US20030011342A1 - Constant cfm control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor - Google Patents

Constant cfm control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor Download PDF

Info

Publication number
US20030011342A1
US20030011342A1 US09/904,428 US90442801A US2003011342A1 US 20030011342 A1 US20030011342 A1 US 20030011342A1 US 90442801 A US90442801 A US 90442801A US 2003011342 A1 US2003011342 A1 US 2003011342A1
Authority
US
United States
Prior art keywords
motor
air flow
flow rate
speed
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/904,428
Other versions
US6504338B1 (en
Inventor
Ronald Eichorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HVAC MODULATION TECHNOLOGIES LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/904,428 priority Critical patent/US6504338B1/en
Assigned to GAS RESEARCH INSTITUTE reassignment GAS RESEARCH INSTITUTE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EICHORN, RONALD L.
Assigned to VARIDIGM CORPORATION reassignment VARIDIGM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAS RESEARCH INSTITUTE
Application granted granted Critical
Publication of US6504338B1 publication Critical patent/US6504338B1/en
Publication of US20030011342A1 publication Critical patent/US20030011342A1/en
Assigned to ACACIA RESEARCH GROUP LLC reassignment ACACIA RESEARCH GROUP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VARIDIGM CORPORATION
Assigned to HVAC MODULATION TECHNOLOGIES LLC reassignment HVAC MODULATION TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACACIA RESEARCH GROUP LLC
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S236/00Automatic temperature and humidity regulation
    • Y10S236/09Fan control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • Y10S388/929Fluid/granular material flow rate, pressure, or level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • Y10S388/93Load or torque

Definitions

  • the present invention relates generally to controls for induction motors used in constant mass air flow, sometimes also called constant CFM (cubic feet per minute), applications.
  • the constant mass air flow blower controls of the known art may require fan speed sensing, motor current sensing, torque calculations, or some combination of the above which may make the systems expensive in terms of the sensing apparatus, mathematical processing power and the like. Such control systems may also incur time delays during control calculation.
  • the present invention provides an inexpensive and reliable constant mass air flow controller for induction motor driven blower systems.
  • the present system requires monitoring only of the blower, i.e. fan or motor, speed in conjunction with a motor controller which does not assume linearity of speed, motor control voltage and flow rate.
  • the controller is provided with a look up table covering the operating range of the motor, which is accessible by the motor controller processor.
  • the look up table contains a family of fairly straight curves for several motor speeds plotted against proportionality constants of air flow rate to fan speed on one axis and the control voltage settings on the other axis.
  • the motor controller compares the measured speed of the motor, or fan, of the blower (hereinafter referred to as just “motor” or “fan” synonymously) against the control voltage setting to derive the proportionality constant known to give the proper mass air flow.
  • the controller then derives the proper motor speed, or “RPM setpoint”, to achieve the desired mass air flow.
  • the excitation voltage is then increased or decreased to achieve the proper motor speed.
  • the control voltage setting will sometimes also be referred to as a “control point” or “control setting” since voltages may not be directly represented under the scheme of excitation used to control the motor, as will be understood by the person of ordinary skill in the art.
  • a cascaded control loop is used for the motor controller of the invention to attain a constant mass air flow.
  • the outer loop of the cascade control has an input of the selected constant CFM rate and an output of the RPM setpoint to the inner control loop.
  • the inner control loop has an input of the RPM setpoint and outputs to the outer loop the control voltage setting when the RPM setpoint is achieved.
  • the outer loop uses the measurement of the motor speed and reported control voltage at that speed to derive a proportionality constant of the system operation for that motor speed.
  • the proportionality constant contains the air flow information necessary to select the next RPM setpoint for operation of the motor to achieve the selected constant CFM mass air flow. If necessary, a new RPM setpoint is selected, and the control voltage adjusted, to increase or decrease fan speed to achieve the desired air flow; with a rechecking of the proportionality constant for the new fan speed attained under the given system load. Iterative adjustment of the RPM setpoint is performed until the desired mass air flow is reached.
  • the system relies on the fact that for a constant system load, flow rate is proportional to fan speed. Because the system load for a blower motor generally remains constant and changes by a significant amount only occasionally, the system need only monitor the motor rotational speed, which is a function of the system load, and check the motor speed and voltage control point to derive the proportionality constant. The selected CFM value is then divided by the proportionality constant and used to select the next RPM setpoint for the motor and the control voltage is changed accordingly. During most periods of use little adjustment is needed, so the motor controller may monitor speed changes at a long time constant, or may operate with a lower allowable system adjustment, or “gain”, to make sure small transients in motor speed do not affect system stability.
  • cascade control loop algorithm of the present invention By using the cascade control loop algorithm of the present invention minimal hardware is required since the cascade control is merely a software implementation. Also, direct control of the motor speed removes speed variations due to drifts in motor temperature, line voltage, air temperature, etc.
  • the lookup table storage for motor/fan characteristics of the present invention promotes efficiency of operation since the family of control curves tends to be close to a set of straight lines.
  • the addition of the adaptive control in the outer loop of the control for the present invention will provide very stable motor control that is responsive to system load variations.
  • FIG. 1 is a schematic representation of apparatus suitable for practicing certain embodiments of the present invention.
  • FIG. 2 is a graph of motor and fan speed/torque characteristics of an induction motor blower system which may be selected for use in a system according to the present invention
  • FIG. 3 is a graph of CFM air flow characteristics for the selected induction motor system plotted against motor speed and control voltages for the motor.
  • FIG. 4 is a graph similar to the graph of FIG. 2 with various system load lines also plotted thereon.
  • FIG. 5 is graph of CFM versus voltage control setting used for explanatory purposes.
  • FIG. 6 is graph of motor speed versus voltage control setting as seen by the inner control loop of the cascade control system of the present invention.
  • FIG. 7 is a graph of motor speed curves for the induction motor plotted against the control voltages and the air flow rate-to-fan speed proportionality constants of the selected system.
  • FIG. 8 is a graph of temperature effect on air flow at 400 RPM for the induction motor.
  • FIG. 9 is a graph of temperature effect on air flow at 1050 RPM for the induction motor.
  • FIG. 1 depicts one embodiment of the present invention which is suitable to achieve this purpose economically by utilizing inexpensive components, such as an induction motor with triac speed control.
  • the basic components of the present constant CFM system 11 include a flow selector 13 , a motor controller 15 , a motor 17 , a speed sensor, or tachometer, 19 and a fan 21 .
  • the present control method requires only a sensing of the motor speed in conjunction with the algorithm of its cascade control scheme. Low cost apparatus known in the art are readily available to accomplish this speed sensing purpose. It is important to note that since air flow is directly proportional to fan speed, the system accuracy will depend on how accurately motor speed is measured.
  • the air flow control depends on knowing the speed-torque characteristics of the selected motor for any particular control voltage supplied to the motor.
  • the fan characteristics of torque versus speed for constant air flow can be can be determined from the manufacturer's performance curves (FIG. 2).
  • the points where the very flat fan curves of constant air flow intersect the motor speed/torque curves will yield a set of curves for motor control voltage versus speed for constant air flow (FIG. 3).
  • airflow is determined by motor speed and motor control voltage. Both of these quantities are accurately known, from the tachometer and the fact that the motor controller 15 generates the control voltage.
  • the system load will effect the overall speed of the motor under a given control voltage.
  • FIG. 2 shows both the motor and the fan speed/torque characteristics on the same plot.
  • the control input variable for variable speed motor control used by way of example in the illustrated embodiment of FIG. 1, is the ratio of the main winding 29 excitation voltage, as controlled by a triac 31 , to the auxiliary winding 33 voltage excitation.
  • the control voltage input variable varies in value from 0 to 1.
  • the auxiliary winding voltage is a constant line voltage 115 V.
  • a control input of 0.5 means that the auxiliary is excited with 115 V and the main winding is excited with 57.5V.
  • Motor excitation curves between input control points of 1.0 and 0.25 are labeled with even reference numbers 40 - 52 with specific values as seen on the right of the graph of FIG. 2.
  • Blower CFM curves are labeled with odd reference numbers 41 - 55 for specific values between 500 CFM and 2500 CFM as seen on the right of the graph of FIG. 2.
  • a visualization of one control strategy thus becomes conceptually simple.
  • the motor controller 15 Upon receiving an input variable, such as an operator's input through flow selector 13 , representing desired air flow, the motor controller 15 must vary the control voltage, as represented by control line 27 until the RPM, i.e., motor speed, measurement and control voltage converge to the desired air flow.
  • an input variable such as an operator's input through flow selector 13
  • the motor controller 15 Upon receiving an input variable, such as an operator's input through flow selector 13 , representing desired air flow, the motor controller 15 must vary the control voltage, as represented by control line 27 until the RPM, i.e., motor speed, measurement and control voltage converge to the desired air flow.
  • RPM i.e., motor speed, measurement and control voltage
  • FIG. 4 shows system load lines added to the plot of FIG. 2 (minus the curve 47 for 1500 CFM).
  • the first load line 35 shows a system with a heavy load, i.e. very little restriction in the system resulting in a high flow rate.
  • the second load line 37 is a light load, with a restricted flow.
  • the third load line 39 was taken from the fan performance curves at zero static pressure. The system cannot operate above and to the left of this line. It will be observed that for a heavy load, the first load line 35 crosses both the dotted constant air flow lines and the solid motor torque curves at a reasonable angle. This is consistent with the known experience that the speed of an Induction motor is most easily controlled when it is heavily loaded.
  • FIG. 4 shows system load lines added to the plot of FIG. 2 (minus the curve 47 for 1500 CFM).
  • the first load line 35 shows a system with a heavy load, i.e. very little restriction in the system resulting in a high flow rate.
  • the second load line 37 is a light load,
  • the second load line 37 of a lightly loaded system closely follows the constant air flow curve of the 500CFM curve, reference number 41 , particularly above about 900 RPM. It is in this area that control stability might be difficult to achieve since the motor RPM can vary over a wide range without inducing a corresponding change in the CFM output. Put another way, the requirement of nearly constant CFM can be satisfied over a wide motor speed range. But, although the CFM control might be adequate over such a range, the possibility of rapidly varying motor speed due to lack of fixed control points could be annoying.
  • the stability problem can be solved by considering the fan laws, which state that, for a constant system load, flow rate is directly proportional to fan speed.
  • the fan laws thus tell us that when the system load changes the fan speed will, or must, change to maintain a constant CFM.
  • a control implementation for an induction motor with nonlinear behavior can thus make use of this law by storing the proportionality constants of flow rate to fan speed over the operating range of the selected fan/motor components, and controlling the motor RPM according to the proportionality constant for that speed, to achieve the selected quantity of mass air flow.
  • FIGS. 5 and 6 the graphs therein help to demonstrate one advantage of using the cascade control loop of the present invention instead of a direct, one loop, CFM control.
  • the FIG. 5 plot graphs the CFM value on the Y axis versus control voltage setting on the X axis for various system constants (K).
  • K system constants
  • FIG. 7 shows the curves for several given motor speeds between 400 RPM and 1100 RPM, with specific values listed to the right of the graph, plotted against the proportionality constants (Y axis) and motor control inputs (X axis) determined for the selected blower system.
  • the maximum system constant for this fan is 3.3, as shown by the dotted line. This would represent a fan sitting in open air with no restrictions, resulting in maximum possible air flow, i.e. zero static pressure. Practically, this motor/fan combination would not be used in a system where the constant exceeded 3 because at full power the motor would likely be overloaded and overheat.
  • the system load in a heating system is typically constant, with only occasional abrupt changes due to opening and closing of dampers.
  • a cascade control loop can be used, with the outer loop having an input of the selected CFM value; and the inner loop having a speed control input from the outer loop.
  • the cascade control loop of the described embodiment has the inner loop being a speed control loop, and the outer loop being the CFM control loop.
  • the outer loop supplies an RPM setpoint by deriving a system constant from the currently known control voltage value and the currently measured fan speed value.
  • the selected CFM value is then divided by the derived system constant to derive the new RPM set point.
  • the new RPM set point is then provided to the inner loop.
  • the new fan speed value or RPM set point
  • the inner control loop steps the control voltage value up or down and compares measured fan speed to the new RPM set point.
  • the current control voltage value is reported back to the CFM control loop, a new RPM set point is calculated, and the fan speed/control voltage is again adjusted, and so on iteratively until the system constant and the fan speed are in the proper control range.
  • the CFM control loop can now calculate the desired speed as: RPM CFM/K. Where CFM is 1200 and K is 2.00, the desired RPM is 600.
  • the CFM control loop thus raises the RPM set point and delivers it to the speed control loop.
  • the CFM control loop could raise the RPM setpoint to the full 600 RPM, but this might not be prudent since there could be a small error due to accuracy of the curve fitting or other minor variables in the system as the system constant changes with fan speed. Therefore, the CFM control loop may, in one embodiment of the invention, place the RPM setpoint at one half the difference between the present speed and the desired speed, which in this case would be 500 RPM.
  • the voltage control setting is again reported to the CFM control loop.
  • the voltage control setting value at 500 RPM is now 0.265.
  • a new system constant is calculated for the 500 RPM motor operation, and found to be 1.975.
  • the new desired RPM setpoint is then calculated to be 608 RPM.
  • the CFM control loop sets the RPM setpoint halfway to the desired final speed, which would be 554 RPM. This process now continues, until the speed converges to a value which produces only an acceptable error between the desired RPM and the actual RPM.
  • the final voltage control setting is 0.352, resulting in a speed of 605 RPM and a calculated system constant (K) of 1.984.
  • the CFM control loop Preferably there is some intelligence provided in the CFM control loop. As long as there is not an unacceptable error in the provided constant CFM air flow, the CFM control loop should not change the RPM setting. This will reduce annoying speed changes which might come with minor drift and noise in the system, while still controlling constant CFM air flow within a desired tolerance. This is especially true in the operational areas of the motor where CFM flow does not change much over a wide speed range. If a CFM error outside the allowed error band is observed, the CFM control loop could then command a new speed setpoint. This is sometimes referred to as “adaptive” control.
  • the voltage control setting drops to 0.269 to maintain 605 RPM.
  • the system constant is then 1.50, and the airflow has dropped to 907 CFM at the maintained 605 RPM. This is outside the allowed error band. Air velocity must increase to move the same volume of air, i.e. 1200 CFM, though the now restricted space.
  • the CFM control loop calculates the new desired speed setting to be 800 RPM.
  • the CFM control loop uses the same algorithm as previously described, moving the RPM setpoint half the difference to 702 RPM.
  • the controller then iterates until finally achieving zero error at 700 RPM, with a system constant of 1.50.
  • the voltage control setting is now 0.397.
  • the controller 15 increases or decreases the control voltage, or signal, to the motor 17 , which in the illustrated embodiment of FIG. 1 controls the switching of the triac 31 , in order to achieve the desired RPM speed of the motor/fan, as provided by the outer loop. Iterations of the control loop cycle will take place until the fan speed is within the desired tolerances to achieve the desired constant mass air flow.
  • Adaptive filtering may be applied to the inner loop to insure that the proportionality constant of the control system is allowed to change only very slowly during normal operation, and more rapidly when an abrupt change in RPM indicates a major load transient such as a damper change.
  • the microprocessor 25 would not normally have to access the lookup tables containing the proportionality constants very rapidly.
  • a summary of the advantages of the cascade control loop according to the present invention may include: no extra hardware requirements because the cascade control is merely a software implementation; no annoying speed variations of the motor due to direct control of the speed; lookup table storage for the motor/fan characteristics is easier since the family of curves tends to be closer to a set of straight lines; the overall processing power required is reasonable; and the addition of the adaptive control in the outer loop should provide very stable control that is still responsive to system load variations.
  • Additional considerations for certain embodiments of the present invention may include power line supply variations and temperature variations to be accounted for to ensure that a constant CFM flow is maintained.
  • the motor torque may be highly sensitive to line power. Since constant CFM control is ultimately based on assumptions concerning the motor torque, it may be desirable that correction for line voltage be supplied, as indicated in FIG. 1 at reference number 35 . Line voltage is not difficult to measure, but may require the addition of a low cost analog to digital converter (ADC), which may possibly be integrated into the selected microprocessor.
  • ADC analog to digital converter
  • FIGS. 8 and 9 Motor characteristics also vary with temperature, although the effect is not nearly as significant as with line voltage.
  • the temperature characteristics of FIGS. 8 and 9 were calculated in MathcadTM by varying the copper resistivity and the rotor resistance based upon the temperature coefficient of aluminum. CFM versus control input was then plotted at 50° C. and 75° C. for different RPM's.
  • FIG. 8 is a plot for 400 RPM
  • FIG. 9 is a plot for 1050 RPM. Note that at 400 RPM the temperature effect is hardly discernible. At 1050 RPM, the effect of the 25° C. change is on the order of 8% to 10%. If this amount of error in air flow can be tolerated, then no correction for temperature should be necessary.

Abstract

A method and apparatus for achieving constant air flow rate economically utilizes an induction blower motor with control settings determining the motor excitation voltage. A memory stores, for a variety of motor speeds, a graph of the speeds plotted against a proportionality constant of flow rate to fan speed for the selected motor system on one axis and motor control settings on the other axis. The only monitoring necessary to achieve the constant flow rate is thus the sensing of fan rotational speed. The measured fan speed is compared against the proportionality constant needed for the selected constant air flow rate and a motor excitation voltage is derived to achieve that proportionality constant. When the system load changes significantly, thereby causing significant fan speed change, a cascaded control loop is used whereby the speed changed induced by each control voltage adjustment is monitored until the desired constant flow rate is again attained at the new load level.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to controls for induction motors used in constant mass air flow, sometimes also called constant CFM (cubic feet per minute), applications. [0002]
  • 2. Discussion of the Related Art [0003]
  • In modern heating systems, it is sometimes desirable to regulate the amount of air flow through the heat exchanger to a constant CFM volume. References addressing air flow control by a motor driven blower system are known to exist. The reader is referred to U.S. Pat. Nos. 5,736,823, to Norby et al.; and 5,202,951, to Doyle; for examples of the known art. [0004]
  • Generally the constant mass air flow blower controls of the known art may require fan speed sensing, motor current sensing, torque calculations, or some combination of the above which may make the systems expensive in terms of the sensing apparatus, mathematical processing power and the like. Such control systems may also incur time delays during control calculation. [0005]
  • Known examples of control systems in the art may otherwise rely on an assumption of a linear relationship between fan, or motor, speed and mass air flow. While a degree of linearity may be achieved in certain systems with expensive variable speed controllers such as a pulse width modulated (PWM) controller, the attendant cost may be prohibitive. Also, for readily available and inexpensive induction motor driven systems the above assumption of linearity does not hold true, and systems based on this assumption may not yield adequate control stability or performance with or without more expensive electronic motor controllers, resulting in operation which is not optimally smooth or quiet. [0006]
  • Therefore to solve the shortcomings of the known art, there is needed an inexpensive motor control system for induction motors utilized in constant mass air flow systems. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention provides an inexpensive and reliable constant mass air flow controller for induction motor driven blower systems. The present system requires monitoring only of the blower, i.e. fan or motor, speed in conjunction with a motor controller which does not assume linearity of speed, motor control voltage and flow rate. [0008]
  • Instead, according to the present invention, the controller is provided with a look up table covering the operating range of the motor, which is accessible by the motor controller processor. The look up table contains a family of fairly straight curves for several motor speeds plotted against proportionality constants of air flow rate to fan speed on one axis and the control voltage settings on the other axis. [0009]
  • In order to select the proper motor control voltage setting, the motor controller compares the measured speed of the motor, or fan, of the blower (hereinafter referred to as just “motor” or “fan” synonymously) against the control voltage setting to derive the proportionality constant known to give the proper mass air flow. The controller then derives the proper motor speed, or “RPM setpoint”, to achieve the desired mass air flow. The excitation voltage is then increased or decreased to achieve the proper motor speed. The control voltage setting will sometimes also be referred to as a “control point” or “control setting” since voltages may not be directly represented under the scheme of excitation used to control the motor, as will be understood by the person of ordinary skill in the art. [0010]
  • A cascaded control loop is used for the motor controller of the invention to attain a constant mass air flow. The outer loop of the cascade control has an input of the selected constant CFM rate and an output of the RPM setpoint to the inner control loop. The inner control loop has an input of the RPM setpoint and outputs to the outer loop the control voltage setting when the RPM setpoint is achieved. [0011]
  • The outer loop uses the measurement of the motor speed and reported control voltage at that speed to derive a proportionality constant of the system operation for that motor speed. The proportionality constant contains the air flow information necessary to select the next RPM setpoint for operation of the motor to achieve the selected constant CFM mass air flow. If necessary, a new RPM setpoint is selected, and the control voltage adjusted, to increase or decrease fan speed to achieve the desired air flow; with a rechecking of the proportionality constant for the new fan speed attained under the given system load. Iterative adjustment of the RPM setpoint is performed until the desired mass air flow is reached. [0012]
  • The system relies on the fact that for a constant system load, flow rate is proportional to fan speed. Because the system load for a blower motor generally remains constant and changes by a significant amount only occasionally, the system need only monitor the motor rotational speed, which is a function of the system load, and check the motor speed and voltage control point to derive the proportionality constant. The selected CFM value is then divided by the proportionality constant and used to select the next RPM setpoint for the motor and the control voltage is changed accordingly. During most periods of use little adjustment is needed, so the motor controller may monitor speed changes at a long time constant, or may operate with a lower allowable system adjustment, or “gain”, to make sure small transients in motor speed do not affect system stability. When the system load changes significantly, thereby causing significant fan speed change or control voltage adjustments, a short time constant for the control loop is used whereby the RPM setpoint and control voltage adjustment occur more frequently until the desired constant mass air flow rate is again attained at the new load level under a new control voltage. [0013]
  • By using the cascade control loop algorithm of the present invention minimal hardware is required since the cascade control is merely a software implementation. Also, direct control of the motor speed removes speed variations due to drifts in motor temperature, line voltage, air temperature, etc. The lookup table storage for motor/fan characteristics of the present invention promotes efficiency of operation since the family of control curves tends to be close to a set of straight lines. The addition of the adaptive control in the outer loop of the control for the present invention will provide very stable motor control that is responsive to system load variations.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A preferred embodiment of the invention is described below along with the appended drawing figures in which: [0015]
  • FIG. 1 is a schematic representation of apparatus suitable for practicing certain embodiments of the present invention. [0016]
  • FIG. 2 is a graph of motor and fan speed/torque characteristics of an induction motor blower system which may be selected for use in a system according to the present invention [0017]
  • FIG. 3 is a graph of CFM air flow characteristics for the selected induction motor system plotted against motor speed and control voltages for the motor. [0018]
  • FIG. 4 is a graph similar to the graph of FIG. 2 with various system load lines also plotted thereon. [0019]
  • FIG. 5 is graph of CFM versus voltage control setting used for explanatory purposes. [0020]
  • FIG. 6 is graph of motor speed versus voltage control setting as seen by the inner control loop of the cascade control system of the present invention. [0021]
  • FIG. 7 is a graph of motor speed curves for the induction motor plotted against the control voltages and the air flow rate-to-fan speed proportionality constants of the selected system. [0022]
  • FIG. 8 is a graph of temperature effect on air flow at 400 RPM for the induction motor. [0023]
  • FIG. 9 is a graph of temperature effect on air flow at 1050 RPM for the induction motor.[0024]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In modern heating systems, it is sometimes desirable to regulate the amount of air flow through the heat exchanger to a constant CFM volume. FIG. 1 depicts one embodiment of the present invention which is suitable to achieve this purpose economically by utilizing inexpensive components, such as an induction motor with triac speed control. As illustrated, the basic components of the present constant CFM system [0025] 11 include a flow selector 13, a motor controller 15, a motor 17, a speed sensor, or tachometer, 19 and a fan 21.
  • The present control method requires only a sensing of the motor speed in conjunction with the algorithm of its cascade control scheme. Low cost apparatus known in the art are readily available to accomplish this speed sensing purpose. It is important to note that since air flow is directly proportional to fan speed, the system accuracy will depend on how accurately motor speed is measured. [0026]
  • The air flow control depends on knowing the speed-torque characteristics of the selected motor for any particular control voltage supplied to the motor. The fan characteristics of torque versus speed for constant air flow can be can be determined from the manufacturer's performance curves (FIG. 2). The points where the very flat fan curves of constant air flow intersect the motor speed/torque curves will yield a set of curves for motor control voltage versus speed for constant air flow (FIG. 3). It will be appreciated that airflow is determined by motor speed and motor control voltage. Both of these quantities are accurately known, from the tachometer and the fact that the [0027] motor controller 15 generates the control voltage. The system load will effect the overall speed of the motor under a given control voltage.
  • The examples herein were derived using analytical techniques. Motor characteristics were generated from an equivalent circuit model using Mathcad™. software, from MathSoft, Inc. of Cambridge, Mass. The motor modeling closely simulated a standard three-[0028] quarter horsepower 1075 RPM induction motor. The triac control illustrated in FIG. 1 may yield slightly different results compared to the linear voltage control model utilized in the analysis set forth herein. Speed/torque characteristics were generated by modeling a varying AC voltage applied to the main winding of the motor. Fan characteristic were taken from graphical data supplied by the manufacturer for a Lau Industries, Inc., of Dayton Ohio, Model DD10-10A centrifugal fan. It was assumed that the standard ideal fan laws apply within the intended operating conditions of this device.
  • FIG. 2 shows both the motor and the fan speed/torque characteristics on the same plot. The control input variable for variable speed motor control, used by way of example in the illustrated embodiment of FIG. 1, is the ratio of the main winding [0029] 29 excitation voltage, as controlled by a triac 31, to the auxiliary winding 33 voltage excitation. The control voltage input variable varies in value from 0 to 1. The auxiliary winding voltage is a constant line voltage 115 V. Thus, a control input of 0.5 means that the auxiliary is excited with 115 V and the main winding is excited with 57.5V. Motor excitation curves between input control points of 1.0 and 0.25 are labeled with even reference numbers 40-52 with specific values as seen on the right of the graph of FIG. 2. Blower CFM curves are labeled with odd reference numbers 41-55 for specific values between 500 CFM and 2500 CFM as seen on the right of the graph of FIG. 2.
  • The fan curves seen in FIG. 3, which are a family of curves representing constant airflow in CFM, were generated by first graphically extracting the data from the manufacturers performance curves. Using Excel™ software from Microsoft, a curve fit was obtained for each constant air flow data set using a second order equation. This provided for smoothing of the data errors produced by taking the data from a graph, and additionally provided a means by which the fan curves could be entered in to Mathcad™. With these curves in Mathcad™, the intersections of motor and fan characteristics were determined. This results in the set of curves seen in FIG. 3, which show the control voltage, or control point, (X axis) versus speed characteristics, or RPM (Y axis) for constant air flow in the system between values of 500 CFM to 2500 CFM, labeled with odd reference numbers [0030] 57-69 for the specific values seen on the right of the graph of FIG. 3.
  • A visualization of one control strategy thus becomes conceptually simple. One could provide a means by which the curves of FIG. 3 can be stored and accessed by the [0031] motor controller 15. Upon receiving an input variable, such as an operator's input through flow selector 13, representing desired air flow, the motor controller 15 must vary the control voltage, as represented by control line 27 until the RPM, i.e., motor speed, measurement and control voltage converge to the desired air flow. However, there are several issues involved in this control strategy. Among them are calculation time and memory requirements, the control stability, and errors due to power line variation and temperature.
  • Referring again to FIG. 2, it is observed that in the lower RPM ranges, i.e. less than about 850 RPM, the curves of constant air flow are nearly parallel to the motor torque curves. One might think that control stability could be compromised in this operating region since the curves do not intersect at a well defined point, such as they do beyond the motor torque peak. However, this operating region is not so problematic when one considers that as the control voltage to the motor is varied the speed will vary according to the system load line, whereas the torque varies with the square of speed. [0032]
  • FIG. 4 shows system load lines added to the plot of FIG. 2 (minus the [0033] curve 47 for 1500 CFM). The first load line 35 shows a system with a heavy load, i.e. very little restriction in the system resulting in a high flow rate. The second load line 37 is a light load, with a restricted flow. The third load line 39 was taken from the fan performance curves at zero static pressure. The system cannot operate above and to the left of this line. It will be observed that for a heavy load, the first load line 35 crosses both the dotted constant air flow lines and the solid motor torque curves at a reasonable angle. This is consistent with the known experience that the speed of an Induction motor is most easily controlled when it is heavily loaded. In FIG. 4, it may be further observed that the second load line 37 of a lightly loaded system closely follows the constant air flow curve of the 500CFM curve, reference number 41, particularly above about 900 RPM. It is in this area that control stability might be difficult to achieve since the motor RPM can vary over a wide range without inducing a corresponding change in the CFM output. Put another way, the requirement of nearly constant CFM can be satisfied over a wide motor speed range. But, although the CFM control might be adequate over such a range, the possibility of rapidly varying motor speed due to lack of fixed control points could be annoying.
  • The stability problem can be solved by considering the fan laws, which state that, for a constant system load, flow rate is directly proportional to fan speed. The fan laws thus tell us that when the system load changes the fan speed will, or must, change to maintain a constant CFM. A control implementation for an induction motor with nonlinear behavior can thus make use of this law by storing the proportionality constants of flow rate to fan speed over the operating range of the selected fan/motor components, and controlling the motor RPM according to the proportionality constant for that speed, to achieve the selected quantity of mass air flow. [0034]
  • Referencing FIGS. 5 and 6, the graphs therein help to demonstrate one advantage of using the cascade control loop of the present invention instead of a direct, one loop, CFM control. The FIG. 5 plot graphs the CFM value on the Y axis versus control voltage setting on the X axis for various system constants (K). These lines could be used as a nonpreferred direct control loop that would directly try to control the motor to an air flow setpoint. For a heavily loaded system (K=3) this would not represent a problem, as there is a linear response of air flow to control setting. On the other hand, in a lightly loaded system, represented by K=0.5, e.g. all the dampers closed, the line becomes very flat. One would get just a little over 500 CFM for any control setting between 0.5 and 1. The motor speed could conceivably drift greatly with small system variations, e.g. motor temperature, air temperature, etc. Such a control loop could satisfy the requirement for CFM control, but motor speed variations might be very annoying. [0035]
  • The FIG. 6 plot shows a graph of motor speed in RPM, plotted on the Y axis, versus control voltage settings, plotted on the X axis, for four different system constants (K). This is the characteristic information seen by the “inner” cascade loop of the present invention as further explained below. While FIG. 6 also shows some “flattening” for the unloaded system (K=0.5), it is not nearly so severe. It should also be noted that RPM on the Y axis is a direct, accurate measurement of the actual system, and not dependant on another system variable such as motor or air temperature. Therefore, a speed control inner loop of the cascade control will still have the ability to control speed reasonably well, avoiding annoying speed variations. [0036]
  • FIG. 7 shows the curves for several given motor speeds between 400 RPM and 1100 RPM, with specific values listed to the right of the graph, plotted against the proportionality constants (Y axis) and motor control inputs (X axis) determined for the selected blower system. The maximum system constant for this fan is 3.3, as shown by the dotted line. This would represent a fan sitting in open air with no restrictions, resulting in maximum possible air flow, i.e. zero static pressure. Practically, this motor/fan combination would not be used in a system where the constant exceeded 3 because at full power the motor would likely be overloaded and overheat. [0037]
  • Fortuitously, this family of system constant versus control setting curves is a set of nearly straight lines Thus, use of simple lookup tables, stored in the [0038] motor controller 15, e.g., in ROM 23, can be used in combination with linear equations, if necessary for interpolation, to derive an appropriate proportionality constant for a selected constant mass air flow, and will be easier and quicker to implement with a microprocessor 25 than the control voltage/speed curves of FIG. 3.
  • The system load in a heating system is typically constant, with only occasional abrupt changes due to opening and closing of dampers. Thus a cascade control loop can be used, with the outer loop having an input of the selected CFM value; and the inner loop having a speed control input from the outer loop. The cascade control loop of the described embodiment has the inner loop being a speed control loop, and the outer loop being the CFM control loop. The outer loop supplies an RPM setpoint by deriving a system constant from the currently known control voltage value and the currently measured fan speed value. The selected CFM value is then divided by the derived system constant to derive the new RPM set point. The new RPM set point is then provided to the inner loop. [0039]
  • The new fan speed value, or RPM set point, is then provided to the inner control loop. The inner control loop steps the control voltage value up or down and compares measured fan speed to the new RPM set point. When the measured fan speed equals the new RPM set point, the current control voltage value is reported back to the CFM control loop, a new RPM set point is calculated, and the fan speed/control voltage is again adjusted, and so on iteratively until the system constant and the fan speed are in the proper control range. [0040]
  • By way of an example, suppose an air flow of 1200 CFM is required from the blower system. The system is turned on from a full stop. When the system is turned on, the CFM control loop provides an arbitrary RPM setpoint to the speed control loop, of e.g. 400 RPM. The speed control loop raises the control voltage until a fan speed of 400 RPM is measured. At this time, the voltage control setting to maintain 400 RPM is known, and reported to the CFM control loop. A system constant is then calculated from the measured speed and control voltage value, as from the graph of FIG. 6. By way of example, the voltage control setting is found to be 0.193, and the system constant (K) is then calculated for the 400 RPM speed to be 2.00. [0041]
  • The CFM control loop can now calculate the desired speed as: RPM CFM/K. Where CFM is 1200 and K is 2.00, the desired RPM is 600. The CFM control loop thus raises the RPM set point and delivers it to the speed control loop. The CFM control loop could raise the RPM setpoint to the full 600 RPM, but this might not be prudent since there could be a small error due to accuracy of the curve fitting or other minor variables in the system as the system constant changes with fan speed. Therefore, the CFM control loop may, in one embodiment of the invention, place the RPM setpoint at one half the difference between the present speed and the desired speed, which in this case would be 500 RPM. [0042]
  • When 500 RPM is reached as measured by the tachometer, the voltage control setting is again reported to the CFM control loop. Suppose that the voltage control setting value at 500 RPM is now 0.265. A new system constant is calculated for the 500 RPM motor operation, and found to be 1.975. The new desired RPM setpoint is then calculated to be 608 RPM. Using the same algorithm as before, the CFM control loop sets the RPM setpoint halfway to the desired final speed, which would be 554 RPM. This process now continues, until the speed converges to a value which produces only an acceptable error between the desired RPM and the actual RPM. For our example, the final voltage control setting is 0.352, resulting in a speed of 605 RPM and a calculated system constant (K) of 1.984. [0043]
  • Essentially the described algorithm will follow the order of: [0044]
    START
    1. enter CFM value (e.g., 1200 CFM)
    2. set arbitrary RPM1 value (e.g., 400 RPM)
    3. step control voltage (CV) up until RPM1 is measured at tachometer
    4. derive system constant K1 for current CV and RPM1
    5. divide CFM value by K1 to derive RPM2 value
    6. subtract RPM2-RPM1 to derive RPM 3
    7. divide RPM3 by 2 and add to RPM1 to get RPM4 (i.e. half step)
    8. step CV up until RPM4 is measured at tachometer
    9. derive K2 for current CV and RPM4
    10. divide CFM value by K2 to derive RPM5 value
    11. iteratively step up CV, measure RPM and half step through RPM
    values until RPM value and K balance at CFM value.
  • Preferably there is some intelligence provided in the CFM control loop. As long as there is not an unacceptable error in the provided constant CFM air flow, the CFM control loop should not change the RPM setting. This will reduce annoying speed changes which might come with minor drift and noise in the system, while still controlling constant CFM air flow within a desired tolerance. This is especially true in the operational areas of the motor where CFM flow does not change much over a wide speed range. If a CFM error outside the allowed error band is observed, the CFM control loop could then command a new speed setpoint. This is sometimes referred to as “adaptive” control. [0045]
  • In continuing our control example, suppose a damper is now closed, restricting the volume of air which may be moved through the system for a given time. In order to maintain constant CFM the air flow must increase and the fan, being unloaded to some degree, will speed up. It is again noted that the fan system here is the centrifugal fan typically used in most home furnace applications. The speed control loop will however, decrease the control voltage to try and maintain the setpoint of 605 RPM. The faster fan speed and lowered control voltage value are reported to alert the CFM control loop. The CFM control loop may see either of these occurrences as a sudden decrease in the system constant and command the speed control loop to increase the speed. A new, lower, system constant is derived for the fan speed and decreased control voltage, thus leading to a new higher RPM value. [0046]
  • For example, the voltage control setting drops to 0.269 to maintain 605 RPM. The system constant is then 1.50, and the airflow has dropped to 907 CFM at the maintained 605 RPM. This is outside the allowed error band. Air velocity must increase to move the same volume of air, i.e. 1200 CFM, though the now restricted space. The CFM control loop calculates the new desired speed setting to be 800 RPM. The CFM control loop uses the same algorithm as previously described, moving the RPM setpoint half the difference to 702 RPM. The controller then iterates until finally achieving zero error at 700 RPM, with a system constant of 1.50. The voltage control setting is now 0.397. [0047]
  • The [0048] controller 15 increases or decreases the control voltage, or signal, to the motor 17, which in the illustrated embodiment of FIG. 1 controls the switching of the triac 31, in order to achieve the desired RPM speed of the motor/fan, as provided by the outer loop. Iterations of the control loop cycle will take place until the fan speed is within the desired tolerances to achieve the desired constant mass air flow.
  • Adaptive filtering may be applied to the inner loop to insure that the proportionality constant of the control system is allowed to change only very slowly during normal operation, and more rapidly when an abrupt change in RPM indicates a major load transient such as a damper change. Thus the [0049] microprocessor 25 would not normally have to access the lookup tables containing the proportionality constants very rapidly.
  • Adequate processing power, including calculation time and memory requirements, is commercially available for this control solution, with the design choice left to the person of skill in the art to select the components and balance these requirements against the lowest cost. The cascade control implementation discussed above is believed to be achievable in a low cost processor. [0050]
  • Thus a summary of the advantages of the cascade control loop according to the present invention may include: no extra hardware requirements because the cascade control is merely a software implementation; no annoying speed variations of the motor due to direct control of the speed; lookup table storage for the motor/fan characteristics is easier since the family of curves tends to be closer to a set of straight lines; the overall processing power required is reasonable; and the addition of the adaptive control in the outer loop should provide very stable control that is still responsive to system load variations. [0051]
  • Additional considerations for certain embodiments of the present invention may include power line supply variations and temperature variations to be accounted for to ensure that a constant CFM flow is maintained. The motor torque may be highly sensitive to line power. Since constant CFM control is ultimately based on assumptions concerning the motor torque, it may be desirable that correction for line voltage be supplied, as indicated in FIG. 1 at [0052] reference number 35. Line voltage is not difficult to measure, but may require the addition of a low cost analog to digital converter (ADC), which may possibly be integrated into the selected microprocessor.
  • Motor characteristics also vary with temperature, although the effect is not nearly as significant as with line voltage. The temperature characteristics of FIGS. 8 and 9 were calculated in Mathcad™ by varying the copper resistivity and the rotor resistance based upon the temperature coefficient of aluminum. CFM versus control input was then plotted at 50° C. and 75° C. for different RPM's. FIG. 8 is a plot for 400 RPM and FIG. 9 is a plot for 1050 RPM. Note that at 400 RPM the temperature effect is hardly discernible. At 1050 RPM, the effect of the 25° C. change is on the order of 8% to 10%. If this amount of error in air flow can be tolerated, then no correction for temperature should be necessary. It would be feasible to include a temperature correction by the addition of a temperature sensor to the motor as indicated in FIG. 1 at [0053] reference number 37. Since most commercial microprocessors with ADC's usually contain multiple ADC's, the additional cost may be minimal. Further testing to verify how well this temperature model agrees with real motor characteristics may need to be performed empirically.
  • A control method for constant CFM using an induction motor has been presented teaching inexpensive and robust control means to achieve the method. Novel apparatus and methods to achieve the present invention have been described. Persons skilled in the art shall appreciate that the details of the preferred embodiment described above can be changed or modified without departure from the spirit and scope of the invention which is to be limited only by the appended claims. [0054]

Claims (14)

I claim:
1. A method of achieving a selected constant mass air flow rate for a blower motor of the induction type exhibiting nonlinearity between motor rotational speed, motor control voltage, and air flow rate, comprising:
a) controlling motor speed through a motor controller by varying an excitation voltage to the motor;
b) determining proportionality constants of flow rate to motor speed for various motor speeds over the operating range of the motor;
c) providing a graph of curves for the various motor speeds plotted against the proportionality constants and the excitation voltages in a memory accessible by the motor controller;
d) setting the controller at a first excitation voltage;
e) measuring a rotational speed of the motor;
f) deriving the proportionality constant for the measured motor speed to determine a fan speed corresponding to the selected air flow rate.
2. The method of achieving a constant mass air flow rate for a blower motor of the induction type according to claim 1 further comprising: adjusting the excitation voltage according to the determined fan speed to achieve the desired air flow.
3. The method of achieving a constant mass air flow rate for a blower motor of the induction type according to claim 2 further comprising: deriving a second proportionality constant according to a speed of the motor at the adjusted excitation voltage.
4. A method of achieving a constant mass air flow rate for a blower motor of the induction type exhibiting nonlinearity between motor rotational speed, motor control voltage, and air flow rate, comprising:
a) controlling motor speed through a motor controller by varying an excitation voltage to the motor at selected control settings representative of varied excitation voltages;
b) determining proportionality constants of flow rate to motor speed for various motor speed curves over an operating range of the motor;
c) providing a graph of motor speed curves plotted against the proportionality constants of step b) and control settings of step a) in a memory accessible by the motor controller;
d) setting the motor controller at a first setting for a selected constant mass air flow rate;
e) measuring a rotational speed of the motor;
f) deriving a proportionality constant for the measured motor speed to determine a control setting corresponding to the selected air flow;
g) adjusting the RPM setting according to the proportionality constant of step f);
h) adjusting the control setting to increase or decrease motor speed to achieve the desired RPM setting;
i) deriving a second proportionality constant when the measured speed of the motor has achieved the desired RPM setting; and
j) iteratively adjusting the rotational speed of the motor by repeating steps e)-g).
5. The method of achieving a constant mass air flow rate for a blower motor of the induction type of claim 4 further, comprising: checking the proportionality constant for the measured motor speed by interpolating between the curves to determine a control setting corresponding to the selected air flow.
6. Apparatus for achieving a constant mass air flow rate for a blower motor of the induction type exhibiting nonlinearity between motor rotational speed, motor control voltage, and air flow rate, comprising:
a) a motor controller having a microprocessor for receiving a selected constant CFM rate value;
b) a memory having stored therein motor speed curves plotted against proportionality constants of fan speed to air flow on a first axis and motor excitation voltages on a second axis, the memory operably connected to the microprocessor;
c) means for controlling an excitation voltage to the motor, the means for controlling being operably connected to the microprocessor; and
d) a tachometer for sensing the speed of the motor, the tachometer being operably connected to the microprocessor.
7. Apparatus for achieving a constant mass air flow rate for a blower motor of the induction type according to claim 6 further comprising: means for inputting variety of constant CFM rates.
8. Apparatus for achieving a constant mass air flow rate for a blower motor of the induction type according to claim 6 further comprising: means for sensing changes in a line voltage and adjusting excitation to the motor based on the changes in line voltage.
9. Apparatus for achieving a constant mass air flow rate for a blower motor of the induction type according to claim 6 further comprising: means for sensing temperature changes in the motor and adjusting excitation to the motor based on the changes in temperature.
10. Apparatus for achieving a constant mass air flow rate for a blower motor of the induction type according to claim 6 wherein the memory is a look up table.
11. Apparatus for achieving a constant mass air flow rate for a blower motor comprising:
a) means for inputting a selected constant CFM rate to a motor controller;
b) a motor controller having a microprocessor for receiving the input constant CFM rate;
c) memory means having stored therein motor speed curves plotted against proportionality constants on a first axis and motor excitation voltages on a second axis, the memory means operably connected to the microprocessor;
d) means for controlling the excitation voltage to the motor, the means for controlling operably connected to the microprocessor; and
e) means for sensing a speed of the motor, the means for sensing a speed operably connected to the microprocessor.
12. The apparatus for achieving a constant mass air flow rate for a blower motor according to claim 11 further comprising: a motor of the induction type exhibiting nonlinearity between motor rotational speed, motor control voltage, and air flow rate, the motor being operably connected to the tachometer and the motor controller.
13. A method for achieving a constant mass air flow rate for an induction blower motor according to claim 11 further comprising: performing an algorithm having the steps in order of:
a) select air flow rate value;
b) set motor speed value;
c) change control motor voltage until motor speed value is reached;
d) derive system constant for current control voltage and current motor speed value;
e) divide air flow rate value by derived system constant to derive new motor speed value; and
f) iterate steps c)-e) until motor speed value and system constant balance at selected air flow rate value.
14. A method for achieving a constant mass air flow rate for an induction blower motor according to claim 11 further comprising: performing an algorithm having the steps in order of:
a) enter air flow rate value;
b) set first motor speed value;
c) step motor control voltage until first motor speed value is measured;
d) derive first system constant for current motor control voltage and first motor speed value;
e) divide air flow rate value by first system constant to derive second motor speed value;
f) subtract second motor speed value-first motor speed value to derive third motor speed value;
g) divide third motor speed value by x to get fourth motor speed value;
h) step motor control voltage up until fourth motor speed value is measured;
i) derive second system constant for current motor control voltage and fourth motor speed value;
j) divide air flow rate value by second system constant to derive fifth motor speed value; and
k) iteratively step up motor control voltage, measure motor speed and step through motor speed values until motor speed value and system constant balance at air flow rate value.
US09/904,428 2001-07-12 2001-07-12 Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor Expired - Fee Related US6504338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/904,428 US6504338B1 (en) 2001-07-12 2001-07-12 Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/904,428 US6504338B1 (en) 2001-07-12 2001-07-12 Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor

Publications (2)

Publication Number Publication Date
US6504338B1 US6504338B1 (en) 2003-01-07
US20030011342A1 true US20030011342A1 (en) 2003-01-16

Family

ID=25419145

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/904,428 Expired - Fee Related US6504338B1 (en) 2001-07-12 2001-07-12 Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor

Country Status (1)

Country Link
US (1) US6504338B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070101984A1 (en) * 2005-11-09 2007-05-10 Honeywell International Inc. Negative pressure conditioning device and forced air furnace employing same
US20070117056A1 (en) * 2005-11-09 2007-05-24 Honeywell International Inc. Negative pressure conditioning device with low pressure cut-off
US20070248467A1 (en) * 2006-04-21 2007-10-25 Shahi Prakash B Fluid flow control for fluid handling systems
US20080124667A1 (en) * 2006-10-18 2008-05-29 Honeywell International Inc. Gas pressure control for warm air furnaces
US20090293867A1 (en) * 2008-05-27 2009-12-03 Honeywell International Inc. Combustion blower control for modulating furnace
US20090308372A1 (en) * 2008-06-11 2009-12-17 Honeywell International Inc. Selectable efficiency versus comfort for modulating furnace
US20100009302A1 (en) * 2008-07-10 2010-01-14 Honeywell International Inc. Burner firing rate determination for modulating furnace
US7880421B2 (en) 2006-04-24 2011-02-01 Ebm-Papst St. Georgen Gmbh & Co. Kg Energy-conserving ventilating fan
US20110081619A1 (en) * 2009-10-06 2011-04-07 Honeywell Technologies Sarl Regulating device for gas burners
US20110204832A1 (en) * 2010-02-19 2011-08-25 Rbc Manufacturing Corporation Systems and methods for controlling operations of a motor
US8591221B2 (en) 2006-10-18 2013-11-26 Honeywell International Inc. Combustion blower control for modulating furnace
EP2822177A4 (en) * 2012-03-02 2015-03-18 Panasonic Corp Motor control device and motor control method
US20180209433A1 (en) * 2017-01-20 2018-07-26 Johnson Electric S.A. Fan device, air flow adjustment device and air volume control method thereof

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864659B2 (en) * 2001-07-12 2005-03-08 Varidigm Corporation Variable speed controller for air moving applications using an AC induction motor
US20030042860A1 (en) * 2001-09-05 2003-03-06 Sulfstede Louis E. System and method of controlling airflow in an air delivery system
US6866202B2 (en) 2001-09-10 2005-03-15 Varidigm Corporation Variable output heating and cooling control
US20040251344A1 (en) * 2003-02-07 2004-12-16 Varidigm Corporation Pressure sensing system
US7292004B2 (en) * 2003-04-14 2007-11-06 Matsushita Electric Industrial Co., Ltd. Motor driving apparatus
US7029239B2 (en) * 2003-05-19 2006-04-18 Standard Microsystems Corporation Piecewise linear control of the duty cycle of a pulse width modulated signal
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
US8133034B2 (en) * 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US20110002792A1 (en) * 2004-04-09 2011-01-06 Bartos Ronald P Controller for a motor and a method of controlling the motor
US8177520B2 (en) 2004-04-09 2012-05-15 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US7686589B2 (en) * 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US8281425B2 (en) 2004-11-01 2012-10-09 Cohen Joseph D Load sensor safety vacuum release system
US7161316B2 (en) * 2004-11-02 2007-01-09 General Electric Company Method and apparatus for discrete speed compensated torque step motor control
KR100748518B1 (en) * 2004-11-15 2007-08-13 엘지전자 주식회사 Fan motor velocity valiable apparatus for airconditioner
US8702482B2 (en) * 2004-12-07 2014-04-22 Trane International Inc. Ventilation controller
US20080044314A1 (en) * 2006-06-23 2008-02-21 Cephalon, Inc. Pharmaceutical measuring and dispensing cup
US7690897B2 (en) * 2006-10-13 2010-04-06 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
US20080095638A1 (en) 2006-10-13 2008-04-24 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
MY167120A (en) * 2006-11-10 2018-08-10 Oyl Res & Development Centre Sdn Bhd An apparatus for controlling an air distribution system
US8672733B2 (en) * 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
MY151881A (en) * 2007-05-07 2014-07-14 Oyl Res And Dev Ct Sdn Bhd Airflow control for variable speed blowers
US20080307803A1 (en) * 2007-06-12 2008-12-18 Nordyne Inc. Humidity control and air conditioning
US7770806B2 (en) 2007-06-19 2010-08-10 Nordyne Inc. Temperature control in variable-capacity HVAC system
US9681587B2 (en) 2007-08-30 2017-06-13 Pce, Inc. System and method for cooling electronic equipment
KR100946719B1 (en) * 2007-11-28 2010-03-12 영 춘 정 Apparatus to control a multi programmable constant air flow with speed controllable brushless motor
US7958631B2 (en) * 2008-04-11 2011-06-14 Cooper Technologies Company Method of using an extender for a separable insulated connector
US20090277196A1 (en) * 2008-05-01 2009-11-12 Gambiana Dennis S Apparatus and method for modulating cooling
EP2345124B1 (en) 2008-10-01 2018-12-19 Regal Beloit America, Inc. Controller for a motor and a method of controlling the motor
AU2009302593B2 (en) 2008-10-06 2015-05-28 Danfoss Low Power Drives Method of operating a safety vacuum release system
US8855825B2 (en) 2008-10-27 2014-10-07 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8977794B2 (en) * 2008-10-27 2015-03-10 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8744629B2 (en) * 2008-10-27 2014-06-03 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8694164B2 (en) * 2008-10-27 2014-04-08 Lennox Industries, Inc. Interactive user guidance interface for a heating, ventilation and air conditioning system
US9152155B2 (en) * 2008-10-27 2015-10-06 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US9268345B2 (en) * 2008-10-27 2016-02-23 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8802981B2 (en) * 2008-10-27 2014-08-12 Lennox Industries Inc. Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system
US8452456B2 (en) * 2008-10-27 2013-05-28 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US9261888B2 (en) 2008-10-27 2016-02-16 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8788100B2 (en) 2008-10-27 2014-07-22 Lennox Industries Inc. System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
US9432208B2 (en) 2008-10-27 2016-08-30 Lennox Industries Inc. Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
US8433446B2 (en) * 2008-10-27 2013-04-30 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US8437877B2 (en) * 2008-10-27 2013-05-07 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8352080B2 (en) * 2008-10-27 2013-01-08 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US20100107072A1 (en) * 2008-10-27 2010-04-29 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8543243B2 (en) * 2008-10-27 2013-09-24 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8655490B2 (en) * 2008-10-27 2014-02-18 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8564400B2 (en) * 2008-10-27 2013-10-22 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8239066B2 (en) * 2008-10-27 2012-08-07 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8762666B2 (en) * 2008-10-27 2014-06-24 Lennox Industries, Inc. Backup and restoration of operation control data in a heating, ventilation and air conditioning network
US9632490B2 (en) 2008-10-27 2017-04-25 Lennox Industries Inc. System and method for zoning a distributed architecture heating, ventilation and air conditioning network
US8600558B2 (en) * 2008-10-27 2013-12-03 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8452906B2 (en) 2008-10-27 2013-05-28 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8463442B2 (en) * 2008-10-27 2013-06-11 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US20100106326A1 (en) * 2008-10-27 2010-04-29 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8463443B2 (en) * 2008-10-27 2013-06-11 Lennox Industries, Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
US8655491B2 (en) * 2008-10-27 2014-02-18 Lennox Industries Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US8560125B2 (en) * 2008-10-27 2013-10-15 Lennox Industries Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8255086B2 (en) * 2008-10-27 2012-08-28 Lennox Industries Inc. System recovery in a heating, ventilation and air conditioning network
US8352081B2 (en) 2008-10-27 2013-01-08 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US9678486B2 (en) * 2008-10-27 2017-06-13 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US8295981B2 (en) 2008-10-27 2012-10-23 Lennox Industries Inc. Device commissioning in a heating, ventilation and air conditioning network
US8442693B2 (en) 2008-10-27 2013-05-14 Lennox Industries, Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8548630B2 (en) 2008-10-27 2013-10-01 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US20100106810A1 (en) * 2008-10-27 2010-04-29 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US9325517B2 (en) * 2008-10-27 2016-04-26 Lennox Industries Inc. Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system
US9651925B2 (en) * 2008-10-27 2017-05-16 Lennox Industries Inc. System and method for zoning a distributed-architecture heating, ventilation and air conditioning network
US20100106312A1 (en) * 2008-10-27 2010-04-29 Lennox Industries Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US8798796B2 (en) * 2008-10-27 2014-08-05 Lennox Industries Inc. General control techniques in a heating, ventilation and air conditioning network
US8661165B2 (en) * 2008-10-27 2014-02-25 Lennox Industries, Inc. Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system
US8437878B2 (en) * 2008-10-27 2013-05-07 Lennox Industries Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network
US8892797B2 (en) * 2008-10-27 2014-11-18 Lennox Industries Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US8615326B2 (en) * 2008-10-27 2013-12-24 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8874815B2 (en) * 2008-10-27 2014-10-28 Lennox Industries, Inc. Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network
US8774210B2 (en) 2008-10-27 2014-07-08 Lennox Industries, Inc. Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network
US20100106957A1 (en) * 2008-10-27 2010-04-29 Lennox Industries Inc. Programming and configuration in a heating, ventilation and air conditioning network
US9377768B2 (en) * 2008-10-27 2016-06-28 Lennox Industries Inc. Memory recovery scheme and data structure in a heating, ventilation and air conditioning network
US8994539B2 (en) * 2008-10-27 2015-03-31 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network
US8725298B2 (en) * 2008-10-27 2014-05-13 Lennox Industries, Inc. Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network
US8600559B2 (en) * 2008-10-27 2013-12-03 Lennox Industries Inc. Method of controlling equipment in a heating, ventilation and air conditioning network
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US8564233B2 (en) 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
US8436559B2 (en) 2009-06-09 2013-05-07 Sta-Rite Industries, Llc System and method for motor drive control pad and drive terminals
USD648642S1 (en) 2009-10-21 2011-11-15 Lennox Industries Inc. Thin cover plate for an electronic system controller
USD648641S1 (en) 2009-10-21 2011-11-15 Lennox Industries Inc. Thin cover plate for an electronic system controller
US8348624B2 (en) * 2010-02-12 2013-01-08 Universal Blower Pac, Inc. Efficiency optimized air flow apparatus and method
US8260444B2 (en) * 2010-02-17 2012-09-04 Lennox Industries Inc. Auxiliary controller of a HVAC system
DE102010010791A1 (en) * 2010-03-09 2011-09-15 Honeywell Technologies Sarl Mixing device for a gas burner
BR112013014476A2 (en) 2010-12-08 2016-09-20 Pentair Water Pool & Spa Inc vacuum relief relief valve for a vacuum release safety system
US8560127B2 (en) 2011-01-13 2013-10-15 Honeywell International Inc. HVAC control with comfort/economy management
BR112014010665A2 (en) 2011-11-01 2017-12-05 Pentair Water Pool & Spa Inc flow blocking system and process
US8876524B2 (en) 2012-03-02 2014-11-04 Honeywell International Inc. Furnace with modulating firing rate adaptation
NL2008774C2 (en) 2012-03-19 2013-09-23 Contronics Engineering B V A determination method and a control method for a fluid displacement device, controller and system.
CN104521136B (en) * 2012-08-09 2017-03-29 松下知识产权经营株式会社 Control device of electric motor, method of motor control and air-supply arrangement
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
KR101815408B1 (en) * 2014-07-23 2018-01-30 종샨 브로드-오션 모터 컴퍼니 리미티드 Air volume measurement method for fan motor
US9816711B2 (en) * 2014-08-26 2017-11-14 Haier Us Appliance Solutions, Inc. Air conditioner unit and method for operating same
US10802459B2 (en) 2015-04-27 2020-10-13 Ademco Inc. Geo-fencing with advanced intelligent recovery
US10933713B2 (en) 2016-12-27 2021-03-02 Cnh Industrial America Llc Airflow control system of a work vehicle
CN112567182B (en) 2018-06-11 2023-02-10 布罗恩-努托恩有限责任公司 Ventilation system with automatic flow balancing derived from neural network
US11143427B2 (en) 2018-10-26 2021-10-12 Johnson Controls Technology Company Fan motor control

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648551A (en) * 1986-06-23 1987-03-10 Carrier Corporation Adaptive blower motor controller
US4978896A (en) 1989-07-26 1990-12-18 General Electric Company Method and apparatus for controlling a blower motor in an air handling system
US5423192A (en) 1993-08-18 1995-06-13 General Electric Company Electronically commutated motor for driving a compressor
US5506487A (en) 1991-03-28 1996-04-09 General Electric Company Systems and methods for driving a compressor with a motor
US5202951A (en) 1991-06-05 1993-04-13 Gas Research Institute Mass flow rate control system and method
US5473229A (en) 1992-05-27 1995-12-05 General Electric Company Interface between programmable electronically commutated motor and personal computer and method of operation
US5492273A (en) 1992-05-27 1996-02-20 General Electric Company Heating ventilating and/or air conditioning system having a variable speed indoor blower motor
US5592058A (en) 1992-05-27 1997-01-07 General Electric Company Control system and methods for a multiparameter electronically commutated motor
US5232052A (en) 1993-02-09 1993-08-03 Hypro Corporation Apparatus and method for controlling the introduction of chemical foamant into a water stream in fire-fighting equipment
FR2704330B1 (en) 1993-04-23 1995-06-23 Valeo Thermique Habitacle Method and device for regulating the flow of an air stream.
US5520517A (en) * 1993-06-01 1996-05-28 Sipin; Anatole J. Motor control system for a constant flow vacuum pump
US5736823A (en) 1994-05-27 1998-04-07 Emerson Electric Co. Constant air flow control apparatus and method
US5447414A (en) 1994-05-27 1995-09-05 Emerson Electric Co. Constant air flow control apparatus and method
US5524556A (en) * 1995-06-09 1996-06-11 Texas Instruments Incorporated Induced draft fan control for use with gas furnaces
US5675231A (en) 1996-05-15 1997-10-07 General Electric Company Systems and methods for protecting a single phase motor from circulating currents

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748375B2 (en) 2005-11-09 2010-07-06 Honeywell International Inc. Negative pressure conditioning device with low pressure cut-off
US20070117056A1 (en) * 2005-11-09 2007-05-24 Honeywell International Inc. Negative pressure conditioning device with low pressure cut-off
US20070101984A1 (en) * 2005-11-09 2007-05-10 Honeywell International Inc. Negative pressure conditioning device and forced air furnace employing same
US7644712B2 (en) 2005-11-09 2010-01-12 Honeywell International Inc. Negative pressure conditioning device and forced air furnace employing same
US20070248467A1 (en) * 2006-04-21 2007-10-25 Shahi Prakash B Fluid flow control for fluid handling systems
US7567049B2 (en) * 2006-04-21 2009-07-28 Emerson Electric Co. Fluid flow control for fluid handling systems
US7880421B2 (en) 2006-04-24 2011-02-01 Ebm-Papst St. Georgen Gmbh & Co. Kg Energy-conserving ventilating fan
US20080124667A1 (en) * 2006-10-18 2008-05-29 Honeywell International Inc. Gas pressure control for warm air furnaces
US8591221B2 (en) 2006-10-18 2013-11-26 Honeywell International Inc. Combustion blower control for modulating furnace
US20090297997A1 (en) * 2008-05-27 2009-12-03 Honeywell International Inc. Combustion blower control for modulating furnace
US8070481B2 (en) 2008-05-27 2011-12-06 Honeywell International Inc. Combustion blower control for modulating furnace
US7985066B2 (en) 2008-05-27 2011-07-26 Honeywell International Inc. Combustion blower control for modulating furnace
US20090293867A1 (en) * 2008-05-27 2009-12-03 Honeywell International Inc. Combustion blower control for modulating furnace
US20090308372A1 (en) * 2008-06-11 2009-12-17 Honeywell International Inc. Selectable efficiency versus comfort for modulating furnace
US9316413B2 (en) 2008-06-11 2016-04-19 Honeywell International Inc. Selectable efficiency versus comfort for modulating furnace
US8123518B2 (en) 2008-07-10 2012-02-28 Honeywell International Inc. Burner firing rate determination for modulating furnace
US20100009302A1 (en) * 2008-07-10 2010-01-14 Honeywell International Inc. Burner firing rate determination for modulating furnace
US8668491B2 (en) 2009-10-06 2014-03-11 Honeywell Technologies Sarl Regulating device for gas burners
US20110081619A1 (en) * 2009-10-06 2011-04-07 Honeywell Technologies Sarl Regulating device for gas burners
US8378618B2 (en) * 2010-02-19 2013-02-19 Sntech, Inc. Systems and methods for controlling operations of a motor
US20110204832A1 (en) * 2010-02-19 2011-08-25 Rbc Manufacturing Corporation Systems and methods for controlling operations of a motor
EP2822177A4 (en) * 2012-03-02 2015-03-18 Panasonic Corp Motor control device and motor control method
US9771944B2 (en) 2012-03-02 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Motor controller and motor control method
US20180209433A1 (en) * 2017-01-20 2018-07-26 Johnson Electric S.A. Fan device, air flow adjustment device and air volume control method thereof
CN108331777A (en) * 2017-01-20 2018-07-27 德昌电机(深圳)有限公司 Electric motor fan device, air flow property adjustment equipment and air quantity control method

Also Published As

Publication number Publication date
US6504338B1 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US6504338B1 (en) Constant CFM control algorithm for an air moving system utilizing a centrifugal blower driven by an induction motor
CA2034375C (en) Method and apparatus for controlling a blower motor in an air handling system to provide constant pressure
US5447414A (en) Constant air flow control apparatus and method
US5736823A (en) Constant air flow control apparatus and method
US4978896A (en) Method and apparatus for controlling a blower motor in an air handling system
US7202624B2 (en) Self calibrating fan
AU681766B2 (en) Airflow control for variable speed blowers
CN103376743B (en) A kind of constant air capacity control of motor and air conditioner draught fan system
RU2432591C2 (en) Control procedure for technical installation cooling
US20050280384A1 (en) Air delivery system and method
US5202951A (en) Mass flow rate control system and method
US6353303B1 (en) Control algorithm for induction motor/blower system
US10855211B2 (en) Self-calibration of ECM motor and variable frequency drive inferred torque
KR900008037B1 (en) Method of limiting motor power output
US6671459B1 (en) DC motor control method and apparatus
US6472843B2 (en) System specific fluid flow control with induction motor drive
US3250084A (en) Control systems
US20030042860A1 (en) System and method of controlling airflow in an air delivery system
KR101963411B1 (en) Constant Airflow control method
US20230015020A1 (en) Two degrees of control through pulse width modulation interface
WO2013159461A1 (en) Motor and constant air volume control method for air-conditioning fan system
CN114838487B (en) Control method of multi-split air conditioner, multi-split air conditioner and storage medium
JP3386598B2 (en) DC fan motor with constant air volume control
US6353302B1 (en) Speed computation function for induction motor/blower systems control algorithm
EP0945623A2 (en) A ventilation system

Legal Events

Date Code Title Description
AS Assignment

Owner name: GAS RESEARCH INSTITUTE, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EICHORN, RONALD L.;REEL/FRAME:012003/0822

Effective date: 20010710

AS Assignment

Owner name: VARIDIGM CORPORATION, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAS RESEARCH INSTITUTE;REEL/FRAME:013231/0921

Effective date: 20020301

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: ACACIA RESEARCH GROUP LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARIDIGM CORPORATION;REEL/FRAME:029013/0427

Effective date: 20120831

Owner name: HVAC MODULATION TECHNOLOGIES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:029013/0580

Effective date: 20120918

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150107