US20030143726A1 - Biosensor involving the use of optically sensitive moieties - Google Patents

Biosensor involving the use of optically sensitive moieties Download PDF

Info

Publication number
US20030143726A1
US20030143726A1 US10/358,176 US35817603A US2003143726A1 US 20030143726 A1 US20030143726 A1 US 20030143726A1 US 35817603 A US35817603 A US 35817603A US 2003143726 A1 US2003143726 A1 US 2003143726A1
Authority
US
United States
Prior art keywords
membrane
substituted
hydrocarbon
unsaturated
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/358,176
Inventor
Peter Osman
Christopher Burns
Alistair Martin
Lionel King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Australian Membrane and Biotechnology Research Institute Ltd
Original Assignee
Australian Membrane and Biotechnology Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO7170A external-priority patent/AUPO717097A0/en
Priority claimed from AUPP0449A external-priority patent/AUPP044997A0/en
Application filed by Australian Membrane and Biotechnology Research Institute Ltd filed Critical Australian Membrane and Biotechnology Research Institute Ltd
Priority to US10/358,176 priority Critical patent/US20030143726A1/en
Publication of US20030143726A1 publication Critical patent/US20030143726A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/806Electrical property or magnetic property

Definitions

  • the present invention relates to biosensors which include or are fabricated using optically sensitive moieties.
  • Biosensors have been constructed comprising biomembranes which are a double layer of closely packed amphiphilic lipid molecules.
  • the molecules of these bilayers exhibit the random motions characteristic of the liquid phase, in which the hydrogen tails of the lipid molecules have sufficient mobility to provide a soft, flexible, viscid surface.
  • the molecules can also diffuse sideways freely within their own monolayer so that two neighbouring lipids in the same monolayer exchange places with each other about once every microsecond, while the lipid molecules in opposite monolayers exchange places on the average of one a year.
  • Ionophores a class of molecules, called ionophores, which facilitate the transport of ions across these membranes.
  • Ion channels are a particular form of ionophore, which as the term implies, are channels through which ions may pass through membranes.
  • a favoured ionophore is gramicidin A which forms aqueous channels in the membrane. Examples of such biosensors are disclosed in the following International Patent Applications, the disclosures of which are incorporated herein by cross reference:
  • PCT/AU92/00132 PCT/AU93/00509, PCT/AU93/00620,
  • PCT/AU94/00202 PCT/AU95/00763, PCT/AU96/00304,
  • the first of these references discloses receptor molecules conjugated with a support that is remote from the receptor site.
  • the support may be a lipid head group, a hydrocarbon chain, a cross-linkable molecule or a membrane protein.
  • the inner level of the membrane may be adjacent a solid surface with groups reactive with the solid surface, and spaced from the surface to provide a reservoir region as disclosed in U.S. Pat. No. 5,401,378.
  • Biosensors based on ion channels or ionophores contained within lipid membranes tethered to or deposited onto metal electrodes are disclosed in Australian Patent 623,747 and U.S, Pat. No. 5,234,566. Those references disclose a membrane bilayer in which each layer has incorporated therein ionophores and in which the conductance of the membrane is dependent upon the presence or absence of an analyte.
  • the disclosure of Australian Patent 623,747 (incorporated herein by reference) describes various ionophore gating mechanisms termed local disruption gating. extended disruption gating, vertical disruption gating, and extended displacement gating mechanisms to modify the conductivity of the membrane in response to the presence of an analyte.
  • an inner layer of the membrane (the layer closer to the solid electrode surface, if any) contains immobilized or tethered half membrane spanning ion channels which an outer layer contains more mobile half membrane spanning ion channels.
  • One method for immobilising the ion channels of the inner layer is to employ a polymerisable lipid layer and then cross-link the molecules of the inner monolayer and the ionophore. The conductivity of the membrane is altered by the extent to which opposing half membrane spanning ion channels align to establish a membrane spanning channel for ion transmission across the membrane.
  • local disruption gating receptor molecules are linked to mobile ionophores in the outer layer that are aligned with tethered or immobilised ionophores in the inner layer.
  • the introduction of an analyte particle that binds to two adjacent receptors in the outer layer causes the disruption of the orderly alignment of the membrane spanning ionophore.
  • a loss of conductivity occurs due to the deformation of the ionophores of the outer layer caused by the bonding of the analyte with the adjacent receptors.
  • extended disruption gating is similar, except that the displacement of the mobile ionophore is greater.
  • extended disruption gating the binding of pairs of receptors to the same analyte particle cause the outer layer ionophores to move completely out of alignment with the inner layer ionophores.
  • the mechanism of extended displacement gating utilises two different receptors that bind to each other and are linked receptively to a half membrane ionophore and a membrane molecule.
  • the binding of these two receptor molecules to each other displaces the ionophore and disrupts conductivity.
  • the analyte competes with the second receptor for the binding site on the first receptor.
  • the presence of the analyte breaks the bond between the two receptors and allows the half membrane ionophores to realign and provide an ion conductive path.
  • Each of these mechanisms has in common that the binding of the analyte to the receptor molecule causes a change in the relationship between two half membrane spanning monomers such that the flow of ions across the membrane via the ionophores is allowed or prevented.
  • biosensors In a number of sensing applications it is beneficial to incorporate within the one detection cell a positive or negative control to add to the utility of the biosensor. As will be recognised the fabrication of a biosensor having discrete areas of membrane which act as either a test area or control area can be very complex. The present inventors have developed methods by which such biosensors may be fabricated in a less complex manner using optically sensitive moieties.
  • biosensors In a number of sensing applications it is beneficial to incorporate within the one detection cell a positive or negative control to add to the utility of the biosensor. As will be recognised the fabrication of a biosensor having discrete areas of membrane which act as either a test area or control area can be very complex. The present inventors have developed methods by which such biosensors may be fabricated in a less complex manner using optically sensitve moieties.
  • the present invention consists in a method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps:
  • the method further includes the following step:
  • step (v) binding control ligands to the ion channels and membrane spanning lipid components after the ligands have been removed in step (iv).
  • the membrane is rinsed between steps (iv) and (v).
  • the present invention consists in a method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps:
  • the photocleavable linkers may be any of a number of such molecules known in the art (eg see Pillai (1980)).
  • the photoactivatable groups may be any number of such groups known in the art, such as, for example, photoactivatable biotins described by Pirrung (1996) or Cass (1996).
  • the present invention consists in an improved biosensor, the biosensor comprising a membrane the conductance/impedance of which is altered by the presence or absence of an analyte and a conductive substrate, the membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers such that the membrane is tethered to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate, and ligands attached to the ion channels and membrane spanning lipids, the improvement comprising providing on at least one of the first and second half membrane spanning monomers or membrane spanning lipids a photoswitchable group derived from a compound in accordance with
  • R 1 represents 0 to about 3 groups where each is independently H or saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon;
  • R 2 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon;
  • Y represents H, saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or uinsubstituted C 1-4 hydrocarbon.
  • R 6 , R 7 , R 8 , R 14 and R 15 are each independently represent H, saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsatunted, substituted or unsubstituted CiA hydrocarbon or aryl;
  • R 9 is —C(O)X where X represents H, saturated or unsaturated, substituted or unsubstitited C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon, or OH, or OR 10 in which R 10 is alkyl, or NR 11 R 12 in which R 11 and R 12 are H, afkyl or taken together with N form a ring, or aryl or R 9 together with R 1 form a substituted or unsubstituted 5-6 member cyclic or heterocyclic ring;
  • Z represents O or NR 13 R
  • the compound will include a functional group at Y or R 9 such that the compound can be linked to at least one of the first and second half membrane spanning monomers or membrane spanning lipids.
  • R 1 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon
  • R 2 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon
  • X represents H, saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon, or aryl, or OH, or OR 10 in which R 10 is alkyl, or NR 11 R 12 in which R 11 and R 12 are H, alkyl or taken together with N form a ring
  • Y represents H, or saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or
  • R 13 is H, saturated or unsaturated, substituted or unsubstituted C 1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C 1-4 hydrocarbon or aryl.
  • FIG. 10 Specific examples of suitable photoswitchable linkers that are suitable for use in the present invention are shown in FIG. 10.
  • FIGS. 1 to 9 are schematic representations of the biosensors of the presnt invention.
  • FIG. 10 shows the structure of some of the compounds of the present invention.
  • FIG. 1 An example of an improved biosensor in accordance with the invention is shown schematically in FIG. 1.
  • the improved biosensor can be advantageously used in the detection of an analyte.
  • An exemplary protocol for use of this type of biosensor is as follows.
  • the present invention consists in a method comprising the following steps:
  • the photoswitchable binder to streptavidin is caged biotin, HABA or derivative thereof.
  • the photoswitchable binder is caged biotin or a compound in accordance with Formula 1 above.
  • the aim here is to minimise the formation of any ga-SA-MSL linkages (i.e streptavidin gating).
  • streptavidin gating is reduced and thus the dynamic range is improved.
  • step (v) the rinsing step can be avoided, meaning that additional SA in step (vi) need not be added.
  • a tethered membrane assembly is made with biotinylated MSL and gA bearing a photoswitchable group derived from a compound in accordance with Formula 1.
  • a biotinylated antibody streptavidin complex is then introduced into the electrolyte solution.
  • the light source is then switched on so that the antibody complex links to the biotinylated MSL but not to the photoswitchable group gA.
  • the analyte is then added and continually stirred and allowed to incubate so that analyte liks to MSL via antibody streptavidin biotin complex. (Note at this point there is no crossluiking of MSL to gA or gA to gA because light is on).
  • the solution is then rinsed so that unlinked antibody is removed.
  • An impedance measurement is then made which gives the channel on baseline. Impedance measurements continue and then the light is switched off.
  • the time course of gating is measured as gramicidin crosslinks to MSL via a photoswitchable group-streptavidin-biotin-antibody-analyte-antibody-biotin-streptavidin-photoswitchable group -MSL complex.
  • the advantages are improved dynamic range due to reduction of streptavidin gating and also an increase in sensitivity as the long incubation time required to crosslink the antibody to MSL no longer limits the rate of change of gating which is carried out rapidly after the crosslinking has occurred (this assumes that off times are significantly longer than on times). Further, analyte addition artifacts are avoided and thorough mixing can be carried out, and also this method is suitable for optically phase locked loop approaches.
  • FIG. 4 A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity is shown in FIG. 4.
  • a tethered membrane assembly is made with MSL and gA both bearing a photoswitchable group in accordance with the invention.
  • a biotinylated antibody streptavidin complex is then introduced into the electrolyte solution.
  • the light source is switched on so that the antibody complex is not bound to either MSL or gA.
  • Analyte is added and continually stirred and allowed to incubate so that analyte crosslinks all antibody-streptavidin complexes. Impedance measurements then commence which gives the channel on baseline
  • Impedance measurements continue and then the light is switched off whilst impedance measurements are made for a further period of time.
  • the time course of gating is measured as gramicidin crosslinks to MSL via a photoswitchable group -streptavidin-biotin-antibody-analyte-antibodv-biotin-streptavidin-biotin-MSL complex
  • FIG. 5 A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity is shown in FIG. 5.
  • a method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity in a competition assay (such as depicted in FIG. 6) wherein non-specific effects are separated from the real gating response
  • a tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable group which binds to streptavidin is produced.
  • a measurement of biosensor impedance is made then the analyte is added.
  • a second measurement is made then a light source is triggered on.
  • a third measurement of the time course response to light is made then the light source is triggered off.
  • a fourth measurement of the time course response to the removal of light is then made.
  • the photoswitchable group could of course replace biotin.
  • Such a group may be photoswitchable group or a derivative thereof.
  • a method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity in a competition assay (such as depicted in FIG. 7) wherein any non-specific effects (caused during analyte addition) can be separated from the gating response.
  • a tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable group connected to a membrane spanning lipid is produced.
  • a measurement of biosensor impedance is then made prior to addition of analyte.
  • Analyte is added and a second measurement is made.
  • a light source is then triggered on and a third measurement of the time course response to light is made. The light source is then triggered off and a fourth measurement of the time course response to the removal is made.
  • a tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable tether to the bottom layer gramicidin (or other ion channel) is produced.
  • a measurement of biosensor impedance is made and the analyte is added.
  • a second measurement is then made and a light source is triggered on.
  • a third measurement of the time course response to light is made then the light source is triggered off.
  • a fourth measurement of the time course response to the removal is then made.
  • a caged biotin could be used in place of a photoswitchable streptavidin ligand such as HABA (or a derivative) in the examples cited above, specifically those depicted in FIGS. 3,4, and 5 .
  • a photoswitchable streptavidin ligand such as HABA (or a derivative)
  • FIGS. 3,4, and 5 Several caged biotin derivatives are known in the literature, such as those reported by Pirrung (1993, 1996). Such caged derivatives revert to biotin on irradiation with light and therefore cannot be switched between forms that bind streptavidin and forms that do not bind streptavidin.
  • FIG. 9 An additional example of the use of such caged biotin compounds is depicted in FIG. 9.
  • streptavidin is added to the system, and attaches to biotin on the MSL4XB
  • a biotinylated receptor is added to the system, and attaches to the SA on MSL4XB
  • streptavidin is added to the system, and attaches to newly generated biotin (on the gramicidin)
  • a biotinylated receptor is added to the system, and attaches to the SA on gramicidin
  • the advantage of this manufacture process is that formation of gA-SA-MSL linkages (i.e. streptavidin gating) is minimised and thus the dynamic range is improved.
  • a further advantage is that receptors can be selected to bind specifically at MSL4XB and the gramicidin derivative, which in turn may improve the response.
  • the photoswitchable ligands of the general formulae 1 and 2 are prepared by well known synthetic procedures. For example, the coupling of diazo aromatics with substituted phenols and their derivatives, has been well documented (Berwick 1972: Oku 1979; Weber 1994). It will be recognised that compounds derived from such a coupling reaction can be further functionalised. For example, a free hydroxyl group could be acylated or etherified using conventional synthetic methods. Representative examples of compounds prepared via these chemical synthetic pathways are depicted in FIG. 10.
  • a photo-generatable derivative bf biotin (so called caged biotin) was prepared by a modification of the method of Pirrung et al ( Bioconj. Chem., 1996, 7, 317). This compound (9 mg) was dissolved in dichloromethane (5 ml) and treated with dicyclohexylcarbodiimide (DCC) (3 mg), N-hydroxy succinimide (NHS) (2 mg) and dimethylaminopyridine (0.2 mg).
  • DCC dicyclohexylcarbodiimide
  • NHS N-hydroxy succinimide
  • dimethylaminopyridine 0.2 mg
  • the main fraction was then purified by HPLC on a 40 mm ⁇ 200 mmn Waters Prep Nova-Pak® HR silica column (6 ⁇ m, 60 ⁇ ) eluting with dichloromethane-methanol-water (800:40:4) operating at a flow rate of 25 ml/min.
  • the bond formation is very rapid and once formed, is unaffected by wide extremes of pH, temperature, organic solvents and other denaturing agents. Conditions which are usually sufficient for denaturing proteins fail to disassociate the avidin-biotin complex.
  • a reporter molecule could be bound to streptavidin covalently, or biotinylated and attached to streptavidin via the streptavidin-biotin interaction. Selective activation and functionalisation of this complex is targeted in this group of experiments.
  • biotin that is not active in the native state (i.e. will not bind to streptavidin) but can be activated by UV irradiation to bind streptavidin.
  • This photoactivable form of biotin has been conjugated with gramicidin and used as an essential component of the bilayer membrane for targeting chemistries using streptavidin-biotin complex.
  • the gold electrodes were built on commercially available glass microscope slides. The glass slides were cleaned for 2 hours in the glass cleaning solution “Extran 300”, rinsed several times with copious volumes of deionised water and dried in a stream of nitrogen in clean room conditions. The metal deposition was carried out using an Edwards evaporation unit. An adhesion layer of chromium ( ⁇ 20 nM) was deposited fouowed by a layer of gold (100 nM. One side of the glass slides was fully coated with metal. The metal treated glass slides were removed from the evaporator and quickly immersed in an ethanolic solution of monolayer components for an hour (AM300), rinsed profusely in ethanol and preserved in ethanol. These electrodes were stored at 4° C. for 24 hours before assembling the second layer of the membrane.
  • AM300 ethanolic solution of monolayer components
  • the photoactivable biotic in its native form has a molecular weight of 686 d and has a molecular weight of 2.809 kd in the form of gAxx[B].
  • This compound was dissolved in ethanol to prepare a 2 mM solution (5.5 mg in 1.958 ml) and further diluted to a 10 uM solution.
  • An aliquot of the gAxx[B] solution was activated by irradiating the solution at 350 nM for a period of 20 minutes.
  • Second layer membrane solutions were prepared with 3 mM lipids DPEPC (1,2-di(3RS, 7R, 11R-phytanyl)-glycero-3-phosphocholine) and GDPE (1,2-di(3RS, 7R, 11R-phytanyl)-glycerol) in 7:3 ratio and three types of gA5xB.
  • the first solution was prepared with gA5xB (see FIG. 11), the second with the inactive form of photoactivatable gAxx[B] and the third solution with the activated form of photoactivatable gAxx[B].
  • Streptavidin was diluted in PBS to a concentration of 0.1 mg/ml.
  • the matched pair of biotinylated Thyroid Stimulating Hormone (TSH) Fabs (E20650 M and E45650 M) was combined in equal molar ratio to give a 50 ug/ml solution in PBS.
  • TSH analyte was diluted in chilled PBS to prepare a 2.5 nM solution.
  • the monolayer AM300 was deposited on metallised glass electrodes as per established protocol.
  • the electrodes were assembled into biosensor blocks.
  • the second layer solution was added manually (15 ⁇ l per cell) and washed five times with PBS to assemble the bilayer membrane.
  • the fully assembled blocks had the following second layers:
  • Block 1 Row A (cells 1-8) with a ratio of 40 k: 1 standard gA5xB Row B (cells 9-16) with a ratio of 40 k: 1 inactive for of gAxx[B]
  • Block 3Row A (cells 1-8) with standard gA5xB as in blocks 1 and 2 Row B (cells 9-16) with the activated form of gAxx[B].
  • a second group of 2 blocks were assembled with the inactive form of gAxx[B] and the cells were exposed to UV irradiation.
  • the exposure time for pairs of cells was varied to study the effects of time length of exposure and select the most effective time period for future experiments. Exposure times down to one minute were found to be effective.
  • Cells 1-8 used the standard composition of second layer as a positive control for comparison and these responded to streptavidin.
  • Cells 9-16 using the inactive form of gAxx[B] showed no response when exposed to streptavidin.

Abstract

The present invention provides biosensors which include or are fabricated using optically sensitive moieties. The use of optically sensitive moieties provides advantages in the synthesis of the biosensors. Further the inclusion of optically sensitive moieties in the biosensor membrane provides an increase in the sensitivity of detection.

Description

  • The present invention relates to biosensors which include or are fabricated using optically sensitive moieties. [0001]
  • Biosensors have been constructed comprising biomembranes which are a double layer of closely packed amphiphilic lipid molecules. The molecules of these bilayers exhibit the random motions characteristic of the liquid phase, in which the hydrogen tails of the lipid molecules have sufficient mobility to provide a soft, flexible, viscid surface. The molecules can also diffuse sideways freely within their own monolayer so that two neighbouring lipids in the same monolayer exchange places with each other about once every microsecond, while the lipid molecules in opposite monolayers exchange places on the average of one a year. [0002]
  • These membranes may incorporate a class of molecules, called ionophores, which facilitate the transport of ions across these membranes. Ion channels are a particular form of ionophore, which as the term implies, are channels through which ions may pass through membranes. A favoured ionophore is gramicidin A which forms aqueous channels in the membrane. Examples of such biosensors are disclosed in the following International Patent Applications, the disclosures of which are incorporated herein by cross reference: [0003]
  • PCT/AU88/00273, PCT/AU89/00352, PCT/AU90/00025, [0004]
  • PCT/AU92/00132, PCT/AU93/00509, PCT/AU93/00620, [0005]
  • PCT/AU94/00202, PCT/AU95/00763, PCT/AU96/00304, [0006]
  • PCT/AU96/00368, PCT/AU96/00369 and PCT/AU96/00482. [0007]
  • The first of these references discloses receptor molecules conjugated with a support that is remote from the receptor site. The support may be a lipid head group, a hydrocarbon chain, a cross-linkable molecule or a membrane protein. [0008]
  • The inner level of the membrane may be adjacent a solid surface with groups reactive with the solid surface, and spaced from the surface to provide a reservoir region as disclosed in U.S. Pat. No. 5,401,378. [0009]
  • Biosensors based on ion channels or ionophores contained within lipid membranes tethered to or deposited onto metal electrodes are disclosed in Australian Patent 623,747 and U.S, Pat. No. 5,234,566. Those references disclose a membrane bilayer in which each layer has incorporated therein ionophores and in which the conductance of the membrane is dependent upon the presence or absence of an analyte. The disclosure of Australian Patent 623,747 (incorporated herein by reference) describes various ionophore gating mechanisms termed local disruption gating. extended disruption gating, vertical disruption gating, and extended displacement gating mechanisms to modify the conductivity of the membrane in response to the presence of an analyte. In each of those gating mechanisms an inner layer of the membrane (the layer closer to the solid electrode surface, if any) contains immobilized or tethered half membrane spanning ion channels which an outer layer contains more mobile half membrane spanning ion channels. One method for immobilising the ion channels of the inner layer is to employ a polymerisable lipid layer and then cross-link the molecules of the inner monolayer and the ionophore. The conductivity of the membrane is altered by the extent to which opposing half membrane spanning ion channels align to establish a membrane spanning channel for ion transmission across the membrane. [0010]
  • In local disruption gating receptor molecules are linked to mobile ionophores in the outer layer that are aligned with tethered or immobilised ionophores in the inner layer. The introduction of an analyte particle that binds to two adjacent receptors in the outer layer causes the disruption of the orderly alignment of the membrane spanning ionophore. In the case of local disruption gating a loss of conductivity occurs due to the deformation of the ionophores of the outer layer caused by the bonding of the analyte with the adjacent receptors. [0011]
  • The mechanism of extended disruption gating is similar, except that the displacement of the mobile ionophore is greater. In extended disruption gating the binding of pairs of receptors to the same analyte particle cause the outer layer ionophores to move completely out of alignment with the inner layer ionophores. [0012]
  • The mechanism of vertical disruption gating is also similar. In that case the presence of the analyte particle bound to two receptor molecules causes a separation of the two layers that disrupts the continuity of the ion channel across the membrane. [0013]
  • The mechanism of extended displacement gating utilises two different receptors that bind to each other and are linked receptively to a half membrane ionophore and a membrane molecule. The binding of these two receptor molecules to each other displaces the ionophore and disrupts conductivity. The analyte competes with the second receptor for the binding site on the first receptor The presence of the analyte breaks the bond between the two receptors and allows the half membrane ionophores to realign and provide an ion conductive path. Each of these mechanisms has in common that the binding of the analyte to the receptor molecule causes a change in the relationship between two half membrane spanning monomers such that the flow of ions across the membrane via the ionophores is allowed or prevented. [0014]
  • In a number of sensing applications it is beneficial to incorporate within the one detection cell a positive or negative control to add to the utility of the biosensor. As will be recognised the fabrication of a biosensor having discrete areas of membrane which act as either a test area or control area can be very complex. The present inventors have developed methods by which such biosensors may be fabricated in a less complex manner using optically sensitive moieties. [0015]
  • In a number of sensing applications it is beneficial to incorporate within the one detection cell a positive or negative control to add to the utility of the biosensor. As will be recognised the fabrication of a biosensor having discrete areas of membrane which act as either a test area or control area can be very complex. The present inventors have developed methods by which such biosensors may be fabricated in a less complex manner using optically sensitve moieties. [0016]
  • Accordingly in a first aspect the present invention consists in a method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps: [0017]
  • (i) providing a conductive substrate: [0018]
  • (ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers such that the membrane is tethered to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate; [0019]
  • (iii) linking a ligand reactive with an analyte of interest to the ion-channel and linking a ligand reactive with an analyte of interest to the membrane spanning lipid components of the tethered membrane via photocleavable linkers; and [0020]
  • (iv) exposing the membrane to a focused light source to cleave the photocleavable linkers thereby releasing the ligands from the ion-channel and membrane spanning lipid components in discrete areas of the membrane. [0021]
  • In a preferred embodiment the method further includes the following step: [0022]
  • (v) binding control ligands to the ion channels and membrane spanning lipid components after the ligands have been removed in step (iv). [0023]
  • In a further preferred embodiment the membrane is rinsed between steps (iv) and (v). [0024]
  • In a second aspect the present invention consists in a method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps: [0025]
  • (i) providing a conductive substrate; [0026]
  • (ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers such that the membrane is tethered to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate; [0027]
  • (iii) providing on the ion channels and membrane spanning lipids a photoactivatable group which when illuminated will bind a receptor: [0028]
  • (iv) illuminating discrete areas of the membrane and linking a ligand reactive with an analyte of interest to the ion-channel and membrane spanning lipid components of the tethered membrane via photoactivatable group to form test areas; [0029]
  • (v) removing unbound ligand; and [0030]
  • (vi) linking a control ligand to the remainder of the ion-channels and membrane spanning lipid components of the tethered membrane to form control areas. [0031]
  • The photocleavable linkers may be any of a number of such molecules known in the art (eg see Pillai (1980)). The photoactivatable groups may be any number of such groups known in the art, such as, for example, photoactivatable biotins described by Pirrung (1996) or Cass (1996). [0032]
  • In a fourth aspect the present invention consists in an improved biosensor, the biosensor comprising a membrane the conductance/impedance of which is altered by the presence or absence of an analyte and a conductive substrate, the membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers such that the membrane is tethered to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate, and ligands attached to the ion channels and membrane spanning lipids, the improvement comprising providing on at least one of the first and second half membrane spanning monomers or membrane spanning lipids a photoswitchable group derived from a compound in accordance with [0033]
    Figure US20030143726A1-20030731-C00001
  • [0034] Formula 1
  • wherein R[0035] 1 represents 0 to about 3 groups where each is independently H or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4hydrocarbon; R2 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; Y represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or uinsubstituted C1-4 hydrocarbon. COR6, CONR7R8, COOR14, S(O)nR15 where n is 0, 1 or 2, R6, R7, R8, R14 and R15 are each independently represent H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsatunted, substituted or unsubstituted CiA hydrocarbon or aryl; R9 is —C(O)X where X represents H, saturated or unsaturated, substituted or unsubstitited C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, or OH, or OR10 in which R10 is alkyl, or NR11R12 in which R11 and R12 are H, afkyl or taken together with N form a ring, or aryl or R9 together with R1 form a substituted or unsubstituted 5-6 member cyclic or heterocyclic ring; Z represents O or NR13 R13 is H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl.
  • The compound will include a functional group at Y or R[0036] 9 such that the compound can be linked to at least one of the first and second half membrane spanning monomers or membrane spanning lipids.
  • Particularly preferred compounds from which the photoswitchable linkers are derived are shown in [0037] Formula 2 below.
    Figure US20030143726A1-20030731-C00002
  • wherein R[0038] 1 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; R2 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; X represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, or aryl, or OH, or OR10 in which R10 is alkyl, or NR11R12 in which R11 and R12 are H, alkyl or taken together with N form a ring, Y represents H, or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, COR6, CONR7R8, COOR14, S(O)nR15 where n is 0, 1 or 2, R6, R7, R8, R14 and R15 are each independently represent H. saturated or unsaturated. substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl; Z represents O or NR13 R13 is H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl.
  • Specific examples of suitable photoswitchable linkers that are suitable for use in the present invention are shown in FIG. 10. [0039]
  • It will be appreciated that certain compounds of [0040] Formula 1 are novel and the present invention therefore provides, in a fifth aspect, compounds in accordance with Formula 1. provided that when R9 is —C(O)X and X is H, at least one of R1, R2, R3 or Y is other than H.
  • Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.[0041]
  • In order that the nature of the present invention may be more clearly understood preferred forms thereof will now be described with reference to the following non-limiting examples and Figures in which:- [0042]
  • FIGS. [0043] 1 to 9 are schematic representations of the biosensors of the presnt invention; and
  • FIG. 10 shows the structure of some of the compounds of the present invention.[0044]
  • An example of an improved biosensor in accordance with the invention is shown schematically in FIG. 1. [0045]
  • The improved biosensor can be advantageously used in the detection of an analyte. An exemplary protocol for use of this type of biosensor is as follows. [0046]
  • An initial measurement off biosensor impedance is made and the sample suspected to contain the analyte is then added. A second measurement is made and a light source is triggered on. A third measurement of the time course response to light is made. The light source is then triggered off and a fourth measurement of the time course response to the removal of light is made. These later steps may be repeated, switching the light on and off. [0047]
  • Various combinations and subsets of the later measurement steps can be used depending on the type of photogroup and the level of sensitivity required. Such a construct would not allow a real gating response until illumination, and would therefore allow for non-specific effects (e.g. caused by seruin addition) to be separately deterrnined, and removed from the real gating response. [0048]
  • The benefits of another fabrication protocol is shown in FIG. 2. [0049]
  • Accordingly, in a fifth aspect the present invention consists in a method comprising the following steps: [0050]
  • (i) providing a conductive substrate; [0051]
  • (ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate; [0052]
  • (iii) providing on the half membrane spanning monomer remote from the conductive substrate a photoswitchable binder to streptavidin and providing biotin on the membrane spanning lipid; [0053]
  • (iv) adding streptavidin; [0054]
  • (v) triggering a light source and rinsing; [0055]
  • (vi) triggering the light source off and adding streptavidin; [0056]
  • (vii) optionally repeating steps (v) and (vi); and [0057]
  • (viii) adding ligands specfic to an analyte to the ion channels and membrane spanning lipids. [0058]
  • It is preferred that the photoswitchable binder to streptavidin is caged biotin, HABA or derivative thereof. Preferably the photoswitchable binder is caged biotin or a compound in accordance with [0059] Formula 1 above.
  • The aim here is to minimise the formation of any ga-SA-MSL linkages (i.e streptavidin gating). The advantage of this process is that streptavidin gating is reduced and thus the dynamic range is improved. Note an alternative version is that in step (v) the rinsing step can be avoided, meaning that additional SA in step (vi) need not be added. [0060]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity by separating any non-specific effect (caused during analyte addition) from the gating response (see FIG. 3). [0061]
  • A tethered membrane assembly is made with biotinylated MSL and gA bearing a photoswitchable group derived from a compound in accordance with [0062] Formula 1. A biotinylated antibody streptavidin complex is then introduced into the electrolyte solution. The light source is then switched on so that the antibody complex links to the biotinylated MSL but not to the photoswitchable group gA. The analyte is then added and continually stirred and allowed to incubate so that analyte liks to MSL via antibody streptavidin biotin complex. (Note at this point there is no crossluiking of MSL to gA or gA to gA because light is on). The solution is then rinsed so that unlinked antibody is removed. An impedance measurement is then made which gives the channel on baseline. Impedance measurements continue and then the light is switched off. The time course of gating is measured as gramicidin crosslinks to MSL via a photoswitchable group-streptavidin-biotin-antibody-analyte-antibody-biotin-streptavidin-photoswitchable group -MSL complex.
  • The advantages are improved dynamic range due to reduction of streptavidin gating and also an increase in sensitivity as the long incubation time required to crosslink the antibody to MSL no longer limits the rate of change of gating which is carried out rapidly after the crosslinking has occurred (this assumes that off times are significantly longer than on times). Further, analyte addition artifacts are avoided and thorough mixing can be carried out, and also this method is suitable for optically phase locked loop approaches. [0063]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity is shown in FIG. 4. [0064]
  • A tethered membrane assembly is made with MSL and gA both bearing a photoswitchable group in accordance with the invention. A biotinylated antibody streptavidin complex is then introduced into the electrolyte solution. The light source is switched on so that the antibody complex is not bound to either MSL or gA. Analyte is added and continually stirred and allowed to incubate so that analyte crosslinks all antibody-streptavidin complexes. Impedance measurements then commence which gives the channel on baseline [0065]
  • Impedance measurements continue and then the light is switched off whilst impedance measurements are made for a further period of time. The time course of gating is measured as gramicidin crosslinks to MSL via a photoswitchable group -streptavidin-biotin-antibody-analyte-antibodv-biotin-streptavidin-biotin-MSL complex [0066]
  • There are four principal advantages to this method; 1. An amplification in sensitivity is possible where the on rate of the optically switchable group is significantly greater than the on-rate of the antibody to the analyte, and the off times are greater than both, 2. The analyte binding is carried out in three dimensions rather than two, 3. Analyte addition artifacts are avoided and thorough mixing can be carried out, and 4. This method is suitable for optically phase locked loop approaches. [0067]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity is shown in FIG. 5. [0068]
  • These methods can be modified by using antibodies bearing a photoswitchable group instead of the gA of MSL. In this case the advantages are analyte addition artifacts are avoided and thorough mixing can be carried out, and this method is suitable for optically phase locked loop approaches. [0069]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity in a competition assay (such as depicted in FIG. 6) wherein non-specific effects are separated from the real gating response [0070]
  • A tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable group which binds to streptavidin is produced. A measurement of biosensor impedance is made then the analyte is added. A second measurement is made then a light source is triggered on. A third measurement of the time course response to light is made then the light source is triggered off. A fourth measurement of the time course response to the removal of light is then made. [0071]
  • The photoswitchable group could of course replace biotin. Such a group may be photoswitchable group or a derivative thereof. [0072]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity in a competition assay (such as depicted in FIG. 7) wherein any non-specific effects (caused during analyte addition) can be separated from the gating response. [0073]
  • A tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable group connected to a membrane spanning lipid is produced. A measurement of biosensor impedance is then made prior to addition of analyte. Analyte is added and a second measurement is made. A light source is then triggered on and a third measurement of the time course response to light is made. The light source is then triggered off and a fourth measurement of the time course response to the removal is made. [0074]
  • A method for using photoswitchable linkers during measurement of analyte responses to improve sensitivity in a lateral segregation assay wherein any non-specific effects (caused during analyte addition) can be separated from the gating response(such as depicted in FIG. 8). [0075]
  • A tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a derivative of the required analyte and a photoswitchable tether to the bottom layer gramicidin (or other ion channel) is produced. A measurement of biosensor impedance is made and the analyte is added. A second measurement is then made and a light source is triggered on. A third measurement of the time course response to light is made then the light source is triggered off. A fourth measurement of the time course response to the removal is then made. [0076]
  • It uill be recognised that a caged biotin could be used in place of a photoswitchable streptavidin ligand such as HABA (or a derivative) in the examples cited above, specifically those depicted in FIGS. 3,4, and [0077] 5. Several caged biotin derivatives are known in the literature, such as those reported by Pirrung (1993, 1996). Such caged derivatives revert to biotin on irradiation with light and therefore cannot be switched between forms that bind streptavidin and forms that do not bind streptavidin.
  • An additional example of the use of such caged biotin compounds is depicted in FIG. 9. [0078]
  • i) manufacture (e.g. via evaporation) a gold coated substrate on a surface (such as glass or silicon) [0079]
  • ii) manufacture a tethered bilayer employing a gramicidin (or other ion channel) derivative which bears a caged biotin [0080]
  • iii) streptavidin is added to the system, and attaches to biotin on the MSL4XB [0081]
  • iv) a biotinylated receptor is added to the system, and attaches to the SA on MSL4XB [0082]
  • v) further biotin is added to block the remnaining binding sites on SA [0083]
  • vi) a light source is triggered on [0084]
  • vii) streptavidin is added to the system, and attaches to newly generated biotin (on the gramicidin) [0085]
  • viii) a biotinylated receptor is added to the system, and attaches to the SA on gramicidin [0086]
  • ix) analyte is added to the system [0087]
  • x) an impedance measurement is made [0088]
  • The advantage of this manufacture process is that formation of gA-SA-MSL linkages (i.e. streptavidin gating) is minimised and thus the dynamic range is improved. A further advantage is that receptors can be selected to bind specifically at MSL4XB and the gramicidin derivative, which in turn may improve the response. [0089]
  • Materials and Methods [0090]
  • The photoswitchable ligands of the [0091] general formulae 1 and 2 are prepared by well known synthetic procedures. For example, the coupling of diazo aromatics with substituted phenols and their derivatives, has been well documented (Berwick 1972: Oku 1979; Weber 1994). It will be recognised that compounds derived from such a coupling reaction can be further functionalised. For example, a free hydroxyl group could be acylated or etherified using conventional synthetic methods. Representative examples of compounds prepared via these chemical synthetic pathways are depicted in FIG. 10.
  • Preparation of caged biotic—gramicidin complex (gAxx[B]) [0092]
    Figure US20030143726A1-20030731-C00003
  • A photo-generatable derivative bf biotin (so called caged biotin) was prepared by a modification of the method of Pirrung et al ([0093] Bioconj. Chem., 1996, 7, 317). This compound (9 mg) was dissolved in dichloromethane (5 ml) and treated with dicyclohexylcarbodiimide (DCC) (3 mg), N-hydroxy succinimide (NHS) (2 mg) and dimethylaminopyridine (0.2 mg). After stiing at room temperature for two hours a derivative of gramicidin bearing two aminocaproyl groups linked end-to-end and attached to the terminal hydroxyl of gramicidin (prepared by conventional peptide chemistry techniques) was added (30 mg, as a solution in methanol (1 ml) and triethylamine (0.1 ml)). The solution was stirred for 18 hours, evaporated to dryness and then passed through a Sephadex LH-20 column eluting with dichloromethane-methanol-water (800:50:4). The main fraction was then purified by HPLC on a 40 mm×200 mmn Waters Prep Nova-Pak® HR silica column (6 μm, 60 Å) eluting with dichloromethane-methanol-water (800:40:4) operating at a flow rate of 25 ml/min. The fraction, eluting at 24.5 minutes, possessed a 1H-nmr spectrum and mass spectrum in full agreement with the proposed structure.
  • Investigation of specific photosensitive chemistry in Ion Channel Sensing System [0094]
  • Avidin/Streptavidin-biotin chemistry is one of the most widely used reactions in immunochemistry and is the strongest known noncovalent, biological interaction between a protein and a ligand, with K[0095] A=1015M−1. The bond formation is very rapid and once formed, is unaffected by wide extremes of pH, temperature, organic solvents and other denaturing agents. Conditions which are usually sufficient for denaturing proteins fail to disassociate the avidin-biotin complex. A reporter molecule could be bound to streptavidin covalently, or biotinylated and attached to streptavidin via the streptavidin-biotin interaction. Selective activation and functionalisation of this complex is targeted in this group of experiments.
  • There are at least two applications that can be identified with the use of photosensitive compounds. The first one is using this chemistry for maling the array and the other is for improving the signal by selectively filtering out the non-specific signals and other noise components. Both these applications can be used effectively either independently or together. [0096]
  • The following experiment was conducted with a form of biotin that is not active in the native state (i.e. will not bind to streptavidin) but can be activated by UV irradiation to bind streptavidin. This photoactivable form of biotin has been conjugated with gramicidin and used as an essential component of the bilayer membrane for targeting chemistries using streptavidin-biotin complex. [0097]
  • Materials and Methods [0098]
  • Preparation of electrodes [0099]
  • The gold electrodes were built on commercially available glass microscope slides. The glass slides were cleaned for 2 hours in the glass cleaning solution “Extran 300”, rinsed several times with copious volumes of deionised water and dried in a stream of nitrogen in clean room conditions. The metal deposition was carried out using an Edwards evaporation unit. An adhesion layer of chromium (−20 nM) was deposited fouowed by a layer of gold (100 nM. One side of the glass slides was fully coated with metal. The metal treated glass slides were removed from the evaporator and quickly immersed in an ethanolic solution of monolayer components for an hour (AM300), rinsed profusely in ethanol and preserved in ethanol. These electrodes were stored at 4° C. for 24 hours before assembling the second layer of the membrane. [0100]
  • Preparation of Reagents and Biomolecules [0101]
  • Preparation of Solutions of Test Compound and Control Compounds [0102]
  • The photoactivable biotic in its native form has a molecular weight of 686 d and has a molecular weight of 2.809 kd in the form of gAxx[B]. This compound was dissolved in ethanol to prepare a 2 mM solution (5.5 mg in 1.958 ml) and further diluted to a 10 uM solution. An aliquot of the gAxx[B] solution was activated by irradiating the solution at 350 nM for a period of 20 minutes. [0103]
  • Three types of second layer membrane solutions were prepared with 3 mM lipids DPEPC (1,2-di(3RS, 7R, 11R-phytanyl)-glycero-3-phosphocholine) and GDPE (1,2-di(3RS, 7R, 11R-phytanyl)-glycerol) in 7:3 ratio and three types of gA5xB. The first solution was prepared with gA5xB (see FIG. 11), the second with the inactive form of photoactivatable gAxx[B] and the third solution with the activated form of photoactivatable gAxx[B]. [0104]
  • Streptavidin was diluted in PBS to a concentration of 0.1 mg/ml. The matched pair of biotinylated Thyroid Stimulating Hormone (TSH) Fabs (E20650 M and E45650 M) was combined in equal molar ratio to give a 50 ug/ml solution in PBS. TSH analyte was diluted in chilled PBS to prepare a 2.5 nM solution. [0105]
  • Assembling Biosensor Blocks [0106]
  • The monolayer AM300 was deposited on metallised glass electrodes as per established protocol. The electrodes were assembled into biosensor blocks. The second layer solution was added manually (15 μl per cell) and washed five times with PBS to assemble the bilayer membrane. The fully assembled blocks had the following second layers: [0107]
  • Block 1: Row A (cells 1-8) with a ratio of 40 k: 1 standard gA5xB Row B (cells 9-16) with a ratio of 40 k: 1 inactive for of gAxx[B][0108]
  • Block 2: Same as above [0109]
  • Block 3Row A (cells 1-8) with standard gA5xB as in [0110] blocks 1 and 2 Row B (cells 9-16) with the activated form of gAxx[B].
  • A second group of 2 blocks were assembled with the inactive form of gAxx[B] and the cells were exposed to UV irradiation. The exposure time for pairs of cells was varied to study the effects of time length of exposure and select the most effective time period for future experiments. Exposure times down to one minute were found to be effective. [0111]
  • Observations [0112]
  • The inactive form of gAxx[B] did not show a binding response when treated with 42 nM streptavidin. This was reproducible and the positive control used in cells could be continued further to complete the TSH assay, The activated form showed moderate response when exposed to streptavidin. [0113]
  • Cells 1-8 used the standard composition of second layer as a positive control for comparison and these responded to streptavidin. Cells 9-16 using the inactive form of gAxx[B] showed no response when exposed to streptavidin. [0114]
  • In the time course measurements the inactive gx[B] did not appear to facilitate a specific response as compared to the specific response elicited with standard gA5x[B]. [0115]
  • Determination of the impedance responses showed that the activated form of gAxx[B] (test cells 9-16) showed a positive response to the addition of streptavidin. The inactive from of gAxx[B] did not facilitate any specific response. It may be concluded from these experiments that photoactivable gAxx[B] can be effectively activated by ultra violet irradiation to actively bind to streptavidin and allow gating of the biosensor. [0116]
  • It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive. [0117]
  • References [0118]
  • 1. Pirrung et al, [0119] J. Am. Chem. Soc., 1993, 115, 12050; Pirrung et al, Bioconj. Chem. 1996, 7, 137.
  • 2. Berwick et al., [0120] J. Org. Chem., 1972, 37, 2409.
  • 3. Oku et al., [0121] J. Org. Chem., 1979, 44, 3342.
  • 4. Weber et al. [0122] J. Am. Chem. Soc., 1994, 116, 2717.
  • 5. Pillai, [0123] Sythesis, 1980, 1

Claims (13)

1. A method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps:
(i) providing a conductive substrate;
(ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate in a manner such that a functioning reservoir exists between the membrane and the conductive substrate;
(iii) linking a ligand reactive with an analyte of interest to the ion-channel and linking a ligand reactive with an analyte of interest to the membrane spanning lipids via photocleavable linkers; and
(iv) exposing the membrane to a focused light source to cleave the photocleavable linkers thereby releasing the ligands from the ion-channel and membrane spanning lipid components in discrete areas of the membrane.
2. A method as claimed in claim 1 in which the method further includes the following step:
(v) binding control ligands to the ion channels and membrane spanning lipid components after the ligands have been removed in step (iv).
3. A method as claimed in claim 2 in which the membrane is rinsed between steps (iv) and (v).
4. A method of fabricating a biosensor in which there is at least one discrete test and at least one discrete control zone, the method comprising the following steps:
(i) providing a conductive substrate;
(ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate in amanner such that a functioning reservoir exists between the membrane and the conductive substrate;
(iii) providing on the ion channels and membrane spanning lipids a photoactivatable group which when illuminated will bind a receptor;
(iv) illuminating discrete areas of the membrane and linking a ligand reactive with an analyte of interest to the ion-channel and membrane spanning lipid components of the tethered membrane via photoactivated group to form test areas;
(v) removing unbound ligand; and
(vi) linking a control ligand to the remainder of the ion-channels and membrane spanning lipid components of the tethered membrane to form control areas.
5. A method as claimed in claim 4 in which the photoactivatable group is caged biotin.
6. An improved biosensor, the biosensor comprising a membrane and an electrode having a conductive subsbate, the membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate, ligands specific for an analyte attached the ion channels and membrane spanning lipids, the improvement comprising providing on at least one of the first and second half membrane spanning monomers a photocleavable/switchable group which inhibits dimer formation.
7. An improved biosensor, the biosensor comprising a membrane and an electrode having a conductive substrate, the membrane including membrane spanning lipids and ion channels comprsing first and second half membrane spanning monomers, the membrane being attached to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate, ligands specific for an analyte attached the ion channels and membrane spanning lipids, the improvement comprising the attachment of at least one of the ligands specific for an analyte attached the ion channels and membrane spanning lipids being attached by means of a photocleavable/switchable group.
8. A method of detecting the presence of an analyte in a sample, the method including the steps of:
(i) adding a sample suspected to contain the analyte to the biosensor as claimed in claim 6 or claim 7;
(ii) determining the conductance or impedance of the membrane;
(iii) exposing the biosensor to irradiation to which the photocleavable/switchable group is sensitive;
(iv) determining the conductance or impedance of the membrane following irradiation;
(v) comparing the conductance or impedance determination in step (ii) with the determination in step (iv); and
(vi) optionally repeating steps (ii) to (v).
9. A method of producing an improved biosensor, the method comprising the following steps:
(i) providing a conductive substrate;
(ii) forming a membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate;
(iii) providing on the half membrane spanning monomer remote from the conductive substrate a photoswitchable binder to streptavidin and providing biotin on the membrane spanning lipid;
(iv) adding streptavidin;
(v) triggering a light source and rinsing;
(vi) triogering the light source off and adding streptavidin;
(vii) optionally repeating steps (v) and (vi); and
(viii) adding ligands specfic to an analyte to the ion channels and membrane spanning lipids.
10. A method as claimed in claim 9 in which the photoswitchable binder to streptavidin is caged biotin, HABA or derivative thereof.
11. An improved biosensor, the biosensor comprising a membrane and an electrode having a conductive substrate, the membrane including membrane spanning lipids and ion channels comprising first and second half membrane spanning monomers, the membrane being attached to the conductive substrate such that a functioning reservoir exists between the membrane and the conductive substrate, and ligands specific for an analyte attached to the ion channels and membrane spanning lipids, the improvement comprising providing on at least one of the first and second half membrane spanning monomers or membrane spanning lipids a photoswitchable group derived from a compound in accordance with Formula 1:
Figure US20030143726A1-20030731-C00004
wherein R1 represents 0 to about 3 groups where each is independently H or saturated or unsaturated, substituted or unsubstituted C1-C10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; R2 represents 0 to about 3 groups where each is independently hydrogen or satmuated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; Y represents H, saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, COR6, CONR7R8, COOR14, S(O)nR15 where n is 0, 1 or 2, R6, R7, R8, R14 and R15 are each independently represent H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4, hydrocarbon or aryl; R9 is —C(O)X where X represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, or OH, or OR10 in which R10 is alkyl, or NR11R12 in which R11 and R12 are H, alkyl or taken together with N form a rincg, or arl or R9 together with R1 form a substituted or unsubstituted 5-6 member cyclic or heterocyclic ring; Z represents O or NR13 R13 is H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl, the compound including a functional group at Y or R9 such that the compound can be linked to the the at least one of the first and second half membrane spanning monomers.
12. An improved biosensor as claimed in claim 11 in which the photoswitchable linkers are derived are shown in Formula 2 below.
Figure US20030143726A1-20030731-C00005
wherein R1 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or uinsubstituted C1-4 hydrocarbon; R, represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; X represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, or aryl, or OH, or OR10 in which R10 is alkyl, or NR11R12 in which R11 and R12 are H, alkyl or taken together with N form a ring,; Y represents H, or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, COR6, CONR7R8, COOR14, S(O)nR15 where n is 0, 1 or 2, R6, R7, R8, R14 and R15 are each independently represent H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl; Z represents O or NR13 R13 is H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated. substituted or unsubstituted C1-4 hydrocarbon or aryl.
13. A compound in accordance with Formula 1:
Figure US20030143726A1-20030731-C00006
wherein R1 represents 0 to about 3 groups where each is independently H or saturated or unsuaturated, substituted or usubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; R2 represents 0 to about 3 groups where each is independently hydrogen or saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon; Y represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, COR6, CONR7R8, COOR14, S(O)nR15 where n is 0, 1, or 2, R6, R7, R14 and R15 are each independently represent H, saturated or unsaturated, substituted or unsubstitusted C1-10 hydrocarbon, preferably, saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl; R9 is —C(O)X where X represents H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon, or OH, or OR10 in which R10 is alkyl, or NR11R12 in which R11 and R12 are H, alkyl or taken together with N form a ring, or aryl or R9 together with R1 form a substituted or usubstituted 5-6 member cyclic or heterocyclic ring; Z represents O or NR13 R13 is H, saturated or unsaturated, substituted or unsubstituted C1-10 hydrocarbon, preferably saturated or unsaturated, substituted or unsubstituted C1-4 hydrocarbon or aryl, with the proviso that when R is —C(O)X and X is H, at least one of R1, R2, R3 or Y is other than H.
US10/358,176 1997-06-04 2003-02-05 Biosensor involving the use of optically sensitive moieties Abandoned US20030143726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/358,176 US20030143726A1 (en) 1997-06-04 2003-02-05 Biosensor involving the use of optically sensitive moieties

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
AUPO7170 1997-06-04
AUPO7170A AUPO717097A0 (en) 1997-06-04 1997-06-04 Improved biosensor involving the use of optically sensitive moieties
AUPP0449 1997-11-20
AUPP0449A AUPP044997A0 (en) 1997-11-20 1997-11-20 Improved biosensor involving the use of optically sensitive moieties
US09/446,004 US6537441B1 (en) 1997-06-04 1998-06-04 Biosensor involving the use of optically sensitive moieties
US10/358,176 US20030143726A1 (en) 1997-06-04 2003-02-05 Biosensor involving the use of optically sensitive moieties

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/AU1998/000424 Division WO1998055855A1 (en) 1997-06-04 1998-06-04 Improved biosensor involving the use of optically sensitive moieties
US09/446,004 Division US6537441B1 (en) 1997-06-04 1998-06-04 Biosensor involving the use of optically sensitive moieties

Publications (1)

Publication Number Publication Date
US20030143726A1 true US20030143726A1 (en) 2003-07-31

Family

ID=25645440

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/446,004 Expired - Fee Related US6537441B1 (en) 1997-06-04 1998-06-04 Biosensor involving the use of optically sensitive moieties
US10/358,176 Abandoned US20030143726A1 (en) 1997-06-04 2003-02-05 Biosensor involving the use of optically sensitive moieties

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/446,004 Expired - Fee Related US6537441B1 (en) 1997-06-04 1998-06-04 Biosensor involving the use of optically sensitive moieties

Country Status (4)

Country Link
US (2) US6537441B1 (en)
EP (1) EP0996855A4 (en)
CA (1) CA2294080A1 (en)
WO (1) WO1998055855A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080012007A1 (en) * 2004-04-01 2008-01-17 Nanyang Technological University Addressable Transistor Chip For Conducting Assays
EP2175022A1 (en) 2003-02-21 2010-04-14 Phylogica Limited Methods of construction biodiverse gene fragment libraries

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909177A (en) * 1957-11-29 1959-10-20 Ethicon Inc Surgical suture and method for dyeing
US4186243A (en) * 1976-02-25 1980-01-29 Ciba-Geigy Corporation Image producing system
US4828960A (en) * 1985-01-07 1989-05-09 Honeywell Inc. Reflection limiting photoresist composition with two azo dyes
US5096801A (en) * 1989-04-03 1992-03-17 Fuji Photo Film Co., Ltd. Color image recording method
US5234566A (en) * 1988-08-18 1993-08-10 Australian Membrane And Biotechnology Research Institute Ltd. Sensitivity and selectivity of ion channel biosensor membranes
US5266227A (en) * 1991-02-22 1993-11-30 Basf Aktiengesellschaft Oil-soluble phenylazoaniline dyes
US5798030A (en) * 1995-05-17 1998-08-25 Australian Membrane And Biotechnology Research Institute Biosensor membranes
US5827332A (en) * 1993-12-22 1998-10-27 Basf Aktiengesellschaft Azo dyes and a method of making a hydrocarbon using an azo dye
US5834224A (en) * 1994-08-24 1998-11-10 Boehringer Mannhein Gmbh Electrochemical sensor containing an enzyme linked to binding molecules bound to a noble metal surface
US5874316A (en) * 1989-01-27 1999-02-23 Australian Membrane Biotechnology Research Institute Receptor membranes and ionophore gating
US6291155B1 (en) * 1995-06-20 2001-09-18 Australian Membrane And Biotechnology Research Institute Self assembly of sensor membranes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948904B2 (en) * 1989-03-29 1999-09-13 エヌ・イー・エヌ・ライフ・サイエンス・プロダクツ・インコーポレイテツド Catalyzed reporter deposition
US5328847A (en) 1990-02-20 1994-07-12 Case George D Thin membrane sensor with biochemical switch
ES2178636T3 (en) 1991-03-27 2003-01-01 Ambri Ltd ION DEPOSIT ON THE SURFACE OF AN ELECTRODE.
CA2228519A1 (en) * 1995-08-01 1997-02-13 Australian Membrane And Biotechnology Research Institute Composite membrane sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909177A (en) * 1957-11-29 1959-10-20 Ethicon Inc Surgical suture and method for dyeing
US4186243A (en) * 1976-02-25 1980-01-29 Ciba-Geigy Corporation Image producing system
US4828960A (en) * 1985-01-07 1989-05-09 Honeywell Inc. Reflection limiting photoresist composition with two azo dyes
US5234566A (en) * 1988-08-18 1993-08-10 Australian Membrane And Biotechnology Research Institute Ltd. Sensitivity and selectivity of ion channel biosensor membranes
US5874316A (en) * 1989-01-27 1999-02-23 Australian Membrane Biotechnology Research Institute Receptor membranes and ionophore gating
US5096801A (en) * 1989-04-03 1992-03-17 Fuji Photo Film Co., Ltd. Color image recording method
US5266227A (en) * 1991-02-22 1993-11-30 Basf Aktiengesellschaft Oil-soluble phenylazoaniline dyes
US5827332A (en) * 1993-12-22 1998-10-27 Basf Aktiengesellschaft Azo dyes and a method of making a hydrocarbon using an azo dye
US5834224A (en) * 1994-08-24 1998-11-10 Boehringer Mannhein Gmbh Electrochemical sensor containing an enzyme linked to binding molecules bound to a noble metal surface
US5798030A (en) * 1995-05-17 1998-08-25 Australian Membrane And Biotechnology Research Institute Biosensor membranes
US6291155B1 (en) * 1995-06-20 2001-09-18 Australian Membrane And Biotechnology Research Institute Self assembly of sensor membranes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2175022A1 (en) 2003-02-21 2010-04-14 Phylogica Limited Methods of construction biodiverse gene fragment libraries
US20080012007A1 (en) * 2004-04-01 2008-01-17 Nanyang Technological University Addressable Transistor Chip For Conducting Assays
US8138496B2 (en) * 2004-04-01 2012-03-20 Nanyang Technological University Addressable transistor chip for conducting assays

Also Published As

Publication number Publication date
WO1998055855A1 (en) 1998-12-10
EP0996855A4 (en) 2001-08-01
EP0996855A1 (en) 2000-05-03
US6537441B1 (en) 2003-03-25
CA2294080A1 (en) 1998-12-10

Similar Documents

Publication Publication Date Title
US5766960A (en) Receptor membranes
US5741712A (en) Receptor membranes
US7122383B2 (en) Fluorescent polymer superquenching-based bioassays
CA2251674C (en) Biosensor device and method
JP2927942B2 (en) Gating of receptor membranes and ionophores
AU2002255771A1 (en) Fluorescent polymer superquenching-based bioassays
US6740213B2 (en) Composite membrane sensor
WO2001038873A2 (en) Devices and methods for detecting analytes using electrosensor having capture reagent
US5874316A (en) Receptor membranes and ionophore gating
EP0762122A1 (en) Streptavadin and biotin-based optical solid-phase biosensor
EP1939627B1 (en) Methods to detect analytes in samples
US6316273B1 (en) Biosensor for detection of small molecule analytes
AU617687B2 (en) Receptor membranes
US20030143726A1 (en) Biosensor involving the use of optically sensitive moieties
JP3316816B2 (en) Analyte detection by competitive inhibition of ion channel entry
AU779295B2 (en) Improved biosensor involving the use of optically sensitive moieties
AU7751098A (en) Improved biosensor involving the use of optically sensitive moieties
AU2918302A (en) Improved biosensor involving the use of optically sensitive moieties
US20100173425A1 (en) High Capacity Solid Phase
JPH0727767A (en) Coating carrier, manufacture thereof, and usage to fixation onto solid surface of biological molecule thereof
AU692107B2 (en) Detection of small analytes
Schalkhammer et al. Ion channels in artificial bolaamphiphile membranes deposited on sensor chips: optical detection in an ion-channel-based biosensor
ZA200307570B (en) Fluorescent polymer superquenching-based biossays.
MXPA98008830A (en) Method and biosen device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION