Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20030014052 A1
Type de publicationDemande
Numéro de demandeUS 10/164,654
Date de publication16 janv. 2003
Date de dépôt6 juin 2002
Date de priorité14 nov. 1997
Autre référence de publicationUS7377920, US20050240179
Numéro de publication10164654, 164654, US 2003/0014052 A1, US 2003/014052 A1, US 20030014052 A1, US 20030014052A1, US 2003014052 A1, US 2003014052A1, US-A1-20030014052, US-A1-2003014052, US2003/0014052A1, US2003/014052A1, US20030014052 A1, US20030014052A1, US2003014052 A1, US2003014052A1
InventeursSteven Buysse, Kate Lawes, Dale Schmaltz, Michael Lands, S. Lukianow, Kristin Johnson, Gary Couture, Lap Nguyen
Cessionnaire d'origineBuysse Steven P., Lawes Kate R., Schmaltz Dale F., Lands Michael J., Lukianow S. Wade, Johnson Kristin D., Couture Gary M., Nguyen Lap P.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Laparoscopic bipolar electrosurgical instrument
US 20030014052 A1
Résumé
A laparoscopic bipolar electrosurgical instrument for sealing tissue includes a handle having an elongated tube affixed thereto. The tube includes first and second jaw members having electrically conductive sealing surfaces attached to a distal end thereof which are movable from a first position for approximating tissue to a second position for grasping tissue therebetween. The handle includes a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the second position for grasping tissue. The jaw members connect to a source of electrosurgical energy such that the opposable sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween. A stop is included for maintaining a minimum separation distance between opposing sealing surfaces. A ratchet is also included to maintain a closure force in the range of about 7 kg/cm2 to about 13 kg/cm2 between opposing sealing surfaces.
Images(6)
Previous page
Next page
Revendications(17)
What is claimed is:
1. A laparoscopic bipolar electrosurgical instrument for sealing tissue, comprising:
a handle having an elongated tube affixed thereto, the tube including first and second jaw members attached to a distal end thereof, the jaw members being movable from a first position for approximating tissue to at least one subsequent position for grasping tissue therebetween, each of the jaw members including an electrically conductive sealing surface, the handle including a fixed handle and a movable handle, the movable handle being movable relative to the fixed handle to effect movement of the jaw members from the first position to the at least one subsequent position for grasping tissue;
means for connecting the jaw members to a source of electrosurgical energy such that the opposable seal surfaces are capable of conducting electrosurgical energy through tissue held therebetween;
a stop for maintaining a minimum separation distance of at least about 0.03 millimeters between opposable sealing surfaces; and
means for maintaining a closure force in the range of about 3 kg/cm2 to about 16 kg/cm2 between opposable sealing surfaces.
2. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the connecting means includes:
a pushrod for connecting the first jaw member to a source of electrosurgical energy; and
a conductive tube for connecting the second jaw member to the source of electrosurgical energy.
3. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the maintaining means includes a ratchet disposed within the fixed handle and at least one complimentary interlocking mechanical interface disposed on the movable handle, the ratchet and the complimentary interlocking mechanical interface providing at least one interlocking position for maintaining a closure force within the range of about 7 kg/cm2 to about 13 kg/cm2 between opposable sealing surfaces.
4. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the closure force is in the range of about 4 kg/cm2 to about 6.5 kg/cm2.
5. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the stop is disposed on at least one of the sealing surfaces.
6. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the stop is disposed adjacent to at least one of the sealing surfaces.
7. A laparoscopic bipolar electrosurgical instrument according to claim 1 wherein the stop maintains a minimum separation distance between sealing surfaces in the range of about 0.03 millimeters to about 0.16 millimeters.
8. A laparoscopic bipolar electrosurgical instrument for sealing tissue, comprising:
a handle having an elongated tube affixed thereto, the tube including first and second jaw members attached to a distal end thereof, the jaw members being movable from a first position for approximating tissue to at least one subsequent position for grasping tissue therebetween, each of the jaw members including an electrically conductive sealing surface, the handle including a fixed handle and a movable handle, the movable handle being movable relative to the fixed handle to effect movement of the jaw members from the first position to the at least one subsequent position for grasping tissue, the opposable sealing surfaces including a non-stick material for reducing tissue adhesion during the sealing process;
means for connecting the jaw members to a source of electrosurgical energy such that the opposable sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween;
a stop disposed on one of the opposable sealing surfaces for maintaining a minimum separation distance between the opposable sealing surfaces; and
a ratchet disposed on one of the fixed and movable handles and at least one complimentary interlocking mechanical interface disposed on the other of the fixed and movable handles, the ratchet and the complimentary interlocking mechanical interface providing at least one interlocking position to maintain a closure force in the range of about 3 kg/cm2 to about 16 kg/cm2 between opposable sealing surfaces.
9. A laparoscopic bipolar electrosurgical instrument according to claim 8 wherein the non-stick material is a coating which is deposited on the opposable sealing surfaces.
10. A laparoscopic bipolar electrosurgical instrument according to claim 9 wherein the non-stick coating is selected from a group of materials consisting of: nitrides and nickel/chrome alloys.
11. A laparoscopic bipolar electrosurgical instrument according to claim 9 wherein the non-stick coating includes at least one of: TiN; ZrN; TiAlN; CrN; nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1; Inconel 600; Ni200; and Ni201.
12. A laparoscopic bipolar electrosurgical instrument according to claim 8 wherein the opposable sealing surfaces are manufactured from a non-stick material.
13. A laparoscopic bipolar electrosurgical instrument according to claim 12 wherein the non-stick material is a nickel/chrome alloy.
14. A laparoscopic bipolar electrosurgical instrument according to claim 12 wherein the non-stick material includes at least one of nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1, Inconel 600, Ni200 and Ni201.
15. A laparoscopic bipolar electrosurgical instrument according to claim 8 wherein at least one of the jaw members, handles and elongated tube includes an insulative material disposed thereon.
16. A laparoscopic bipolar electrosurgical instrument according to claim 15 wherein the insulative material is an insulative coating.
17. A bipolar electrosurgical instrument according to claim 15 wherein the insulative material is an insulative sheath.
Description
    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a continuation-in-part of U.S. application Ser. No. 09/591,330 filed on Jun. 9, 2000 by Lands et al. entitled “LAPAROSCOPIC BIPOLAR ELECTROSURGICAL INSTRUMENT” which is a continuation of U.S. application Ser. No. 08/970,472 filed on Nov. 14, 1997 by Lands et al. entitled “LAPAROSCOPIC BIPOLAR ELECTROSURGICAL INSTRUMENT”, the entire contents of both of these applications are incorporated by reference herein in their entirety.
  • BACKGROUND
  • [0002]
    1. Field of the Invention
  • [0003]
    This disclosure relates to an electrosurgical instrument for performing laparoscopic surgical procedures, and more particularly to a laparoscopic electrosurgical instrument that is capable of grasping vessels and vascular tissue with sufficient force between two bipolar jaws to seal the vessel or vascular tissue.
  • [0004]
    2. Background of Related Art
  • [0005]
    Laparoscopic surgical instruments are used to perform surgical operation without making large incisions in the patient. The laparoscopic instruments are inserted into the patient through a cannula, or port, that has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, and this presents a design challenge to instrument manufacturers who must find ways to make surgical instruments that fit through the cannulas.
  • [0006]
    Certain surgical procedures require cutting blood vessels or vascular tissue. This sometimes presents a problem for surgeons because it is difficult to suture blood vessels using laparoscopic tools. Very small blood vessels, in the range below two millimeters in diameter, can often be closed using standard electrosurgical techniques. If a larger vessel is severed, it may be necessary for the surgeon to convert the laparoscopic procedure into an open-surgical procedure and thereby abandon the benefits of laparoscopy.
  • [0007]
    Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it was not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190. This article describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.
  • [0008]
    It has been recently determined that electrosurgical methods may be able to seal larger vessels using an appropriate electrosurgical power curve, coupled with an instrument capable of applying a large closure force to the vessel walls. It is thought that the process of coagulating small vessels is fundamentally different than electrosurgical vessel sealing. Coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing is defined as the process of liquefying the collagen in the tissue so that it cross-links and reforms into a fused mass. Thus, coagulation of small vessels is sufficient to permanently close them. Larger vessels need to be sealed to assure permanent closure.
  • [0009]
    It would be desirable to have a surgical tool capable of applying electrosurgical energy, capable of applying a large closure force to the vessel walls, and also capable of fitting through a cannula. A large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a challenge because the first and second pins have a small moment arm with respect to the pivot of each jaw. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the first and second pins. It is also undesirable to increase the moment arm of the first and second pins because the physical size of the yoke might not fit through a cannula.
  • [0010]
    Several bipolar laparoscopic instruments are known. For example, U.S. Pat. No. 3,938,527 discloses a bipolar laparoscopic instrument for tubal cauterization. U.S. Pat. No. 5,250,047 discloses a bipolar laparoscopic instrument with a replaceable electrode tip assembly. U.S. Pat. No. 5,445,638 discloses a bipolar coagulation and cutting forceps with first and second conductors extending from the distal end. U.S. Pat. No. 5,391,166 discloses a bipolar endoscopic instrument having a detachable working end. U.S. Pat. No. 5,342,359 discloses a bipolar coagulation device.
  • [0011]
    The present invention solves the problem of providing a large closure force between the jaws of a laparoscopic bipolar electrosurgical instrument, using a compact design that fits through a cannula, without risking structural failure of the instrument yoke.
  • SUMMARY OF THE INVENTION
  • [0012]
    The present disclosure relates to a laparoscopic bipolar electrosurgical instrument for sealing tissue and includes a handle having an elongated tube affixed thereto. The tube includes first and second jaw members attached to a distal end thereof which are movable from a first position for approximating tissue to at least one subsequent position for grasping tissue therebetween. Each of the jaw members includes an electrically conductive sealing surface. The handle has a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the at least one subsequent position for grasping tissue. The jaw members are connected to a source of electrosurgical energy such that the jaw members are capable of conducting bipolar electrosurgical energy through the tissue held therebetween. A stop is included for maintaining a minimum separation distance between opposing sealing surfaces and a ratchet is included for maintaining a closure force in the range of about 3 kg/cm2 to about 16 kg/cm2 between opposing sealing surfaces.
  • [0013]
    Preferably, the stop maintains a minimum separation distance of at least about 0.03 millimeters between opposing sealing surfaces. The stop may be disposed on at least one of the electrically conductive sealing surfaces, or alternatively, the stop may be located adjacent one of the electrically conductive sealing surfaces.
  • [0014]
    In one embodiment according to the present disclosure, the first jaw member is connected to the bipolar electrosurgical energy source by a pushrod and the second jaw member is connected to the bipolar electrosurgical source by a conductive tube.
  • [0015]
    In another embodiment, the ratchet is disposed within the fixed handle and at least one complimentary interlocking mechanical interface is disposed on the movable handle. Preferably, the ratchet and the complimentary interlocking mechanical interface provide at least one interlocking position for maintaining a closure force within the range of about 7 kg/cm2 to about 13 kg/cm2 between opposing sealing surfaces. Ideally, the closure force is in the range of about 4 kg/cm2 to about 6.5 kg/cm2.
  • [0016]
    In yet another embodiment according the present disclosure, the laparoscopic bipolar electrosurgical instrument includes a handle having an elongated tube affixed thereto with first and second jaw members attached to a distal end thereof which each include electrically conductive sealing surfaces. The jaw members are movable from a first position for approximating tissue to at least one subsequent position for grasping tissue therebetween. The handle has a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the at least one subsequent position for grasping tissue. The sealing surfaces include a non-stick material for reducing tissue adhesion during the sealing process. The first and second jaw members are coupled to a source of bipolar electrosurgical energy and a stop is disposed on at least one of the electrically conductive sealing surfaces to maintain a minimum separation distance between the opposable seal surfaces during sealing. A ratchet is disposed on one of the fixed and movable handles and at least one complimentary interlocking mechanical interface is disposed on the other of the fixed and movable handles. Preferably, the ratchet and the complimentary interlocking mechanical interface include at least one interlocking position which maintains a closure force in the range of about 7 kg/cm2 to about 13 kg/cm2 between opposable seal surfaces.
  • [0017]
    In one embodiment, the non-stick material is a coating which is deposited on the opposable sealing surfaces. The non-stick coating may be selected from a group of materials consisting of: nitrides and nickel/chrome alloys. Preferably, the non-stick coating includes one of: TiN; ZrN; TiAIN; CrN; nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1; Inconel 600; Ni200; and Ni201.
  • [0018]
    In one embodiment according to the present disclosure, the opposable sealing surfaces are manufactured from a non-stick material which is a nickel/chrome alloy. For example, the non-stick material may include nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1, Inconel 600, Ni200and Ni201.
  • [0019]
    Preferably, at least one of the jaw members, handles and elongated tube includes an insulative material disposed thereon which may be an insulative coating or an insulative sheath.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0020]
    [0020]FIG. 1 is a perspective view of a laparoscopic bipolar electrosurgical instrument according to the present disclosure;
  • [0021]
    [0021]FIG. 2 is a perspective view of the distal end and jaws of the instrument in FIG. 1;
  • [0022]
    [0022]FIG. 3 is an exploded view of the distal end shown in FIG. 2;
  • [0023]
    [0023]FIG. 4 is perspective view of the distal end of the instrument with the jaws removed;
  • [0024]
    [0024]FIG. 5 is another perspective of FIG. 4;
  • [0025]
    [0025]FIG. 6 is a side view of an electrical spring contact; and
  • [0026]
    [0026]FIG. 7 is a front view of the spring contact shown in FIG. 6.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0027]
    A laparoscopic bipolar electrosurgical instrument 10 is shown in FIG. 1. The instrument 10 has a proximal end 11 with a handle 14 for holding and manipulating the instrument 10. A distal end 12 on the instrument 10 is used for surgical manipulation of tissue. The instrument 10 comprises an elongate tube 13 that is sized to fit through a cannula for laparoscopic operations, and in different embodiments may be sized to fit through a five to ten millimeter cannulas.
  • [0028]
    A portion of the distal end 12 of the instrument 10 is shown in FIG. 2. A first jaw 15 and a second jaw 16 are shown in an open position. An angle α is subtended by the jaws 15 and 16. Closing of the jaws 15 and 16 is defined as a reduction of the angle α subtended by the jaws 15 and 16. Similarly, opening of the jaw 15 and 16 is defined as an enlargement of the angle α. The angle α is zero when the jaws 15 and 16 are closed together. The center of rotation for the first jaws 15 is at the first pivot 41, and the center of rotation for the second jaw 16 is at the second pivot 42. The first pivot 41 is located on an outer nose piece 32, and fits in a first pivot hole 43 located on the first flange 18. The second pivot 42 is located on an inner nose piece 31, and fits in a second pivot hole 44 located on the second flange 20.
  • [0029]
    Pieces that comprise the distal end 12 of the instrument 10 are shown in an exploded view in FIG. 3. The first jaw 15 and the second jaw 16 are shown separated from a yoke 17. The first jaw 15 has a first flange 18 and a first slot 19 therewithin. The second jaw 16 has a second flange 20 and a second slot 21 therewithin. Each jaw 15 and 16 is preferably formed from a single piece of stainless steel or other electrically conductive material.
  • [0030]
    Referring again to FIG. 3, the yoke 17 is attached to a pushrod 22. The yoke 17 is preferably formed from an electrically insulative material such as plastic. A first side 23 of the yoke 17 faces the first flange 18. A second side 24 of the yoke 17 faces the second flange 20. When the yoke 17 is positioned between the flanges 18 and 20, the yoke 17 also acts to electrically insulate the first jaw 15 from the second jaw 16. In this manner, bipolar electrosurgical current can be conducted through tissue grasped by the jaws 15 and 16 without short circuiting between the flanges 18 and 20.
  • [0031]
    A first pin 25 is located on the first side 23 which movably engages the first slot 19. Similarly, a second pin 26 is located on the second side 24 to movably engage the second slot 21. Each pin and slot combination works as a cam-follower mechanical linkage. Motion of the pushrod 22 moves the yoke 17 causing pins 25 and 26 to slide within their respective slots 19 and 21. The slots 19 and 21 are angled with respect to the distal ends of the jaws 15 and 16 such that the jaws 15 and 16 move in an arcuate fashion toward and away from each other. The pins 25 and 26 are different from the pivots 41 and 42. The pins 25 and 26 provide a force against the walls of the slots 19 and 21, creating a moment about the pivots 41 and 42.
  • [0032]
    The slots 19 and 21 are arranged such that distal motion of the pushrod 22 causes the jaws 15 and 16 to move together. Distal motion of the pushrod 22 is defined as motion in the direction of the distal end 12 of the instrument 10. Once the jaws 15 and 16 are closed together, the present invention holds the jaws 15 and 16 together with a compressive force on the pushrod 22.
  • [0033]
    One of the advantages of this invention is that shear forces on the pins 25 and 26 can be offloaded to prevent mechanical failure when large forces are being transmitted to the jaws 15 and 16. Each slot 19 and 20 has a cul-de-sac 27 and 28, respectively, as shown in FIG. 3. The first cul-de-sac 27 is an enlargement of the first slot 19 near its distal end. The second cul-de-sac 28 is an enlargement of the second slot 21 near its distal end. The cam-follower motion of the pins 25 and 26 in the slots 19 and 21 will bring the pins 25 and 26 into their respective cul-de-sac 27 and 28. This position of the pins 25 and 26 leaves a very small moment arm between the pins 25 and 26 and the pivots 41 and 42. The yoke 17 has shoulders 29 and 30 that can provide a relatively large moment about the pivots 41 and 42 to effect a high closure force between the jaws 15 and 16 without a high shear forces on the pins 25 and 26, as described below.
  • [0034]
    Once the pins 25 and 26 are in the cul-de-sacs 27 and 28, the force from the yoke is transmitted to the flanges 18 and 20 by a first shoulder 29 and a second shoulder 30. The shoulders 29 and 30 abut the proximal end of the flanges 18 and 20 to cause the jaws 15 and 16 to close together. The pivots 41 and 42 are preferably made of metal and can withstand relatively high shear forces. In contrast, pins 25 and 26 are preferably made of plastic and will break under relatively high shear forces. Thus, the shoulders 29 and 30 provide a moment about the pivots 41 and 42, thereby avoiding the necessity of applying high shear forces to the pins 25 and 26 wherein the moment arm from the pins 25 and 26 would be small. There is an angle α at which the pins 25 and 26 enter their respective cul-de-sacs 27 and 28 and the shoulders 29 and 30 abut the flanges 18 and 20. The angle α at which the forgoing occurs is preferably around three degrees.
  • [0035]
    The bipolar electrosurgical instrument 10 has first and second poles of alternating potential that are conducted along the instrument 10 and through tissue that is grasped between the jaws 15 and 16. The first pole is conducted from the proximal end 11 toward the distal end 12 along the pushrod 22. The second pole is conducted from the proximal end 11 toward the distal end 12 along the tube 13. The outer surface of the tube 13 is preferably coated with an electrically insulative material. There is also preferably an electrically insulative barrier between the pushrod 22 and the tube 13 to prevent short circuits in the instrument 10.
  • [0036]
    In the preferred embodiment, the distal end of the instrument 10 comprises an inner nose piece 31 and an outer nose piece 32, as shown in FIG. 2. The inner nose piece 31 is electrically connected with the pushrod 22, while the outer nose piece is electrically connected with the tube 13. The inner nose piece 31 and the outer nose piece 32 capture the yoke 17, along with the first and second flanges 18 and 20, as shown in FIG. 2. The yoke 17 moves axially, along an axis defined by the tube 13, in a space between the inner and outer nose pieces 31 and 32. A spacer stake 33 maintains the separation of the nose pieces 31 and 32 at their distal ends. The nose pieces 31 and 32 provide lateral support for the flanges 18 and 20 to help ensure that the pins 25 and 26 remain within the slots 19 and 21, respectively.
  • [0037]
    The preferred embodiment also comprises an inner insulator 34 and an outer insulator 35 for maintaining electrical insulation between the poles. The outer insulator 35 is seated between the tube 13 and the inner nose 31, as shown in FIGS. 2 and 4. The inner insulator 34 is seated between the tube 13 and the pushrod 22. In this manner, the outer nose piece 32 can provide electrical continuity between the tube 13 and the second jaw 16, while the inner nose piece 34 can provide electrical continuity between the pushrod 22 and the first jaw 15. Since the pushrod 22 is slidably mounted within the tube 13, the preferred embodiment has a spring contact 36, as shown in FIGS. 6 and 7, which is mounted on the pushrod 22 to maintain an electrical connection with the inner nose piece 34 during axial motion.
  • [0038]
    The first and second jaws 15 and 16 each have ridges 37 and 38 at their distal ends that preferably nest together. The jaws 15 and 16 also have seal surfaces 39 and 40, as shown in FIG. 2. The width of the seal surfaces 39 and 40 is a parameter that affects the quality of the surgical outcome. The closure force between the jaws 15 and 16 varies along the length of the seal surfaces 39 and 40, with the largest force at the distal tip and the smallest force at the proximal end of the seal surfaces 39 and 40. It is known that the amount of pressure exerted on the tissue depends on the surface area of the tissue that is in contact with the seal surfaces. In the one embodiment, the width of each seal surface, e.g., 39, is in the range of about 2 to about 5 millimeters, and preferably 4 millimeters width, while the length of each seal surface 39 and 40 is preferably in the range of about 10 to 30 millimeters.
  • [0039]
    It has been found through experimentation that good vessel sealing results are obtained when the closure force in grams divided by the width in millimeters is in the range of about 400 to 650 grams per millimeter of seal surface width. Since the closure force varies with the length of the seal surfaces 39 and 40, it has been found to be advantageous to taper the width of the seal surfaces 39 and 40 along their length, with the widest width at the proximal end and the narrowest width at the distal end. For example, if the width of the seal surface 39, 40 is 4 millimeters, the closure force is preferably in the range of about 1600 grams to about 2600 grams This design allows the jaws 15 and 16 to apply a relatively constant closure force per unit width, preferably 525 grams per millimeter width which yields a closure force of 2100 grams for a 4 millimeter width seal surface 39, 40.
  • [0040]
    In one embodiment, the handle 14 includes a fixed handle 50 having a channel 51 defined therein which slidingly receives a movable handle 52. Movable handle 52 includes a handgrip 53 defined therein which allows a user to move handle 52 relative to fixed handle 50. Movable handle 52 also includes a flange 55 having a series of grooves 62 defined therein which mechanically inter-engage a corresponding ratchet 60 disposed within channel 51. Preferably, the ratchet 60 and groove 62 are dimensioned such that successive ratchet positions will yield pressures within a predetermined working range of about 7 kg/cm2 to about 13 kg/cm2. In one embodiment, the successive ratchet positions are two millimeters apart.
  • [0041]
    Experimental results in tissue studies suggest that the magnitude of pressure exerted on the tissue by the seal surfaces 39 and 40 is important in assuring a proper surgical outcome. Tissue pressures within a working range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of 7 kg/cm2 to 13 kg/cm2 have been shown to be effective for sealing arteries and vascular bundles. Tissue pressures within the range of about 4 kg/cm2 to about 6.5 kg/cm2 have proven to be particularly effective in sealing arteries and tissue bundles.
  • [0042]
    A method of making a laparoscopic bipolar electrosurgical instrument 10 is also herein described. The method comprises the step of forming a first jaw 15 having a first flange 18 with a first slot 19, and a second jaw 16 having a second flange 20 with a second slot 21. The jaws 15 and 16 are preferably formed in a casting process, although it is also possible to machine the jaws 15 and 16 from stock. The casting process may include injecting powdered metal under pressure into a mold, and then applying heat.
  • [0043]
    Other steps in the method include attaching a yoke 17 to a pushrod 22, and electrically insulating the first flange 18 from the second flange 20 with the yoke 17. The yoke 17 is preferably an injection molded plastic part with features including a first shoulder 29 and a second shoulder 30.
  • [0044]
    During assembly of the distal portion of the instrument 10, steps in the method include engaging a first pin 25 with the first slot 19, and engaging a second pin 26 with the second slot 21. The slots 19 and 21 are shaped such that a subtended angle α between the first and second jaws 15 and 16 decreases with distal motion of the pushrod 17. The slots 19 and 20 are formed with cul-de-sacs 27 and 28 positioned to relieve shear stresses on the first and second pins 25 and 26 at the subtended angle α approximately where the first and second shoulders 29 and 30 engage the first and second flanges 18 and 20.
  • [0045]
    Further steps in the method comprise: surrounding at least a portion of the pushrod 22 with an electrically conductive tube 13; electrically insulating the tube 13 from the pushrod 22; electrically connecting an inner nose piece 31 to the pushrod 22, and electrically connecting an outer nose piece 32 to the tube 13, wherein the inner nose piece 31 and the outer nose piece 32 capture the yoke 17 along with the first and second flanges 18 and 20 to conduct bipolar electrosurgical current to the first and second jaws 15 and 16. In the preferred embodiment, there is a step of electrically connecting the pushrod 22 and the inner nose piece 31 with a spring contact 36.
  • [0046]
    The method of making the instrument 10, in some embodiments, includes the steps of tapering the width of the seal surfaces 39 and 40 along the length of each of the first and second jaws 15 and 16.
  • [0047]
    An electrically insulative coating 70 may be included to substantially cover the elongated tube 13 to protect the surgeon against electrical arcs. Other parts of the instrument may also be protected by the insulative coating 70. An insulative sheath may also be used to cover tube 13 or other components of the instrument 10, e.g., the proximal end 11, handles 50, 52 and the outer surfaces (non-opposing surfaces) of the jaw members 15, 16.
  • [0048]
    It is envisioned that the outer surface of the jaw members 15 and 16 may include a nickel-based material, coating, stamping, metal injection molding which is designed to reduce adhesion between the jaw members (or components thereof) with the surrounding tissue during activation and sealing. Moreover, it is also contemplated that other components such as the tube 13 and handles 50, 52 may also be coated with the same or a different “non-stick” material. Preferably, the non-stick materials are of a class of materials that provide a smooth surface to prevent mechanical tooth adhesions.
  • [0049]
    It is also contemplated that the tissue sealing surfaces 39 and 40 of the jaw members 15 and 16, respectively, may be manufactured from one (or a combination of one or more) of the following “non-stick” materials: nickel-chrome, chromium nitride, MedCoat 2000 manufactured by The Electrolizing Corporation of OHIO, Inconel 600 and tin-nickel. For example, high nickel chrome alloys and Ni200, Ni201 (˜100% Ni) may be made into electrodes or sealing surfaces by metal injection molding, stamping, machining or any like process.
  • [0050]
    In addition these materials preferably include an optimal surface energy for eliminating sticking due in part to surface texture and susceptibility to surface breakdown due electrical effects and corrosion in the presence of biologic tissues. It is envisioned that these materials exhibit superior non-stick qualities over stainless steel and should be utilized on the instrument in areas where the exposure to pressure and RF energy can create localized “hot spots” more susceptible to tissue adhesion. As can be appreciated, reducing the amount that the tissue “sticks” during sealing improves the overall efficacy of the instrument.
  • [0051]
    The tissue sealing surfaces 39 and 40 may also be “coated” with one or more of the above materials to achieve the same result, i.e., a “non-stick surface”. For example, Nitride coatings (or one or more of the other above-identified materials) may be deposited as a coating on another base material (metal or nonmetal) using a vapor deposition manufacturing technique.
  • [0052]
    One particular class of materials disclosed herein has demonstrated superior non-stick properties and, in some instances, superior seal quality. For example, nitride coatings which include, but not are not limited to: TiN, ZrN, TiAIN, and CrN are preferred materials used for non-stick purposes. CrN has been found to be particularly useful for non-stick purposes due to its overall surface properties and performance. Other classes of materials have also been found to reducing overall sticking. For example, high nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1 have been found to significantly reduce sticking in bipolar instrumentation. One particularly useful non-stick material in this class is Inconel 600. Bipolar instrumentation having electrodes made from or coated with Ni200, Ni201 (˜100% Ni) also showed improved non-stick performance over typical bipolar stainless steel electrodes.
  • [0053]
    It has been found experimentally that local current concentrations can result in an uneven tissue effect, and to reduce the possibility of this outcome, each seal surface 39 and 40 may include a radiused edge 80, 81. As mentioned above, a tapered seal surface 39 and 40 has been shown to be advantageous in certain embodiments because the taper allows for a relatively constant pressure on the tissue along the length of the seal surfaces 39 and 40. The width of the seal surfaces 39 and 40 may be adjusted to assure that the closure force divided by the width is approximately constant along the length.
  • [0054]
    In one embodiment, a stop 90, made from insulative material, is located in the instrument to maintain a minimum separation of at least about 0.03 millimeters between the seal surfaces 39 and 40, as shown in FIG. 3. Preferably, the stop maintains a minimum separation distance in the range of about 0.03 millimeters to about 0.16 millimeters. The stop 90 reduces the possibility of short circuits between the seal surfaces 39 and 40. It is envisioned that stop 90 may be positioned proximate the pivots 41 and 42, proximate the stake 33 or adjacent the opposable seal surfaces 39 and 40.
  • [0055]
    In another embodiment, the instrument 10 includes a second or alternative stop 95 which is designed to maintain a minimum separation of at least about 0.03 millimeters between the seal surfaces 39 and 40, as shown in FIG. 2. Preferably, the stop 90 and/or the stop 95 maintains a separation distance within range of about 0.03 millimeters to about 0.16 millimeters. A plurality of stops and/or 95 (or various patterns of stops 90, 95) may also be utilized to accomplish this purpose.
  • [0056]
    It is to be understood that the above described embodiments are only illustrative of the application of the principles of the present invention. Numerous modification and alternative arrangements may be devised by those skilled in art without departing from the spirit and scope of the present invention. The ended claims are intended to cover such modifications and arrangements.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US371664 *18 oct. 1887 stone
US702472 *8 août 189817 juin 1902Louis M PignoletSurgical forceps.
US728883 *29 juil. 190226 mai 1903Andrew J DownesElectrothermic instrument.
US1586645 *6 juil. 19251 juin 1926William BiermanMethod of and means for treating animal tissue to coagulate the same
US2002594 *24 mars 193328 mai 1935Wappler Frederick CharlesInstrument for electro-surgical treatment of tissue
US2011169 *13 avr. 193213 août 1935Wappler Frederick CharlesForcipated surgical electrode
US2176479 *20 mars 193717 oct. 1939Willis David AApparatus for finding and removing metal particles from human and animal bodies
US2305156 *17 avr. 194115 déc. 1942Weck & Co EdwardBox lock pivot and method of assembling same
US2632661 *14 août 194824 mars 1953Cristjo CristofvJoint for surgical instruments
US2668538 *30 janv. 19529 févr. 1954George P Pilling & Son CompanySurgical clamping means
US2796065 *12 mai 195518 juin 1957Kapp Karl ASurgical clamping means
US3459187 *9 mars 19675 août 1969Weck & Co Inc EdwardSurgical instrument and method of manufacture
US3643663 *15 oct. 196922 févr. 1972F L FischerCoagulating instrument
US3651811 *10 oct. 196928 mars 1972Aesculap Werke AgSurgical cutting instrument
US3862630 *10 déc. 197328 janv. 1975Ultrasonic SystemsUltrasonic surgical methods
US3866610 *11 janv. 197118 févr. 1975Kletschka Harold DCardiovascular clamps
US3911766 *15 mai 197414 oct. 1975Pilling CoBox lock surgical instrument and method of its manufacture
US3920021 *15 mai 197418 nov. 1975Siegfried HiltebrandtCoagulating devices
US3921641 *14 déc. 197325 nov. 1975Research CorpControlling forceps
US3938527 *13 juil. 197317 févr. 1976Centre De Recherche Industrielle De QuebecInstrument for laparoscopic tubal cauterization
US3952749 *7 mai 197527 avr. 1976Pilling Co.Box lock surgical instrument
US4005714 *30 juil. 19751 févr. 1977Richard Wolf GmbhBipolar coagulation forceps
US4074718 *17 mars 197621 févr. 1978Valleylab, Inc.Electrosurgical instrument
US4088134 *5 août 19769 mai 1978Joseph A. CapriniForceps
US4165746 *30 juin 197728 août 1979Burgin Kermit HPlastic forceps
US4300564 *1 nov. 197917 nov. 1981Olympus Optical Co., Ltd.Forceps for extracting stones in the pelvis of a kidney
US4370980 *11 mars 19811 févr. 1983Lottick Edward AElectrocautery hemostat
US4492231 *17 sept. 19828 janv. 1985Auth David CNon-sticking electrocautery system and forceps
US4552143 *22 nov. 198212 nov. 1985Lottick Edward ARemovable switch electrocautery instruments
US4574804 *27 févr. 198411 mars 1986Board Of Regents, The University Of Texas SystemOptic nerve clamp
US4597379 *30 mars 19831 juil. 1986Cabot Medical CorporationMethod of coagulating muscle tissue
US4657016 *16 avr. 198514 avr. 1987Garito Jon CElectrosurgical handpiece for blades, needles and forceps
US4662372 *12 août 19855 mai 1987Acme United CorporationDisposable surgical instrument and method of forming
US4671274 *30 janv. 19849 juin 1987Kharkovsky Nauchno-Issledovatelsky Institut Obschei IBipolar electrosurgical instrument
US4685459 *6 mars 198611 août 1987Fischer Met GmbhDevice for bipolar high-frequency coagulation of biological tissue
US4763669 *4 sept. 198716 août 1988Jaeger John CSurgical instrument with adjustable angle of operation
US4827929 *29 août 19839 mai 1989Joseph HodgeAngulated surgical instrument
US4887612 *27 avr. 198819 déc. 1989Esco Precision, Inc.Endoscopic biopsy forceps
US4938761 *6 mars 19893 juil. 1990Mdt CorporationBipolar electrosurgical forceps
US5007908 *29 sept. 198916 avr. 1991Everest Medical CorporationElectrosurgical instrument having needle cutting electrode and spot-coag electrode
US5026370 *2 juil. 198625 juin 1991Lottick Edward AElectrocautery instrument
US5099840 *23 janv. 198931 mars 1992Goble Nigel MDiathermy unit
US5116332 *8 févr. 199026 mai 1992Lottick Edward AElectrocautery hemostat
US5151102 *31 mai 199029 sept. 1992Kyocera CorporationBlood vessel coagulation/stanching device
US5176695 *8 juil. 19915 janv. 1993Davinci Medical, Inc.Surgical cutting means
US5197964 *12 nov. 199130 mars 1993Everest Medical CorporationBipolar instrument utilizing one stationary electrode and one movable electrode
US5215101 *21 oct. 19911 juin 1993Symbiosis CorporationSharply angled kelly (Jacobs's) clamp
US5217457 *29 janv. 19928 juin 1993Valleylab Inc.Enhanced electrosurgical apparatus
US5217458 *9 avr. 19928 juin 1993Everest Medical CorporationBipolar biopsy device utilizing a rotatable, single-hinged moving element
US5244462 *28 juin 199114 sept. 1993Valleylab Inc.Electrosurgical apparatus
US5250047 *21 oct. 19915 oct. 1993Everest Medical CorporationBipolar laparoscopic instrument with replaceable electrode tip assembly
US5258006 *21 août 19922 nov. 1993Everest Medical CorporationBipolar electrosurgical forceps
US5261918 *27 avr. 199216 nov. 1993Edward Weck IncorporatedSheathed surgical instrument and applicator kit
US5275615 *11 sept. 19924 janv. 1994Anthony RoseMedical instrument having gripping jaws
US5277201 *1 mai 199211 janv. 1994Vesta Medical, Inc.Endometrial ablation apparatus and method
US5282799 *11 juil. 19911 févr. 1994Everest Medical CorporationBipolar electrosurgical scalpel with paired loop electrodes
US5290286 *9 déc. 19921 mars 1994Everest Medical CorporationBipolar instrument utilizing one stationary electrode and one movable electrode
US5304203 *20 oct. 199219 avr. 1994Numed Technologies, Inc.Tissue extracting forceps for laparoscopic surgery
US5308357 *21 août 19923 mai 1994Microsurge, Inc.Handle mechanism for manual instruments
US5318589 *15 avr. 19927 juin 1994Microsurge, Inc.Surgical instrument for endoscopic surgery
US5324289 *1 mai 199228 juin 1994Hemostatic Surgery CorporationHemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5330471 *1 mai 199219 juil. 1994Hemostatic Surgery CorporationBi-polar electrosurgical endoscopic instruments and methods of use
US5334183 *9 avr. 19922 août 1994Valleylab, Inc.Endoscopic electrosurgical apparatus
US5334215 *13 sept. 19932 août 1994Chen Shih ChiehPincers having disposable end members
US5342359 *5 févr. 199330 août 1994Everest Medical CorporationBipolar coagulation device
US5342381 *11 févr. 199330 août 1994Everest Medical CorporationCombination bipolar scissors and forceps instrument
US5342393 *27 août 199230 août 1994Duke UniversityMethod and device for vascular repair
US5352222 *15 mars 19944 oct. 1994Everest Medical CorporationSurgical scissors with bipolar coagulation feature
US5354271 *5 août 199311 oct. 1994Voda Jan KVascular sheath
US5356408 *16 juil. 199318 oct. 1994Everest Medical CorporationBipolar electrosurgical scissors having nonlinear blades
US5366477 *17 oct. 199122 nov. 1994American Cyanamid CompanyActuating forces transmission link and assembly for use in surgical instruments
US5383897 *10 déc. 199324 janv. 1995Shadyside HospitalMethod and apparatus for closing blood vessel punctures
US5389098 *14 mai 199314 févr. 1995Olympus Optical Co., Ltd.Surgical device for stapling and/or fastening body tissues
US5389104 *3 août 199314 févr. 1995Symbiosis CorporationArthroscopic surgical instruments
US5391166 *9 oct. 199221 févr. 1995Hemostatic Surgery CorporationBi-polar electrosurgical endoscopic instruments having a detachable working end
US5391183 *16 août 199121 févr. 1995Datascope Investment CorpDevice and method sealing puncture wounds
US5403312 *22 juil. 19934 avr. 1995Ethicon, Inc.Electrosurgical hemostatic device
US5569243 *2 août 199429 oct. 1996Symbiosis CorporationDouble acting endoscopic scissors with bipolar cautery capability
US5779701 *27 avr. 199514 juil. 1998Symbiosis CorporationBipolar endoscopic surgical scissor blades and instrument incorporating the same
US5797958 *4 déc. 199625 août 1998Yoon; InbaeEndoscopic grasping instrument with scissors
US5810811 *4 avr. 199722 sept. 1998Ethicon Endo-Surgery, Inc.Electrosurgical hemostatic device
US5893863 *1 mai 199713 avr. 1999Yoon; InbaeSurgical instrument with jaws and movable internal hook member for use thereof
US6053933 *7 août 199725 avr. 2000Deutsches Zentrum Fur Luft- Und Raumfahrt E.V.Gripping unit for application in minimally invasive surgery
US6059783 *22 juin 19989 mai 2000Kirwan Surgical Products, Inc.Electro-surgical forceps which minimize or prevent sticking of tissue
US6193718 *10 juin 199827 févr. 2001Scimed Life Systems, Inc.Endoscopic electrocautery instrument
US6409728 *1 août 200025 juin 2002Sherwood Services AgRotatable bipolar forceps
US6419675 *3 sept. 199916 juil. 2002Conmed CorporationElectrosurgical coagulating and cutting instrument
US6443970 *24 janv. 20013 sept. 2002Ethicon, Inc.Surgical instrument with a dissecting tip
US6458128 *24 janv. 20011 oct. 2002Ethicon, Inc.Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6585735 *21 juil. 20001 juil. 2003Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US6620161 *24 janv. 200116 sept. 2003Ethicon, Inc.Electrosurgical instrument with an operational sequencing element
US6682528 *17 sept. 200227 janv. 2004Sherwood Services AgEndoscopic bipolar electrosurgical forceps
US6743229 *1 mars 20021 juin 2004Sherwood Services AgBipolar electrosurgical instrument for sealing vessels
US20020188294 *5 avr. 200212 déc. 2002Couture Gary M.Vessel sealer and divider
US20030018331 *25 juin 200223 janv. 2003Dycus Sean T.Vessel sealer and divider
USD295893 *25 sept. 198524 mai 1988Acme United CorporationDisposable surgical clamp
USD295894 *26 sept. 198524 mai 1988Acme United CorporationDisposable surgical scissors
USH1904 *14 mai 19973 oct. 2000Ethicon Endo-Surgery, Inc.Electrosurgical hemostatic method and device
USH2037 *14 mai 19972 juil. 2002David C. YatesElectrosurgical hemostatic device including an anvil
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US72526663 févr. 20047 août 2007Sherwood Services AgArterial hole closure apparatus
US76550072 févr. 2010Covidien AgMethod of fusing biomaterials with radiofrequency energy
US768680430 mars 2010Covidien AgVessel sealer and divider with rotating sealer and cutter
US768682721 oct. 200530 mars 2010Covidien AgMagnetic closure mechanism for hemostat
US770873519 juil. 20054 mai 2010Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US77226078 nov. 200625 mai 2010Covidien AgIn-line vessel sealer and divider
US774461529 juin 2010Covidien AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US775390929 avr. 200413 juil. 2010Covidien AgElectrosurgical instrument which reduces thermal damage to adjacent tissue
US77669103 août 2010Tyco Healthcare Group LpVessel sealer and divider for large tissue structures
US77714256 févr. 200610 août 2010Covidien AgVessel sealer and divider having a variable jaw clamping mechanism
US777603613 mars 200317 août 2010Covidien AgBipolar concentric electrode assembly for soft tissue fusion
US777603717 août 2010Covidien AgSystem and method for controlling electrode gap during tissue sealing
US77898787 sept. 2010Covidien AgIn-line vessel sealer and divider
US779902826 sept. 200821 sept. 2010Covidien AgArticulating bipolar electrosurgical instrument
US78112838 oct. 200412 oct. 2010Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US781987229 sept. 200626 oct. 2010Covidien AgFlexible endoscopic catheter with ligasure
US78287989 nov. 2010Covidien AgLaparoscopic bipolar electrosurgical instrument
US783768513 juil. 200523 nov. 2010Covidien AgSwitch mechanisms for safe activation of energy on an electrosurgical instrument
US78461587 déc. 2010Covidien AgApparatus and method for electrode thermosurgery
US78461617 déc. 2010Covidien AgInsulating boot for electrosurgical forceps
US785781218 déc. 200628 déc. 2010Covidien AgVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US78778521 févr. 2011Tyco Healthcare Group LpMethod of manufacturing an end effector assembly for sealing tissue
US787785319 sept. 20081 févr. 2011Tyco Healthcare Group LpMethod of manufacturing end effector assembly for sealing tissue
US78790351 févr. 2011Covidien AgInsulating boot for electrosurgical forceps
US788753515 févr. 2011Covidien AgVessel sealing wave jaw
US788753619 août 200915 févr. 2011Covidien AgVessel sealing instrument
US789687812 mars 20091 mars 2011Coviden AgVessel sealing instrument
US790982317 janv. 200622 mars 2011Covidien AgOpen vessel sealing instrument
US79188485 avr. 2011Maquet Cardiovascular, LlcTissue welding and cutting apparatus and method
US792271812 oct. 200612 avr. 2011Covidien AgOpen vessel sealing instrument with cutting mechanism
US792295312 avr. 2011Covidien AgMethod for manufacturing an end effector assembly
US793164926 avr. 2011Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US793505214 févr. 20073 mai 2011Covidien AgForceps with spring loaded end effector assembly
US794704124 mai 2011Covidien AgVessel sealing instrument
US795114931 mai 2011Tyco Healthcare Group LpAblative material for use with tissue treatment device
US795115031 mai 2011Covidien AgVessel sealer and divider with rotating sealer and cutter
US79553327 juin 2011Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US796396521 juin 2011Covidien AgBipolar electrosurgical instrument for sealing vessels
US80168279 oct. 200813 sept. 2011Tyco Healthcare Group LpApparatus, system, and method for performing an electrosurgical procedure
US80340521 nov. 201011 oct. 2011Covidien AgApparatus and method for electrode thermosurgery
US8038676 *27 avr. 200518 oct. 2011Erbe Elektromedizin GmbhElectrosurgical instrument
US80707466 déc. 2011Tyco Healthcare Group LpRadiofrequency fusion of cardiac tissue
US812374329 juil. 200828 févr. 2012Covidien AgMechanism for dividing tissue in a hemostat-style instrument
US812862430 mai 20066 mars 2012Covidien AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US814247327 mars 2012Tyco Healthcare Group LpMethod of transferring rotational motion in an articulating surgical instrument
US814748917 févr. 20113 avr. 2012Covidien AgOpen vessel sealing instrument
US816297315 août 200824 avr. 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US819243321 août 20075 juin 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US819747212 juin 2012Maquet Cardiovascular, LlcTissue welding and cutting apparatus and method
US819747910 déc. 200812 juin 2012Tyco Healthcare Group LpVessel sealer and divider
US819763315 mars 201112 juin 2012Covidien AgMethod for manufacturing an end effector assembly
US82111057 mai 20073 juil. 2012Covidien AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US822141617 juil. 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with thermoplastic clevis
US82359927 août 2012Tyco Healthcare Group LpInsulating boot with mechanical reinforcement for electrosurgical forceps
US823599324 sept. 20087 août 2012Tyco Healthcare Group LpInsulating boot for electrosurgical forceps with exohinged structure
US82360257 août 2012Tyco Healthcare Group LpSilicone insulated electrosurgical forceps
US82412825 sept. 200814 août 2012Tyco Healthcare Group LpVessel sealing cutting assemblies
US824128317 sept. 200814 août 2012Tyco Healthcare Group LpDual durometer insulating boot for electrosurgical forceps
US824128414 août 2012Covidien AgVessel sealer and divider with non-conductive stop members
US825199623 sept. 200828 août 2012Tyco Healthcare Group LpInsulating sheath for electrosurgical forceps
US82573524 sept. 2012Covidien AgBipolar forceps having monopolar extension
US825738715 août 20084 sept. 2012Tyco Healthcare Group LpMethod of transferring pressure in an articulating surgical instrument
US82679354 avr. 200718 sept. 2012Tyco Healthcare Group LpElectrosurgical instrument reducing current densities at an insulator conductor junction
US826793618 sept. 2012Tyco Healthcare Group LpInsulating mechanically-interfaced adhesive for electrosurgical forceps
US827744718 nov. 20092 oct. 2012Covidien AgSingle action tissue sealer
US829822816 sept. 200830 oct. 2012Coviden AgElectrosurgical instrument which reduces collateral damage to adjacent tissue
US829823230 oct. 2012Tyco Healthcare Group LpEndoscopic vessel sealer and divider for large tissue structures
US83035826 nov. 2012Tyco Healthcare Group LpElectrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US83035866 nov. 2012Covidien AgSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US831778728 août 200827 nov. 2012Covidien LpTissue fusion jaw angle improvement
US833376518 déc. 2012Covidien AgVessel sealing instrument with electrical cutting mechanism
US834894829 juil. 20108 janv. 2013Covidien AgVessel sealing system using capacitive RF dielectric heating
US836107128 août 200829 janv. 2013Covidien AgVessel sealing forceps with disposable electrodes
US836107219 nov. 201029 janv. 2013Covidien AgInsulating boot for electrosurgical forceps
US836670927 déc. 20115 févr. 2013Covidien AgArticulating bipolar electrosurgical instrument
US838275426 févr. 2013Covidien AgElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US839409512 janv. 201112 mars 2013Covidien AgInsulating boot for electrosurgical forceps
US839409612 mars 2013Covidien AgOpen vessel sealing instrument with cutting mechanism
US842550423 avr. 2013Covidien LpRadiofrequency fusion of cardiac tissue
US84546024 juin 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US846995621 juil. 200825 juin 2013Covidien LpVariable resistor jaw
US84699577 oct. 200825 juin 2013Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US848610720 oct. 200816 juil. 2013Covidien LpMethod of sealing tissue using radiofrequency energy
US849665616 janv. 200930 juil. 2013Covidien AgTissue sealer with non-conductive variable stop members and method of sealing tissue
US852389810 août 20123 sept. 2013Covidien LpEndoscopic electrosurgical jaws with offset knife
US853531225 sept. 200817 sept. 2013Covidien LpApparatus, system and method for performing an electrosurgical procedure
US854071111 juil. 200724 sept. 2013Covidien AgVessel sealer and divider
US85510881 avr. 20098 oct. 2013Applied Medical Resources CorporationElectrosurgical system
US855109130 mars 20118 oct. 2013Covidien AgVessel sealing instrument with electrical cutting mechanism
US85625981 avr. 200922 oct. 2013Applied Medical Resources CorporationElectrosurgical system
US856841131 mars 200929 oct. 2013Applied Medical Resources CorporationElectrosurgical system
US85684447 mars 201229 oct. 2013Covidien LpMethod of transferring rotational motion in an articulating surgical instrument
US85798941 avr. 200912 nov. 2013Applied Medical Resources CorporationElectrosurgical system
US859150616 oct. 201226 nov. 2013Covidien AgVessel sealing system
US859729631 août 20123 déc. 2013Covidien AgBipolar forceps having monopolar extension
US859729729 août 20063 déc. 2013Covidien AgVessel sealing instrument with multiple electrode configurations
US862300313 juil. 20127 janv. 2014Maquet Cardiovascular LlcApparatus and method for regulating tissue welder jaws
US862301723 juil. 20097 janv. 2014Covidien AgOpen vessel sealing instrument with hourglass cutting mechanism and overratchet safety
US86232769 févr. 20097 janv. 2014Covidien LpMethod and system for sterilizing an electrosurgical instrument
US86367619 oct. 200828 janv. 2014Covidien LpApparatus, system, and method for performing an endoscopic electrosurgical procedure
US864171315 sept. 20104 févr. 2014Covidien AgFlexible endoscopic catheter with ligasure
US864734127 oct. 200611 févr. 2014Covidien AgVessel sealer and divider for use with small trocars and cannulas
US866868919 avr. 201011 mars 2014Covidien AgIn-line vessel sealer and divider
US867911423 avr. 201025 mars 2014Covidien AgIncorporating rapid cooling in tissue fusion heating processes
US86966679 août 201215 avr. 2014Covidien LpDual durometer insulating boot for electrosurgical forceps
US873444319 sept. 200827 mai 2014Covidien LpVessel sealer and divider for large tissue structures
US874090120 janv. 20103 juin 2014Covidien AgVessel sealing instrument with electrical cutting mechanism
US876474828 janv. 20091 juil. 2014Covidien LpEnd effector assembly for electrosurgical device and method for making the same
US878441728 août 200822 juil. 2014Covidien LpTissue fusion jaw angle improvement
US879527428 août 20085 août 2014Covidien LpTissue fusion jaw angle improvement
US88522288 févr. 20127 oct. 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US88585544 juin 201314 oct. 2014Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US888276624 janv. 200611 nov. 2014Covidien AgMethod and system for controlling delivery of energy to divide tissue
US889463812 juin 201225 nov. 2014Maquet Cardiovascular LlcTissue welding and cutting apparatus and method
US889888826 janv. 20122 déc. 2014Covidien LpSystem for manufacturing electrosurgical seal plates
US89159101 avr. 200923 déc. 2014Applied Medical Resources CorporationElectrosurgical system
US893997327 nov. 201327 janv. 2015Covidien AgSingle action tissue sealer
US894512510 sept. 20103 févr. 2015Covidien AgCompressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US894512627 nov. 20133 févr. 2015Covidien AgSingle action tissue sealer
US894512723 janv. 20143 févr. 2015Covidien AgSingle action tissue sealer
US89615036 janv. 201424 févr. 2015Maquet Cardiovascular LlcApparatus and method for regulating tissue welder jaws
US896831425 sept. 20083 mars 2015Covidien LpApparatus, system and method for performing an electrosurgical procedure
US902304323 sept. 20085 mai 2015Covidien LpInsulating mechanically-interfaced boot and jaws for electrosurgical forceps
US90284938 mars 201212 mai 2015Covidien LpIn vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US909534718 sept. 20084 août 2015Covidien AgElectrically conductive/insulative over shoe for tissue fusion
US910767219 juil. 200618 août 2015Covidien AgVessel sealing forceps with disposable electrodes
US91138989 sept. 201125 août 2015Covidien LpApparatus, system, and method for performing an electrosurgical procedure
US911390329 oct. 201225 août 2015Covidien LpEndoscopic vessel sealer and divider for large tissue structures
US911390520 juin 201325 août 2015Covidien LpVariable resistor jaw
US911394022 févr. 201225 août 2015Covidien LpTrigger lockout and kickback mechanism for surgical instruments
US91444556 juin 201129 sept. 2015Just Right Surgical, LlcLow power tissue sealing device and method
US914932325 janv. 20106 oct. 2015Covidien AgMethod of fusing biomaterials with radiofrequency energy
US91987172 févr. 20151 déc. 2015Covidien AgSingle action tissue sealer
US924798821 juil. 20152 févr. 2016Covidien LpVariable resistor jaw
US92655522 déc. 201423 févr. 2016Covidien LpMethod of manufacturing electrosurgical seal plates
US93205636 févr. 201226 avr. 2016Applied Medical Resources CorporationElectrosurgical instruments and connections thereto
US20050033359 *3 févr. 200410 févr. 2005Dycus Sean T.Arterial hole closure apparatus
US20050101952 *17 août 200412 mai 2005Lands Michael J.Vessel sealing wave jaw
US20050107785 *29 sept. 200419 mai 2005Dycus Sean T.Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20050113826 *2 sept. 200426 mai 2005Johnson Kristin D.Vessel sealing instrument with electrical cutting mechanism
US20050113827 *21 oct. 200426 mai 2005Dumbauld Patrick L.Bipolar forceps having monopolar extension
US20050119655 *17 nov. 20042 juin 2005Moses Michael C.Open vessel sealing instrument with cutting mechanism
US20050222611 *25 mars 20056 oct. 2005Sutter Medizintechnik GmbhBipolar double-hinged instrument
US20060052777 *9 sept. 20049 mars 2006Dumbauld Patrick LForceps with spring loaded end effector assembly
US20060052778 *19 juil. 20059 mars 2006Chapman Troy JIncorporating rapid cooling in tissue fusion heating processes
US20060064086 *13 sept. 200523 mars 2006Darren OdomBipolar forceps with multiple electrode array end effector assembly
US20060074417 *3 oct. 20056 avr. 2006Cunningham James SSpring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US20060079890 *22 sept. 200513 avr. 2006Paul GuerraBilateral foot jaws
US20060084973 *12 oct. 200520 avr. 2006Dylan HushkaMomentary rocker switch for use with vessel sealing instruments
US20060089670 *21 oct. 200527 avr. 2006Dylan HushkaMagnetic closure mechanism for hemostat
US20060129146 *6 févr. 200615 juin 2006Sherwood Services AgVessel sealer and divider having a variable jaw clamping mechanism
US20060161150 *16 févr. 200620 juil. 2006Keppel David SElectrosurgical electrode having a non-conductive porous ceramic coating
US20060167452 *17 janv. 200627 juil. 2006Moses Michael COpen vessel sealing instrument
US20060189981 *21 févr. 200624 août 2006Dycus Sean TVessel sealer and divider
US20060217697 *25 mars 200528 sept. 2006Liming LauApparatus and method for regulating tissue welder jaws
US20060217706 *25 mars 200528 sept. 2006Liming LauTissue welding and cutting apparatus and method
US20060217709 *30 mai 200628 sept. 2006Sherwood Services AgElectrosurgical instrument that directs energy delivery and protects adjacent tissue
US20060224158 *31 mars 20055 oct. 2006Darren OdomElectrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20060264922 *24 juil. 200623 nov. 2006Sartor Joe DMolded insulating hinge for bipolar instruments
US20060264931 *29 avr. 200423 nov. 2006Chapman Troy JElectrosurgical instrument which reduces thermal damage to adjacent tissue
US20070043353 *27 oct. 200622 févr. 2007Dycus Sean TVessel sealer and divider for use with small trocars and cannulas
US20070078456 *29 sept. 20065 avr. 2007Dumbauld Patrick LIn-line vessel sealer and divider
US20070078458 *29 sept. 20065 avr. 2007Dumbauld Patrick LInsulating boot for electrosurgical forceps
US20070078459 *29 sept. 20065 avr. 2007Sherwood Services AgFlexible endoscopic catheter with ligasure
US20070106295 *8 nov. 200610 mai 2007Garrison David MInsulating boot for electrosurgical forceps
US20070106297 *8 nov. 200610 mai 2007Dumbauld Patrick LIn-line vessel sealer and divider
US20070142833 *18 déc. 200621 juin 2007Dycus Sean TVessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US20070156139 *13 mars 20035 juil. 2007Schechter David ABipolar concentric electrode assembly for soft tissue fusion
US20070156140 *18 déc. 20065 juil. 2007Ali BailyMethod of fusing biomaterials with radiofrequency energy
US20070173814 *9 nov. 200626 juil. 2007David HixsonVessel sealer and divider for large tissue structures
US20070213706 *7 mai 200713 sept. 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213707 *7 mai 200713 sept. 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213708 *7 mai 200713 sept. 2007Sherwood Services AgBipolar forceps having monopolar extension
US20070213712 *10 mai 200713 sept. 2007Buysse Steven PBipolar electrosurgical instrument for sealing vessels
US20070255279 *7 mai 20071 nov. 2007Buysse Steven PElectrosurgical instrument which reduces collateral damage to adjacent tissue
US20070260235 *5 mai 20068 nov. 2007Sherwood Services AgApparatus and method for electrode thermosurgery
US20070260241 *4 mai 20068 nov. 2007Sherwood Services AgOpen vessel sealing forceps disposable handswitch
US20070260242 *10 juil. 20078 nov. 2007Dycus Sean TVessel sealer and divider
US20070293858 *27 avr. 200520 déc. 2007Klaus FischerElectrosurgical Instrument
US20080009860 *7 juil. 200610 janv. 2008Sherwood Services AgSystem and method for controlling electrode gap during tissue sealing
US20080015575 *14 juil. 200617 janv. 2008Sherwood Services AgVessel sealing instrument with pre-heated electrodes
US20080021278 *14 mars 200724 janv. 2008Leonard Robert FSurgical device with removable end effector
US20080021450 *18 juil. 200624 janv. 2008Sherwood Services AgApparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080058802 *29 août 20066 mars 2008Sherwood Services AgVessel sealing instrument with multiple electrode configurations
US20080091189 *17 oct. 200617 avr. 2008Tyco Healthcare Group LpAblative material for use with tissue treatment device
US20080114356 *16 janv. 200815 mai 2008Johnson Kristin DVessel Sealing Instrument
US20080195093 *14 févr. 200714 août 2008Tyco Healthcare Group LpVessel sealing instrument with electrical cutting mechanism
US20080215051 *27 mars 20084 sept. 2008Buysse Steven PLaparoscopic Bipolar Electrosurgical Instrument
US20080294159 *23 mai 200827 nov. 2008Kazuya AkahoshiHigh frequency surgical instrument
US20080312653 *29 juil. 200818 déc. 2008Arts Gene HMechanism for Dividing Tissue in a Hemostat-Style Instrument
US20090012520 *19 sept. 20088 janv. 2009Tyco Healthcare Group LpVessel Sealer and Divider for Large Tissue Structures
US20090018535 *26 sept. 200815 janv. 2009Schechter David AArticulating bipolar electrosurgical instrument
US20090062794 *16 sept. 20085 mars 2009Buysse Steven PElectrosurgical Instrument Which Reduces Collateral Damage to Adjacent Tissue
US20090088738 *17 sept. 20082 avr. 2009Tyco Healthcare Group LpDual Durometer Insulating Boot for Electrosurgical Forceps
US20090088741 *23 sept. 20082 avr. 2009Tyco Healthcare Group LpSilicone Insulated Electrosurgical Forceps
US20090088744 *12 sept. 20082 avr. 2009Tyco Healthcare Group LpInsulating Boot for Electrosurgical Forceps With Thermoplastic Clevis
US20090088745 *22 sept. 20082 avr. 2009Tyco Healthcare Group LpTapered Insulating Boot for Electrosurgical Forceps
US20090088746 *23 sept. 20082 avr. 2009Tyco Healthcare Group LpInsulating Mechanically-Interfaced Boot and Jaws for Electrosurgical Forceps
US20090088747 *23 sept. 20082 avr. 2009Tyco Healthcare Group LpInsulating Sheath for Electrosurgical Forceps
US20090088748 *24 sept. 20082 avr. 2009Tyco Healthcare Group LpInsulating Mesh-like Boot for Electrosurgical Forceps
US20090088749 *24 sept. 20082 avr. 2009Tyco Heathcare Group LpInsulating Boot for Electrosurgical Forceps with Exohinged Structure
US20090088750 *24 sept. 20082 avr. 2009Tyco Healthcare Group LpInsulating Boot with Silicone Overmold for Electrosurgical Forceps
US20090112206 *6 janv. 200930 avr. 2009Dumbauld Patrick LBipolar Forceps Having Monopolar Extension
US20090131934 *26 janv. 200921 mai 2009Covidion AgElectrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US20090149853 *16 janv. 200911 juin 2009Chelsea ShieldsTissue Sealer with Non-Conductive Variable Stop Members and Method of Sealing Tissue
US20090149854 *10 févr. 200911 juin 2009Sherwood Services AgSpring Loaded Reciprocating Tissue Cutting Mechanism in a Forceps-Style Electrosurgical Instrument
US20090187188 *23 juil. 2009Sherwood Services AgCombined energy level button
US20090198233 *28 janv. 20096 août 2009Tyco Healthcare Group LpEnd Effector Assembly for Electrosurgical Device and Method for Making the Same
US20090209957 *9 févr. 200920 août 2009Tyco Healthcare Group LpMethod and System for Sterilizing an Electrosurgical Instrument
US20090248007 *1 avr. 20091 oct. 2009Applied Medical Resources CorporationElectrosurgical system
US20090248013 *1 avr. 20091 oct. 2009Applied Medical Resources CorporationElectrosurgical system
US20090248019 *31 mars 20091 oct. 2009Applied Medical Resources CorporationElectrosurgical system
US20090306660 *10 déc. 2009Johnson Kristin DVessel Sealing Instrument
US20100042100 *19 août 200918 févr. 2010Tetzlaff Philip MVessel Sealing Instrument
US20100042140 *15 août 200818 févr. 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100042142 *15 août 200818 févr. 2010Cunningham James SMethod of Transferring Pressure in an Articulating Surgical Instrument
US20100049187 *21 août 200825 févr. 2010Carlton John DElectrosurgical Instrument Including a Sensor
US20100057081 *4 mars 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057082 *4 mars 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057083 *28 août 20084 mars 2010Tyco Healthcare Group LpTissue Fusion Jaw Angle Improvement
US20100057084 *28 août 20084 mars 2010TYCO Healthcare Group L.PTissue Fusion Jaw Angle Improvement
US20100063500 *5 sept. 200811 mars 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100069953 *16 sept. 200818 mars 2010Tyco Healthcare Group LpMethod of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US20100076427 *25 sept. 200825 mars 2010Tyco Healthcare Group LpSeal and Separate Algorithm
US20100076430 *25 mars 2010Tyco Healthcare Group LpElectrosurgical Instrument Having a Thumb Lever and Related System and Method of Use
US20100076431 *25 sept. 200825 mars 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100076432 *25 mars 2010Tyco Healthcare Group LpApparatus, System and Method for Performing an Electrosurgical Procedure
US20100087816 *7 oct. 20088 avr. 2010Roy Jeffrey MApparatus, system, and method for performing an electrosurgical procedure
US20100087818 *8 avr. 2010Tyco Healthcare Group LpMethod of Transferring Rotational Motion in an Articulating Surgical Instrument
US20100094286 *9 oct. 200815 avr. 2010Tyco Healthcare Group LpApparatus, System, and Method for Performing an Electrosurgical Procedure
US20100100122 *20 oct. 200822 avr. 2010Tyco Healthcare Group LpMethod of Sealing Tissue Using Radiofrequency Energy
US20100130971 *25 janv. 201027 mai 2010Covidien AgMethod of Fusing Biomaterials With Radiofrequency Energy
US20100130977 *18 nov. 200927 mai 2010Covidien AgSingle Action Tissue Sealer
US20100145334 *10 déc. 200810 juin 2010Tyco Healthcare Group LpVessel Sealer and Divider
US20100204697 *12 août 2010Dumbauld Patrick LIn-Line Vessel Sealer and Divider
US20100331839 *10 sept. 201030 déc. 2010Schechter David ACompressible Jaw Configuration with Bipolar RF Output Electrodes for Soft Tissue Fusion
US20110004209 *7 sept. 20106 janv. 2011Kate LawesBipolar Forceps having Monopolar Extension
US20110018164 *6 oct. 201027 janv. 2011Sartor Joe DMolded Insulating Hinge for Bipolar Instruments
US20110046439 *21 août 200924 févr. 2011Maquet Cardiovascular LlcCleaning system for imaging devices
US20110238067 *29 sept. 2011Moses Michael COpen vessel sealing instrument with cutting mechanism
US20120130367 *24 mai 2012Tyco Healthcare Group LpApparatus for Performing an Electrosurgical Procedure
USD64924922 nov. 2011Tyco Healthcare Group LpEnd effectors of an elongated dissecting and dividing instrument
USD68022016 avr. 2013Coviden IPSlider handle for laparoscopic device
USD74825929 déc. 201426 janv. 2016Applied Medical Resources CorporationElectrosurgical instrument
USRE448347 déc. 20128 avr. 2014Covidien AgInsulating boot for electrosurgical forceps
DE102004031928A1 *23 juin 200419 janv. 2006Aesculap Ag & Co. KgSurgical instrument, has electrically conductive component arranged in cavity of electrically insulated component, closed in area of opening of cavity, and forming textured contact surface in area of closed opening
EP1561426A1 *2 févr. 200510 août 2005Sherwood Services AGArterial hole closure apparatus
EP1968471A2 *20 déc. 200617 sept. 2008BARRx Medical, Inc.Auto-aligning ablating device and method of use
EP1968471B1 *20 déc. 200623 mars 2016Covidien LPAuto-aligning ablating device
WO2005122934A1 *21 juin 200429 déc. 2005Consorzio I.P.O.Te.S.IElectrosurgical apparatus
WO2006104836A2 *24 mars 20065 oct. 2006Origin Medsystems, Inc.Apparatus for regulating tissue welder jaws
WO2006104836A3 *24 mars 20064 janv. 2007Origin Medsystems IncApparatus for regulating tissue welder jaws
Classifications
Classification aux États-Unis606/50, 606/48, 606/46, 606/207, 606/208
Classification internationaleA61B18/14, A61B19/00
Classification coopérativeA61B2018/00083, A61B2018/00666, A61B2018/0063, A61B18/1445, A61B2090/034
Classification européenneA61B18/14F2
Événements juridiques
DateCodeÉvénementDescription
23 sept. 2002ASAssignment
Owner name: SHERWOOD SERVICES AG, SWITZERLAND
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUYSSE, STEVEN P.;LAWES, KATE R.;SCHMALTZ, DALE F.;AND OTHERS;REEL/FRAME:013338/0297;SIGNING DATES FROM 20010807 TO 20020903