US20030130719A1 - Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium - Google Patents

Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium Download PDF

Info

Publication number
US20030130719A1
US20030130719A1 US10/036,445 US3644502A US2003130719A1 US 20030130719 A1 US20030130719 A1 US 20030130719A1 US 3644502 A US3644502 A US 3644502A US 2003130719 A1 US2003130719 A1 US 2003130719A1
Authority
US
United States
Prior art keywords
stent
main
bifurcated
bifurcated stent
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/036,445
Other versions
US7037329B2 (en
Inventor
Eric Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/036,445 priority Critical patent/US7037329B2/en
Publication of US20030130719A1 publication Critical patent/US20030130719A1/en
Application granted granted Critical
Publication of US7037329B2 publication Critical patent/US7037329B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2493Transmyocardial revascularisation [TMR] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0037Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in height or in length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Definitions

  • the present invention contemplates a bifurcated stent for supplying oxygenated blood retrogradely from the left ventricle to the myocardium through the coronary sinus.
  • the percutaneously-delivered stent directs blood from the left ventricle to the coronary sinus.
  • blood is directed retrogradely through the side limb of the present invention to the heart tissue.
  • Retrograde perfusion of the heart through the coronary sinus has long been known for treating end-stage heart disease.
  • Previous methods, among others, have attempted to connect the aorta to the coronary sinus during open-heart surgery using a graft of the jugular vein, the internal mammary artery, or the carotid artery.
  • an occlusion balloon has been used for a short period of time.
  • Nelson et al. U.S. Pat. No. 5,824,071, 1998) discloses an apparatus and method for providing retrograde perfusion directly from the left ventricle to the coronary sinus.
  • Nelson requires a pressure sensitive valve that prevents pressure build-up inside the coronary sinus from rising above 60 mm Hg, Nelson does not teach how such a valve may be constructed. Nelson does not teach or describe the features or components of such a pressure sensitive valve. Further, it is unlikely that such a device may be introduced percutaneously and will likely require invasive surgery.
  • Patel et al. conducted an experiment for percutaneous arterialization of the coronary sinus using a stent. See Patel et al., Percutaneous Transmyocardial Intracardiac Retroperfusion Shunts: Technical Feasibility in a Canine Model, JVIR 2000, 11:382-390.
  • the stent employed by Patel, et al. results in a significant shunting of oxygenated blood from the left ventricle to the right atrium (hereinafter “left-to-right shunt”).
  • the present invention incorporates by reference application Ser. No. 09/796,528, titled A STENT FOR ARTERIALIZATION OF CORONARY SINUS AND RETROGRADE PERFUSION OF THE MYOCARDIUM, filed Mar. 2, 2001, and application Ser. No. ______, TWO-PIECE STENT COMBINATION FOR PERCUTANEOUS ARTERIALIZATION OF THE CORONARY SINUS AND RETROGRADE PERFUSION OF THE MYOCARDIUM, filed Jan. 7, 2002.
  • the present invention includes a main covered stent and a side limb, generally contemplating a Y or a T shaped bifurcated stent.
  • the bifurcated stent has a main covered stent and a side limb.
  • the main covered stent preferably has a tubular shape with a passageway therethrough and has a leading end and a trailing end.
  • the main covered stent preferably has a smaller cross-sectional area or passageway at the leading end and the trailing end in comparison to the remainder of the main covered stent.
  • the main covered stent has a main stent, which is covered with a graft.
  • the leading end portion of the main stent may not be covered.
  • the main covered stent also has an opening about the middle portion of its length.
  • the side limb of the bifurcated stent is preferably either attached about the opening or fits within the opening to complete the T or Y shape.
  • the side limb is in contact with the main covered stent about said opening.
  • the side limb has a side stent and a cuff that is optional.
  • the cuff when present, is preferably attached to the graft of the main covered stent or is continuous with the main covered stent.
  • a side stent may or may not be attached (e.g., pre-attached or attached by being woven in a continuous manner to the main stent or by being stitched to the main stent) to the main stent.
  • the side limb which has a side stent and an optional cuff, provides a passageway for blood flow retrogradely to the myocardium.
  • the side limb may include both a cuff and a side stent, wherein the side stent is not attached to the main stent.
  • the side stent is delivered to fit within the cuff.
  • the side limb may include the side stent but not the cuff, and the side stent is pre-attached to the main stent by being stitched or weaved (in a continuous fashion) to the main stent.
  • both the main covered stent and the side limb are delivered at the same time.
  • the side limb only has a side stent without the cuff, wherein the side stent is not attached to the main stent.
  • the side stent is delivered to fit within the opening.
  • the main covered stent and the side limb may be compressed to fit within a catheter for percutaneous delivery into desired position.
  • the main covered stent may self expand to form a friction fit within the coronary sinus.
  • the leading end is preferably positioned in the left ventricle, and the majority of the main covered stent fits substantially within the coronary sinus.
  • the trailing end of the main covered stent may be in the right atrium or within the coronary sinus, preferably near the coronary ostium.
  • the opening or side limb is preferably aligned to face the upstream portion of the coronary sinus. All other lengths and placements preferably correlate to this placement.
  • the side limb is positioned so that it preferably fits within the upstream portion of the coronary sinus and opens toward the myocardium.
  • the opening is preferably marked with a ring made of radio-opaque material, such as platinum or gold.
  • the size of the passageway at the leading end controls the amount of blood flowing into the main covered stent; the size of the passageway at the trailing end controls the amount of blood flowing into the right atrium (“left-to-right shunt”); and the size of passageway of the side limb controls the amount of blood flowing into the upstream portion of the coronary sinus.
  • the sizes of the three passageways work together to prevent the coronary sinus pressure from rising above a suitable level, e.g., of about 50 mm Hg or in the alternative of about half systemic pressure, while at the same time avoiding excessive left-to-right shunting.
  • the present invention also contemplates a percutaneous method of delivery of the bifurcated stent of the present invention to allow blood flow from the left ventricle to the coronary sinus.
  • FIG. 1A shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is not attached to the main stent.
  • FIG. 1B shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is attached to the main stent and the cuff is not present in the side limb.
  • FIG. 1C shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is not attached to the main stent and the cuff is not present in the side limb.
  • FIG. 2 represents a preferred placement of the bifurcated stent according to the present invention in a schematic diagram of the heart.
  • FIG. 3 shows an apparatus for percutaneously delivering the bifurcated stent of the present invention.
  • FIG. 4 shows an alternative embodiment of a bifurcated stent having flaring ends with constrictions near the trailing end and the leading end.
  • FIG. 1A A preferred embodiment of a bifurcated stent 101 according to the present invention is illustrated in FIG. 1A.
  • the bifurcated stent 101 generally has a main covered stent 107 and a side limb 132 .
  • the main covered stent 107 generally has a tubular shape with a passageway therethrough, having a leading end 103 and a trailing end 105 .
  • the main covered stent 107 may have a slight bend or may otherwise be straight along its extent.
  • the main covered stent 107 generally refers to a combination of an underlying main stent 113 (bare stent) and a graft 111 (covering).
  • the graft 111 is preferably inside the main stent 113 , but may also be outside the main stent 113 . In another embodiment, the stent 113 may be sandwiched between an outer graft and an inner graft (not pictured).
  • the graft 111 is made from any of a number of commercially available materials such as PET, PTFE, or other suitable material as known in the art.
  • the combination of the graft 111 and the main stent 113 will be referred to as the main covered stent 107 .
  • the bifurcated stent 101 also has a side limb 132 , which forms the short limb of the Y or T shaped stent.
  • the side limb 132 includes a side stent 131 and an optional cuff 123 .
  • the cuff 123 when present, is attached to the graft 111 of the main covered stent 107 .
  • the side stent 131 which is always present, however, may or may not be attached to the main stent 113 of the main covered stent 107 .
  • the side stent 131 may be attached to the main stent 113 by stitching or weaving. In an alternative embodiment, the side sent may also be attached by being a continuous weave of the main stent.
  • FIGS. 1A, 1B, and 1 C Various preferred embodiments are shown in FIGS. 1A, 1B, and 1 C.
  • the side limb 132 includes both the cuff 123 and the side stent 131 .
  • the side stent 131 is not attached to the main stent 113 of the main covered stent 107 .
  • the main covered stent 107 is first delivered to fit substantially within the coronary sinus, with the opening 125 facing the upstream portion of the coronary sinus. After delivering the main covered stent 107 , the side stent 131 is delivered to fit within the cuff 123 .
  • the side stent 131 may also optionally fit within the opening 125 .
  • the side limb 147 includes the side stent 143 but does not contain a cuff.
  • the side stent 143 is attached to the main stent 148 , e.g., by being connected or stitched or by being a continuous weave with the main stent 148 .
  • the side stent 143 is preferably pre-attached, but may optionally be attached after delivery.
  • the side stent 143 in this embodiment is relatively short and ranges in length from about 0.25 cm to about 1.0 cm.
  • the main covered stent 145 and the side limb 147 are delivered simultaneously since they are attached to form a single unit.
  • the side limb 147 is preferably delivered to face the retrograde portion of the coronary sinus.
  • the portion of the main stent 148 near the leading end preferably about 0.5 cm in length, is not covered with the graft 149 .
  • the side limb 156 includes only the side stent 151 . There is no cuff in this embodiment. Furthermore, the side limb 156 is not attached to the main stent 155 of the main covered stent 158 . In this embodiment, the main covered stent 158 is first delivered with the opening 154 facing the upstream portion of the coronary sinus. Because there is no cuff as in FIG. 1A, the side stent 151 is then positioned to fit within the opening 154 . In FIGS. 1 A- 1 C, the side limbs are in contact with the main covered stent about said opening. Other embodiments and variations, not specifically disclosed but obvious to one of ordinary skill in the art, are also contemplated in the present invention. Thus, FIGS. 1 A- 1 C as preferred embodiments are not meant to be exhaustive or limiting.
  • the opening 125 is preferably circular in shape and is located in the main covered stent 107 about the mid portion along its length. (The length between the leading end 103 and the opening 125 is preferably chosen to represent the distance between the left ventricle and the coronary sinus.)
  • the opening 125 is preferably lined with a ring 121 , which is preferably made of radio-opaque material, such as platinum or gold, to facilitate placement during percutaneous delivery.
  • the cuff 123 is made of the similar material as the graft 111 discussed above.
  • the cuff 123 has a constant cross-sectional diameter equal to that of the opening 125 .
  • the cross-sectional diameter of the cuff 123 varies along its length.
  • the cross-sectional diameter varies along its length.
  • the main covered stent 107 generally has the smallest cross-sectional diameters (or passageway) at the trailing end 105 and at the leading end 103 .
  • the cross-sectional diameter of the main covered stent 107 increases until it reaches a maximum diameter.
  • the maximum diameter may continue, may thereafter increase or decrease, but will eventually decrease down toward the leading end 103 .
  • the main covered stent 107 has a shape that tapers in cross-sectional diameter toward the trailing end 105 and toward the leading end 103 .
  • the length of the main covered stent 107 from the trailing end 105 to the leading end 103 is preferably from about 2 cm to about 6 cm, and more preferably from about 2 cm to about 5 cm. More particularly, the length of the main covered stent 107 from the trailing end 105 to the opening 125 is preferably from about 1 cm to about 4 cm, and more preferably about 2 cm. The length of the main covered stent 107 from the leading end 103 to the opening 125 is preferably from about 0.5 cm to about 3 cm in length, and more preferably about 1 cm.
  • the trailing end 105 has a diameter of from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm.
  • the diameter of the passageway at the leading end 103 is preferably from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm.
  • the opening 125 also has a cross-sectional diameter of from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm.
  • the cross-sectional diameter of the side limb 132 may either be constant or may vary along its length. In the embodiment shown in FIG. 1A, the cross-sectional diameter of the side limb 132 is approximately the same as the cross-sectional diameter of the opening 125 .
  • the side limb 132 may include a side stent 131 , which may or may not be attached to the main stent 113 .
  • a side stent 131 which may or may not be attached to the main stent 113 .
  • the side stent 143 is attached (by being connected, e.g., stitched to, or by being a continuous weave with) the main stent 148 , both the side limb 147 and the main covered stent 145 are allowed to expand after delivery.
  • the side limb 147 is positioned to point toward the retrograde portion of the coronary sinus.
  • the attached side stent 143 is from about 0.25 cm to about 1.0 cm in length.
  • the side stent 131 or 151 which is not attached to the main stent 113 or 155 , is preferably from about 0.5 cm to about 2 cm in length.
  • the side stent 131 is made preferably of surgical grade stainless steel or nitinol in woven design, and may be of any other configuration or material as known in the art or as commercially available.
  • the side stent 131 also has a tubular shape with a passageway therethrough.
  • the side stent 131 has a cross-sectional diameter after expansion of preferably from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm.
  • the cuff 123 is optional, it is advantageous in that it allows for a greater margin of error in inserting the side stent 131 into the retrograde portion of the coronary sinus.
  • the cuff 123 allows the side stent 131 to be inserted in a more forgiving manner should the opening 125 not be aligned perfectly with the retrograde portion of the coronary sinus.
  • the side stent 131 may protrude through opening 125 as a bare stent without the cuff 123 .
  • the main stent 113 and side stent 131 are preferably made of a flexible material that can withstand bending without kinking to allow fluid passageway therethrough.
  • the main stent 113 and side stent 131 also allow compression and expansion cross-sectionally.
  • a number of suitable commercially available stents with these desired characteristics may be employed in practicing the present invention.
  • Metallic stents as well as non-metallic stents may be used in the construction.
  • Non-metallic stents, for example, may be made of a suitable plastic material. Suitable designs include various wire mesh designs and weave configurations as known in the art.
  • the main stent 113 and side stent 131 may have a coiled construction as known in the art.
  • the heart 200 generally has a left ventricle 202 , a left atrium 206 , a right ventricle 222 , and a right atrium 210 .
  • the left ventricle 202 is primarily responsible for delivering oxygenated blood to the body.
  • the left atrium 206 receives oxygenated blood from the lungs, which is then delivered to the left ventricle 202 .
  • the right atrium 210 is primarily responsible for receiving deoxygenated blood from the body. Deoxygenated blood then flows into the right ventricle 222 before being sent to the lungs for oxygenation.
  • blood from the coronary arteries normally drains to the coronary sinus 218 and into the right atrium 210 .
  • the coronary ostium 226 connects the right atrium 210 to the coronary sinus 218 .
  • the bifurcated stent 102 which is compressed onto a catheter 143 and covered by a retractable sheath 141 , is introduced and placed into position before removing the sheath to expose the bifurcated stent 101 .
  • the method used by Patel et al. may be employed in delivering the stent according to present invention.
  • Patel et al. Percutaneous Transmyocardial Intracardiac Retroperfusion Shunts: Technical Feasibility In a Canine Model, JVIR 2000, 11:382-390.
  • Patel, et al. modifies the stent delivery method as described by Rosch, et al. in Rosch, et al., Coaxial Catheter, Needle System for Transjugular Portal Vein Entrance, JVIR, Vol. 4, No. 1, pp. 145-147, 1993.
  • a sheath is introduced into the jugular vein percutaneously, through which the coronary sinus 218 is catheterized and a wire is introduced.
  • a stiff needle guide combination is passed over the wire as known in the art.
  • the needle guide is aimed at the left ventricle 202 (marked with a percutaneously introduced pigtail catheter) and pierced through the coronary sinus wall into the left ventricle 202 .
  • a guide wire is passed into the aorta (not pictured) and the needle guide is removed to leave a hole 301 .
  • the hole 301 may be widened with a balloon catheter. The hole punctured allows for the main covered stent 107 to fit therebetween, and therefore blood flows from the left ventricle 202 into the passageway of the main covered stent 107 .
  • Delivery involves placing the bifurcated stent 101 within a retractable sheath 141 as seen in FIG. 3 around catheter 143 .
  • Catheter 143 also has a tip 145 which is guided by the guide wire 147 .
  • the retractable sheath 141 of the catheter 143 is removed, and the bifurcated stent 101 is allowed to expand, if the stent 101 is a self-expanding stent.
  • the catheter 143 is preferably rotated about the guide wire 147 to align the opening or the ring 121 with the upstream portion of the coronary sinus 218 .
  • a catheter placed in the coronary sinus 218 for contrast injection may aid in aligning the ring 121 with the coronary sinus 218 .
  • the opening 125 is bordered by the ring 121 , and the ring 121 is made of radio-opaque material, such as platinum or gold, to aide in the alignment of the opening 125 with the coronary sinus 218 .
  • the ring 121 is aligned with the opaque or marked element in the upstream portion of the coronary sinus 218 .
  • blood flow will open the cuff 123 into the upstream portion of the coronary sinus 218 for alignment with the coronary sinus 218 .
  • the cuff 123 is then reinforced with a side stent 131 , if the side stent 131 is not already attached to the main stent 113 .
  • the opening 125 or the side limb 132 is preferably aligned with the retrograde portion of the coronary sinus 218 as accurately as possible.
  • an additional extension stent (not pictured) as known in the art may be coupled to the main covered stent 107 at the leading end 103 so that the leading end 103 will be located within the left ventricle 202 .
  • the retractable sheath 141 is pulled back, and the bifurcated stent 101 is allowed to expand.
  • the main covered stent 113 (see FIG. 1) and/or the side stent 131 is preferably self expanding, which expands upon introduction into the body. If the stent is not self expanding or has not fully expanded, a balloon catheter as known in the art may be used to expand the main covered stent 107 of the invention.
  • the leading end 103 is positioned preferably within the left ventricle 202 . If the leading end 103 is not in the left ventricle 202 , an additional extension stent (not pictured), as discussed above, may be used to further elongate the leading end 103 portion of the stent 113 .
  • the main covered stent 107 is positioned to lie primarily within the coronary sinus 218 .
  • the trailing end 105 is preferably placed within the right atrium 210 . If the main covered stent 107 is too short for the trailing end 105 to reach the right atrium 210 , an extension (not pictured) as known in the art may be used.
  • the main covered stent 107 may be within the coronary sinus 218 , preferably near the coronary ostium 226 .
  • a guide wire with radio-opaque marking every 1 cm may be used to measure the various relevant distances between the left ventricle 202 and the coronary ostium 226 .
  • the trailing end 105 may be positioned within the coronary sinus 218 .
  • the main covered stent 107 expands after release from the retractable sheath 141 , it expands to form a friction fit within the inner wall of the coronary sinus 218 .
  • This friction fit keeps the main covered stent 107 stationary to prevent axial rotation and migration and therefore keeps the ring 121 or the side limb 132 in alignment with the retrograde portion of the coronary sinus 218 .
  • the graft 111 of the main covered stent 107 directs blood flowing into the coronary sinus to flow through the passageway at the trailing end 105 or through the passageway of the side limb 132 . Some amount of blood in the main covered stent may also flow into the left ventricle through the leading end 103 .
  • the amount of blood flow through the side limb 132 is generally inversely related to the amount of left-to-right shunting. Blood flowing from the left ventricle 202 into the main covered stent 107 flows out through the opening 125 and the side limb 132 to provide retrograde perfusion to the myocardium.
  • the size of the diameter of the passageway at the trailing end 105 influences the amount of shunt. For example, decreasing the size of the passageway at the trailing end 105 increases the retrograde perfusion of the myocardium. If the flow rate to the passageway at the trailing end 105 is too great, the heart tissue would not adequately be perfused. Too small a diameter, however, may increase the pressure within the coronary sinus 218 to dangerous levels.
  • the passageway at the trailing end 105 should be large enough to prevent excess pressure build-up, but at the same time be restrictive enough to allow the heart to be supplied with oxygenated blood.
  • the size of the three passageways, at the leading end 103 , the trailing end 105 , and the opening 125 are interrelated and balanced to influence the left-to-right shunt and the coronary sinus pressure.
  • the amount of shunting may preferably be less than approximately a one-and-a-half to one shunt ratio.
  • the pressure within the coronary sinus 218 does not exceed about 50 mm Hg. In an alternative embodiment, the pressure within the coronary sinus 218 does not exceed about half systemic pressure.
  • Coronary sinus pressure may also be controlled by the amount of blood flowing from the left ventricle 202 into the main covered stent 107 .
  • the size of the passageway at the leading end 103 may be chosen in relation to the size of the passageway at the trailing end 105 to provide efficient retrograde perfusion of heart tissue without excessive pressure build-up.
  • the smallest cross-sectional diameter of the stent 501 may not be at the leading end 505 and the trailing end 509 , but may be approximately 1 mm to about 1 cm from the leading end 505 and the trailing end 509 .
  • the stent 101 would have one or two flaring ends.
  • the smallest cross-sectional area would be at constriction 520 , which is near the leading end 505 , and at constriction 522 , which is near the trailing end 509 .
  • the cross-sectional area from the constriction 520 to the leading end 505 or the trailing end 509 may also be constant.

Abstract

The present invention provides a novel bifurcated stent for providing retrograde flow of oxygenated blood from the left ventricle to the myocardium via the coronary sinus without a significant or deleterious left-to-right shunt. The present invention includes a main covered stent and a side limb, generally contemplating a Y or a T shaped bifurcated stent.

Description

    BACKGROUND
  • I. Field of Invention [0001]
  • The present invention contemplates a bifurcated stent for supplying oxygenated blood retrogradely from the left ventricle to the myocardium through the coronary sinus. The percutaneously-delivered stent directs blood from the left ventricle to the coronary sinus. By controlling the amount of blood flowing into the bifurcated stent and the right atrium, blood is directed retrogradely through the side limb of the present invention to the heart tissue. [0002]
  • II. Description of Related Technology [0003]
  • Retrograde perfusion of the heart through the coronary sinus has long been known for treating end-stage heart disease. Previous methods, among others, have attempted to connect the aorta to the coronary sinus during open-heart surgery using a graft of the jugular vein, the internal mammary artery, or the carotid artery. Alternatively, an occlusion balloon has been used for a short period of time. [0004]
  • Nelson et al. (U.S. Pat. No. 5,824,071, 1998) discloses an apparatus and method for providing retrograde perfusion directly from the left ventricle to the coronary sinus. Although Nelson requires a pressure sensitive valve that prevents pressure build-up inside the coronary sinus from rising above 60 mm Hg, Nelson does not teach how such a valve may be constructed. Nelson does not teach or describe the features or components of such a pressure sensitive valve. Further, it is unlikely that such a device may be introduced percutaneously and will likely require invasive surgery. [0005]
  • In 2000, Patel et al. conducted an experiment for percutaneous arterialization of the coronary sinus using a stent. See Patel et al., [0006] Percutaneous Transmyocardial Intracardiac Retroperfusion Shunts: Technical Feasibility in a Canine Model, JVIR 2000, 11:382-390. The stent employed by Patel, et al., however, results in a significant shunting of oxygenated blood from the left ventricle to the right atrium (hereinafter “left-to-right shunt”). These shortcomings in the prior art are solved by the present invention.
  • SUMMARY OF INVENTION
  • The present invention incorporates by reference application Ser. No. 09/796,528, titled A STENT FOR ARTERIALIZATION OF CORONARY SINUS AND RETROGRADE PERFUSION OF THE MYOCARDIUM, filed Mar. 2, 2001, and application Ser. No. ______, TWO-PIECE STENT COMBINATION FOR PERCUTANEOUS ARTERIALIZATION OF THE CORONARY SINUS AND RETROGRADE PERFUSION OF THE MYOCARDIUM, filed Jan. 7, 2002. [0007]
  • It is an object of the present invention to provide a novel covered stent for providing retrograde flow of oxygenated blood from the left ventricle to the myocardium via the coronary sinus without a significant or deleterious left-to-right shunt. The present invention includes a main covered stent and a side limb, generally contemplating a Y or a T shaped bifurcated stent. [0008]
  • In a preferred embodiment, the bifurcated stent has a main covered stent and a side limb. The main covered stent preferably has a tubular shape with a passageway therethrough and has a leading end and a trailing end. The main covered stent preferably has a smaller cross-sectional area or passageway at the leading end and the trailing end in comparison to the remainder of the main covered stent. Also, the main covered stent has a main stent, which is covered with a graft. Optionally, the leading end portion of the main stent may not be covered. The main covered stent also has an opening about the middle portion of its length. [0009]
  • The side limb of the bifurcated stent is preferably either attached about the opening or fits within the opening to complete the T or Y shape. Thus, the side limb is in contact with the main covered stent about said opening. The side limb has a side stent and a cuff that is optional. The cuff, when present, is preferably attached to the graft of the main covered stent or is continuous with the main covered stent. A side stent, however, may or may not be attached (e.g., pre-attached or attached by being woven in a continuous manner to the main stent or by being stitched to the main stent) to the main stent. Thus, the side limb, which has a side stent and an optional cuff, provides a passageway for blood flow retrogradely to the myocardium. [0010]
  • Various embodiments are contemplated in the present invention. In one embodiment, the side limb may include both a cuff and a side stent, wherein the side stent is not attached to the main stent. In this embodiment, after the main covered stent is first delivered, the side stent is delivered to fit within the cuff. In another embodiment, the side limb may include the side stent but not the cuff, and the side stent is pre-attached to the main stent by being stitched or weaved (in a continuous fashion) to the main stent. In this embodiment, both the main covered stent and the side limb are delivered at the same time. In yet another embodiment, the side limb only has a side stent without the cuff, wherein the side stent is not attached to the main stent. In this embodiment, after the main covered stent is delivered, the side stent is delivered to fit within the opening. [0011]
  • For delivery, the main covered stent and the side limb may be compressed to fit within a catheter for percutaneous delivery into desired position. Upon delivery, the main covered stent may self expand to form a friction fit within the coronary sinus. The leading end is preferably positioned in the left ventricle, and the majority of the main covered stent fits substantially within the coronary sinus. The trailing end of the main covered stent may be in the right atrium or within the coronary sinus, preferably near the coronary ostium. [0012]
  • In delivering the present invention percutaneously, the opening or side limb is preferably aligned to face the upstream portion of the coronary sinus. All other lengths and placements preferably correlate to this placement. The side limb is positioned so that it preferably fits within the upstream portion of the coronary sinus and opens toward the myocardium. For fluoroscopic positioning, the opening is preferably marked with a ring made of radio-opaque material, such as platinum or gold. [0013]
  • Blood from the left ventricle flows through the leading end and into the main covered stent. Because of the graft, blood then flows either out into the right atrium through the trailing end or into the upstream portion of the coronary sinus through the opening and the side stent. Some blood may also flow back into the left ventricle. Thus, the size of the passageway at the leading end controls the amount of blood flowing into the main covered stent; the size of the passageway at the trailing end controls the amount of blood flowing into the right atrium (“left-to-right shunt”); and the size of passageway of the side limb controls the amount of blood flowing into the upstream portion of the coronary sinus. These three sizes are interrelated, and therefore interdependently control the amount of retrograde flow. For example, diminishing the amount of left-to-right shunt increases the pressure in the coronary sinus while directing more blood flow through the side limb. Some amount of blood flow into the right atrium, however, is necessary to prevent excessive pressure build-up in the coronary sinus. Preferably, the sizes of the three passageways work together to prevent the coronary sinus pressure from rising above a suitable level, e.g., of about 50 mm Hg or in the alternative of about half systemic pressure, while at the same time avoiding excessive left-to-right shunting. [0014]
  • The present invention also contemplates a percutaneous method of delivery of the bifurcated stent of the present invention to allow blood flow from the left ventricle to the coronary sinus.[0015]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1A shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is not attached to the main stent. [0016]
  • FIG. 1B shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is attached to the main stent and the cuff is not present in the side limb. [0017]
  • FIG. 1C shows a preferred embodiment of a bifurcated stent according to the present invention, wherein the side stent is not attached to the main stent and the cuff is not present in the side limb. [0018]
  • FIG. 2 represents a preferred placement of the bifurcated stent according to the present invention in a schematic diagram of the heart. [0019]
  • FIG. 3 shows an apparatus for percutaneously delivering the bifurcated stent of the present invention. [0020]
  • FIG. 4 shows an alternative embodiment of a bifurcated stent having flaring ends with constrictions near the trailing end and the leading end.[0021]
  • DETAILED DESCRIPTION
  • A preferred embodiment of a [0022] bifurcated stent 101 according to the present invention is illustrated in FIG. 1A. The bifurcated stent 101 generally has a main covered stent 107 and a side limb 132. The main covered stent 107 generally has a tubular shape with a passageway therethrough, having a leading end 103 and a trailing end 105. The main covered stent 107 may have a slight bend or may otherwise be straight along its extent.
  • The main [0023] covered stent 107 generally refers to a combination of an underlying main stent 113 (bare stent) and a graft 111 (covering). The graft 111 is preferably inside the main stent 113, but may also be outside the main stent 113. In another embodiment, the stent 113 may be sandwiched between an outer graft and an inner graft (not pictured). The graft 111 is made from any of a number of commercially available materials such as PET, PTFE, or other suitable material as known in the art. Hereinafter, the combination of the graft 111 and the main stent 113 will be referred to as the main covered stent 107.
  • The [0024] bifurcated stent 101 also has a side limb 132, which forms the short limb of the Y or T shaped stent. The side limb 132 includes a side stent 131 and an optional cuff 123. The cuff 123, when present, is attached to the graft 111 of the main covered stent 107. The side stent 131, which is always present, however, may or may not be attached to the main stent 113 of the main covered stent 107. The side stent 131 may be attached to the main stent 113 by stitching or weaving. In an alternative embodiment, the side sent may also be attached by being a continuous weave of the main stent. Various preferred embodiments are shown in FIGS. 1A, 1B, and 1C.
  • In the embodiment shown in FIG. 1A, the [0025] side limb 132 includes both the cuff 123 and the side stent 131. Although the cuff 123 is pre-attached to the graft 111, the side stent 131 is not attached to the main stent 113 of the main covered stent 107. In this embodiment, the main covered stent 107 is first delivered to fit substantially within the coronary sinus, with the opening 125 facing the upstream portion of the coronary sinus. After delivering the main covered stent 107, the side stent 131 is delivered to fit within the cuff 123. The side stent 131 may also optionally fit within the opening 125.
  • In the embodiment shown in FIG. 1B, the [0026] side limb 147 includes the side stent 143 but does not contain a cuff. In further contrast to the embodiment in FIG. 1A, the side stent 143 is attached to the main stent 148, e.g., by being connected or stitched or by being a continuous weave with the main stent 148. The side stent 143 is preferably pre-attached, but may optionally be attached after delivery. The side stent 143 in this embodiment is relatively short and ranges in length from about 0.25 cm to about 1.0 cm. In this embodiment, the main covered stent 145 and the side limb 147 are delivered simultaneously since they are attached to form a single unit. The side limb 147 is preferably delivered to face the retrograde portion of the coronary sinus. In the embodiment shown in FIG. 1B, the portion of the main stent 148 near the leading end, preferably about 0.5 cm in length, is not covered with the graft 149.
  • In the embodiment shown in FIG. 1C, the [0027] side limb 156 includes only the side stent 151. There is no cuff in this embodiment. Furthermore, the side limb 156 is not attached to the main stent 155 of the main covered stent 158. In this embodiment, the main covered stent 158 is first delivered with the opening 154 facing the upstream portion of the coronary sinus. Because there is no cuff as in FIG. 1A, the side stent 151 is then positioned to fit within the opening 154. In FIGS. 1A-1C, the side limbs are in contact with the main covered stent about said opening. Other embodiments and variations, not specifically disclosed but obvious to one of ordinary skill in the art, are also contemplated in the present invention. Thus, FIGS. 1A-1C as preferred embodiments are not meant to be exhaustive or limiting.
  • Referring back to FIG. 1A, the [0028] opening 125 is preferably circular in shape and is located in the main covered stent 107 about the mid portion along its length. (The length between the leading end 103 and the opening 125 is preferably chosen to represent the distance between the left ventricle and the coronary sinus.) The opening 125 is preferably lined with a ring 121, which is preferably made of radio-opaque material, such as platinum or gold, to facilitate placement during percutaneous delivery.
  • Referring to the [0029] side limb 132, the cuff 123 is made of the similar material as the graft 111 discussed above. In a preferred embodiment, the cuff 123 has a constant cross-sectional diameter equal to that of the opening 125. In another embodiment, the cross-sectional diameter of the cuff 123 varies along its length.
  • For the main covered stent, [0030] 107, the cross-sectional diameter varies along its length. The main covered stent 107 generally has the smallest cross-sectional diameters (or passageway) at the trailing end 105 and at the leading end 103. Thus, traveling from the trailing end 105 to the leading end 103, the cross-sectional diameter of the main covered stent 107 increases until it reaches a maximum diameter. The maximum diameter may continue, may thereafter increase or decrease, but will eventually decrease down toward the leading end 103. In a preferred embodiment as shown in FIG. 1, the main covered stent 107 has a shape that tapers in cross-sectional diameter toward the trailing end 105 and toward the leading end 103.
  • Referring to preferred dimensions, the length of the main [0031] covered stent 107 from the trailing end 105 to the leading end 103 is preferably from about 2 cm to about 6 cm, and more preferably from about 2 cm to about 5 cm. More particularly, the length of the main covered stent 107 from the trailing end 105 to the opening 125 is preferably from about 1 cm to about 4 cm, and more preferably about 2 cm. The length of the main covered stent 107 from the leading end 103 to the opening 125 is preferably from about 0.5 cm to about 3 cm in length, and more preferably about 1 cm.
  • As for the preferred diameter of the cross-sectional area (or passageway), the trailing [0032] end 105 has a diameter of from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm. The diameter of the passageway at the leading end 103 is preferably from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm. The opening 125 also has a cross-sectional diameter of from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm. The cross-sectional diameter of the side limb 132 may either be constant or may vary along its length. In the embodiment shown in FIG. 1A, the cross-sectional diameter of the side limb 132 is approximately the same as the cross-sectional diameter of the opening 125.
  • As discussed above, the [0033] side limb 132 may include a side stent 131, which may or may not be attached to the main stent 113. For example, as shown in FIG. 1B, if the side stent 143 is attached (by being connected, e.g., stitched to, or by being a continuous weave with) the main stent 148, both the side limb 147 and the main covered stent 145 are allowed to expand after delivery. The side limb 147 is positioned to point toward the retrograde portion of the coronary sinus. In a preferred embodiment, the attached side stent 143 is from about 0.25 cm to about 1.0 cm in length. As shown in FIGS. 1A and 1C, however, the side stent 131 or 151, which is not attached to the main stent 113 or 155, is preferably from about 0.5 cm to about 2 cm in length.
  • Referring back to FIG. 1A as an example, the [0034] side stent 131 is made preferably of surgical grade stainless steel or nitinol in woven design, and may be of any other configuration or material as known in the art or as commercially available. The side stent 131 also has a tubular shape with a passageway therethrough. The side stent 131 has a cross-sectional diameter after expansion of preferably from about 1 mm to about 6 mm, and more preferably from about 2 mm to about 5 mm.
  • Although the [0035] cuff 123 is optional, it is advantageous in that it allows for a greater margin of error in inserting the side stent 131 into the retrograde portion of the coronary sinus. The cuff 123 allows the side stent 131 to be inserted in a more forgiving manner should the opening 125 not be aligned perfectly with the retrograde portion of the coronary sinus. In an alternative embodiment, the side stent 131 may protrude through opening 125 as a bare stent without the cuff 123.
  • The [0036] main stent 113 and side stent 131 are preferably made of a flexible material that can withstand bending without kinking to allow fluid passageway therethrough. The main stent 113 and side stent 131 also allow compression and expansion cross-sectionally. A number of suitable commercially available stents with these desired characteristics may be employed in practicing the present invention. Metallic stents as well as non-metallic stents may be used in the construction. Non-metallic stents, for example, may be made of a suitable plastic material. Suitable designs include various wire mesh designs and weave configurations as known in the art. In one embodiment, the main stent 113 and side stent 131 may have a coiled construction as known in the art.
  • Referring now to FIG. 2, the [0037] bifurcated stent 101 of FIG. 1 is positioned in a schematic diagram of the human heart 200. The heart 200 generally has a left ventricle 202, a left atrium 206, a right ventricle 222, and a right atrium 210. The left ventricle 202 is primarily responsible for delivering oxygenated blood to the body. The left atrium 206 receives oxygenated blood from the lungs, which is then delivered to the left ventricle 202. The right atrium 210 is primarily responsible for receiving deoxygenated blood from the body. Deoxygenated blood then flows into the right ventricle 222 before being sent to the lungs for oxygenation. After perfusing the heart, blood from the coronary arteries normally drains to the coronary sinus 218 and into the right atrium 210. The coronary ostium 226 connects the right atrium 210 to the coronary sinus 218.
  • In a preferred embodiment as shown in FIG. 3, the bifurcated stent [0038] 102, which is compressed onto a catheter 143 and covered by a retractable sheath 141, is introduced and placed into position before removing the sheath to expose the bifurcated stent 101. The method used by Patel et al. may be employed in delivering the stent according to present invention. Patel et al., Percutaneous Transmyocardial Intracardiac Retroperfusion Shunts: Technical Feasibility In a Canine Model, JVIR 2000, 11:382-390. Patel, et al. modifies the stent delivery method as described by Rosch, et al. in Rosch, et al., Coaxial Catheter, Needle System for Transjugular Portal Vein Entrance, JVIR, Vol. 4, No. 1, pp. 145-147, 1993.
  • Referring back to FIG. 2, a sheath is introduced into the jugular vein percutaneously, through which the [0039] coronary sinus 218 is catheterized and a wire is introduced. Once the catheter is removed, a stiff needle guide combination is passed over the wire as known in the art. The needle guide is aimed at the left ventricle 202 (marked with a percutaneously introduced pigtail catheter) and pierced through the coronary sinus wall into the left ventricle 202. A guide wire is passed into the aorta (not pictured) and the needle guide is removed to leave a hole 301. The hole 301 may be widened with a balloon catheter. The hole punctured allows for the main covered stent 107 to fit therebetween, and therefore blood flows from the left ventricle 202 into the passageway of the main covered stent 107.
  • Delivery involves placing the [0040] bifurcated stent 101 within a retractable sheath 141 as seen in FIG. 3 around catheter 143. Catheter 143 also has a tip 145 which is guided by the guide wire 147. After positioning, the retractable sheath 141 of the catheter 143 is removed, and the bifurcated stent 101 is allowed to expand, if the stent 101 is a self-expanding stent.
  • Before removing the [0041] retractable sheath 141, however, the catheter 143 is preferably rotated about the guide wire 147 to align the opening or the ring 121 with the upstream portion of the coronary sinus 218. A catheter placed in the coronary sinus 218 for contrast injection may aid in aligning the ring 121 with the coronary sinus 218. Referring back to FIG. 1, the opening 125 is bordered by the ring 121, and the ring 121 is made of radio-opaque material, such as platinum or gold, to aide in the alignment of the opening 125 with the coronary sinus 218. Thus, under fluoroscopic control, the ring 121 is aligned with the opaque or marked element in the upstream portion of the coronary sinus 218. By occluding the trailing end 105 of the main covered stent 107 with a balloon catheter, blood flow will open the cuff 123 into the upstream portion of the coronary sinus 218 for alignment with the coronary sinus 218. The cuff 123 is then reinforced with a side stent 131, if the side stent 131 is not already attached to the main stent 113.
  • During delivery, the [0042] opening 125 or the side limb 132 is preferably aligned with the retrograde portion of the coronary sinus 218 as accurately as possible. After the opening 125 is aligned with the coronary sinus 218, however, an additional extension stent (not pictured) as known in the art may be coupled to the main covered stent 107 at the leading end 103 so that the leading end 103 will be located within the left ventricle 202.
  • Once the [0043] ring 125 is aligned with the coronary sinus, the retractable sheath 141 is pulled back, and the bifurcated stent 101 is allowed to expand. The main covered stent 113 (see FIG. 1) and/or the side stent 131 is preferably self expanding, which expands upon introduction into the body. If the stent is not self expanding or has not fully expanded, a balloon catheter as known in the art may be used to expand the main covered stent 107 of the invention.
  • Referring again to FIG. 2, the [0044] leading end 103 is positioned preferably within the left ventricle 202. If the leading end 103 is not in the left ventricle 202, an additional extension stent (not pictured), as discussed above, may be used to further elongate the leading end 103 portion of the stent 113. The main covered stent 107 is positioned to lie primarily within the coronary sinus 218. The trailing end 105 is preferably placed within the right atrium 210. If the main covered stent 107 is too short for the trailing end 105 to reach the right atrium 210, an extension (not pictured) as known in the art may be used. Alternatively, the main covered stent 107 may be within the coronary sinus 218, preferably near the coronary ostium 226. To help gauge the approximate length of the main covered stent 107, a guide wire with radio-opaque marking every 1 cm may be used to measure the various relevant distances between the left ventricle 202 and the coronary ostium 226. In another embodiment, the trailing end 105 may be positioned within the coronary sinus 218.
  • As the main [0045] covered stent 107 expands after release from the retractable sheath 141, it expands to form a friction fit within the inner wall of the coronary sinus 218. This friction fit keeps the main covered stent 107 stationary to prevent axial rotation and migration and therefore keeps the ring 121 or the side limb 132 in alignment with the retrograde portion of the coronary sinus 218. The graft 111 of the main covered stent 107 directs blood flowing into the coronary sinus to flow through the passageway at the trailing end 105 or through the passageway of the side limb 132. Some amount of blood in the main covered stent may also flow into the left ventricle through the leading end 103.
  • The amount of blood flow through the [0046] side limb 132 is generally inversely related to the amount of left-to-right shunting. Blood flowing from the left ventricle 202 into the main covered stent 107 flows out through the opening 125 and the side limb 132 to provide retrograde perfusion to the myocardium. The size of the diameter of the passageway at the trailing end 105 influences the amount of shunt. For example, decreasing the size of the passageway at the trailing end 105 increases the retrograde perfusion of the myocardium. If the flow rate to the passageway at the trailing end 105 is too great, the heart tissue would not adequately be perfused. Too small a diameter, however, may increase the pressure within the coronary sinus 218 to dangerous levels. Thus, the passageway at the trailing end 105 should be large enough to prevent excess pressure build-up, but at the same time be restrictive enough to allow the heart to be supplied with oxygenated blood. The size of the three passageways, at the leading end 103, the trailing end 105, and the opening 125, are interrelated and balanced to influence the left-to-right shunt and the coronary sinus pressure. As an illustrative example only, and not as a limitation, the amount of shunting may preferably be less than approximately a one-and-a-half to one shunt ratio. In a preferred embodiment, the pressure within the coronary sinus 218 does not exceed about 50 mm Hg. In an alternative embodiment, the pressure within the coronary sinus 218 does not exceed about half systemic pressure.
  • Coronary sinus pressure may also be controlled by the amount of blood flowing from the [0047] left ventricle 202 into the main covered stent 107. Thus, the size of the passageway at the leading end 103 may be chosen in relation to the size of the passageway at the trailing end 105 to provide efficient retrograde perfusion of heart tissue without excessive pressure build-up.
  • In an alternative embodiment, as seen in FIG. 4, the smallest cross-sectional diameter of the stent [0048] 501 may not be at the leading end 505 and the trailing end 509, but may be approximately 1 mm to about 1 cm from the leading end 505 and the trailing end 509. Thus, the stent 101 would have one or two flaring ends. The smallest cross-sectional area would be at constriction 520, which is near the leading end 505, and at constriction 522, which is near the trailing end 509. The cross-sectional area from the constriction 520 to the leading end 505 or the trailing end 509 may also be constant.

Claims (49)

I claim:
1. A bifurcated stent for facilitating retrograde supply of oxygenated blood to heart tissue through a coronary sinus comprising:
a main covered stent having a main stent covered by a graft and defining an opening, and having a leading end, and a trailing end; and
a side limb having a side stent, wherein said side limb is in contact with said main covered stent about said opening.
2. The bifurcated stent according to claim 1, wherein said side stent is not attached to said main stent of said main covered stent.
3. The bifurcated stent according to claim 1, wherein said side limb further has a cuff that is attached to said graft of said main covered stent.
4. The bifurcated stent according to claim 3, wherein said cuff is attached by being connected to said graft.
5. The bifurcated stent according to claim 3, wherein said cuff is attached by being continuous with said graft.
6. The bifurcated stent according to claim 3, wherein said side stent is not attached to said main stent of said main covered stent.
7. The bifurcated stent according to claim 1, wherein said side stent is attached to said main stent of said main covered stent.
8. The bifurcated stent according to claim 7, wherein said side stent is attached by being connected to said main stent.
9. The bifurcated stent according to claim 7, wherein said side stent is attached by being continuous with said main stent.
10. The bifurcated stent according to claim 1, wherein cross section of said main covered stent varies along its extent.
11. The bifurcated stent according to claim 10, wherein said cross section of said main covered stent tapers toward said leading end and said trailing end.
12. The bifurcated stent according to claim 10, wherein said main covered stent exhibits a constriction near said leading end and a constriction near said trailing end.
13. The bifurcated stent according to claim 1, wherein said main covered stent has a constant cross section.
14. The bifurcated stent according to claim 1, wherein said side limb and said opening have similar cross section.
15. The bifurcated stent according to claim 1, wherein a cross section of said leading end is appropriately sized to control blood flow from said left ventricle into said main covered stent.
16. The bifurcated stent according to claim 1, wherein a cross section of said trailing end is appropriately sized to control blood flow into a right atrium.
17. The bifurcated stent according to claim 1, wherein cross section of said opening and said side limb are appropriately sized to control the amount of blood flowing into the retrograde portion of the coronary sinus.
18. The bifurcated stent according to claim 1, wherein cross section of said trailing end, said leading end, said opening, and said side limb are appropriately sized to prevent pressure level within said coronary sinus from rising above about 50 mm Hg.
19. The bifurcated stent according to claim 1, wherein cross section of said trailing end, said leading end, said opening, and said side limb are appropriately sized to prevent pressure level within the coronary sinus from rising above about half systemic pressure.
20. The bifurcated stent according to claim 1, wherein said trailing end, said leading end, said opening, and said side limb are each from about 1 mm to about 6 mm in diameter.
21. The bifurcated stent according to claim 20, wherein said trailing end, said leading end, said opening, and said side limb are each from about 2 mm to about 5 mm in diameter.
22. The bifurcated stent according to claim 1, wherein said side limb and said opening have similar cross section.
23. The bifurcated stent according to claim 1, wherein cross section of said side limb varies along its extent.
24. The bifurcated stent according to claim 1, wherein said side limb is from about 1 mm to about 6 mm in diameter.
25. The bifurcated stent according to claim 1, wherein said main covered stent and said side limb allow compression and expansion.
26. The bifurcated stent according to claim 1, wherein said main covered stent and said side limb are flexible.
27. The bifurcated stent according to claim 1, wherein said main covered stent and said side stent are of mesh construction.
28. The bifurcated stent according to claim 1, wherein said main covered stent and said side stent are of coiled construction.
29. The bifurcated stent according to claim 1, wherein said main covered stent does not exceed from about 6 mm to about 12 mm in diameter.
30. The bifurcated stent according to claim 1, wherein said graft is inside said main stent.
31. The bifurcated stent according to claim 1, wherein said graft is outside said main stent.
32. The bifurcated stent according to claim 1, wherein said main stent is sandwiched between an inside graft and an outside graft.
33. The bifurcated stent according to claim 1, wherein said main covered stent expands and forms a friction fit.
34. The bifurcated stent according to claim 1, wherein a portion of said main stent near said trailing end is not covered by said graft.
35. A method for facilitating retrograde supply of oxygenated blood from a left ventricle to heart tissue via a coronary sinus comprising:
puncturing a hole through said coronary sinus and a wall of said left ventricle,
delivering a bifurcated stent having a main covered stent with a main stent covered by a graft and having a leading end and a trailing end; and a side limb having a side stent, wherein said side limb is in contact with said main covered stent about an opening in said main covered stent,
wherein said opening is substantially aligned with a retrograde portion of said coronary sinus.
36. The method according to claim 35, wherein said leading end is positioned within said left ventricle.
37. The method according to claim 35, wherein an extension stent is used to reach said left ventricle.
38. The method according to claim 35, wherein said trailing end is positioned near a coronary ostium.
39. The method according to claim 35, wherein said trailing end is positioned in a right atrium.
40. The method according to claim 35, wherein said side limb is positioned toward a retrograde portion of said coronary sinus.
41. The method according to claim 35, wherein said main covered stent tapers cross sectionally toward the leading end and the trailing end.
42. The method according to claim 35, wherein said main covered stent expands to make a friction fit within said coronary sinus.
43. The method according to claim 42, wherein said friction fit prevents axial rotation and migration.
44. The bifurcated stent according to claim 35, wherein cross section of said trailing end, said leading end, said opening, and said side limb are appropriately sized to prevent pressure level within the coronary sinus from rising above about 50 mm Hg.
45. The bifurcated stent according to claim 35, wherein the cross section of said trailing end, said leading end, said opening, and said side limb are appropriately sized to prevent pressure level within the coronary sinus from rising above about half systemic pressure.
46. The bifurcated stent according to claim 35, wherein said side stent is attached to said main stent.
47. The bifurcated stent according to claim 35, wherein said side stent is not attached to said main stent, and said side stent is delivered after delivery of the main covered stent.
48. The bifurcated stent according to claim 35, wherein said bifurcated stent is delivered percutaneously.
49. A bifurcated stent for facilitating retrograde supply of oxygenated blood to heart tissue through a coronary sinus comprising:
a main covered stent having a main stent covered by a graft and defining an opening, and having a leading end and a trailing end, wherein said main covered stent tapers in cross sectionally toward said leading end and toward said trailing end, and
a side limb comprising a side stent, wherein said side limb is in contact with said main covered stent about said opening.
US10/036,445 2002-01-07 2002-01-07 Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium Expired - Fee Related US7037329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/036,445 US7037329B2 (en) 2002-01-07 2002-01-07 Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/036,445 US7037329B2 (en) 2002-01-07 2002-01-07 Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium

Publications (2)

Publication Number Publication Date
US20030130719A1 true US20030130719A1 (en) 2003-07-10
US7037329B2 US7037329B2 (en) 2006-05-02

Family

ID=21888642

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/036,445 Expired - Fee Related US7037329B2 (en) 2002-01-07 2002-01-07 Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium

Country Status (1)

Country Link
US (1) US7037329B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186560A1 (en) * 2002-08-31 2004-09-23 Tbd Stent for bifurcated vessels
WO2004110314A1 (en) * 2003-06-18 2004-12-23 Azcona Gamboa, Martin Intracardiac device with sealable fenestration for total cavopulmonary anastomosis by catheterisation
WO2005034808A1 (en) * 2003-10-10 2005-04-21 William A. Cook Australia Pty. Ltd. Fenestrated stent grafts
US20070010781A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Implantable aorto-coronary sinus shunt for myocardial revascularization
US20070010780A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Methods of implanting an aorto-coronary sinus shunt for myocardial revascularization
WO2009017632A2 (en) * 2007-07-26 2009-02-05 Med Institute, Inc. Stent arrangement
US20090164001A1 (en) * 2007-12-21 2009-06-25 Biggs David P Socket For Fenestrated Tubular Prosthesis
US20100161025A1 (en) * 2008-08-29 2010-06-24 Cook, Incorporated Variable weave graft with metal strand reinforcement for in situ fenestration
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20110307070A1 (en) * 2010-04-30 2011-12-15 Boston Scientific Scimed, Inc. Stent for repair of anastomasis surgery leaks
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US20140194971A1 (en) * 2006-11-07 2014-07-10 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US20180021156A1 (en) * 2000-03-27 2018-01-25 Neovasc Medical Ltd. Varying diameter vascular implant and balloon
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US10959826B2 (en) 2014-10-16 2021-03-30 Cook Medical Technology LLC Support structure for scalloped grafts
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882697B2 (en) 2006-11-07 2014-11-11 Dc Devices, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
EP3329860A1 (en) 2006-11-07 2018-06-06 David Stephen Celermajer Devices for the treatment of heart failure
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
CA2785041A1 (en) 2010-01-29 2011-08-04 Dc Devices, Inc. Devices and methods for reducing venous pressure
CN102905626A (en) 2010-01-29 2013-01-30 Dc设备公司 Devices and systems for treating heart failure
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
EP3171786B1 (en) 2014-07-23 2020-05-13 Corvia Medical, Inc. Devices for treating heart failure
US9789294B2 (en) 2015-10-07 2017-10-17 Edwards Lifesciences Corporation Expandable cardiac shunt

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) * 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US5180392A (en) * 1988-02-01 1993-01-19 Einar Skeie Anastomotic device
US5287861A (en) * 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5380316A (en) * 1990-12-18 1995-01-10 Advanced Cardiovascular Systems, Inc. Method for intra-operative myocardial device revascularization
US5389096A (en) * 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
US5409019A (en) * 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5429144A (en) * 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
US5549581A (en) * 1993-08-13 1996-08-27 Daig Corporation Coronary sinus catheter
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5655548A (en) * 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5667486A (en) * 1993-04-27 1997-09-16 Ams Medinvent, S.A. Prostatic stent
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5897588A (en) * 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6015432A (en) * 1998-02-25 2000-01-18 Cordis Corporation Wire reinforced vascular prosthesis
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent
US6027526A (en) * 1996-04-10 2000-02-22 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length
US6053942A (en) * 1998-08-18 2000-04-25 Heartstent Corporation Transmyocardial implant with coronary stent
US6149682A (en) * 1997-01-16 2000-11-21 Medicorp R & D Benelux S.A. Luminal endoprosthesis for ramification
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6258120B1 (en) * 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6371981B1 (en) * 1998-05-06 2002-04-16 Av Healing Llc Vascular graft assemblies and methods for implanting same
US6395021B1 (en) * 1997-02-26 2002-05-28 Applied Medical Resources Corporation Ureteral stent system apparatus and method
US6562066B1 (en) * 2001-03-02 2003-05-13 Eric C. Martin Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6605053B1 (en) * 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) * 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US5180392A (en) * 1988-02-01 1993-01-19 Einar Skeie Anastomotic device
US5389096A (en) * 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
US5380316A (en) * 1990-12-18 1995-01-10 Advanced Cardiovascular Systems, Inc. Method for intra-operative myocardial device revascularization
US5429144A (en) * 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
US5409019A (en) * 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5287861A (en) * 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5667486A (en) * 1993-04-27 1997-09-16 Ams Medinvent, S.A. Prostatic stent
US5549581A (en) * 1993-08-13 1996-08-27 Daig Corporation Coronary sinus catheter
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US6027526A (en) * 1996-04-10 2000-02-22 Advanced Cardiovascular Systems, Inc. Stent having varied amounts of structural strength along its length
US5755682A (en) * 1996-08-13 1998-05-26 Heartstent Corporation Method and apparatus for performing coronary artery bypass surgery
US5824071A (en) * 1996-09-16 1998-10-20 Circulation, Inc. Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5655548A (en) * 1996-09-16 1997-08-12 Circulation, Inc. Method for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6149682A (en) * 1997-01-16 2000-11-21 Medicorp R & D Benelux S.A. Luminal endoprosthesis for ramification
US6395021B1 (en) * 1997-02-26 2002-05-28 Applied Medical Resources Corporation Ureteral stent system apparatus and method
US5897588A (en) * 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent
US6258120B1 (en) * 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6015432A (en) * 1998-02-25 2000-01-18 Cordis Corporation Wire reinforced vascular prosthesis
US6371981B1 (en) * 1998-05-06 2002-04-16 Av Healing Llc Vascular graft assemblies and methods for implanting same
US6053942A (en) * 1998-08-18 2000-04-25 Heartstent Corporation Transmyocardial implant with coronary stent
US6605053B1 (en) * 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
US6562066B1 (en) * 2001-03-02 2003-05-13 Eric C. Martin Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180021156A1 (en) * 2000-03-27 2018-01-25 Neovasc Medical Ltd. Varying diameter vascular implant and balloon
US20040186560A1 (en) * 2002-08-31 2004-09-23 Tbd Stent for bifurcated vessels
WO2004110314A1 (en) * 2003-06-18 2004-12-23 Azcona Gamboa, Martin Intracardiac device with sealable fenestration for total cavopulmonary anastomosis by catheterisation
AU2004279458B2 (en) * 2003-10-10 2009-12-10 Cook Incorporated Fenestrated stent grafts
WO2005034808A1 (en) * 2003-10-10 2005-04-21 William A. Cook Australia Pty. Ltd. Fenestrated stent grafts
US9095458B2 (en) 2003-10-10 2015-08-04 Cook Medical Technologies Llc Fenestrated stent grafts
US9539123B2 (en) 2003-10-10 2017-01-10 Cook Medical Technologies Llc Fenestrated stent grafts
US10376395B2 (en) 2003-10-10 2019-08-13 Cook Medical Technologies Llc Fenestrated stent grafts
US20070010781A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Implantable aorto-coronary sinus shunt for myocardial revascularization
US20070010780A1 (en) * 2005-06-27 2007-01-11 Venkataramana Vijay Methods of implanting an aorto-coronary sinus shunt for myocardial revascularization
US10568751B2 (en) * 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US20140194971A1 (en) * 2006-11-07 2014-07-10 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
WO2009017632A3 (en) * 2007-07-26 2009-03-19 Med Inst Inc Stent arrangement
WO2009017632A2 (en) * 2007-07-26 2009-02-05 Med Institute, Inc. Stent arrangement
US10016211B2 (en) 2007-10-17 2018-07-10 Covidien Lp Expandable tip assembly for thrombus management
US8945172B2 (en) 2007-10-17 2015-02-03 Covidien Lp Devices for restoring blood flow and clot removal during acute ischemic stroke
US11786254B2 (en) 2007-10-17 2023-10-17 Covidien Lp Methods of managing neurovascular obstructions
US8574262B2 (en) 2007-10-17 2013-11-05 Covidien Lp Revascularization devices
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8197493B2 (en) 2007-10-17 2012-06-12 Mindframe, Inc. Method for providing progressive therapy for thrombus management
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US10835257B2 (en) 2007-10-17 2020-11-17 Covidien Lp Methods of managing neurovascular obstructions
US8070791B2 (en) 2007-10-17 2011-12-06 Mindframe, Inc. Multiple layer embolus removal
US8945143B2 (en) 2007-10-17 2015-02-03 Covidien Lp Expandable tip assembly for thrombus management
US10413310B2 (en) 2007-10-17 2019-09-17 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US9320532B2 (en) 2007-10-17 2016-04-26 Covidien Lp Expandable tip assembly for thrombus management
US9387098B2 (en) 2007-10-17 2016-07-12 Covidien Lp Revascularization devices
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090164001A1 (en) * 2007-12-21 2009-06-25 Biggs David P Socket For Fenestrated Tubular Prosthesis
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US9161766B2 (en) 2008-02-22 2015-10-20 Covidien Lp Methods and apparatus for flow restoration
US10456151B2 (en) 2008-02-22 2019-10-29 Covidien Lp Methods and apparatus for flow restoration
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
US11529156B2 (en) 2008-02-22 2022-12-20 Covidien Lp Methods and apparatus for flow restoration
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US20100161025A1 (en) * 2008-08-29 2010-06-24 Cook, Incorporated Variable weave graft with metal strand reinforcement for in situ fenestration
US8353943B2 (en) 2008-08-29 2013-01-15 Cook Medical Technologies Llc Variable weave graft with metal strand reinforcement for in situ fenestration
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US10398540B2 (en) * 2010-04-30 2019-09-03 Boston Scientific Scimed, Inc. Stent for repair of anastomasis surgery leaks
US11712328B2 (en) 2010-04-30 2023-08-01 Boston Scientific Scimed, Inc. Stent for repair of anastomasis surgery leaks
US20110307070A1 (en) * 2010-04-30 2011-12-15 Boston Scientific Scimed, Inc. Stent for repair of anastomasis surgery leaks
US10959826B2 (en) 2014-10-16 2021-03-30 Cook Medical Technology LLC Support structure for scalloped grafts

Also Published As

Publication number Publication date
US7037329B2 (en) 2006-05-02

Similar Documents

Publication Publication Date Title
US7037329B2 (en) Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6893413B2 (en) Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6562066B1 (en) Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium
US5575817A (en) Aorto femoral bifurcation graft and method of implantation
US7833265B2 (en) Vascular anchoring system and method
AU2021232831B2 (en) Fenestration devices, systems, and methods
CN108378960B (en) Adjustable bend conveying system of interventional heart valve
KR101431776B1 (en) System and method for positioning a stent graft
CN104706449B (en) A kind of stent delivery system and component is discharged thereafter
US20030135257A1 (en) Exclusion of ascending/descending aorta and/or aortic arch aneurysm
JP2019510580A (en) Stent graft with internal tunnel and fenestration and method of use
US20070225681A1 (en) Catheter Having a Selectively Formable Distal Section
EP2450007A2 (en) Surgical stent graft and its delivery system
US20090234434A1 (en) Vascular anchoring system and method
JP2013524998A (en) Movable external coupling for branch vessel connections
CN113081389A (en) Ascending aorta covered stent and conveying system assembly and using method thereof
US9301838B2 (en) Apparatus and method for delivering a structure to a desired target site
CN203619729U (en) Stent conveying system and rear release component thereof
CN214967138U (en) Ascending aorta covered stent and conveying system assembly
US20040092844A1 (en) Guide catheter
WO1998035717A1 (en) Coil apparatus and method for delivering diagnostic and therapeutic agents intravascularly
US20090234439A1 (en) Vascular anchoring system and method
CN108652787B (en) Covered stent for abdominal aortic aneurysm repair and using method thereof
CN214908652U (en) Bare crown stent releasing assembly for ascending aorta covered stent conveying system
CN217772586U (en) Aortic arch branch type covered stent

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100502