediately prior to the application of the sealant, the heater is turned on and the heater control unit is set at 50° C. As soon as the heater reaches a temperature of 45° C., the polymerization process will start and care must be taken to apply the sealant without delay, i.e. within less than about 15 seconds and at a rate of approximately two steps per minute (0.5 ml of volume/min). [0081]
  • The sealant is applied in the animal annulotomy model as described in Example 1. [0082]
  • Example 4
  • ExampleEqual volumes of 10 mM phosphate buffered saline (PBS), adjusted to pH 9.0 with triethanolamine ((EtOH)[0083] 3N), and of 10 mM PBS, adjusted to pH 9.0 with 1N NaOH, were combined to form a PBS pH 9.0 solution. In 1 ml of this solution, 893 mg of pentaerythritol tetrakis (3-mercaptopropionate)(QT) were dissolved. This solution represents solution A (solution of polymer with terminal nucleophilic groups). Solution B was made up of 2.1 g of polyethylene glycol diacrylate having a molecular weight of 570 (PEGDA 570). Both solutions were combined and mixed well by vortexing. Air bubbles were removed by sonicating. The mixture was cast in polypropylene molds to form cylindrical testing samples of biomaterial, and allowed to cure for 60 minutes at room temperature. The resulting cured biomaterial has a solid material content of 75% (w/w) or 72% (v/v), respectively. This biomaterial, when tested in displacement controlled compressive stress mode, demonstrated an ultimate strength of more than 2 MPa and withstood deformations of about 35% in compression.
  • Example 5
  • Solutions A and B were prepared as described in Example 4. After mixing solutions A and B by vortexing, 100 microliters of the mixture was placed between 20 mm plates of a CVO 120 rheometer with a gap of 100 um. The mixture was maintained at 37° C. while the elastic modulus, complex modulus and viscosity were followed with time using shear at 1 Hz with a strain amplitude of 0.3. With progression of the reaction. the two combined precursors showed a gel point, defined by the time when the elastic modulus becomes greater than the complex modulus. Using these testing conditions, the gel point occurred in about 11 minutes. [0084]
  • Example 6
  • Mechanical properties of cross-linked hydrogel systems can be manipulated by using bi- or multimodal molecular weight distributions in the material compositions. Including a low molar content of a high molecular weight precursor in a low molecular weight system can synergistically combine properties from either molecular weight component and improve the mechanical properties of the material as compared to gels formed from either molecular weight component alone. For Example, a system composed of cross-linked low molecular weight materials may be strong, but may not elastically withstand large deformations (strain) in compression or tension. Systems composed of cross-linked high molecular weight materials with long polymer chains may withstand tremendous strains, but at the cost of decreased strength. A preferred bimodal hydrogel system combines predominately short polymer chains with a small molar ratio of the longer chains and results in biomechanically relevant stress and strain resistance properties. [0085]
  • Solution A was prepared as described in Example 4. 1.37 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) and 440 ul of 1-methyl-2-pyrrolidone were mixed and heated to 50° C., while 0.73 g of polyethylene glycol diacrylate with a molecular weight of approx. 20,000 was slowly added and allowed to dissolve. This solution represents solution B. Solutions A and B were mixed and tested as described in Example 4. The resulting hydrogels showed an ultimate strength of more than 3 MPa and withstood deformations of about 60% in compression. [0086]
  • Example 7
  • Including inorganic particles as components of cross-linked hydrogels is a way to render the sealant of the annulus fibrosus radio-opaque. Furthermore, addition of sub-micrometer sized particles to hydrogels can be used as a way to modulate the mechanical properties of the cured biomaterial gels. [0087]
  • Solution A was prepared as described in Example 4. Solution B was made of 2.1 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) that was loaded with 300 mg of BaSO[0088] 4 particles type blanc fixe (10% w/w), with an average particle size of 800 nm. Solutions A and B were combined as described in Example 4. The cured biomaterials resulting from addition of the BaSO4 were highly radioopaque and showed a stiffness of 55 N/mm, representing a 30% increase in stiffness over the biomaterials described in Example 4. Further, a similar material composition was prepared that contained 10% of fumed silica particles with an average particle size of 14 nm instead of the above BaSO4 particles. The cured material resulting from this precursor composition showed significant increases in its ultimate strength. After 100 cycles, with 4 MPa of maximum load in compression stress testing, these materials had not failed.
  • Example 8
  • Including lubricants or surfactants into the material composition for the sealant of the annulus fibrosus can be used both to increase the tissue intrudability of the uncured sealant material and to improve the mechanical properties of the cured sealant material. [0089]
  • Solution A was prepared as described in [0090] EExample 4. Solution B was made of 2.1 g of polyethylene glycol diacrylate with a molecular weight of 570 (PEGDA 570) that was mixed with 30 mg of sorbitan monooleate. Solutions A and B were combined as described in the previous Example 5, resulting in a biomaterial with a final concentration of 1% (w/w) of sorbitan monooleate. The resulting gels exhibited a similar increase in ultimate strength compared to the gels with inorganic particles added, as described in Example 8, but without the associated increase in stiffness.
  • Example 9
  • Toxicity and biocompatibility of the low molecular weight components of the material composition for the sealant of the annulus fibrosus according to this invention can be improved by pre-reacting these components, such as to obtain higher molecular weight components with remaining functional groups. [0091]
  • 1.89 g of PEG hexathiol that was obtained through a reaction of tetrakis (3-mercaptopropionate) pentaerythritol (QT) and PEG diacrylate (MW=575), was suspended in 0.48 ml of PBS buffer at pH 9.0 by sonication. The mixture represents solution A. Solution B was 2.1 g PEG tetraacrylate that was obtained through in a reaction of a 10-fold excess of PEG diacrylate (MW=575) with QT. Both solutions were combined, mixed and biomaterial gels were prepared as described in Example 4. The resulting biomaterial gels demonstrated mechanical properties similar to those already described in Example 4; i.e. better than 2 MPa for ultimate strength and a stiffness of 40 N/mm. [0092]
  • Example 10
  • Sterile solutions A and B from Example 4 were combined with sterile sorbitan monooleate and BaSO[0093] 4 particles and the quantities described in Examples 7 and 8. Gel pins of 1 mm in diameter and 10 mm length were prepared using the same procedure as described above in Example 4, except that the mixture of solutions A and B was placed in molds to form pins prior to gel formation.
  • The pins were implanted into the right or left lumbar posterior muscles of rabbits. Pins made of polyethylene were implanted on the controlateral side of the animal as reference implants. After 4 weeks, the animals were sacrificed and histological sections of the implants and the surrounding tissue were performed. With both gel types tested, no significant differences were apparent compared to the reference materials. Rare macrophages, fibroblasts and neovessels were associated with the implanted gel pins. No necrosis, degeneration or any other local intolerance signs were induced by these material compositions. [0094]
  • The same gel compositions were also injected into the lumbar intervertebral discs of rabbits in situ. A small injury in the lumbar intervertebral disc of the rabbit was created with a needle. A sham injury was also created two segments cranial from the segment of the first defect. [0095]
  • Not earlier than 5 minutes before implantation, the sterile solutions A and B were each filled into 1 ml syringe cartridges and mixed by simultaneously passing the contents of both cartridges through a spiral mixer nozzle element, as described in Example 1. Because of the small volumes of sealant needed in this animal model, the mixture was transferred into a 1 ml syringe and injected into the defect with a 22G needle. [0096]
  • After 4 weeks, the animals were sacrificed and the implant and sham sites sectioned for the preparation of histological slides. Histological work-up showed that the injected materials gelled in situ, were in close contact with the surrounding tissue and had no specific reaction associated with the tissue. No activated immunologic cells were detected and no necrotic or degenerative processes were seen and only rare active macrophages and giant cells were observed. [0097]
  • In the accompanying drawings, the following reference numbers indicate the identified elements for the drawing: [0098]
    1 Sealant in annulus defect
    2 Nucleus pulposus
    3 Annulus fibrosus
    4 Epidural space
    5 Facet joint
    6 Spinal cord and nerve root
    7 Bone of vertebral body
  • The following references are pertinent to the instant invention: [0099]
  • ORAL PRESENTATION
  • YUAN, Hansen, Paper Presented at 13[0100] th Annual Meeting of the North American Spine Society, Oct. 30, 1998
    U.S. Pat. DOCUMENTS
    5,324,776 June 1994 Rhee et al. Class 525/54.2 (Collagen Corp.)
    5,328,956 June 1994 Rhee et al. Class 525/54.1 (Collagen Corp.)
    5,583,114 July 1994 Class 514/21 (3M Corp.)
    Barrows et al.
    5,626,863 January 1995 Class 424/426 (University of
    Hubbell et al. Texas, Austin)
    0/60/118,093 February 1999 (Univ. Zurich/
    Hubbell et al. ETH) (pending)

Claims (3)

What is claimed is:
1. An intervertebral disc assembly comprising a nucleus pulposus; an annulus fibrosus substantially surrounding a lateral edge of said nucleus pulposus, wherein said annulus fibrosus has a defect therein; and a cured bio-compatible, cross linked polymeric visco-elastic sealant in said defect in a form sufficient to at least impede exudation and extrusion of nucleus pulposus material through said defect.
2. An intervertebral disc assembly as claimed in claim 20 wherein said sealant has been disposed in said defect in an uncured condition, and has been cured in situ.
3. An intervertebral disc assembly as claimed in claim 20 wherein said sealant has been disposed in said defect in a cured condition.
US10/207,285 1999-04-16 2002-07-30 System for repairing inter-vertebral discs Abandoned US20020198599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/207,285 US20020198599A1 (en) 1999-04-16 2002-07-30 System for repairing inter-vertebral discs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12960799P 1999-04-16 1999-04-16
US09/549,332 US6428576B1 (en) 1999-04-16 2000-04-14 System for repairing inter-vertebral discs
US10/207,285 US20020198599A1 (en) 1999-04-16 2002-07-30 System for repairing inter-vertebral discs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/549,332 Continuation US6428576B1 (en) 1999-04-16 2000-04-14 System for repairing inter-vertebral discs

Publications (1)

Publication Number Publication Date
US20020198599A1 true US20020198599A1 (en) 2002-12-26

Family

ID=22440777

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/549,332 Expired - Lifetime US6428576B1 (en) 1999-04-16 2000-04-14 System for repairing inter-vertebral discs
US10/207,285 Abandoned US20020198599A1 (en) 1999-04-16 2002-07-30 System for repairing inter-vertebral discs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/549,332 Expired - Lifetime US6428576B1 (en) 1999-04-16 2000-04-14 System for repairing inter-vertebral discs

Country Status (4)

Country Link
US (2) US6428576B1 (en)
EP (1) EP1173236A1 (en)
AU (1) AU4296200A (en)
WO (1) WO2000062832A1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125807A1 (en) * 1999-08-18 2003-07-03 Gregory Lambrecht Encapsulated intervertebral disc prosthesis and methods of manufacture
US20040097924A1 (en) * 1999-08-18 2004-05-20 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US20040133229A1 (en) * 2000-08-18 2004-07-08 Lambrecht Gregory H. Minimally invasive system for manipulating intervertebral disc tissue
US20040228853A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
US20040229878A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Transdiscal administration of specific inhibitors of P38 kinase
US20040229786A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Autologous treatment of degenerated disc with cells
WO2005000283A2 (en) * 2003-05-13 2005-01-06 Depuy Spine, Inc. A method of treating degenerative disc disease
US20050025765A1 (en) * 2003-07-30 2005-02-03 Depuy Spine, Inc. Trans-capsular administration of high specificity cytokine inhibitors into orthopedic joints
US20050038001A1 (en) * 2003-08-13 2005-02-17 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US6863693B2 (en) * 1999-08-31 2005-03-08 Destiny Pharma Limited Phospholipid-coated implants
US20050112091A1 (en) * 2003-11-26 2005-05-26 Depuy Spine, Inc. Local intraosseous administration of bone forming agents and anti-resorptive agents, and devices therefor
US20060057128A1 (en) * 2004-09-10 2006-03-16 Dimauro Thomas M Intradiscal injection of autologous interferon
US20060095075A1 (en) * 2004-10-29 2006-05-04 Burkinshaw Brian D Injection of fibrin sealant using reconstituted components in spinal applications
US20060106364A1 (en) * 2004-10-29 2006-05-18 Whitlock Steven I Injection of fibrin sealant in the absence of corticosteroids in spinal applications
US7198047B2 (en) 1999-08-18 2007-04-03 Intrinsic Therapeutics, Inc. Anchored anulus method
US7201775B2 (en) 2002-09-24 2007-04-10 Bogomir Gorensek Stabilizing device for intervertebral disc, and methods thereof
US7214245B1 (en) * 1999-10-29 2007-05-08 Drexel University Associating hydrogels for nucleus pulposus replacement in intervertebral discs
US20070106387A1 (en) * 1999-10-29 2007-05-10 Michele Marcolongo Associating hydrogels for nucleus pulposus replacement in intervertebral discs
US20070213660A1 (en) * 2004-10-29 2007-09-13 Mark Richards Fibrin sealant delivery device including pressure monitoring, and method and kits thereof
US7344716B2 (en) 2003-05-13 2008-03-18 Depuy Spine, Inc. Transdiscal administration of specific inhibitors of pro-inflammatory cytokines
US20080103564A1 (en) * 2005-08-17 2008-05-01 Burkinshaw Brian D Method for repairing intervertebral discs
US20080154234A1 (en) * 2006-12-20 2008-06-26 Zimmer Orthobiologics, Inc. Apparatus and method for delivering a biocompatible material to a surgical site
US20080195040A1 (en) * 2007-01-25 2008-08-14 Hyperbranch Medical Technology, Inc. Applicators for Multiple Component Formulations and the Like, and Methods of Use Thereof
US20090054994A1 (en) * 2007-08-21 2009-02-26 James Rogan Methods and kits for prophylactically reinforcing degenerated spinal discs and facet joints near a surgically treated spinal section
US7658765B2 (en) 1999-08-18 2010-02-09 Intrinsic Therapeutics, Inc. Resilient intervertebral disc implant
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7727241B2 (en) 2003-06-20 2010-06-01 Intrinsic Therapeutics, Inc. Device for delivering an implant through an annular defect in an intervertebral disc
US7749275B2 (en) 1999-08-18 2010-07-06 Intrinsic Therapeutics, Inc. Method of reducing spinal implant migration
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7914535B2 (en) 2003-10-23 2011-03-29 Trans1 Inc. Method and apparatus for manipulating material in the spine
US7959679B2 (en) 1999-08-18 2011-06-14 Intrinsic Therapeutics, Inc. Intervertebral anulus and nucleus augmentation
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US8070818B2 (en) 2005-04-29 2011-12-06 Jmea Corporation Disc annulus repair system
US8211126B2 (en) 2009-09-22 2012-07-03 Jmea Corporation Tissue repair system
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US8394072B2 (en) 2004-10-29 2013-03-12 Spinal Restoration, Inc. Injection of fibrin sealant including an anesthetic in spinal applications
US8454612B2 (en) 2007-09-07 2013-06-04 Intrinsic Therapeutics, Inc. Method for vertebral endplate reconstruction
US8480757B2 (en) 2005-08-26 2013-07-09 Zimmer, Inc. Implants and methods for repair, replacement and treatment of disease
US8497121B2 (en) 2006-12-20 2013-07-30 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
US8518433B2 (en) 2003-12-11 2013-08-27 Zimmer, Inc. Method of treating an osteochondral defect
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US8702718B2 (en) 2005-04-29 2014-04-22 Jmea Corporation Implantation system for tissue repair
US20140170119A1 (en) * 2006-07-10 2014-06-19 Tetec Tissue Engineering Technologies Ag Multi-chamber applicator for gelatin solution
US8764835B2 (en) 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US8821549B2 (en) 2006-06-13 2014-09-02 Anova Corporation Methods and apparatus for anulus repair
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US8986696B2 (en) 2007-12-21 2015-03-24 Depuy Mitek, Inc. Trans-capsular administration of p38 map kinase inhibitors into orthopedic joints
US9138318B2 (en) 2007-04-12 2015-09-22 Zimmer, Inc. Apparatus for forming an implant
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9814598B2 (en) 2013-03-14 2017-11-14 Quandary Medical, Llc Spinal implants and implantation system
US10167447B2 (en) 2012-12-21 2019-01-01 Zimmer, Inc. Supports and methods for promoting integration of cartilage tissue explants
US10675381B2 (en) 2015-09-08 2020-06-09 Clemson University Research Foundation Decellularized biomaterial and method for formation
US10695463B2 (en) 2015-09-08 2020-06-30 Clemson University Research Foundation Multi-layered biomimetic material and method of formation

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879095B2 (en) * 1994-03-18 2011-02-01 Madhavan Pisharodi Method of inserting, rotating and releasing a spring-loaded artificial disk
AU7178698A (en) 1996-11-15 1998-06-03 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
EP0896825B1 (en) 1997-08-14 2002-07-17 Sulzer Innotec Ag Composition and device for in vivo cartilage repair comprising nanocapsules with osteoinductive and/or chondroinductive factors
DE19817698A1 (en) * 1998-04-22 1999-10-28 Jan Zoellner Composition used for flat disk implant, especially nucleus pulposus implant
US6436143B1 (en) * 1999-02-22 2002-08-20 Anthony C. Ross Method and apparatus for treating intervertebral disks
US6656496B1 (en) * 1999-03-01 2003-12-02 The Uab Research Foundation Porous tissue scaffolding materials and uses thereof
US6719797B1 (en) * 1999-08-13 2004-04-13 Bret A. Ferree Nucleus augmentation with in situ formed hydrogels
US7435260B2 (en) * 1999-08-13 2008-10-14 Ferree Bret A Use of morphogenetic proteins to treat human disc disease
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6508839B1 (en) 1999-08-18 2003-01-21 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6964674B1 (en) * 1999-09-20 2005-11-15 Nuvasive, Inc. Annulotomy closure device
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7615076B2 (en) 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US20030153976A1 (en) 1999-10-20 2003-08-14 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
WO2001045577A2 (en) 1999-12-06 2001-06-28 Sdgi Holdings, Inc. Intervertebral disc treatment devices and methods
US7938836B2 (en) * 2003-10-23 2011-05-10 Trans1, Inc. Driver assembly for simultaneous axial delivery of spinal implants
US7601171B2 (en) * 2003-10-23 2009-10-13 Trans1 Inc. Spinal motion preservation assemblies
US6899716B2 (en) * 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US7727263B2 (en) 2000-02-16 2010-06-01 Trans1, Inc. Articulating spinal implant
US7776068B2 (en) 2003-10-23 2010-08-17 Trans1 Inc. Spinal motion preservation assemblies
US6740093B2 (en) * 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US6689125B1 (en) 2000-04-04 2004-02-10 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6579291B1 (en) 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6723335B1 (en) * 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
AU2001274821A1 (en) * 2000-06-13 2001-12-24 Gary K. Michelson Manufactured major long bone ring implant shaped to conform to a prepared intervertebral implantation space
US6921532B1 (en) 2000-06-22 2005-07-26 Spinal Restoration, Inc. Biological Bioadhesive composition and methods of preparation and use
US20080086133A1 (en) * 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
DE60141653D1 (en) * 2000-07-21 2010-05-06 Spineology Group Llc A STRONG, POROUS NET BAG DEVICE AND ITS USE IN BONE SURGERY
US6620196B1 (en) * 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20020045942A1 (en) * 2000-10-16 2002-04-18 Ham Michael J. Procedure for repairing damaged discs
AU1538702A (en) * 2000-10-24 2002-05-06 Cryolife Inc In situ bioprosthetic filler and methods, particularly for the in situ formationof vertebral disc bioprosthetics
US20060089721A1 (en) * 2001-01-17 2006-04-27 Muhanna Nabil L Intervertebral disc prosthesis and methods of implantation
US6632235B2 (en) 2001-04-19 2003-10-14 Synthes (U.S.A.) Inflatable device and method for reducing fractures in bone and in treating the spine
AU2004268628B2 (en) * 2001-08-31 2009-11-12 Spinal Simplicity, Llc Crosslinking reagents for treating intervertebral disc disorders
WO2003037165A2 (en) * 2001-11-01 2003-05-08 Boyd Lawrence M System and method for the pretreatment of the endplates of an intervertebral disc
US7004945B2 (en) 2001-11-01 2006-02-28 Spinewave, Inc. Devices and methods for the restoration of a spinal disc
US20030130738A1 (en) * 2001-11-08 2003-07-10 Arthrocare Corporation System and method for repairing a damaged intervertebral disc
MXPA04005707A (en) * 2001-12-10 2005-06-20 Colbar Lifescience Ltd D Methods, devices, and preparations for intervertebral disc treatment.
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US6723095B2 (en) * 2001-12-28 2004-04-20 Hemodynamics, Inc. Method of spinal fixation using adhesive media
US20050209699A1 (en) * 2002-03-19 2005-09-22 Slivka Michael A Method for nonsurgical treatment of the nucleus pulposus of the intervertebral disc using genipin or proanthrocyanidin, and kit therefor
US6812211B2 (en) * 2002-03-19 2004-11-02 Michael Andrew Slivka Method for nonsurgical treatment of the intervertebral disc and kit therefor
US20030195630A1 (en) * 2002-04-10 2003-10-16 Ferree Bret A. Disc augmentation using materials that expand in situ
EP1364663A1 (en) * 2002-05-21 2003-11-26 Commonwealth Scientific And Industrial Research Organisation Ocular devices with functionalized surface with adhesive properties
US20040054414A1 (en) * 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US7309359B2 (en) * 2003-08-21 2007-12-18 Warsaw Orthopedic, Inc. Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs
US7744651B2 (en) 2002-09-18 2010-06-29 Warsaw Orthopedic, Inc Compositions and methods for treating intervertebral discs with collagen-based materials
US7887593B2 (en) * 2002-09-18 2011-02-15 Warsaw Orthopedic, Inc. Method of implanting natural tissue within the vertebral disc nucleus space using a drawstring
CA2735334A1 (en) * 2002-11-05 2004-05-21 Spineology, Inc. A semi-biological intervertebral disc replacement system
JP2006515765A (en) * 2002-11-15 2006-06-08 エスディージーアイ・ホールディングス・インコーポレーテッド Collagen-based materials and methods for treating synovial joints
US20040186471A1 (en) * 2002-12-07 2004-09-23 Sdgi Holdings, Inc. Method and apparatus for intervertebral disc expansion
JP2006515780A (en) * 2003-01-17 2006-06-08 プシナーギ コーポレイション Artificial nucleus pulposus and injection method thereof
CA2513055A1 (en) * 2003-01-31 2004-08-19 Zimmer Orthobiologics, Inc. Hydrogel compositions comprising nucleus pulposus tissue
WO2004096152A2 (en) * 2003-04-24 2004-11-11 Arizona Board Of Regents In situ gelling self-reactive materials for embolization
CN1816357B (en) * 2003-04-30 2012-11-28 德崇大学 Thermogelling polymer blends for biomaterial applications
US7794456B2 (en) 2003-05-13 2010-09-14 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
US20050010231A1 (en) * 2003-06-20 2005-01-13 Myers Thomas H. Method and apparatus for strengthening the biomechanical properties of implants
US20050043796A1 (en) * 2003-07-01 2005-02-24 Grant Richard L. Spinal disc nucleus implant
US7632294B2 (en) * 2003-09-29 2009-12-15 Promethean Surgical Devices, Llc Devices and methods for spine repair
US7879102B2 (en) 2003-09-30 2011-02-01 Depuy Acromed, Inc. Method for treatment of defects in the intervertebral disc
US7708733B2 (en) 2003-10-20 2010-05-04 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US20050090804A1 (en) * 2003-10-22 2005-04-28 Trivascular, Inc. Endoluminal prosthesis endoleak management
EP1682161A4 (en) * 2003-10-29 2011-12-07 Gentis Inc Polymerizable emulsions for tissue engineering
US8133500B2 (en) * 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
JP4440939B2 (en) 2004-01-08 2010-03-24 スパイン・ウェイブ・インコーポレーテッド Apparatus and method for injecting flowable material into distracted tissue site
WO2005077013A2 (en) 2004-02-06 2005-08-25 Georgia Tech Research Corporation Surface directed cellular attachment
WO2005077304A1 (en) * 2004-02-06 2005-08-25 Georgia Tech Research Corporation Load bearing biocompatible device
US20060275273A1 (en) * 2004-02-20 2006-12-07 Seyedin Mitchell S Intervertebral Disc Repair, Methods and Devices Therefor
ATE553186T1 (en) * 2004-02-20 2012-04-15 Isto Technologies Inc DISC REPAIR AND METHOD THEREOF
US8945223B2 (en) * 2004-03-12 2015-02-03 Warsaw Orthopedic, Inc. In-situ formable nucleus pulposus implant with water absorption and swelling capability
US8480742B2 (en) * 2005-08-02 2013-07-09 Perumala Corporation Total artificial disc
US7578834B2 (en) * 2004-05-03 2009-08-25 Abdou M S Devices and methods for the preservation of spinal prosthesis function
US7789913B2 (en) 2004-06-29 2010-09-07 Spine Wave, Inc. Methods for injecting a curable biomaterial into an intervertebral space
US8124075B2 (en) 2004-07-16 2012-02-28 Spinal Restoration, Inc. Enhanced biological autologous tissue adhesive composition and methods of preparation and use
US8419722B2 (en) 2004-10-29 2013-04-16 Spinal Restoration, Inc. Apparatus and method for injection of fibrin sealant in spinal applications
EP1781218A2 (en) * 2004-08-09 2007-05-09 TRANS1, Inc. Prosthetic nucleus apparatus and methods
US7641690B2 (en) 2004-08-23 2010-01-05 Abdou M Samy Bone fixation and fusion device
WO2006041963A2 (en) * 2004-10-05 2006-04-20 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
US20110213464A1 (en) * 2004-10-29 2011-09-01 Whitlock Steven I Injection of fibrin sealant in the absence of corticosteroids in spinal applications
US20060111971A1 (en) * 2004-11-24 2006-05-25 Microsoft Corporation System and method for on-line and off-line advertising in content delivered to a display screen
WO2006058221A2 (en) 2004-11-24 2006-06-01 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
US7427295B2 (en) * 2005-02-03 2008-09-23 Elli Quence, Llc Spinal fill for disk surgery
WO2006099137A1 (en) * 2005-03-10 2006-09-21 Uab Research Foundation Endothelial predecessor cell seeded wound healing scaffold
US20060241766A1 (en) * 2005-04-20 2006-10-26 Sdgi Holdings, Inc. Method and apparatus for preventing articulation in an artificial joint
US7608108B2 (en) 2005-04-29 2009-10-27 Jmea Corporation Tissue repair system
US20060247776A1 (en) * 2005-05-02 2006-11-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for augmenting intervertebral discs
US8795364B2 (en) * 2005-05-06 2014-08-05 Kensey Nash Corporation System and devices for the repair of a vertebral disc defect
US7988735B2 (en) * 2005-06-15 2011-08-02 Matthew Yurek Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement
US7824414B2 (en) * 2005-07-22 2010-11-02 Kensey Nash Corporation System and devices for the repair of a vertebral disc defect
US20070055379A1 (en) * 2005-08-03 2007-03-08 Stone Corbett W Annular access devices
US7618457B2 (en) * 2005-08-10 2009-11-17 Zimmer Spine, Inc. Devices and methods for disc nucleus replacement
WO2008131498A1 (en) 2007-05-01 2008-11-06 Columna Pty Ltd Systems methods and apparatuses for formation and insertion of tissue prostheses
WO2007044705A2 (en) 2005-10-07 2007-04-19 Abdou Samy M Devices and methods for inter-verterbral orthopedic device placement
US20070233252A1 (en) * 2006-02-23 2007-10-04 Kim Daniel H Devices, systems and methods for treating intervertebral discs
US7879034B2 (en) 2006-03-02 2011-02-01 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
US7993404B2 (en) * 2006-03-29 2011-08-09 Warsaw Orthopedic, Inc. Transformable spinal implants and methods of use
US8092536B2 (en) 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US8399619B2 (en) 2006-06-30 2013-03-19 Warsaw Orthopedic, Inc. Injectable collagen material
US20080004703A1 (en) * 2006-06-30 2008-01-03 Warsaw Orthopedic, Inc. Method of treating a patient using a collagen material
US8118779B2 (en) 2006-06-30 2012-02-21 Warsaw Orthopedic, Inc. Collagen delivery device
US20080004431A1 (en) * 2006-06-30 2008-01-03 Warsaw Orthopedic Inc Method of manufacturing an injectable collagen material
US8303630B2 (en) 2006-07-27 2012-11-06 Samy Abdou Devices and methods for the minimally invasive treatment of spinal stenosis
US20080065218A1 (en) * 2006-09-13 2008-03-13 O'neil Michael J Annulus fibrosus repair devices and techniques
US20080113008A1 (en) * 2006-09-14 2008-05-15 Karen Roche Absorbent fabric implant
US8900306B2 (en) * 2006-09-26 2014-12-02 DePuy Synthes Products, LLC Nucleus anti-expulsion devices and methods
US20080172126A1 (en) * 2006-10-03 2008-07-17 Reynolds Martin A Nucleus pulposus injection devices and methods
US20100145462A1 (en) * 2006-10-24 2010-06-10 Trans1 Inc. Preformed membranes for use in intervertebral disc spaces
US8088147B2 (en) * 2006-10-24 2012-01-03 Trans1 Inc. Multi-membrane prosthetic nucleus
US8383586B2 (en) * 2007-01-18 2013-02-26 Warsaw Orthopedic, Inc. Compositions and methods for soft tissue repair
US8864801B2 (en) * 2007-04-30 2014-10-21 Warsaw Orthopedic, Inc. Method of deformity correction in a spine using injectable materials
US20080294261A1 (en) * 2007-05-24 2008-11-27 Kevin Pauza Method for treating herniated discs
WO2009032071A2 (en) * 2007-08-29 2009-03-12 Spinemedica Corporation Orthopaedic cement mixtures with low weight percent polyvinyl alcohol (pva) solution
EP2034010A1 (en) 2007-08-30 2009-03-11 Omrix Biopharmaceuticals Ltd. Compositions suitable for repair and/or treatment of injured spinal tissue
US8556949B2 (en) 2007-11-14 2013-10-15 DePuy Synthes Products, LLC Hybrid bone fixation element and methods of using the same
AU2009228035A1 (en) * 2008-03-28 2009-10-01 Spineology Inc. Method and device for interspinous process fusion
US8883915B2 (en) 2008-07-07 2014-11-11 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
US20100016906A1 (en) * 2008-07-21 2010-01-21 Abdou M Samy Device and method to access the anterior column of the spine
AU2009279716A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc Polyurethane-grafted hydrogels
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8795335B1 (en) 2009-11-06 2014-08-05 Samy Abdou Spinal fixation devices and methods of use
FR2952306B1 (en) * 2009-11-09 2012-03-30 Creaspine AQUEOUS COMPOSITION FOR THE TREATMENT OF LASER FIBROUS CONJUNCTIVE TISSUE REPAIR
US8795727B2 (en) 2009-11-09 2014-08-05 Spotlight Technology Partners Llc Fragmented hydrogels
US9700650B2 (en) 2009-11-09 2017-07-11 Spotlight Technology Partners Llc Polysaccharide based hydrogels
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8652153B2 (en) 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
GB201002862D0 (en) * 2010-02-19 2010-04-07 Univ Manchester Microgel compositions
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US20120265312A1 (en) * 2011-04-01 2012-10-18 Shawn Burke System and Method for Manufacture of a Cranial Repair Implant and a Cranial Repair Implant Produced Thereby
EP2757964B1 (en) 2011-05-26 2016-05-04 Cartiva, Inc. Tapered joint implant and related tools
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
KR20140115294A (en) 2011-10-03 2014-09-30 바이오미메디카, 인코포레이티드 Polymeric adhesive for anchoring compliant materials to another surface
AU2012340699A1 (en) 2011-11-21 2014-06-19 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
US9204959B2 (en) * 2012-02-02 2015-12-08 Smith & Nephew, Inc. Implantable biologic holder
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9155578B2 (en) 2012-02-28 2015-10-13 DePuy Synthes Products, Inc. Expandable fastener
WO2013169382A1 (en) * 2012-05-07 2013-11-14 DePuy Synthes Products, LLC Methods and devices for treating intervertebral disc disease
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10179012B2 (en) 2013-01-28 2019-01-15 Cartiva, Inc. Systems and methods for orthopedic repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US20140277467A1 (en) 2013-03-14 2014-09-18 Spinal Stabilization Technologies, Llc Prosthetic Spinal Disk Nucleus
US10786360B2 (en) 2014-11-04 2020-09-29 Spinal Stabilization Technologies Llc Percutaneous implantable nuclear prosthesis
US10314714B2 (en) 2014-11-04 2019-06-11 Spinal Stabilization Technologies Llc Percutaneous implantable nuclear prosthesis
AU2016243660B2 (en) 2015-03-31 2020-11-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
WO2016161025A1 (en) 2015-03-31 2016-10-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
AU2016248062B2 (en) 2015-04-14 2020-01-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
JP6891176B2 (en) 2015-09-01 2021-06-18 スパイナル スタビライゼーション テクノロジーズ リミテッド ライアビリティ カンパニー Implantable nucleus pulposus prosthesis
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US9486323B1 (en) 2015-11-06 2016-11-08 Spinal Stabilization Technologies Llc Nuclear implant apparatus and method following partial nuclectomy
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
JP7457712B2 (en) 2018-09-04 2024-03-28 スパイナル スタビライゼーション テクノロジーズ リミテッド ライアビリティ カンパニー Implantable nucleus pulposus prostheses, kits, and related methods
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
GB2586577B (en) * 2019-06-14 2024-03-27 Gelmetix Ltd Diagnosis and treatment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US4722948A (en) * 1984-03-16 1988-02-02 Dynatech Corporation Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
EP0453393B1 (en) * 1990-04-20 1993-10-06 SULZER Medizinaltechnik AG Implant, particularly intervertebral prosthesis
US5626863A (en) * 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
RU2147213C1 (en) * 1994-01-26 2000-04-10 А. Рейли Марк Improved filled device for use in surgical protocol as applied to bone fixation
US5556429A (en) 1994-05-06 1996-09-17 Advanced Bio Surfaces, Inc. Joint resurfacing system
US5888220A (en) 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
US5571189A (en) * 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
US5583114A (en) * 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
AU689622B2 (en) * 1994-08-17 1998-04-02 Boston Scientific Corporation Implant, and method and device for inserting the implant
WO1997042986A1 (en) 1996-05-14 1997-11-20 C. R. Bard, Inc. Methods and products for sealing a fluid leak in a tissue
US6183518B1 (en) * 1999-02-22 2001-02-06 Anthony C. Ross Method of replacing nucleus pulposus and repairing the intervertebral disk

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327907B2 (en) 1999-05-28 2019-06-25 Suture Concepts Inc. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9084616B2 (en) 1999-05-28 2015-07-21 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US20030125807A1 (en) * 1999-08-18 2003-07-03 Gregory Lambrecht Encapsulated intervertebral disc prosthesis and methods of manufacture
US7749275B2 (en) 1999-08-18 2010-07-06 Intrinsic Therapeutics, Inc. Method of reducing spinal implant migration
US8409284B2 (en) 1999-08-18 2013-04-02 Intrinsic Therapeutics, Inc. Methods of repairing herniated segments in the disc
US8257437B2 (en) * 1999-08-18 2012-09-04 Intrinsic Therapeutics, Inc. Methods of intervertebral disc augmentation
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
US20040097924A1 (en) * 1999-08-18 2004-05-20 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US8025698B2 (en) 1999-08-18 2011-09-27 Intrinsic Therapeutics, Inc. Method of rehabilitating an anulus fibrosus
US6936072B2 (en) 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
US8021425B2 (en) 1999-08-18 2011-09-20 Intrinsic Therapeutics, Inc. Versatile method of repairing an intervertebral disc
US8002836B2 (en) 1999-08-18 2011-08-23 Intrinsic Therapeutics, Inc. Method for the treatment of the intervertebral disc anulus
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US7959679B2 (en) 1999-08-18 2011-06-14 Intrinsic Therapeutics, Inc. Intervertebral anulus and nucleus augmentation
US7879097B2 (en) 1999-08-18 2011-02-01 Intrinsic Therapeutics, Inc. Method of performing a procedure within a disc
US7867278B2 (en) 1999-08-18 2011-01-11 Intrinsic Therapeutics, Inc. Intervertebral disc anulus implant
US7998213B2 (en) * 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US7198047B2 (en) 1999-08-18 2007-04-03 Intrinsic Therapeutics, Inc. Anchored anulus method
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US6821276B2 (en) 1999-08-18 2004-11-23 Intrinsic Therapeutics, Inc. Intervertebral diagnostic and manipulation device
US7258700B2 (en) 1999-08-18 2007-08-21 Intrinsic Therapeutics, Inc. Devices and method for nucleus pulposus augmentation and retention
US7658765B2 (en) 1999-08-18 2010-02-09 Intrinsic Therapeutics, Inc. Resilient intervertebral disc implant
US6863693B2 (en) * 1999-08-31 2005-03-08 Destiny Pharma Limited Phospholipid-coated implants
US20070106387A1 (en) * 1999-10-29 2007-05-10 Michele Marcolongo Associating hydrogels for nucleus pulposus replacement in intervertebral discs
US7214245B1 (en) * 1999-10-29 2007-05-08 Drexel University Associating hydrogels for nucleus pulposus replacement in intervertebral discs
US7905923B2 (en) 2000-04-04 2011-03-15 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7144397B2 (en) 2000-08-18 2006-12-05 Intrinsic Therapeutics, Inc. Minimally invasive system for manipulating intervertebral disc tissue
US20040133229A1 (en) * 2000-08-18 2004-07-08 Lambrecht Gregory H. Minimally invasive system for manipulating intervertebral disc tissue
US7201775B2 (en) 2002-09-24 2007-04-10 Bogomir Gorensek Stabilizing device for intervertebral disc, and methods thereof
US20090155364A1 (en) * 2003-05-13 2009-06-18 Depuy Spine, Inc. Transdiscal administration of anti-TNFalpha antibodies and growth differentiation factors
US7429378B2 (en) 2003-05-13 2008-09-30 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
WO2005000283A3 (en) * 2003-05-13 2005-08-11 Depuy Spine Inc A method of treating degenerative disc disease
US20090175943A1 (en) * 2003-05-13 2009-07-09 Mohamed Attawia Transdiscal administration of specific inhibitors of pro-inflammatory cytokines
US8877193B2 (en) 2003-05-13 2014-11-04 DePuy Synthes Products, LLC. Transdiscal administration of anti-TNFα antibodies and growth differentiation factors
US8273347B2 (en) 2003-05-13 2012-09-25 Depuy Spine, Inc. Autologous treatment of degenerated disc with cells
US20070269413A1 (en) * 2003-05-13 2007-11-22 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
US8728523B2 (en) 2003-05-13 2014-05-20 DePuy Synthes Products, LLC Transdiscal administration of specific inhibitors of pro-inflammatory cytokines
WO2005000283A2 (en) * 2003-05-13 2005-01-06 Depuy Spine, Inc. A method of treating degenerative disc disease
US20040228853A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Transdiscal administration of high affinity anti-MMP inhibitors
US20040229878A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Transdiscal administration of specific inhibitors of P38 kinase
US8333960B2 (en) 2003-05-13 2012-12-18 Depuy Spine, Inc. Treatment of degenerated disc with autologous cells
US7344716B2 (en) 2003-05-13 2008-03-18 Depuy Spine, Inc. Transdiscal administration of specific inhibitors of pro-inflammatory cytokines
US20040229786A1 (en) * 2003-05-13 2004-11-18 Depuy Spine, Inc. Autologous treatment of degenerated disc with cells
US7803395B2 (en) 2003-05-15 2010-09-28 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7727241B2 (en) 2003-06-20 2010-06-01 Intrinsic Therapeutics, Inc. Device for delivering an implant through an annular defect in an intervertebral disc
US8361467B2 (en) 2003-07-30 2013-01-29 Depuy Spine, Inc. Trans-capsular administration of high specificity cytokine inhibitors into orthopedic joints
US20050025765A1 (en) * 2003-07-30 2005-02-03 Depuy Spine, Inc. Trans-capsular administration of high specificity cytokine inhibitors into orthopedic joints
US20050038001A1 (en) * 2003-08-13 2005-02-17 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US20090324558A1 (en) * 2003-08-13 2009-12-31 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US7553827B2 (en) 2003-08-13 2009-06-30 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US8067397B2 (en) 2003-08-13 2011-11-29 Depuy Spine, Inc. Transdiscal administration of cycline compounds
US7914535B2 (en) 2003-10-23 2011-03-29 Trans1 Inc. Method and apparatus for manipulating material in the spine
US20050112091A1 (en) * 2003-11-26 2005-05-26 Depuy Spine, Inc. Local intraosseous administration of bone forming agents and anti-resorptive agents, and devices therefor
USRE49219E1 (en) 2003-11-26 2022-09-27 DePuy Synthes Products, Inc. Local intraosseous administration of bone forming agents and anti-resorptive agents, and devices therefor
US8784863B2 (en) 2003-12-11 2014-07-22 Zimmer, Inc. Particulate cadaveric allogenic cartilage system
US8765165B2 (en) 2003-12-11 2014-07-01 Zimmer, Inc. Particulate cartilage system
US8518433B2 (en) 2003-12-11 2013-08-27 Zimmer, Inc. Method of treating an osteochondral defect
US8524268B2 (en) 2003-12-11 2013-09-03 Zimmer, Inc. Cadaveric allogenic human juvenile cartilage implant
US8834914B2 (en) 2003-12-11 2014-09-16 Zimmer, Inc. Treatment methods using a particulate cadaveric allogenic juvenile cartilage particles
US8652507B2 (en) 2003-12-11 2014-02-18 Zimmer, Inc. Juvenile cartilage composition
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US20060057128A1 (en) * 2004-09-10 2006-03-16 Dimauro Thomas M Intradiscal injection of autologous interferon
US7367961B2 (en) 2004-09-10 2008-05-06 Depuy Spine, Inc. Intradiscal injection of autologous interferon
WO2006031375A2 (en) * 2004-09-10 2006-03-23 Depuy Spine, Inc Use of intradiscally administered autologous cells producing type i interferon for the treatment of degenerative disc disease
WO2006031375A3 (en) * 2004-09-10 2007-02-08 Depuy Spine Inc Use of intradiscally administered autologous cells producing type i interferon for the treatment of degenerative disc disease
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
US20120328600A1 (en) * 2004-10-29 2012-12-27 Spinal Restorations, Inc. Injection of fibrin sealant using reconstituted components in spinal applications
US8986304B2 (en) * 2004-10-29 2015-03-24 Bsnc Holding, Llc Injection of fibrin sealant using reconstituted components in spinal applications
US8394072B2 (en) 2004-10-29 2013-03-12 Spinal Restoration, Inc. Injection of fibrin sealant including an anesthetic in spinal applications
US20060095075A1 (en) * 2004-10-29 2006-05-04 Burkinshaw Brian D Injection of fibrin sealant using reconstituted components in spinal applications
US8206448B2 (en) * 2004-10-29 2012-06-26 Spinal Restoration, Inc. Injection of fibrin sealant using reconstituted components in spinal applications
US20070213660A1 (en) * 2004-10-29 2007-09-13 Mark Richards Fibrin sealant delivery device including pressure monitoring, and method and kits thereof
US8403923B2 (en) * 2004-10-29 2013-03-26 Spinal Restoration, Inc. Injection of fibrin sealant in the absence of corticosteroids in spinal applications
US8403895B2 (en) 2004-10-29 2013-03-26 Spinal Restoration, Inc. Injection of fibrin sealant including an anesthetic in spinal applications
US20060106364A1 (en) * 2004-10-29 2006-05-18 Whitlock Steven I Injection of fibrin sealant in the absence of corticosteroids in spinal applications
US8177847B2 (en) 2005-04-29 2012-05-15 Jmea Corporation Disc repair system
US8702718B2 (en) 2005-04-29 2014-04-22 Jmea Corporation Implantation system for tissue repair
US8070818B2 (en) 2005-04-29 2011-12-06 Jmea Corporation Disc annulus repair system
US8317868B2 (en) 2005-04-29 2012-11-27 Jmea Corporation Disc repair system
US8961530B2 (en) 2005-04-29 2015-02-24 Jmea Corporation Implantation system for tissue repair
US8357147B2 (en) 2005-08-17 2013-01-22 Spinal Restoration, Inc. Method for repairing intervertebral discs
US20080103564A1 (en) * 2005-08-17 2008-05-01 Burkinshaw Brian D Method for repairing intervertebral discs
US8480757B2 (en) 2005-08-26 2013-07-09 Zimmer, Inc. Implants and methods for repair, replacement and treatment of disease
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US8114082B2 (en) 2005-12-28 2012-02-14 Intrinsic Therapeutics, Inc. Anchoring system for disc repair
US10470804B2 (en) 2005-12-28 2019-11-12 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US8394146B2 (en) 2005-12-28 2013-03-12 Intrinsic Therapeutics, Inc. Vertebral anchoring methods
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US11185354B2 (en) 2005-12-28 2021-11-30 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US9610106B2 (en) 2005-12-28 2017-04-04 Intrinsic Therapeutics, Inc. Bone anchor systems
US8764835B2 (en) 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8821549B2 (en) 2006-06-13 2014-09-02 Anova Corporation Methods and apparatus for anulus repair
US10245018B2 (en) 2006-06-13 2019-04-02 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
US20140170119A1 (en) * 2006-07-10 2014-06-19 Tetec Tissue Engineering Technologies Ag Multi-chamber applicator for gelatin solution
US9744218B2 (en) * 2006-07-10 2017-08-29 Tetec Tissue Engineerging Technologies Ag Multi-chamber applicator for gelatin solution
US20100191281A1 (en) * 2006-12-20 2010-07-29 Essy Behravesh Apparatus and Method for Delivering a Biocompatible Material to a Surgical Site
US8497121B2 (en) 2006-12-20 2013-07-30 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
US20080154234A1 (en) * 2006-12-20 2008-06-26 Zimmer Orthobiologics, Inc. Apparatus and method for delivering a biocompatible material to a surgical site
US7720533B2 (en) 2006-12-20 2010-05-18 Zimmer Orthobiologicals, Inc. Apparatus and method for delivering a biocompatible material to a surgical site
US8262608B2 (en) * 2007-01-25 2012-09-11 Hyperbranch Medical Technology, Inc. Applicators for multiple component formulations and the like, and methods of use thereof
US20080195040A1 (en) * 2007-01-25 2008-08-14 Hyperbranch Medical Technology, Inc. Applicators for Multiple Component Formulations and the Like, and Methods of Use Thereof
WO2008103296A1 (en) * 2007-02-16 2008-08-28 Spinal Restoration, Inc. Method for repairing intervertebral discs
US9138318B2 (en) 2007-04-12 2015-09-22 Zimmer, Inc. Apparatus for forming an implant
US20090054994A1 (en) * 2007-08-21 2009-02-26 James Rogan Methods and kits for prophylactically reinforcing degenerated spinal discs and facet joints near a surgically treated spinal section
US10716685B2 (en) 2007-09-07 2020-07-21 Intrinsic Therapeutics, Inc. Bone anchor delivery systems
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US10076424B2 (en) 2007-09-07 2018-09-18 Intrinsic Therapeutics, Inc. Impaction systems
US8361155B2 (en) 2007-09-07 2013-01-29 Intrinsic Therapeutics, Inc. Soft tissue impaction methods
US8454612B2 (en) 2007-09-07 2013-06-04 Intrinsic Therapeutics, Inc. Method for vertebral endplate reconstruction
US8986696B2 (en) 2007-12-21 2015-03-24 Depuy Mitek, Inc. Trans-capsular administration of p38 map kinase inhibitors into orthopedic joints
US8211126B2 (en) 2009-09-22 2012-07-03 Jmea Corporation Tissue repair system
US8603118B2 (en) 2009-09-22 2013-12-10 Jmea Corporation Tissue repair system
US10167447B2 (en) 2012-12-21 2019-01-01 Zimmer, Inc. Supports and methods for promoting integration of cartilage tissue explants
US9913728B2 (en) 2013-03-14 2018-03-13 Quandary Medical, Llc Spinal implants and implantation system
US9814598B2 (en) 2013-03-14 2017-11-14 Quandary Medical, Llc Spinal implants and implantation system
US10695463B2 (en) 2015-09-08 2020-06-30 Clemson University Research Foundation Multi-layered biomimetic material and method of formation
US10675381B2 (en) 2015-09-08 2020-06-09 Clemson University Research Foundation Decellularized biomaterial and method for formation

Also Published As

Publication number Publication date
AU4296200A (en) 2000-11-02
EP1173236A1 (en) 2002-01-23
WO2000062832A1 (en) 2000-10-26
US6428576B1 (en) 2002-08-06

Similar Documents

Publication Publication Date Title
US6428576B1 (en) System for repairing inter-vertebral discs
US8357147B2 (en) Method for repairing intervertebral discs
US10159742B2 (en) Hydrogel compositions
JP7180908B2 (en) Methods of treating spinal discs
US6417247B1 (en) Polymer/ceramic composites
CA2429168C (en) Method for restoring a damaged or degenerated intervertebral disc
CA2430821C (en) Radiovisible hydrogel intervertebral disc nucleus
AU2004208821B2 (en) Hydrogel compositions comprising nucleus pulposus tissue
US20220313871A1 (en) Shapeable scaffold material and uses thereof
JP2004532656A (en) In situ bioartificial filler and method for in situ formation of bioartificial discs
JP2003299741A (en) Method for nonsurgical treatment of intervertebral disc and kit therefor
MX2007004964A (en) Injection of fibrin sealant in the absence of corticosteroids in spinal applications.
US11179493B2 (en) Methods and compositions for inducing multi-targeted healing of intervertebral disc defects

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION