US20030003186A1 - Method of making a precision microlens mold and a microlens mold - Google Patents

Method of making a precision microlens mold and a microlens mold Download PDF

Info

Publication number
US20030003186A1
US20030003186A1 US10/224,847 US22484702A US2003003186A1 US 20030003186 A1 US20030003186 A1 US 20030003186A1 US 22484702 A US22484702 A US 22484702A US 2003003186 A1 US2003003186 A1 US 2003003186A1
Authority
US
United States
Prior art keywords
microlens
mold
substrate
cutting member
method recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/224,847
Inventor
John Border
Robert Dambrauskas
Craig Sadlik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/224,847 priority Critical patent/US20030003186A1/en
Publication of US20030003186A1 publication Critical patent/US20030003186A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/005Fresnel lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1946Face or end mill
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30868Work support
    • Y10T409/309016Work support with work holder or guide
    • Y10T409/309072Work support with work holder or guide including cutter limited to rotary motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309184Milling including cutter limited to rotary motion

Definitions

  • the invention relates generally to the field of improved microlens molds and microlens. More particularly, the invention concerns a method of making a precision mold suitable for forming high quality, micro-sized optical articles, such as a microlens or microlens array.
  • Rotationally symmetric optical surfaces in molds for injection molding or compression molding are typically made either by grinding or diamond turning. While these techniques work well for larger surfaces, they are not suited for making high quality optical surfaces in small sizes or arrays. Other techniques are available for making small scale single lenses and arrays but they are limited as to fill factor, optical accuracy and/or the height or sag of the lens geometry that can be made.
  • Diamond turning can be used to make optical surfaces down to 2 millimeters in size but the setup is difficult. Precise location of multiple optical surfaces is not possible due to multiple setups. The need for multiple setups also increases the machining time for an array so that diamond turning becomes cost prohibitive.
  • polymer reflow Another technique that is suitable for making microlenses under 2 millimeters is polymer reflow.
  • Polymer reflow is done by depositing drops of polymer onto a surface and then heating the polymer to allow it to melt and reflow into a spherical shape under the influence of surface tension effects.
  • reflow lenses In order to obtain a truly spherical optical surface, reflow lenses must be separated from one another so that they contact the underlying surface in a round pattern. To maintain round pattern of each lens at the surface, the lenses must be separated from one another which substantially limits the fill factor in an array.
  • Grayscale lithography is also useable for making microlenses under 2 millimeters. Grayscale lithography can be used to make nearly any shape and high fill factors can be produced in lens arrays. However, reactive ion beam etching and other etching techniques that are used in gray scale lithography are limited as to the depth that can be accurately produced with an optical surface, typically the sag is limited to under 30 micron.
  • High sag lenses are typically associated with high magnification or high power refractive lenses that are used for imaging.
  • High power refractive lenses have tight curvature and steep sides to maximize the included angle and associated light gathering or light spreading which implies a high sag.
  • refractive lenses are preferred to preserve the wave front of the image.
  • Fresnel or diffractive lenses where the optical curve is cut into segmented rings can be used to reduce the overall sag of the lens.
  • high power diffractive lenses are not feasible due to the steepness and narrow spacing of the ring segments at the edge that would be required to make a low sag, high power microlens.
  • Another object of the invention is to provide a method of making a precision mold that does not damage the mold surface.
  • Yet another object of the invention is to provide a method of making a mold that utilizes a cutting member that is not limited to depth of penetration.
  • Still another object of the invention is to provide a method of making a precision mold that is useable for forming an array of micro-sized optical articles.
  • a forming element having a high speed, rotatable half-radius diamond cutting member rotatably engages a substrate in a predetermined cutting pattern to form a precision mold surface in the substrate.
  • a method of making a precision mold for a micro-sized optical article comprises the steps of:
  • a microlens and a microlens array made by the method of the invention has a spherical shaped surface, an aspheric shaped surface or an anamorphic shaped surface.
  • the present invention has the following advantages: the precision microlens mold can be used to mold high quality, micro-sized optical articles, such as microlenses, that have symmetric surfaces with steep sides and high sags; and, the forming element is contoured to produce very accurate optical surfaces in single microlenses or arrays. In the case of arrays, near 100% fill factor can be achieved in the molded article.
  • FIG. 1 is a perspective view of the substrate of the invention having a plurality of square microlens mold cavities
  • FIG. 2 is a perspective view of the substrate having a plurality of hexagonal mold cavities formed by the method of the invention
  • FIG. 3 is a perspective view of the substrate having a plurality of random mold cavities formed by the method of the invention.
  • FIG. 4 is a perspective view of an upright spherical cutting member for forming a precision microlens mold
  • FIG. 5 is a perspective view of an aspheric cutting member of the invention.
  • FIG. 6 is a perspective view of the apparatus of the invention for forming a single microlens mold
  • FIG. 7 is a perspective view of the apparatus of the invention for forming a microlens array mold
  • FIG. 8 is an enlarged perspective view of the forming element of the invention showing a clearance in mold cavity
  • FIG. 9 is a perspective view of a two-sided microlens mold made by the method of the invention.
  • FIG. 10 is an enlarged perspective view of a microlens array mold mounted for use in a mold base for injection molding or compression molding;
  • FIG. 11 is a perspective view of an apparatus for making a double-sided microlens.
  • microlens mold 10 has a plurality of interconnecting square intersection micro-sized mold cavities 12 formed in substrate 14 , as described more fully below.
  • microlens mold 16 has a plurality of interconnecting hexagonal shaped intersection micro-sized mold cavities 18 formed in substrate 14 , also described more fully below.
  • microlens mold 20 has either a single micro-sized mold cavity (not shown) or a plurality of randomly distributed micro-sized mold cavities 22 formed in substrate 14 , as described below.
  • Substrate 14 in which the precision microlens molds 10 , 16 , 20 of the invention are formed, may be made of any material that is compatible with very hard cutting tools, such as a diamond milling tool.
  • substrate 14 includes materials selected from among copper, nickel, nickel alloy, nickel plating, brass, and silicon, with hardened nickel plating being most preferred.
  • microlens mold 10 , 16 , 20 have been developed using the novel diamond milling method of the invention.
  • a spherical forming element 24 having a half radius diamond cutting member 26 is used to form the mold cavities 12 , 18 , 22 in the respective substrate 14 of microlens mold 10 , 16 , 20 , by diamond milling into substrate 14 .
  • Diamond cutting member 26 has a substantially planar first face 28 , a substantially planar second face 30 orthogonal to and intersecting first face 28 , and a spherical contoured shaped cutting face 32 intersecting both the first and second face 28 , 30 (respectively).
  • First face 28 defines the rotational axis 34 of diamond cutting member 26 when operably connected to control member 36 and affixed for milling substrate 14 , described below.
  • Forming element 24 may be used to form a spherical microlens mold 10 , 16 or 20 in substrate 14 (FIGS. 1 - 3 ). Spherical microlens mold 10 , 16 or 20 is used for making spherical microlens articles.
  • an alternative aspheric forming element 40 has an aspheric diamond cutting member 41 .
  • Diamond cutting member 41 has a substantially planar first face 42 , a substantially planar second face 46 orthogonal and intersecting first face 42 and an aspheric cutting face 44 adjoining both first and second face 42 , 46 (respectively).
  • First face 42 defines the rotational axis 49 of diamond cutting member 41 when operably connected to control member 48 and affixed for milling substrate 14 , described below.
  • Forming element 40 having control member 48 may be used to form an aspheric microlens mold 10 , 16 or 20 in substrate 14 (FIGS. 1 - 3 ).
  • Aspheric microlens mold 10 , 16 or 20 is used for making aspheric microlens articles.
  • apparatus 50 for forming a precision single microlens mold (of the type shown in FIGS. 1 - 3 ) for a micro-sized optical article includes a forming element 24 or 40 operably connected to tool holder 56 and rotating control member 58 .
  • Forming element 24 or 40 has a rotatable hardened cutting member 26 or 41 , preferably diamond (shown clearly in FIGS. 4 and 5), fixedly aligned relative to a linearly displaceable (noted by arrow Z) substrate 14 .
  • Substrate 14 operably connected to control member 64 , is arranged for movement towards and away from hardened cutting member 26 or 41 , as described above.
  • Control member 36 or 48 , forming element 24 or 40 , and control member 64 are preferably all parts of a precision air bearing lathe such as is available from Precitech, Inc., located in Keene, N.H., which is expressly designed for diamond turning of high precision parts.
  • apparatus 50 can mill a predetermined shaped single microlens mold 52 in the substrate 14 .
  • Platform 54 is used to provide a solid, non-vibrating base for supporting apparatus 50 with both forming element 24 or 40 and substrate 14 during the mold forming process.
  • substrate 14 is preferably mounted for movement relative to fixed forming element 24 or 40 .
  • apparatus 50 forms a single microlens mold 52 in substrate 14 , as discussed above.
  • apparatus 60 has a substrate 14 mounted for three-dimensional movement for forming a microlens mold array 62 .
  • Flexibly moveable substrate 14 is operably connected to control member 64 that governs the movements of substrate 14 .
  • the control member 64 in this case preferably has the ability of precision controlled movement of substrate 14 in the directions X-Y-Z as indicated in FIG. 7. Precision air bearing lathes with precision X-Y-Z table movement are available from Precitech, Inc., located in Keene, N.H.
  • control member 64 The X-Y-Z table movement of control member 64 is used to produce the flexible movements of substrate 14 relative to forming element 24 or 40 .
  • a tool holder 56 fixedly attached to rotating control member 58 such as the ones described above, having diamond cutting member 26 or 41 (as described above) is positioned for milling microlens array mold 62 in substrate 14 .
  • an array of microlens mold cavities can be formed in substrate 14 .
  • Movable substrate 14 is first positioned to mill one of a plurality of microlens mold cavities 62 a in the microlens array mold 62 .
  • forming element 24 or 40 is removed from the mold cavity 62 a and then the substrate 14 is moved laterally (X-Y) by control member 64 to another position for forming another microlens mold cavity 62 b. This procedure is repeated until the desired number of microlens mold cavities in the microlens array mold 62 is formed in substrate 14 .
  • apparatus 60 having a movable substrate 14 can produce a high quality microlens array mold 62 , such as those illustrated in FIGS. 1 - 3 .
  • any rotationally symmetric optical surface such as a microlens surface
  • Spherical surfaces are produced using a half radius diamond with a circular segment diamond.
  • Aspheres can be produced by using a diamond with an aspheric cutting edge.
  • some rotationally non-symmetric lens surfaces such as anamorphic surfaces, can be made using a modified version of the technique described.
  • the diamond tooling is moved laterally during the cutting action to create an elongated version of the spherical or aspheric surface.
  • the right combination of diamond cutting member 26 or 41 rotational speed, feed i.e., the rate that diamond cutting member 26 or 41 penetrates substrate 14 , and lubrication must be used to obtain the cleanest cut.
  • forming element 24 or 40 shown with diamond cutting member 26 or 41 (similar to those described), must be produced in such a manner that a sufficient clearance 70 is provided on the back side 72 of the diamond cutting member 26 or 41 to avoid drag marks on substrate 14 .
  • Drag marks typically result from interference of the backside 72 of diamond cutting member 26 or 41 with the substrate 14 during the formation of microlens mold 76 .
  • microlens molds have been made down to 30 microns in diameter with irregularity of better than 0.50 wave (0.25 micron). Further, microlens mold arrays have been made up to 80 ⁇ 80 microlenses with a 250 micron pitch in an orthogonal layout and a near 100% fill factor.
  • aspheric lens surfaces can also be produced using this technique.
  • an aspheric diamond cutting member 41 (FIG. 5) is all that is required to make rotationally symmetric aspheric lens surfaces.
  • Anamorphic lens surfaces can be made as well using a modified version of this technique. In this case, the same or similar diamond cutting member 41 is moved laterally during the cutting operation to produce an elongated lens surface.
  • the precision molds 10 , 16 , 20 (FIGS. 1 - 3 ) made with the methods and apparatus 50 or 60 of the invention, can be used to manufacture large numbers of optical articles, such as microlenses.
  • injection molding and compression molding are the preferred molding methods for forming the typically glass or plastic microlenses. In some cases casting is the preferred method.
  • Apparatus for molding a two-sided microlens array 80 is composed of two large blocks or mold bases 82 each having an active molding face 83 .
  • Mold bases 82 are comprised typically of steel or other metal.
  • Alignment members arranged on molding faces 83 include guide pins 88 , tapered locating bushings 86 and corresponding apertures (not shown) for receiving guide pins 88 and tapered locating bushings 86 .
  • the microlens molds 84 and the mold cavities 85 were made according to the methods and apparatus of the invention. Referring to FIG.
  • the apparatus 80 comprises mold bases 82 which are installed into one of two platens 104 , 106 of a hydraulic, pneumatic or electrically driven press 108 .
  • One side of the apparatus 80 is connected to one platen 104 of the press 108 and the other side is connected to the other platen 106 .
  • the guide pins 88 help to align the two sides of the mold base 82 .
  • the tapered locating bushings 86 align the two sides of the mold base 82 and the microlens molds 84 with each other. In the case of molding a two-sided microlens array, it is very important that the microlens surfaces on the opposing sides are aligned with each other.
  • the microlens molds 84 are typically made on square substrates 100 (as shown in FIG. 10) so that they cannot rotate in the mold base 82 .
  • a hot plastic preform is inserted into the heated mold cavity.
  • the press and mold base is then closed which compresses the plastic preform and forms the plastic to the shape of the mold cavity and microlens array mold.
  • the mold and plastic is then cooled, the press and mold base is opened and the molded microlens array is removed from the mold.
  • the opposing side from the microlens mold is typically a plano surface and then, since side-to-side and rotational alignment is not an issue, the microlens mold may be made onto a round substrate.
  • FIG. 10 shows the microlens array mold 96 (also shown in FIG. 9) with a square substrate 100 as is typically used to prevent rotation of the microlens array mold surface 98 in the mold base 82 of apparatus 80 .
  • the microlens array mold surface 98 , the depth of the mold cavity 85 and the thickness of the molded microlens array article are determined precisely by adjusting the overall height of the substrate 100 and the height of the larger round substrate 102 on the bottom of the substrate 100 .
  • the material is simply poured into the mold cavity and allowed to solidify by chemical reaction rather than cooling. After the part has solidified, the part is removed from the mold.
  • microlens molds made according to the invention have been used to injection mold microlens surfaces in which the sag is not limited, as indicated below. Further, near hemispheric lenses can be produced with very steep sidewalls. Also, it is our experience that optical surfaces can be machined directly into mold materials such as nickel, copper, aluminum, brass, nickel plating, or silicon.
  • apparatus 50 , 60 having a forming element 24 , 40 with diamond cutting member 26 , 41 (respectively) is quite accurate, it is our experience that lens surfaces can be produced in sizes down to 10 micron or less in diameter and 2 micron sag. Lenses up to 25 mm in diameter are also possible with sags of over 12.5 mm.
  • a microlens array mold with 80 ⁇ 80 microlenses was made in aluminum.
  • the half radius diamond tool was obtained from ST&F Precision Technologies and Tools, located in Arden, N.C.
  • the microlens surfaces were 0.250 mm across positioned in a square intersection array.
  • the microlenses surfaces were spherical in curvature with a radius of 0.500 mm and a sag of 33 micron.
  • centering of the diamond cutting member 26 in the control member 36 was done using an iterative process where a test cut was examined under the microscope and adjustments of the location of diamond cutting member 26 were made based on the size of the center defect. Rotational speed of diamond cutting member 26 used was about 1000 rpm.
  • Cutting fluid was purified mineral oil. The result of this process was a center defect of the machined mold of 2 micron and surface irregularity of 1 Wave (0.5 micron). Parts were subsequently injection molded, using the machined mold surface, to produce polymethylmethacrylate microlens arrays.
  • Example 2 Similar to Example 1 with the exception that a hardened nickel-plated substrate was used for the machined mold surface.
  • a microlens array mold with 13 ⁇ 13 microlenses surfaces was made in a hardened nickel-plated substrate.
  • the microlens surfaces were 1.30 mm across positioned in a square intersection array.
  • the half radius diamond tool was obtained from ST&F Precision Technologies and Tools, located in Arden, N.C.
  • the microlens surfaces were spherical in curvature with a radius of 3.20 mm and a sag of 213 micron. Centering and the machining process were the same as described in Example 1. The result was a center defect of 1.5 micron with a surface irregularity of 0.30 Wave (0.15 micron).
  • a series of single microlens surfaces was made in a 715 nickel alloy substrate.
  • the microlens surfaces all were made with a 0.500 mm radius diamond tool. Diameters varied from 0.062 mm to 0.568 mm.
  • the machining process was similar to that described in Example 1.
  • a larger microlens array of 63.5 ⁇ 88.9 mm was made with 21,760 microlenses in total in a 125 ⁇ 175 square intersection array.
  • a diamond half radius tool with a 0.5008 mm radius was used, obtained from Chardon Tool, Inc., located in Chardon, Ohio.
  • the array was made with a 0.50932 pitch and a 0.16609 sag.
  • the substrate was nickel-plated steel. The machining process was similar to that described in Example 1.
  • two-sided microlens arrays can be molded in large numbers.
  • two matched microlens array surfaces were made in hardened nickel-plated substrates.
  • the half radius diamond tool or diamond cutting member 26 (FIG. 4) was obtained from Contour Fine Tooling, Inc., located in Marlborough, N.H.
  • the microlens surfaces were made with a 1.475 mm radius and a 0.750 mm pitch in a square intersection pattern, the sag was 99 micron.
  • the machining process was similar to that described in Example 1. A center defect of 2 micron and an irregularity of 0.3 Wave (0.15 micron) were achieved in the machined surface.
  • the two matched microlens array surfaces were mounted in a mold base so that they were opposed.
  • the microlens surfaces were machined into square substrates prior to mounting into a mold base thereby inhibiting rotational misalignment.
  • Taper lock bushings were then used to prevent lateral misalignment.
  • two-sided microlens arrays were injection molded from polymethylmethacrylate. The molded microlenses on the two-sided array were aligned with each other within 30 micron.

Abstract

A method for making microlens molds and microlens array molds is described which utilizes a spinning half radius diamond cutting member operated in a plunge cut in a technique similar to milling to cut the optical surface into a diamond turnable material. The method can be used to make high sag lens molds with high accuracy. Microlens array molds can be made with a high degree of uniformity and a nearly 100% fill factor.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is related to U.S. application Ser. No. (D-81785), filed herewith, by John Border, et al., and entitled, “Method Of Manufacturing A Microlens Array Mold And a Microlens Array;” U.S. Application Serial No. (D-81786), filed herewith, by John Border, et al., and entitled, “Apparatus For Forming A Microlens Mold;” U.S. application Ser. No. (D-81787), filed herewith, by John Border, et al., and entitled, “Apparatus For Forming A Microlens Array Mold;” U.S. application Ser. No. (D-81788), filed herewith, by John Border, et al., and entitled, “Method Of Manufacturing A Microlens And A Microlens Array;” U.S. application Ser. No. (D-81798), filed herewith, by John Border, et al., and entitled, “Apparatus And Method For Making A Double-sided Microlens Mold And Microlens Array Mold;” and, U.S. application Ser. No. (D-81799), filed herewith, by John Border, et al., and entitled, “Double-Sided Microlens Array.”[0001]
  • FIELD OF THE INVENTION
  • The invention relates generally to the field of improved microlens molds and microlens. More particularly, the invention concerns a method of making a precision mold suitable for forming high quality, micro-sized optical articles, such as a microlens or microlens array. [0002]
  • BACKGROUND OF THE INVENTION
  • Rotationally symmetric optical surfaces in molds for injection molding or compression molding are typically made either by grinding or diamond turning. While these techniques work well for larger surfaces, they are not suited for making high quality optical surfaces in small sizes or arrays. Other techniques are available for making small scale single lenses and arrays but they are limited as to fill factor, optical accuracy and/or the height or sag of the lens geometry that can be made. [0003]
  • Grinding relies on an orbital motion of the grinding surfaces to make a precision optical surface without scratches. However, the orbital motion and the grinding surfaces become impractical when making optical surfaces below a few millimeters in size. Grinding multiple surfaces for an array can only be done one surface at a time with multiple pieces that are then fit together. [0004]
  • Diamond turning can be used to make optical surfaces down to 2 millimeters in size but the setup is difficult. Precise location of multiple optical surfaces is not possible due to multiple setups. The need for multiple setups also increases the machining time for an array so that diamond turning becomes cost prohibitive. [0005]
  • Another technique that is suitable for making microlenses under 2 millimeters is polymer reflow. Polymer reflow is done by depositing drops of polymer onto a surface and then heating the polymer to allow it to melt and reflow into a spherical shape under the influence of surface tension effects. In order to obtain a truly spherical optical surface, reflow lenses must be separated from one another so that they contact the underlying surface in a round pattern. To maintain round pattern of each lens at the surface, the lenses must be separated from one another which substantially limits the fill factor in an array. U.S. Pat. No. 5,536,455, titled, “Method Of Manufacturing Lens Array,” by Aoyama, et al., Jul. 16, 1996, describes a two step approach for making reflow lens array with a high fill factor. Using this technique, a second series of lenses is deposited in the gaps between the first set of lenses. While this technique can provide a near 100% fill factor, the second set of lenses does not have round contact with the underlying surface so that the optical surface formed is not truly spherical. Also, reflow techniques in general are limited to less than 100 microns sag due to gravity effects. Aspheric surfaces cannot be produced using polymer reflow. [0006]
  • Grayscale lithography is also useable for making microlenses under 2 millimeters. Grayscale lithography can be used to make nearly any shape and high fill factors can be produced in lens arrays. However, reactive ion beam etching and other etching techniques that are used in gray scale lithography are limited as to the depth that can be accurately produced with an optical surface, typically the sag is limited to under 30 micron. [0007]
  • High sag lenses are typically associated with high magnification or high power refractive lenses that are used for imaging. High power refractive lenses have tight curvature and steep sides to maximize the included angle and associated light gathering or light spreading which implies a high sag. In the case of image forming, refractive lenses are preferred to preserve the wave front of the image. In other cases such as illumination where the wave front does not have to be preserved, Fresnel or diffractive lenses where the optical curve is cut into segmented rings, can be used to reduce the overall sag of the lens. In the case of microlenses, high power diffractive lenses are not feasible due to the steepness and narrow spacing of the ring segments at the edge that would be required to make a low sag, high power microlens. [0008]
  • U.S. Pat. Nos. 5,519,539, titled, “Microlens Array With Microlenses Having Modified Polygon Perimeters,” by Hoopman et al., May 21, 1996 and 5,300,263, titled, “Method Of Making A Microlens Array And Mold,” by Hoopman et al., Apr. 5, 1994, describe a method for making lens arrays that involves casting a polymer into a series of small receptacles so that surface tension forms the polymer surfaces into nearly spherical shapes. A correction is done on the shape of the receptacles to make the surfaces more closely spherical but this results in football-shaped intersections so that optical quality and the effective fill factor are limited. [0009]
  • Therefore, a need persists in the art for a method of making a precision microlens mold suitable for forming high quality, micro-sized optical articles, such as a microlens or a microlens array. [0010]
  • SUMMARY OF THE INVENTION
  • It is, therefore, an object of the invention to provide a method of making a precision mold for microsized optical articles. [0011]
  • Another object of the invention is to provide a method of making a precision mold that does not damage the mold surface. [0012]
  • Yet another object of the invention is to provide a method of making a mold that utilizes a cutting member that is not limited to depth of penetration. [0013]
  • Still another object of the invention is to provide a method of making a precision mold that is useable for forming an array of micro-sized optical articles. [0014]
  • It is a feature of the invention that a forming element having a high speed, rotatable half-radius diamond cutting member rotatably engages a substrate in a predetermined cutting pattern to form a precision mold surface in the substrate. [0015]
  • According to one aspect of the present invention, a method of making a precision mold for a micro-sized optical article, comprises the steps of: [0016]
  • (a) providing a substrate; [0017]
  • (b) providing a forming element having a rotatable hardened cutting member, said hardened cutting member having a predetermined shape for forming a micro-sized mold cavity in said substrate; [0018]
  • (c) positioning said rotatable hardened cutting member into a milling relationship with said substrate; and, [0019]
  • (d) milling said substrate with said rotatable hardened cutting member to form said predetermined shaped micro-sized mold cavity for molding a micro-sized optical article. [0020]
  • In another aspect of the invention, a microlens and a microlens array made by the method of the invention has a spherical shaped surface, an aspheric shaped surface or an anamorphic shaped surface. [0021]
  • The present invention has the following advantages: the precision microlens mold can be used to mold high quality, micro-sized optical articles, such as microlenses, that have symmetric surfaces with steep sides and high sags; and, the forming element is contoured to produce very accurate optical surfaces in single microlenses or arrays. In the case of arrays, near 100% fill factor can be achieved in the molded article. [0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features, and advantages of the present invention will become more apparent when taken in conjunction with the following description and drawings wherein identical reference numerals have been used, where possible, to designate identical features that are common to the figures, and wherein: [0023]
  • FIG. 1 is a perspective view of the substrate of the invention having a plurality of square microlens mold cavities; [0024]
  • FIG. 2 is a perspective view of the substrate having a plurality of hexagonal mold cavities formed by the method of the invention; [0025]
  • FIG. 3 is a perspective view of the substrate having a plurality of random mold cavities formed by the method of the invention; [0026]
  • FIG. 4 is a perspective view of an upright spherical cutting member for forming a precision microlens mold; [0027]
  • FIG. 5 is a perspective view of an aspheric cutting member of the invention; [0028]
  • FIG. 6 is a perspective view of the apparatus of the invention for forming a single microlens mold; [0029]
  • FIG. 7 is a perspective view of the apparatus of the invention for forming a microlens array mold; [0030]
  • FIG. 8 is an enlarged perspective view of the forming element of the invention showing a clearance in mold cavity; [0031]
  • FIG. 9 is a perspective view of a two-sided microlens mold made by the method of the invention; [0032]
  • FIG. 10 is an enlarged perspective view of a microlens array mold mounted for use in a mold base for injection molding or compression molding; and, [0033]
  • FIG. 11 is a perspective view of an apparatus for making a double-sided microlens. [0034]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Turning now to the drawings, and in particular to FIGS. [0035] 1-3, improved microlens molds 10, 16, 20 made by the method of the invention are illustrated. According to FIG. 1, microlens mold 10 has a plurality of interconnecting square intersection micro-sized mold cavities 12 formed in substrate 14, as described more fully below. In FIG. 2, microlens mold 16 has a plurality of interconnecting hexagonal shaped intersection micro-sized mold cavities 18 formed in substrate 14, also described more fully below. Alternatively, according to FIG. 3, microlens mold 20 has either a single micro-sized mold cavity (not shown) or a plurality of randomly distributed micro-sized mold cavities 22 formed in substrate 14, as described below. Substrate 14, in which the precision microlens molds 10, 16, 20 of the invention are formed, may be made of any material that is compatible with very hard cutting tools, such as a diamond milling tool. In the preferred embodiment of the invention, substrate 14 includes materials selected from among copper, nickel, nickel alloy, nickel plating, brass, and silicon, with hardened nickel plating being most preferred.
  • Referring to FIGS. 4 and 5, [0036] microlens mold 10, 16, 20 have been developed using the novel diamond milling method of the invention. As shown in FIG. 4, a spherical forming element 24 having a half radius diamond cutting member 26 is used to form the mold cavities 12, 18, 22 in the respective substrate 14 of microlens mold 10, 16, 20, by diamond milling into substrate 14. Diamond cutting member 26 has a substantially planar first face 28, a substantially planar second face 30 orthogonal to and intersecting first face 28, and a spherical contoured shaped cutting face 32 intersecting both the first and second face 28, 30 (respectively). First face 28 defines the rotational axis 34 of diamond cutting member 26 when operably connected to control member 36 and affixed for milling substrate 14, described below. Forming element 24 may be used to form a spherical microlens mold 10, 16 or 20 in substrate 14 (FIGS. 1-3). Spherical microlens mold 10, 16 or 20 is used for making spherical microlens articles.
  • According to FIG. 5, an alternative [0037] aspheric forming element 40 has an aspheric diamond cutting member 41. Diamond cutting member 41 has a substantially planar first face 42, a substantially planar second face 46 orthogonal and intersecting first face 42 and an aspheric cutting face 44 adjoining both first and second face 42, 46 (respectively). First face 42 defines the rotational axis 49 of diamond cutting member 41 when operably connected to control member 48 and affixed for milling substrate 14, described below. Forming element 40 having control member 48 may be used to form an aspheric microlens mold 10, 16 or 20 in substrate 14 (FIGS. 1-3). Aspheric microlens mold 10, 16 or 20 is used for making aspheric microlens articles.
  • Referring to FIG. 6, in another aspect of the invention, [0038] apparatus 50 for forming a precision single microlens mold (of the type shown in FIGS. 1-3) for a micro-sized optical article includes a forming element 24 or 40 operably connected to tool holder 56 and rotating control member 58. Forming element 24 or 40 has a rotatable hardened cutting member 26 or 41, preferably diamond (shown clearly in FIGS. 4 and 5), fixedly aligned relative to a linearly displaceable (noted by arrow Z) substrate 14. Substrate 14, operably connected to control member 64, is arranged for movement towards and away from hardened cutting member 26 or 41, as described above. Control member 36 or 48, forming element 24 or 40, and control member 64 are preferably all parts of a precision air bearing lathe such as is available from Precitech, Inc., located in Keene, N.H., which is expressly designed for diamond turning of high precision parts. In this embodiment, apparatus 50 can mill a predetermined shaped single microlens mold 52 in the substrate 14. Platform 54 is used to provide a solid, non-vibrating base for supporting apparatus 50 with both forming element 24 or 40 and substrate 14 during the mold forming process.
  • Referring to FIGS. 6 and 7, [0039] substrate 14 is preferably mounted for movement relative to fixed forming element 24 or 40. According to FIG. 6, apparatus 50 forms a single microlens mold 52 in substrate 14, as discussed above. In FIG. 7, however, apparatus 60 has a substrate 14 mounted for three-dimensional movement for forming a microlens mold array 62. Flexibly moveable substrate 14 is operably connected to control member 64 that governs the movements of substrate 14. The control member 64 in this case preferably has the ability of precision controlled movement of substrate 14 in the directions X-Y-Z as indicated in FIG. 7. Precision air bearing lathes with precision X-Y-Z table movement are available from Precitech, Inc., located in Keene, N.H. The X-Y-Z table movement of control member 64 is used to produce the flexible movements of substrate 14 relative to forming element 24 or 40. A tool holder 56 fixedly attached to rotating control member 58, such as the ones described above, having diamond cutting member 26 or 41 (as described above) is positioned for milling microlens array mold 62 in substrate 14. By having a movable substrate 14, an array of microlens mold cavities can be formed in substrate 14. Movable substrate 14 is first positioned to mill one of a plurality of microlens mold cavities 62 a in the microlens array mold 62. After forming the one of a plurality of microlens mold cavities 62 a, forming element 24 or 40 is removed from the mold cavity 62 a and then the substrate 14 is moved laterally (X-Y) by control member 64 to another position for forming another microlens mold cavity 62 b. This procedure is repeated until the desired number of microlens mold cavities in the microlens array mold 62 is formed in substrate 14. Thus, by repeating these steps, apparatus 60 having a movable substrate 14 can produce a high quality microlens array mold 62, such as those illustrated in FIGS. 1-3.
  • Those skilled in the art will appreciate that any rotationally symmetric optical surface, such as a microlens surface, can be produced in the manner described. Spherical surfaces are produced using a half radius diamond with a circular segment diamond. Aspheres can be produced by using a diamond with an aspheric cutting edge. [0040]
  • Moreover, some rotationally non-symmetric lens surfaces, such as anamorphic surfaces, can be made using a modified version of the technique described. In this case, the diamond tooling is moved laterally during the cutting action to create an elongated version of the spherical or aspheric surface. [0041]
  • Skilled artisans will appreciate that in order to obtain a high quality lens surface, it is important to follow some basic machining concepts. To minimize the center defect in the lens surface produced, it is important to center the [0042] diamond cutting member 26 or 41, as shown in FIGS. 4 and 5. The quality of microlens mold 10, 16, 20 is best achieved if the axis of rotation 34 or 49 of diamond cutting member 26 or 41 (respectively) is centered to better than 5 microns relative to the axis of rotation (not shown) of the tool holder 56 in rotating control member 58 (FIGS. 6 and 7). Also, the tool holder 56 must be balanced to eliminate vibration to minimize chatter. Solid platform 54 helps to promote stability of apparatus 50 and 60 during operation. Further, the right combination of diamond cutting member 26 or 41 rotational speed, feed, i.e., the rate that diamond cutting member 26 or 41 penetrates substrate 14, and lubrication must be used to obtain the cleanest cut. Moreover, according to FIG. 8, forming element 24 or 40, shown with diamond cutting member 26 or 41 (similar to those described), must be produced in such a manner that a sufficient clearance 70 is provided on the back side 72 of the diamond cutting member 26 or 41 to avoid drag marks on substrate 14. Drag marks (not shown) typically result from interference of the backside 72 of diamond cutting member 26 or 41 with the substrate 14 during the formation of microlens mold 76.
  • By using the method of the invention, spherical microlens molds have been made down to 30 microns in diameter with irregularity of better than 0.50 wave (0.25 micron). Further, microlens mold arrays have been made up to 80×80 microlenses with a 250 micron pitch in an orthogonal layout and a near 100% fill factor. [0043]
  • Moreover, it should be appreciated that the repeated milling process of the invention (FIG. 7) is well suited for making accurate microlens arrays. Since the process for making each microlens in the array is unconnected to the other lenses in the array, a nearly 100% fill factor can be obtained in the array. [0044]
  • Furthermore, aspheric lens surfaces can also be produced using this technique. In this case, an aspheric diamond cutting member [0045] 41 (FIG. 5) is all that is required to make rotationally symmetric aspheric lens surfaces. Anamorphic lens surfaces can be made as well using a modified version of this technique. In this case, the same or similar diamond cutting member 41 is moved laterally during the cutting operation to produce an elongated lens surface.
  • The [0046] precision molds 10, 16, 20 (FIGS. 1-3) made with the methods and apparatus 50 or 60 of the invention, can be used to manufacture large numbers of optical articles, such as microlenses. Generally, injection molding and compression molding are the preferred molding methods for forming the typically glass or plastic microlenses. In some cases casting is the preferred method.
  • Referring to FIGS. 9 and 11, the apparatus used for injection molding or compression molding of plastic microlenses using the microlens molds mounted into a mold base is illustrated. Apparatus for molding a two-[0047] sided microlens array 80 is composed of two large blocks or mold bases 82 each having an active molding face 83. Mold bases 82 are comprised typically of steel or other metal. Alignment members arranged on molding faces 83 include guide pins 88, tapered locating bushings 86 and corresponding apertures (not shown) for receiving guide pins 88 and tapered locating bushings 86. The microlens molds 84 and the mold cavities 85 were made according to the methods and apparatus of the invention. Referring to FIG. 11, in operation, the apparatus 80 comprises mold bases 82 which are installed into one of two platens 104, 106 of a hydraulic, pneumatic or electrically driven press 108. One side of the apparatus 80 is connected to one platen 104 of the press 108 and the other side is connected to the other platen 106. When the press closes, the guide pins 88 help to align the two sides of the mold base 82. At the final closing, the tapered locating bushings 86 align the two sides of the mold base 82 and the microlens molds 84 with each other. In the case of molding a two-sided microlens array, it is very important that the microlens surfaces on the opposing sides are aligned with each other. To aid with the alignment of the opposing microlens surfaces in each of the sides of the mold base 82, the microlens molds 84 are typically made on square substrates 100 (as shown in FIG. 10) so that they cannot rotate in the mold base 82.
  • In the case of injection molding, after the press and mold base have been closed, molten plastic is injected under pressure into the mold cavity. After the plastic has cooled in the mold to the point that it has solidified, the press and mold base are opened and the molded microlens array is removed from the mold. [0048]
  • In the case of compression molding, prior to the press closing, a hot plastic preform is inserted into the heated mold cavity. The press and mold base is then closed which compresses the plastic preform and forms the plastic to the shape of the mold cavity and microlens array mold. The mold and plastic is then cooled, the press and mold base is opened and the molded microlens array is removed from the mold. [0049]
  • In an alternate case in which a one-sided microlens array or single microlens is being injection or compression molded, the opposing side from the microlens mold is typically a plano surface and then, since side-to-side and rotational alignment is not an issue, the microlens mold may be made onto a round substrate. [0050]
  • FIG. 10 shows the microlens array mold [0051] 96 (also shown in FIG. 9) with a square substrate 100 as is typically used to prevent rotation of the microlens array mold surface 98 in the mold base 82 of apparatus 80. The microlens array mold surface 98, the depth of the mold cavity 85 and the thickness of the molded microlens array article are determined precisely by adjusting the overall height of the substrate 100 and the height of the larger round substrate 102 on the bottom of the substrate 100.
  • In cases where casting is the preferred method of production, the material is simply poured into the mold cavity and allowed to solidify by chemical reaction rather than cooling. After the part has solidified, the part is removed from the mold. [0052]
  • It is our experience that microlens molds made according to the invention have been used to injection mold microlens surfaces in which the sag is not limited, as indicated below. Further, near hemispheric lenses can be produced with very steep sidewalls. Also, it is our experience that optical surfaces can be machined directly into mold materials such as nickel, copper, aluminum, brass, nickel plating, or silicon. [0053]
  • Since [0054] apparatus 50, 60 having a forming element 24, 40 with diamond cutting member 26, 41 (respectively) is quite accurate, it is our experience that lens surfaces can be produced in sizes down to 10 micron or less in diameter and 2 micron sag. Lenses up to 25 mm in diameter are also possible with sags of over 12.5 mm.
  • The following are several exemplary examples of microlenses made with the method and apparatus of the invention. [0055]
  • EXAMPLE 1
  • A microlens array mold with 80×80 microlenses was made in aluminum. The half radius diamond tool was obtained from ST&F Precision Technologies and Tools, located in Arden, N.C. The microlens surfaces were 0.250 mm across positioned in a square intersection array. The microlenses surfaces were spherical in curvature with a radius of 0.500 mm and a sag of 33 micron. Referring to FIG. 4, centering of the [0056] diamond cutting member 26 in the control member 36 was done using an iterative process where a test cut was examined under the microscope and adjustments of the location of diamond cutting member 26 were made based on the size of the center defect. Rotational speed of diamond cutting member 26 used was about 1000 rpm. Cutting fluid was purified mineral oil. The result of this process was a center defect of the machined mold of 2 micron and surface irregularity of 1 Wave (0.5 micron). Parts were subsequently injection molded, using the machined mold surface, to produce polymethylmethacrylate microlens arrays.
  • EXAMPLE 2
  • Similar to Example 1 with the exception that a hardened nickel-plated substrate was used for the machined mold surface. [0057]
  • EXAMPLE 3
  • A microlens array mold with 13×13 microlenses surfaces was made in a hardened nickel-plated substrate. The microlens surfaces were 1.30 mm across positioned in a square intersection array. The half radius diamond tool was obtained from ST&F Precision Technologies and Tools, located in Arden, N.C. The microlens surfaces were spherical in curvature with a radius of 3.20 mm and a sag of 213 micron. Centering and the machining process were the same as described in Example 1. The result was a center defect of 1.5 micron with a surface irregularity of 0.30 Wave (0.15 micron). [0058]
  • EXAMPLE 4
  • A series of single microlens surfaces was made in a 715 nickel alloy substrate. The microlens surfaces all were made with a 0.500 mm radius diamond tool. Diameters varied from 0.062 mm to 0.568 mm. The machining process was similar to that described in Example 1. [0059]
  • EXAMPLE 5
  • A larger microlens array of 63.5×88.9 mm was made with 21,760 microlenses in total in a 125×175 square intersection array. A diamond half radius tool with a 0.5008 mm radius was used, obtained from Chardon Tool, Inc., located in Chardon, Ohio. The array was made with a 0.50932 pitch and a 0.16609 sag. The substrate was nickel-plated steel. The machining process was similar to that described in Example 1. [0060]
  • EXAMPLE 6
  • It is also within the contemplation of the invention that by machining matched optical surfaces for a mold, two-sided microlens arrays can be molded in large numbers. According to FIG. 9, two matched microlens array surfaces were made in hardened nickel-plated substrates. The half radius diamond tool or diamond cutting member [0061] 26 (FIG. 4) was obtained from Contour Fine Tooling, Inc., located in Marlborough, N.H. The microlens surfaces were made with a 1.475 mm radius and a 0.750 mm pitch in a square intersection pattern, the sag was 99 micron. The machining process was similar to that described in Example 1. A center defect of 2 micron and an irregularity of 0.3 Wave (0.15 micron) were achieved in the machined surface. In this case, the two matched microlens array surfaces were mounted in a mold base so that they were opposed. To align the microlens surfaces on each side, the microlens surfaces were machined into square substrates prior to mounting into a mold base thereby inhibiting rotational misalignment. Taper lock bushings were then used to prevent lateral misalignment. Following this process, two-sided microlens arrays were injection molded from polymethylmethacrylate. The molded microlenses on the two-sided array were aligned with each other within 30 micron.
  • The invention has been described with reference to a preferred embodiment. However, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention. [0062]
    PARTS LIST:
    10 microlens mold with square intersections
    12 mold cavity with square perimeter
    14 substrate
    16 microlens mold with hexagonal intersections
    18 mold cavity with hexagonal perimeter
    20 microlens mold with randomly distributed microlenses
    22 randomly distributed mold cavities
    24 spherical forming element
    26 spherical diamond cutting member
    28 first face of diamond cutting member 26
    30 second face of diamond cutting member 26
    32 spherical contoured cutting face of diamond cutting member 26
    34 rotational axis of diamond cutting member 26
    36 control member for diamond cutting member 26
    40 aspheric forming element
    41 aspheric diamond cutting member
    42 substantially planar first face of aspheric diamond cutting
    member 41
    44 aspheric cutting face of aspheric diamond cutting
    member 41
    46 substantially planar second face of aspheric diamond cutting
    member 41
    48 control member for diamond cutting member 41
    49 rotational axis of diamond cutting member 41
    50 apparatus for forming a precision single microlens mold
    52 single microlens mold
    54 platform
    56 tool holder for forming element 24 or 40
    58 rotating control member
    60 alternative embodiment of apparatus for making microlens
    array molds
    62 microlens array mold
    62a single microlens mold cavity
    62b another single microlens mold cavity
    64 control member
    70 clearance
    72 backside of diamond cutting member
    76 microlens mold
    80 apparatus for molding a two-sided microlens array
    82 mold base
    83 active molding face
    84 microlens molds
    85 mold cavities
    86 tapered locating bushings
    88 guide pins
    96 microlens array mold
    98 microlens array mold surface
    100  square substrate
    102  round substrate
    104  platen
    106  platen
    108  press

Claims (12)

What is claimed is:
1. Method of making a precision mold for a micro-sized optical article, comprising the steps of:
(a) providing a substrate;
(b) providing a forming element having a rotatable hardened cutting member, said hardened cutting member having a predetermined shape for forming a micro-sized mold cavity in said substrate;
(c) positioning said rotatable hardened cutting member into a milling relationship with said substrate; and,
(d) milling said substrate with said rotatable hardened cutting member to form a predetermined shaped micro-sized mold cavity for molding a micro-sized optical article.
2. The method recited in claim 1 wherein said micro-sized optical article is a microlens.
3. The method recited in claim 1 wherein said hardened cutting member comprises a generally contoured cutting face for forming a generally spherical shaped mold cavity in said substrate.
4. The method recited in claim 1 wherein said hardened cutting member comprises diamond.
5. The method recited in claim 4 wherein said substrate comprises materials selected from the group consisting of hardened nickel, nickel alloy, brass, copper, aluminum, and silicon.
6. The method recited in claim 4 wherein said substrate is hardened nickel plated substrate.
7. The method recited in claim 1 wherein said predetermined shaped micro-sized mold cavity is generally spherical and has a diameter of less than about 2 mm.
8. The method recited in claim 1 wherein said predetermined shaped micro-sized mold cavity is generally aspherical and has a diameter of less than about 2 mm.
9. The method recited in claim 1 wherein said predetermined shaped micro-sized mold cavity is generally anamorphic and has a diameter of less than about 2 mm.
10. A microlens mold made with the method recited in claim 7 having a sag of more than 30 microns.
11. A microlens mold made with the method recited in claim 8 having a sag of more than 30 microns.
12. The microlens mold made with the method recited in claim 9 having a sag of more than 30 microns.
US10/224,847 2000-10-31 2002-08-21 Method of making a precision microlens mold and a microlens mold Abandoned US20030003186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/224,847 US20030003186A1 (en) 2000-10-31 2002-08-21 Method of making a precision microlens mold and a microlens mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/702,402 US6491481B1 (en) 2000-10-31 2000-10-31 Method of making a precision microlens mold and a microlens mold
US10/224,847 US20030003186A1 (en) 2000-10-31 2002-08-21 Method of making a precision microlens mold and a microlens mold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/702,402 Division US6491481B1 (en) 2000-10-31 2000-10-31 Method of making a precision microlens mold and a microlens mold

Publications (1)

Publication Number Publication Date
US20030003186A1 true US20030003186A1 (en) 2003-01-02

Family

ID=24821080

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/702,402 Expired - Fee Related US6491481B1 (en) 2000-10-31 2000-10-31 Method of making a precision microlens mold and a microlens mold
US10/224,847 Abandoned US20030003186A1 (en) 2000-10-31 2002-08-21 Method of making a precision microlens mold and a microlens mold

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/702,402 Expired - Fee Related US6491481B1 (en) 2000-10-31 2000-10-31 Method of making a precision microlens mold and a microlens mold

Country Status (5)

Country Link
US (2) US6491481B1 (en)
EP (1) EP1201411A3 (en)
JP (1) JP4331424B2 (en)
KR (1) KR20020034917A (en)
TW (1) TW568808B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032987A1 (en) * 2007-08-03 2009-02-05 Boettiger Ulrich C Methods of forming a lens master plate for wafer level lens replication
US20090325107A1 (en) * 2008-06-25 2009-12-31 Micron Technology, Inc. Thermal embossing of resist reflowed lenses to make aspheric lens master wafer
US20110075264A1 (en) * 2009-09-30 2011-03-31 E-Pin Optical Industry Co., Ltd. High SAG Optical Lens and Method for Fast Molding the Same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818320B2 (en) * 1994-09-09 2006-09-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ Method for producing a mold used for the production of optical elements having optical sub-elements arranged in a pattern with respect to each other and apparatus for carrying out such a method
KR100845536B1 (en) * 2000-12-11 2008-07-10 다이니폰 인사츠 가부시키가이샤 Working method of die for use for fresnel lens, die worked through execution of the working method, and fresnel lens worked from the die
US20040151828A1 (en) * 2003-02-04 2004-08-05 Anis Zribi Method for fabrication and alignment of micro and nanoscale optics using surface tension gradients
JP5090730B2 (en) * 2004-03-03 2012-12-05 株式会社きもと Light control film and backlight device using the same
JP5052952B2 (en) * 2007-05-07 2012-10-17 東芝機械株式会社 Microlens transfer molding roll manufacturing method and manufacturing apparatus
US8256092B1 (en) * 2008-01-30 2012-09-04 Makino Inc. Method for helical boring
JP5355206B2 (en) * 2009-04-30 2013-11-27 パナソニック株式会社 Processing apparatus and processing method
KR101076049B1 (en) * 2009-07-07 2011-10-24 도레이첨단소재 주식회사 A method of producing lens pattern on roll for producing optical film and roll for producing optical film with the lens pattern therefrom
KR101683699B1 (en) * 2014-04-25 2016-12-20 한국과학기술원 Method for manufacturing liquid lens array mold
US10040126B2 (en) * 2014-06-23 2018-08-07 Sumitomo Electric Hardmetal Corp. Cutting tool and method of manufacturing a cutting tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276538A (en) * 1990-04-05 1994-01-04 Matsushita Electric Industrial Co., Ltd. Display device with micro lens array
US5439621A (en) * 1993-04-12 1995-08-08 Minnesota Mining And Manufacturing Company Method of making an array of variable focal length microlenses
US5501784A (en) * 1993-03-12 1996-03-26 Microparts Gmbh Process for producing microstructure metallic elements
US5699190A (en) * 1995-12-05 1997-12-16 Eastman Kodak Company Lenticular media having spatially encoded portions
US5876642A (en) * 1995-03-15 1999-03-02 Corning Incorporated Process for making a mold for the manufacture of microlenses
US6052165A (en) * 1997-12-22 2000-04-18 Philips Electronics North America Corporation Reflective liquid crystal display (LCD) device having an internal reflection reducer
US6305194B1 (en) * 1999-07-15 2001-10-23 Eastman Kodak Company Mold and compression molding method for microlens arrays

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480354A (en) * 1944-12-01 1949-08-30 Reliephographie Soc Pour L Exp Method and means for engraving the dies of lenticular optical selectors
US2905059A (en) * 1956-01-26 1959-09-22 Illinois Tool Works End milling cutter
US3263067A (en) * 1959-01-27 1966-07-26 George B Bush Electrical analogue device for producing three-dimensional surfaces
US3288045A (en) * 1965-05-04 1966-11-29 Ibm Method and apparatus for producing articles having arrays of similar patterns
US3476025A (en) * 1966-06-15 1969-11-04 Rca Corp Cathode ray tube and method of manufacture
FR2227737A5 (en) * 1973-04-25 1974-11-22 Gastineau Paul
US3857305A (en) * 1974-04-05 1974-12-31 P Lichtman Milling cutters
US4198182A (en) * 1975-09-20 1980-04-15 Lucas Industries Limited Method of manufacturing a mould for producing a lamp lens element
GB1546805A (en) * 1975-09-20 1979-05-31 Lucas Industries Ltd Method of manufacturing a mould for producing a lens element and mould manufactured by that method
US4175896A (en) * 1977-07-25 1979-11-27 Toshiba Tungaloy Co., Ltd. Ball endmill
US4338050A (en) * 1980-07-07 1982-07-06 The Boeing Company Method and tool for generating holes in composite materials
DE3209879A1 (en) * 1982-03-18 1983-09-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method of producing a bright-finished bevel and milling cutter for carrying out the method
US4693641A (en) * 1985-10-25 1987-09-15 Mitsubishi Kinzoku Kabushiki Kaisha End mill with throw-away tip
NL8902323A (en) * 1989-09-18 1991-04-16 Philips Nv DIAMOND TOOLS.
JP3018387B2 (en) * 1990-04-05 2000-03-13 松下電器産業株式会社 Optical element manufacturing method
US5039259A (en) * 1990-06-04 1991-08-13 Duncan Thomas E Diamond edge milling tool
JPH0596572A (en) * 1991-10-08 1993-04-20 Toshiba Corp Mold-shape designing device
JPH05200616A (en) * 1992-01-22 1993-08-10 Nec Corp Working of groove and groove working device
JP3550567B2 (en) * 1992-10-21 2004-08-04 有限会社大三金型製作所 Filter manufacturing equipment
JPH06118204A (en) * 1992-10-07 1994-04-28 Hitachi Ltd Plastic micro-lens array
US5300263A (en) 1992-10-28 1994-04-05 Minnesota Mining And Manufacturing Company Method of making a microlens array and mold
US5376317A (en) * 1992-12-08 1994-12-27 Galic Maus Ventures Precision surface-replicating thermoplastic injection molding method and apparatus, using a heating phase and a cooling phase in each molding cycle
US5536455A (en) 1994-01-03 1996-07-16 Omron Corporation Method of manufacturing lens array
JP3305120B2 (en) * 1994-06-30 2002-07-22 キヤノン株式会社 Processing method of mold member for forming optical element
US5718155A (en) * 1995-07-14 1998-02-17 Matsushita Electric Industrial Co., Ltd. Sleeve bore machining apparatus and sleeve bore machining method
JPH09131656A (en) * 1995-11-07 1997-05-20 Fuji Xerox Co Ltd Minute cutting tool, manufacture thereof and manufacture of minute structural body
US5919013A (en) * 1995-11-21 1999-07-06 Micro Optics Design Corporation Opthalmic lens generating apparatus having vibration dampening structure
JPH11183706A (en) * 1997-12-18 1999-07-09 Toshiba Corp Highly integrated optical element and its production
JPH11207751A (en) * 1998-01-20 1999-08-03 Nikon Corp Micro lens array forming mold, manufacture thereof and micro lens array
US6402996B1 (en) * 2000-10-31 2002-06-11 Eastman Kodak Company Method of manufacturing a microlens and a microlens array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276538A (en) * 1990-04-05 1994-01-04 Matsushita Electric Industrial Co., Ltd. Display device with micro lens array
US5501784A (en) * 1993-03-12 1996-03-26 Microparts Gmbh Process for producing microstructure metallic elements
US5439621A (en) * 1993-04-12 1995-08-08 Minnesota Mining And Manufacturing Company Method of making an array of variable focal length microlenses
US5876642A (en) * 1995-03-15 1999-03-02 Corning Incorporated Process for making a mold for the manufacture of microlenses
US5699190A (en) * 1995-12-05 1997-12-16 Eastman Kodak Company Lenticular media having spatially encoded portions
US6052165A (en) * 1997-12-22 2000-04-18 Philips Electronics North America Corporation Reflective liquid crystal display (LCD) device having an internal reflection reducer
US6305194B1 (en) * 1999-07-15 2001-10-23 Eastman Kodak Company Mold and compression molding method for microlens arrays

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090032987A1 (en) * 2007-08-03 2009-02-05 Boettiger Ulrich C Methods of forming a lens master plate for wafer level lens replication
US7879249B2 (en) 2007-08-03 2011-02-01 Aptina Imaging Corporation Methods of forming a lens master plate for wafer level lens replication
US20090325107A1 (en) * 2008-06-25 2009-12-31 Micron Technology, Inc. Thermal embossing of resist reflowed lenses to make aspheric lens master wafer
US7919230B2 (en) 2008-06-25 2011-04-05 Aptina Imaging Corporation Thermal embossing of resist reflowed lenses to make aspheric lens master wafer
US20110075264A1 (en) * 2009-09-30 2011-03-31 E-Pin Optical Industry Co., Ltd. High SAG Optical Lens and Method for Fast Molding the Same
US7965445B2 (en) * 2009-09-30 2011-06-21 E-Pin Optical Industry Co., Ltd. High SAG optical lens and method for fast molding the same

Also Published As

Publication number Publication date
JP2002144348A (en) 2002-05-21
TW568808B (en) 2004-01-01
KR20020034917A (en) 2002-05-09
EP1201411A3 (en) 2004-03-24
JP4331424B2 (en) 2009-09-16
US6491481B1 (en) 2002-12-10
EP1201411A2 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US6476971B1 (en) Method of manufacturing a microlens array mold and a microlens array
US6787072B2 (en) Apparatus and method for making a double-sided microlens mold and microlens array mold
US6402996B1 (en) Method of manufacturing a microlens and a microlens array
US6491481B1 (en) Method of making a precision microlens mold and a microlens mold
US6597510B2 (en) Methods and apparatus for making optical devices including microlens arrays
CA2497175C (en) Method and mold for making ophthalmic devices
US6908266B1 (en) Apparatus for forming a microlens array mold
US6846137B1 (en) Apparatus for forming a microlens mold
EP1202080A2 (en) Double-sided microlens array
CN111830606B (en) Device and method for manufacturing high-density microlens array of superhard material
TW202228982A (en) Method for manufacturing a mold core and using the mold core to manufacture lenses

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION