US20030148508A1 - Recombinant phages capable of entering host cells via specific interaction with an artificial receptor - Google Patents

Recombinant phages capable of entering host cells via specific interaction with an artificial receptor Download PDF

Info

Publication number
US20030148508A1
US20030148508A1 US10/251,565 US25156502A US2003148508A1 US 20030148508 A1 US20030148508 A1 US 20030148508A1 US 25156502 A US25156502 A US 25156502A US 2003148508 A1 US2003148508 A1 US 2003148508A1
Authority
US
United States
Prior art keywords
phagemid
pseudovirion
bacteriophage
host cell
genetically modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/251,565
Inventor
Serge Muyldermans
Jan Steyaert
Karen Silence
Els Torreele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vlaams Instituut voor Biotechnologie VIB
Original Assignee
Vlaams Instituut voor Biotechnologie VIB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP99402348A external-priority patent/EP1088892A1/en
Application filed by Vlaams Instituut voor Biotechnologie VIB filed Critical Vlaams Instituut voor Biotechnologie VIB
Priority to US10/251,565 priority Critical patent/US20030148508A1/en
Publication of US20030148508A1 publication Critical patent/US20030148508A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments

Definitions

  • the present invention relates to a recombinant bacteriophage, pseudovirion or phagemid that is capable of entering bacteria by specific binding to an artificial receptor.
  • Said receptor does not comprise at its active binding site elements such as proteins or peptides that are derived from the natural receptor used in the specific initial bacteriophage—bacterium interaction.
  • Bacteriophages like bacteria, are very common in all natural environments. Bacteriophages (phages) are intracellular parasites. Bacteria and their phages have a common evolutionary history and phages may have adapted to their host species by multiple mechanisms. The phage genome may consist of double-stranded DNA, single-stranded DNA, double-stranded RNA or single-stranded RNA. Bacteriophages exist in several morphologies and can be spherical, cubic, filamentous, pleomorphic or tailed.
  • bacteriophages can be divided into three groups: the virulent phages capable of only lytic propagation (called lytic phages), the so-called temperate phages capable of either lytic propagation or lysogenic phase and the non-lysing phages where the mature phage is continuously extruded.
  • the virulent life cycle of wild type phages consists of infection of the host cell, i.e. attachment to a specific receptor in the bacterial cell wall, followed by entering of the phage genome in the cell, replication of the phage genome, production of the phage structural components, phage assembly and release of the progeny phages after lysis of the host cell.
  • the phage genome exists as a prophage resulting in coexistence of phage and host cell without lysis. Usually, this is achieved by integration of the phage genome into the bacterial chromosome.
  • the life cycle of the non-lysing phages like e.g. Bacteriophage M13, is similar to that of the lytic phages, but the infection is not followed by lysis. Bacteriophages have been extensively used in biotechnology. Phage genes or complete phages may be used to obtain lysis and/or killing of bacteria.
  • U.S. Pat. No. 4,637,980 describes the use of an E. coli strain containing defective temperature sensitive lambda lysogens as a method for cell disruption.
  • Smith and coworkers (Smith et al., 1987, J. Gen. Microbiol. 133: 1111-1126) describe the use of bacteriophages to treat diarrhoea in calves, caused by seven different bovine enteropathogenic strains of E. coli .
  • WO95/27043 describes a method to treat infectious diseases caused by several bacterial genera, such as Mycobacterium, Staphylococcus, Vibrio, Enterobacter, Enterococcus, Escherichia, Haemophilus, Neisseria, Pseudomonas, Shigella, Serratia, Salmonella and Streptococcus, comprising the administration of bacteriophages with delayed inactivation by the animal host defence system.
  • infectious diseases caused by several bacterial genera such as Mycobacterium, Staphylococcus, Vibrio, Enterobacter, Enterococcus, Escherichia, Haemophilus, Neisseria, Pseudomonas, Shigella, Serratia, Salmonella and Streptococcus
  • WO 98/51318 describes a diagnostic kit and a pharmaceutical composition, comprising bacteriophages to diagnose and tro treat bacterial diseases caused by bacteria, such as Listeria, Klebsiella, Pneumococcus, Moraxella, Legionella, Edwardsiella, Yersinia, Proteus, Heliobacter, Salmonella, Chlamydia, Aeromonas and Renibacterium.
  • bacteria such as Listeria, Klebsiella, Pneumococcus, Moraxella, Legionella, Edwardsiella, Yersinia, Proteus, Heliobacter, Salmonella, Chlamydia, Aeromonas and Renibacterium.
  • biopanning a powerful technique for the isolation of interacting protein-ligand pairs from large libraries, such as antibody libraries.
  • a purified target protein is needed.
  • high quality of the library is a prerequisite for success.
  • Bacteriophage based techniques comprise display on phage lambda, SIP (Spada and Pluckthun, 1997, Biol. Chem., 378: 445-456; EP0614989) and CLAP (Malmborg et al, 1997, J. Mol. Biol., 273: 544-551; WO9710330).
  • SIP and CLAP are in vivo selection techniques and have the advantage that the F + E.coli host cells can only be infected by bacteriophages or pseudovirions when a matched pair is formed.
  • bacteriophages use specific receptors on the host cell wall as a way to recognise the host cell and to start the infection process.
  • the propagation of phages, pseudovirions or phagemids is dependent on the use of the natural phage receptor, or part of it, on the host cell wall.
  • the natural receptor is pilin (Malmborg et al., 1997, J. Mol. Biol. 273: 544-551).
  • Other examples of natural receptors are lamB for bacteriophage lambda (Werts et al, 1994, J. Bacteriol.
  • the outer membrane protein OmpA for bacteriophages K3, O ⁇ 2 and M1 (Montag et al, 1987, J. Mol. Biol., 196: 165-174)
  • the outer membrane proteins OmpF and Ttr for bacteriophage T2 (Montag et al, 1987, J. Mol. Biol., 196, 165-174)
  • the outer membrane protein OmpC for the T4 phage family (T4, Tula, Tulb) (Montag et al., 1990, J. Mol. Biol., 216: 327-334).
  • the T4 bacteriophage family is using a C-terminal region of protein 37 as natural ligand (Montag et al., 1990, J.
  • bacteriophages T2, K3, O ⁇ 2 and M1 are using protein 38 as natural ligand (Montag et al, 1987, J. Mol. Biol., 196, 165-174) whereas phage lambda is using the C-terminal portion of the lambda tail fibre protein as natural ligand (Wang et al., 1998, Res. Microbiol, 149: 611-624).
  • Bacteriophage-receptor independent phage binding to mammalian cells expressing the growth factor receptor ErbB2 followed by receptor mediated endocytosis was also described: Marks and collaborators (Poul and Marks, 1999, J. Mol.
  • the phage could not propagate in the mammalian cell, and the detection of the cells carrying bacteriophage could only be realised in an indirect way, by expression green fluorescent protein as a reporter gene.
  • One aspect of the invention is a genetically modified bacteriophage, pseudovirion or phagemid that is not dependent upon its natural receptor or parts thereof for entering a host cell.
  • Another aspect of the invention is a genetically modified bacteriophage, pseudovirion or phagemid capable of entering a host cell by specific binding to an artificial receptor.
  • These artificial receptors can be endogenous host cell proteins located at the bacterial surface, or parts thereof, that are normally not involved in the bacteriophage—bacterium interaction, but it may also be heterologous proteins, preferentially fusion proteins displaying an oligo- or polypeptide on the bacterial surface.
  • the genetically modified bacteriophage, pseudovirion or phagemid binds to the artificial receptor preferentially by an artificial ligand.
  • a specific embodiment is a genetically modified bacteriophage that is not dependent upon OmpA, OmpC, OmpF, Ttr or pilin for interaction with and/or entering E.coli .
  • a further specific embodiment is a genetically modified M13 bacteriophage, pseudovirion or phagemid that does not depend upon pilin, or fragments thereof for specific interaction with and/or entering of E. coli .
  • Said M13 bacteriophage, pseudovirion or phagemid can enter both F + and F ⁇ E. coli cells, dependent upon an artificial receptor that is displayed on the surface of said cells.
  • Still another aspect of the invention is a bacteriophage, pseudovirion or phagemid that enters the host cell mediated by an antigen—antibody reaction, whereby in the binding complex no proteins or parts of the natural receptor are involved.
  • a preferred embodiment of the invention is a genetically modified M13 phage, pseudovirion or phagemid displaying an antibody, preferentially the variable part of a camel heavy chain antibody for instance disclosed in international patent application WO 94/04678 and in Hamers-Casterman C et al Nature, vol 363, Jun. 3, 1993.p 446-448, on its tip, which can enter an E.coli host cell, displaying the antigen, preferentially as an pOprl fusion protein.
  • Oprl as a protein for the expression of an amino acid sequence at the surface of the cell wall of a host cell is disclosed for example in international patent application WO 95/04079 which is incorporated herewith by reference.
  • a further aspect of the invention is the use of said bacteriophage, pseudovirion or phagemid for selective entering of a subpopulation of bacteria.
  • the bacteriophage, pseudovirion or phagemid will only enter those bacteria that carry said artificial receptor. By this, the subpopulation of bacteria can be identified and/or eliminated.
  • One embodiment of the invention is the specific elimination of pathogenic bacteria by directing a recombinant bacteriophage, pseudovirion or phagemid to a specific bacterial surface protein of said pathogenic bacteria.
  • the pathogenic bacteria can be gram positive, gram negative or gram variable and can belong, amongst other to the genera Aeromonas, Chlamydia Edwardsiella, Enterobacter, Enterococcus, Escherichia, Haemophilus, Heliobacter, Klebsiella, Legionella, Listeria, Moraxella, Mycobacterium, Neisseria, Pneumococcus, Proteus, Pseudomonas, Renibacterium, Salmonella, Serratia, Shigella, Staphylococcus, Vibrio or Yersinia, without that this summation is limitative.
  • Elimination can be obtained by the lytic cycle of the bacteriophage, but is not limited this method.
  • Other methods of eliminating the host cell may be the production of a toxic product encoded by the recombinant bacteriophage genome in the host cell.
  • a preferred embodiment is the production of barnase placed after an inducible promoter, such as the barnase—barstar cassette described by Jucovic and Hartley ( Protein engineering, 8: 497-499, 1995).
  • Another aspect of the invention is a host cell, entered by the genetically modified bacteriophage, pseudovirion or phagemid.
  • Such host cell comprises the nucleotide sequence encoding the artificial receptor and the nucleotide sequence encoding the artificial ligand.
  • sequences may be expressed in the host cell in combination with marker sequences, especially sequences encoding antibiotic resistance genes.
  • a preferred embodiment is an E.
  • coli cell preferentially transformed with a plasmid encoding a pOprl-fusion protein, more preferentially transformed with a plasmid derived from ptrc-Oprl, carrying a genetically modified M13 phage, pseudovirion or phagemid, preferentially a pK7C3 derived phagemid, wherein said genetically modified M13 phage is modified, especially by in vitro construction, with a nucleotide sequence encoding a protein capable of specifically binding to the pOprl-fusion protein.
  • the Oprl-fusion protein is carried out in introducing the nucleotide sequence of the fusion partner acting as the region for interaction with the ligand expressed on the bacteriophage, pseudovirion or phagemid, especially as disclosed in WO 95/04678.
  • Still a further aspect of the invention is the use of said bacteriophage,psseudovirion or phagemid to identify interacting proteins, including cases where none of the members of the interacting protein is known.
  • the bacteriophage, pseudovirion or phagemid can be used to screen (1) a host cell, displaying a bait against a library of bacteriophages, pseudovirions or phagemids displaying the prays, (2) a bacteriophage, pseudovirion or phagemid displaying a bait against a library of host cells displaying the convinceds, (3) a library of bacteriophages, pseudovirions or phagemids displaying different prays or baits against a library of host cells, displaying different baits or prays (As illustrated in FIG. 1).
  • a preferred embodiment is where pOprl is used as fusion partner for the display of bait or pray on the surface of the F ⁇ E.coli strains (Williams & Meynell 1971. Mol. Gen. Genet. 113: 222-227) such as DH5 ⁇ and UT5600 as host cell and where the phagemid pK7C3 is used for cloning the pray or bait as a pill fusion protein.
  • Another embodiment of the invention is the construction of a subtraction library, with the use of lytic bacteriophages, preferentially barnase expressing bacteriophages.
  • a part of the host cell library is recognised by lytic phages such as barnase expressing phages and killed upon recognition of the artificial receptor by the artificial ligand, entering of the bacteriophage, pseudovirion or phagemid and expression of the lytic gene.
  • lytic phages such as barnase expressing phages and killed upon recognition of the artificial receptor by the artificial ligand, entering of the bacteriophage, pseudovirion or phagemid and expression of the lytic gene.
  • Another aspect of the invention is a method for selecting artificial receptor-artificial ligand interactions, comprising
  • One embodiment of the invention is said method, whereby the selection is based on an antibiotic resistance marker. Another embodiment is said method whereby the cells are selected by killing of the host cell, preferentially by expression of barnase.
  • a preferred embodiment is said method, whereby the host cell is an E. coli cell, displaying the artificial receptor as a pOprl fusion protein, and the genetically modified bacteriophage, pseudovirion or phagemid is a genetically modified M13, displaying an artificial ligand as a pill fusion protein.
  • Genetically modified bacteriophage a bacteriophage of which the genome has been modified, at least by the introduction of the gene encoding for an artificial ligand. This introduction can be as a replacement of one of the endogenous genes or as an additional gene besides the endogenous genes.
  • Natural receptor protein domain, protein or protein complex situated on the host cell wall, involved in the natural initial interaction between a bacteriophage and said host cell, whereby this interaction is followed by introduction of the genetic material of the bacteriophage into the host cell.
  • Artificial receptor protein domain, protein, fusion protein or protein complex on the host cell wall whereby said protein domain, protein, fusion protein or protein complex does not contain one or more peptide fragments of at least 10 contiguous amino acids derived from the natural bacteriophage receptor in the protein sequence or region that is involved in the interaction between bacteriophage, pseudovirion or phagemid and the artificial receptor.
  • Protein encompasses peptide, protein, glycoprotein, lipoprotein or another form of modified protein, including chemically modified protein.
  • Protein complex protein—protein complex, but also protein—compound complex, whereby said compound may be any chemical or biological compound, including simple or complex inorganic or organic molecules, peptido-mimetics, carbohydrates, nucleic acids or derivatives thereof.
  • Natural ligand protein, protein domain or protein complex of the bacteriophage, pseudovirion, or phagemid involved in the natural initial interaction between said bacteriophage, pseudovirion, or phagemid, and a host cell, including recognition of and possibly binding to the natural receptor, whereby this interaction is followed by introduction of the genetic material of the bacteriophage into the host cell.
  • Artificial ligand protein, protein domain or protein complex of the bacteriophage, pseudovirion, or phagemid, whereby said protein domain, protein, fusion protein or protein complex does not contain one or more peptide fragments of at least 10 contiguous amino acids derived from the natural ligand of the bacteriophage in the protein sequence or region that is involved in the interaction between bacteriophage, pseudovirion or phagemid and the artificial receptor.
  • Host cell any bacterial cell that can allow a bacteriophage, pseudovirion or phagemid to enter said cell after interaction of a said bacteriophage, pseudovirion or phagemid with a natural or artificial receptor.
  • host cells include gram-negative or gram-positive bacteria, especially including E coli cells and in particular F ⁇ cells which do not permit entering of bacteriophages, pseudovirions or phagemids through the pillin mechanism.
  • Entering bacteria means that the bacteriophage, pseudovirion or phagemid can enter as a whole or as a part (e.g. only the genetic material) the host cell after specific binding to the artificial receptor.
  • the mechanism by which the material is entering the host cell is not limited to specific ways and can be amongst others an active infection process or a passive uptake by the host cell. Methods for determination of the specific binding of the artificial ligand with the artificial receptor are illustrated in the examples.
  • Specific binding means that the initial step of the entering is mediated by a specific interaction between the artificial receptor on the host cell wail and the artificial ligand of the bacteriophage, pseudovirion or phagemid. This specific interaction is preferentially a protein—protein interaction. This entering after specific interaction should be distinguished from the Calcium dependent pilus independent infection that can be detected with M13 bacteriophages in which the second N-terminal domain of glllp has been removed (Krebber et al., 1997, J. Mol. Biol. 268: 607-618).
  • the invention relates to a genetically modified host cell, transformed with a nucleotide sequence encoding an artificial receptor in conditions enabling that the artificial receptor be expressed at the surface of the host cell, said host cell being further transformed with a nucleotide sequence encoding said artificial ligand whereby said nucleotide sequence encoding the ligand entered the host cell as a consequence of the interaction between said artificial ligand and a protein sequence or region on said artificial receptor.
  • Particular genetically modified host cells are those wherein the nucleotide sequence encoding the artificial receptor and/or the nucleotide sequence encoding the artificial ligand are not initially known.
  • the genetically modified host cell is a gram-negative bacterium, especially an E coli cell of the F ⁇ type.
  • the genetically modified host cell is a transformed cell wherein the nucleotide sequences of the artificial receptor and the nucleotide sequence for the artificial ligand are respectively coding sequences of an antibody or a functional fragment thereof and coding sequence of an antigen, or are respectively coding sequences of an antigen and coding sequence of antibody or a functional fragment thereof.
  • the functional antibody fragment can be a variable fragment of an antibody, encompassing four-chain antibodies or two-chain antibody as defined in international patent application WO 94/04678, including native or modified, especially truncated chains thereof.
  • the variable chain is a VHH fragment of a camelid antibody or a functional portion of said VHH, as disclosed in the above cited patent application which is incorporated by reference.
  • the invention relates also to the above defined genetically modified host cell, wherein the nucleotide sequence encoding the artificial receptor comprises a sequence encoding Oprl or a part of Oprl sufficient to enable the exposure, at the surface of the host cell, of a protein sequence or region capable of interacting with the artificial ligand.
  • a further object of the invention is a kit comprising a genetically modified host cell according to the above proposed definitions and specific embodiments or comprising a host cell and/or a bacteriophage, pseudovirion or phagemid and/or means including a cloning vector enabling the construction of said host cell and/or a bacteriophage, pseudovirion or phagemid according to the above definitions.
  • a particular kit is designed to be used for in vivo panning of antibody or antibody fragment library, or antigenic sequences library.
  • Said kit can also be used for the simultaneous in vivo panning of both an antibody fragment library, and an antigenic sequences library.
  • the invention therefore provides means for the identification of target sequences or molecules including especially amino acid sequences capable of interacting with a determined receptor, whether the nature or sequences of said receptor is known or unknown. Especially the invention can be used for the identification of therapeutic targets.
  • FIG. 1 gives a schematic representation of the screening of a proteome expression library against a camel VHH anti-proteome antibody library.
  • FIG. 2 schematic representation of phagemid pK7C3.
  • FIG. 3 schematic representation of plasmid ptrc-Oprl
  • FIG. 4 Results of the Western blot. From left to right: lane 1 shows the molecular weight markers. Lane 2 and 3 show the total lysate of E. coli , transformed with ptrc-Oprl, respectively after growth in LB (lane 2 ) and M9 (lane 3 ). Lane 4 and 5 show the total lysate of E. coli , transformed with ptrc-Oprl-OVA, respectively after growth in LB (lane 4 ) and M9 (lane 5 ). Proteins are visualised with anti-Oprl, as described in example II.
  • a camel (B) was immunised with 1 mg hen-egg ovalbumin (Sigma) in the presence of complete Freund adjuvant, and boosted in the presence of incomplete Freund adjuvant at days 7,14, 28, 35 and 42. Anticoagulated blood was collected for lymphocyte isolation on day 45. This results in VHH library CAMELB
  • Peripheral blood lymphocytes were prepared using Unisep (WAK Chemie, Germany).
  • the camelid heavy chain antibodies (VHH's) from 10 7 lymphocytes were cloned after RT-PCR amplification in the Ncol-Notl site of the pK7C3 vector (FIG. 2) and transformed in TG1 (Lauwereys et al, 1998, the EMBO Journal, 17: 3512-3520).
  • the primers for the amplification are CATGCGATGACTCGCGCGGCCCAGCCGGCCATGGC and GTGTGCGGCCGCTGAGGAGACRGTGACCWG.
  • the pK7C3 vector is a pHEN4 (Ghahroudi et al, 1997, FEBS letters, 414: 521-526) derivative where the ampicillin resistance gene was replaced by the chloramphenicol resistance gene and the haemaglutinin tag was replaced by a histidine and c-myc tag (Ghahroudi et al, 1997, FEBS letters, 414: 521-526)
  • VHH's from the CAMELB library were expressed on phage after infection of the library with M13KO7 helper phage (pK7C3-VHHB) as described by Ghahroudi et al, 1997, FEBS letters, 414: 521-526.
  • a library of 3 ⁇ 10 6 individual colonies was obtained of which 85% had the correct insert size, and 90% of these could produce a fusion protein between VHH and pIII.
  • the CAMELB library was panned for the presence of binders on ovalbumin coated in wells of microtitre plates (10 ⁇ g ovalbumin/well). Bound phages were eluted and allowed to infect TG1 cells (Stratagene). After two or three rounds of panning, individual colonies were grown, periplasmic extracts were prepared and screened for the presence of ovalbumin binders in ELISA. (Skerra and Pluckthun, 1988, Science, 240: 1038-1041). The plasmid of these binders was prepared and sequenced.
  • the bacterial pellet was dissolved in 600 ml of 2 ⁇ TY medium containing 25 ⁇ g/ml chloramphenicol and 25 ⁇ g/ml kanamycin, and incubated overnight at 30° C., vigorously shaking at 250 rpm.
  • Phages were again PEG precipitated by immediate centrifugation for 30 minutes at 4300 rpm and 4° C. after PEG addition.
  • the pellet (invisible) was dissolved in 1 ml PBS+100 ⁇ l PBS-caseine. 15% glycerol was added and the phages were stored at ⁇ 80° C. for maximally 1 week, until further use.
  • ptrc-Oprl Cote-Sierra et al., 1998, Gene, 221:25-34; FIG. 3
  • ptrc-Oprl-ova obtained by amplifying the gene encoding for hen-egg ovalbumin, digesting the product with BamHI and EcoRI and cloning the digest in BgIII/EcoRI digested ptrc-Oprl) plasmids were transformed in E.coli Top10F′ (Invitrogen) and tested for expression in M9CAA and LB-medium in Western blot.
  • UT5600 F ⁇ , ara-14, leuB6, azi-6, lacY1, proC14, tsx-67, entA403, trpE38, rfbD1, rpsL109, xyl-5, mtl-1, thi1, ⁇ ompT, fepC266) (Biolabs).
  • UT5600 is an outer membrane protease T-deficient E. coli strain, which was used for the stable presentation of Ig scFv fusions (Maurer and Meyer, J. Bacteriol., 1997, 179: 794-804)
  • Infection of E.coli was screened for by selection of incubation mixtures on LB-agar plates containing 100 ⁇ g/ml ampicilline, 25 ⁇ g/ml chloramphenicol and 2% glucose.
  • Periplasmic fractions were tested in NUNC-plates coated overnight with ovalbumin (5 ⁇ g/ml) or casein as a negative control (1% w/v in PBS) and blocked overnight with 1% (w/v) casein. Samples were incubated for 2 hours at room temperature and ovalbumin binding VHH's were detected with a mouse anti-Histidine-tag (SEROTEC), anti-mouse-alkaline phosphatase conjugate (Sigma) and a chromogenic substrate (Sigma).
  • SEROTEC mouse anti-Histidine-tag
  • Sigma anti-mouse-alkaline phosphatase conjugate
  • chromogenic substrate Sigma
  • UT5600 ⁇ ptrc-Oprl-OVA ⁇ or DH5 ⁇ ptrc-Oprl-OVA ⁇ cells survived very well when incubated with and entered by pK7C3-VHHB phages.
  • the pK7C3-VHHB phages which did not enter UT5600 ⁇ ptrc-Oprl-OVA ⁇ or DH5 ⁇ ptrc-Oprl-OVA ⁇ cells are still able to infect TG1 cells and are therefore stable under the conditions used.
  • Positive clones were selected from experiment 2 for UT5600 (clone number 10, 11, 12, 13, 16, 17). They were inoculated in 5 ml LB containing 25 ⁇ g/ml chloramphenicol, and grown overnight at 37° C. Plasmid was prepared, transformed in TG1 and plated on LB agar plates containing 25 ⁇ g/ml chloramphenicol and 2% glucose. Individual colonies were tested in ELISA as described before (in TB containing 25 ⁇ g/ml chloramphenicol and 0.1% glucose). TABLE 5 Positives in ELISA 10 8/8 11 8/8 12 8/8 13 7/8 16 8/8 17 8/8
  • Optimal conditions for uptake of phages were tested by mixing pK7C3-VHHB phages with UT5600 ⁇ ptrc-Oprl-OVA ⁇ or DH5 ⁇ ptrc-Oprl-OVA ⁇ cells at different optical densities. Individual colonies were tested in ELISA. For UT5600 ⁇ ptrc-Oprl-OVA ⁇ the optimal density is between 0.15 and 0.3 and for DH5 ⁇ ptrc-Oprl-OVA ⁇ between 0.2 and 0.6.
  • UT5600 ⁇ ptrc-Oprl-OVA ⁇ cells grow much faster than DH5 ⁇ ptrc-Oprl-OVA ⁇ and are easier infected by anti-ovalbumin expressing phages (positive clones in ELISA) (73% versus 30-50% table 6a-b).
  • ELISA anti-ovalbumin expressing phages
  • barnase is a extracellular ribonuclease from Bacillus amyloliquefaciens (Hartley & Rogerson 1972, Prep. Biochem. 2: 229-242).
  • a very low level of intracellular expression of barnase in E.coli is lethal because barnase depolymerizes the RNA of its host.
  • Jucovic & Hartley developed a tightly controlled system (pMI47a) for the intracellular expression of barnase in E.coli (Protein engineering, 8: 497-499, 1995).
  • the plasmid encodes barstar (a strong polypeptide inhibitor of barnase) under the transcriptional control of the Tac promotor.
  • a barnase gene (without secretion signal) has been cloned in the inverse orientation downstream from barstar.
  • the Tac promotor is followed by attP, followed by barstar, followed by the inversed gene for barnase, followed by attB.
  • AttP and attB are derived from the phage lambda attachment site.
  • pMI47a is not toxic for E.coli because it overproduces barstar and no barnase (OFF configuration, FIG. 5 a ).
  • the Integrase protein (INT function) from phage lambda recognises the attB and attP sequences and inverses the DNA fragment that is located between the attB and attP sites in vivo.
  • the Tac promotor is followed by attR, followed by barnase, followed by the inversed gene for barstar, followed by attL.
  • Sites attR and attL are the products of recombination between attP and attB (Jucovic & Hartley, 1995, Protein Engineering 8: 497-499).
  • This plasmid is toxic for E.coli because it produces active barnase in the cytoplasm of the host (ON configuration, FIG. 5 b ).
  • the system can be switched in vivo from the OFF to the ON configuration in the E.coli strain D1210HP (supE44 ara14 galK2 lacY1 D(gpt-proA)62 rpsL20 (Str r ) xyl-5 mtl-1 recA13 D(mrcC-mrr)HsdS ⁇ (r ⁇ m ⁇ ) lacl q LacY + lxis-kil-cl857) (Stratagene) by a short incubation at 42° C. This strain encodes the integrase function (Int; lxis) from phage lambda, whereas D1210 doesn't have this function.
  • a conditionally lethal phage particle was made by cloning the conditionally lethal cassette of pMI47a into a phagemid.
  • a DNA fragment of pMI47a including the Tac promotor, followed by attP, followed by barstar, followed by the inversed gene for barnase, and followed by attB was amplified by PCR.
  • This PCR product was cloned as a blunt end fragment within the EcoRI site of the pK7C3-1DBOVA1 vector (example I) to give pK7C3BB-1DBOVA1 (Before ligation, pK7C3-1DBOVA1 was linearized with EcoRI and filled-in with Klenow DNA polymerase).
  • D1210 and D1210HP electrocompetent cells were transformed with ptrc-Oprl-OVA.
  • a single colony was used to inoculate a culture in LB containing 100 ⁇ g/ml ampicilline.
  • Phages of pK7C3-1DBOVA1 or pK7C3BB-1DBOVA1 were prepared as described above.
  • 150 ⁇ l of washed cells were incubated with 5 ⁇ 10 8 pK7C3-1DBOVA1 or pK7C3BB-1DBOVA1 phages for 1 hour at 37° C. Half of these mixtures was exposed to thermal induction (15 minutes at 42° C.).
  • D1210HP cells displaying ovalbumin on their surface are killed by pseudovirions containing phagemid pK7C3BB-1DBOVA1 after thermoinduction.
  • This experiment clearly demonstrates that coli cells, expressing an artificial receptor can be recognised and killed by a bacteriophage with an artificial ligand that recognises the artificial receptor.
  • Fission yeast ( Schizosaccharomyces pombe p2, h + , arg 3 ⁇ , ura 4 ⁇ ) was grown in YES medium (0.5% (w/v) yeast extract, 3.0% (w/v) glucose +225 mg/l adenine, histidine, leucine, uracil and lysine hydrochloride). Cells were harvested by low speed centrifugation. 15 g wet cells were washed with 100 ml S-buffer (1.4 M sorbitol, 40 mM HEPES, 0.5 mM MgCl 2 adjusted to pH 6.5).
  • the pellet was resuspended in 100 ml S-buffer containing 10 mM 2-mercaptoethanol and 1 mM PMSF and incubated at 30° C. for 10 minutes. After centrifugation, the pellet was resuspended in 60 ml S-buffer containing 1 mM PMSF, and 460 mg Zymolase 20T (ICN Biomedicals) was added to prepare spheroplasts. After incubation for 3 hours at 30° C., the pellet was washed five times with 100 ml S-buffer containing 1 mM PMSF.
  • the immunisation and blood withdrawal scheme is as follows: Day 0 Collect preimmune serum Day 0 inject subcutaneously 1 tube (40 mg protein) + complete freund adjuvant Day 7 inject subcutaneously 1 tube + incomplete freund adjuvant Day 14 inject subcutaneously 1 tube + incomplete freund adjuvant Day 21 Collect anticoagulated blood and serum Day 21 inject subcutaneously 1 tube + incomplete freund adjuvant Day 28 inject subcutaneously 1 tube + incomplete freund adjuvant Day 35 inject subcutaneously 1 tube + incomplete freund adjuvant Day 38 Collect anticoagulated blood and serum
  • a cDNA library of Schizosaccharomyces pombe is constructed by recloning the S.pombe cDNA bank that is used in Two-hybrid system (Clontech).
  • the cDNA inserts are amplified with specific primers harbouring restriction enzyme sites compatible for cloning into the multiple cloning site of ptrc-Oprl.
  • the library is transformed in UT5600 or in D1210HP electro-competent cells.
  • the serum immunoglobulins from the immunised animal (day 21 or 38) are passed over protein A and protein G columns to purify the conventional antibodies and the heavy chain antibodies. Each fraction is used in a Western blot to evaluate the presence and titre of anti- S.pombe protein immunoglobulins.
  • Peripheral blood lymphocytes from the immunised camel are prepared using Unisep (WAK Chemie, Germany) from the anticoagulated blood isolated at days 21 and 42.
  • the camel heavy chain antibodies (VHH's) from 10 7 lymphocytes are ligated after RT-PCR amplification in the Sfil-Notl sites of the pK7C3 or pK7C3-BB (pK7C3 with the barnase-barstar inversion system) vector and transformed in TG1 as described above, in order to obtain a library of 10 8 individual clones.
  • the VHH phages is prepared by infection of the E.coli culture with M13K07 and enriched for virions with a VHH-gpIII fusion by IMAC chromatography (see before).
  • the VHH insert is sequenced with a primer annealing in the gene pill sequence, while the cDNA coding for the antigen is directly sequenced with an Oprl specific primer.
  • the latter sequence is screened in a BLAST on the S.pombe genome sequence database to identify the gene.
  • the specificity of the VHH (having a his-tag) is also tested in a Western blot in which the S.pombe extracted proteins are separated on SDS gels.
  • the presence of the VHH is revealed with an anti-His monoclonal antibody (SEROTEC),
  • the killer phage strategy is used.
  • the UT5600 cells carrying the S.pombe cDNA library are incubated with the phages from the pK7C3-BB library of VHH. After infection the suspension is incubated at 42° C. to eliminate the E.coli cells that are infected with phages.
  • the surviving cells are carrying S.pombe antigens that are less frequent represented in the ptrc-Oprl or pK7C3-BB libraries. In a second step these surviving cells are used to inoculate fresh medium and to restart the PICUP experiment as before.

Abstract

The invention relates to a genetically modified bacteriophage, pseudovirion or phagemid capable of entering a host cell by binding of its artificial ligand to an artificial receptor present on said host cell. The invention relates also to the use of the genetically modified bacteriophage, pseudovirion or phagemid and of the host cell to screen sequence libraries, including antibody library.

Description

  • The present invention relates to a recombinant bacteriophage, pseudovirion or phagemid that is capable of entering bacteria by specific binding to an artificial receptor. Said receptor does not comprise at its active binding site elements such as proteins or peptides that are derived from the natural receptor used in the specific initial bacteriophage—bacterium interaction. [0001]
  • BACKGROUND OF THE INVENTION
  • Bacteriophages, like bacteria, are very common in all natural environments. Bacteriophages (phages) are intracellular parasites. Bacteria and their phages have a common evolutionary history and phages may have adapted to their host species by multiple mechanisms. The phage genome may consist of double-stranded DNA, single-stranded DNA, double-stranded RNA or single-stranded RNA. Bacteriophages exist in several morphologies and can be spherical, cubic, filamentous, pleomorphic or tailed. Based on their life cycle, bacteriophages can be divided into three groups: the virulent phages capable of only lytic propagation (called lytic phages), the so-called temperate phages capable of either lytic propagation or lysogenic phase and the non-lysing phages where the mature phage is continuously extruded. The virulent life cycle of wild type phages consists of infection of the host cell, i.e. attachment to a specific receptor in the bacterial cell wall, followed by entering of the phage genome in the cell, replication of the phage genome, production of the phage structural components, phage assembly and release of the progeny phages after lysis of the host cell. In the lysogenic life cycle, the phage genome exists as a prophage resulting in coexistence of phage and host cell without lysis. Usually, this is achieved by integration of the phage genome into the bacterial chromosome. The life cycle of the non-lysing phages, like e.g. Bacteriophage M13, is similar to that of the lytic phages, but the infection is not followed by lysis. Bacteriophages have been extensively used in biotechnology. Phage genes or complete phages may be used to obtain lysis and/or killing of bacteria. [0002]
  • U.S. Pat. No. 4,637,980 describes the use of an [0003] E. coli strain containing defective temperature sensitive lambda lysogens as a method for cell disruption. Smith and coworkers (Smith et al., 1987, J. Gen. Microbiol. 133: 1111-1126) describe the use of bacteriophages to treat diarrhoea in calves, caused by seven different bovine enteropathogenic strains of E. coli. WO95/27043 describes a method to treat infectious diseases caused by several bacterial genera, such as Mycobacterium, Staphylococcus, Vibrio, Enterobacter, Enterococcus, Escherichia, Haemophilus, Neisseria, Pseudomonas, Shigella, Serratia, Salmonella and Streptococcus, comprising the administration of bacteriophages with delayed inactivation by the animal host defence system. WO 98/51318 describes a diagnostic kit and a pharmaceutical composition, comprising bacteriophages to diagnose and tro treat bacterial diseases caused by bacteria, such as Listeria, Klebsiella, Pneumococcus, Moraxella, Legionella, Edwardsiella, Yersinia, Proteus, Heliobacter, Salmonella, Chlamydia, Aeromonas and Renibacterium.
  • Another application of bacteriophages is the in vitro selection of proteins displayed on the tip of filamentous phages on immobilised target (=biopanning), which is a powerful technique for the isolation of interacting protein-ligand pairs from large libraries, such as antibody libraries (for a recent review: Rodi and Makowski, 1999, [0004] Curr. Opin. Biotechn., 10: 87-93). However, for optimal in vitro biopanning, a purified target protein is needed. Moreover, high quality of the library is a prerequisite for success. Enrichment for selfligated vector, phages carrying incomplete sequences, incorrect reading frames, deletions and amber stop codons are very often observed (Beekwilder et al, 1999, Gene, 228, 23-31 and de Bruin et al, 1999, Nature Biotechnology, 17: 397-399). In the search to avoid the problems encountered with panning using imperfect libraries, several alternative techniques, both bacteriophage based and non bacteriophage based,have been developed. Non bacteriophage based techniques are, amongst others ribosome display (Dall'Acqua and Carter, 1998, Curr. Opin. Struct. Biol., 8: 443-450) and the yeast two-hybrid system (Drees, 1999, Curr. Opin. Chem. Biol., 3: 64-70). Bacteriophage based techniques comprise display on phage lambda, SIP (Spada and Pluckthun, 1997, Biol. Chem., 378: 445-456; EP0614989) and CLAP (Malmborg et al, 1997, J. Mol. Biol., 273: 544-551; WO9710330). SIP and CLAP are in vivo selection techniques and have the advantage that the F+ E.coli host cells can only be infected by bacteriophages or pseudovirions when a matched pair is formed. Both systems are based on the fact that pilin on the F-pili of E.coli cells serve as the natural receptor for binding of the D2-domain of pill from the phage (Deng et al., 1999, Virology, 253:271-277). This results in retraction of the pilus, so that an interaction between the D1 domain of pill with the TOL protein complex located in the E. coli cell membrane leads to the infection (Deng et al, 1999, Virology, 253: 271-277). SIP has the disadvantage that it only works for high affinities of the binding pairs and that each target needs to be cloned, expressed and purified as a fusion with the D2 domain of pIII. Therefore, with SIP, normally only one target can be screened at the time. For CLAP only small peptides (15-18 amino acids) can be expressed on the F-pilus, hence, this technique can only be used for small linear epitopes. An additional disadvantage is the need for modified M13 to avoid natural infection of host cells. Therefore, removal of the D2 domain of pIII is essential. This results in a truncated form of M13 and concomitant difficulties to obtain good titres.
  • It is known that bacteriophages use specific receptors on the host cell wall as a way to recognise the host cell and to start the infection process. In all the applications cited above, the propagation of phages, pseudovirions or phagemids is dependent on the use of the natural phage receptor, or part of it, on the host cell wall. For M13, mainly used in these systems, the natural receptor is pilin (Malmborg et al., 1997, [0005] J. Mol. Biol. 273: 544-551). Other examples of natural receptors are lamB for bacteriophage lambda (Werts et al, 1994, J. Bacteriol. 176: 941-947), the outer membrane protein OmpA for bacteriophages K3, O×2 and M1 (Montag et al, 1987, J. Mol. Biol., 196: 165-174), the outer membrane proteins OmpF and Ttr for bacteriophage T2 (Montag et al, 1987, J. Mol. Biol., 196, 165-174), the outer membrane protein OmpC for the T4 phage family (T4, Tula, Tulb) (Montag et al., 1990, J. Mol. Biol., 216: 327-334). The T4 bacteriophage family is using a C-terminal region of protein 37 as natural ligand (Montag et al., 1990, J. Mol. Biol., 216: 327-334), bacteriophages T2, K3, O×2 and M1 are using protein 38 as natural ligand (Montag et al, 1987, J. Mol. Biol., 196, 165-174) whereas phage lambda is using the C-terminal portion of the lambda tail fibre protein as natural ligand (Wang et al., 1998, Res. Microbiol, 149: 611-624). Bacteriophage-receptor independent phage binding to mammalian cells expressing the growth factor receptor ErbB2 followed by receptor mediated endocytosis was also described: Marks and collaborators (Poul and Marks, 1999, J. Mol. Biol., 288: 203-211 and Becceril and Marks, 1999, Biochem. Biophys. Res. Commun., 255: 386-393) successfully isolated phage capable of binding mammalian cells expressing the growth factor receptor ErbB2 and undergoing receptor mediated endocytosis by selection of a phage antibody library on breast tumour cells and recovery of infectious phage from within the cell. However, the phage could not propagate in the mammalian cell, and the detection of the cells carrying bacteriophage could only be realised in an indirect way, by expression green fluorescent protein as a reporter gene.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention is a genetically modified bacteriophage, pseudovirion or phagemid that is not dependent upon its natural receptor or parts thereof for entering a host cell. [0006]
  • Another aspect of the invention is a genetically modified bacteriophage, pseudovirion or phagemid capable of entering a host cell by specific binding to an artificial receptor. These artificial receptors can be endogenous host cell proteins located at the bacterial surface, or parts thereof, that are normally not involved in the bacteriophage—bacterium interaction, but it may also be heterologous proteins, preferentially fusion proteins displaying an oligo- or polypeptide on the bacterial surface. The genetically modified bacteriophage, pseudovirion or phagemid binds to the artificial receptor preferentially by an artificial ligand. A specific embodiment is a genetically modified bacteriophage that is not dependent upon OmpA, OmpC, OmpF, Ttr or pilin for interaction with and/or entering [0007] E.coli. A further specific embodiment is a genetically modified M13 bacteriophage, pseudovirion or phagemid that does not depend upon pilin, or fragments thereof for specific interaction with and/or entering of E. coli. Said M13 bacteriophage, pseudovirion or phagemid can enter both F+ and F E. coli cells, dependent upon an artificial receptor that is displayed on the surface of said cells.
  • Still another aspect of the invention is a bacteriophage, pseudovirion or phagemid that enters the host cell mediated by an antigen—antibody reaction, whereby in the binding complex no proteins or parts of the natural receptor are involved. [0008]
  • A preferred embodiment of the invention is a genetically modified M13 phage, pseudovirion or phagemid displaying an antibody, preferentially the variable part of a camel heavy chain antibody for instance disclosed in international patent application WO 94/04678 and in Hamers-Casterman C et al Nature, vol 363, Jun. 3, 1993.p 446-448, on its tip, which can enter an [0009] E.coli host cell, displaying the antigen, preferentially as an pOprl fusion protein. The use of Oprl as a protein for the expression of an amino acid sequence at the surface of the cell wall of a host cell is disclosed for example in international patent application WO 95/04079 which is incorporated herewith by reference.
  • A further aspect of the invention is the use of said bacteriophage, pseudovirion or phagemid for selective entering of a subpopulation of bacteria. Using the specific artificial receptor interaction, in a mixed culture, the bacteriophage, pseudovirion or phagemid will only enter those bacteria that carry said artificial receptor. By this, the subpopulation of bacteria can be identified and/or eliminated. One embodiment of the invention is the specific elimination of pathogenic bacteria by directing a recombinant bacteriophage, pseudovirion or phagemid to a specific bacterial surface protein of said pathogenic bacteria. The pathogenic bacteria can be gram positive, gram negative or gram variable and can belong, amongst other to the genera Aeromonas, Chlamydia Edwardsiella, Enterobacter, Enterococcus, Escherichia, Haemophilus, Heliobacter, Klebsiella, Legionella, Listeria, Moraxella, Mycobacterium, Neisseria, Pneumococcus, Proteus, Pseudomonas, Renibacterium, Salmonella, Serratia, Shigella, Staphylococcus, Vibrio or Yersinia, without that this summation is limitative. [0010]
  • Elimination can be obtained by the lytic cycle of the bacteriophage, but is not limited this method. Other methods of eliminating the host cell may be the production of a toxic product encoded by the recombinant bacteriophage genome in the host cell. A preferred embodiment is the production of barnase placed after an inducible promoter, such as the barnase—barstar cassette described by Jucovic and Hartley ([0011] Protein engineering, 8: 497-499, 1995).
  • Another aspect of the invention is a host cell, entered by the genetically modified bacteriophage, pseudovirion or phagemid. Such host cell comprises the nucleotide sequence encoding the artificial receptor and the nucleotide sequence encoding the artificial ligand. Such sequences may be expressed in the host cell in combination with marker sequences, especially sequences encoding antibiotic resistance genes. A preferred embodiment is an [0012] E. coli cell, preferentially transformed with a plasmid encoding a pOprl-fusion protein, more preferentially transformed with a plasmid derived from ptrc-Oprl, carrying a genetically modified M13 phage, pseudovirion or phagemid, preferentially a pK7C3 derived phagemid, wherein said genetically modified M13 phage is modified, especially by in vitro construction, with a nucleotide sequence encoding a protein capable of specifically binding to the pOprl-fusion protein.
  • In a particular embodiment of the invention, the Oprl-fusion protein is carried out in introducing the nucleotide sequence of the fusion partner acting as the region for interaction with the ligand expressed on the bacteriophage, pseudovirion or phagemid, especially as disclosed in WO 95/04678. [0013]
  • Still a further aspect of the invention is the use of said bacteriophage,psseudovirion or phagemid to identify interacting proteins, including cases where none of the members of the interacting protein is known. [0014]
  • In different embodiments, the bacteriophage, pseudovirion or phagemid can be used to screen (1) a host cell, displaying a bait against a library of bacteriophages, pseudovirions or phagemids displaying the prays, (2) a bacteriophage, pseudovirion or phagemid displaying a bait against a library of host cells displaying the prays, (3) a library of bacteriophages, pseudovirions or phagemids displaying different prays or baits against a library of host cells, displaying different baits or prays (As illustrated in FIG. 1). [0015]
  • A preferred embodiment is where pOprl is used as fusion partner for the display of bait or pray on the surface of the F[0016] E.coli strains (Williams & Meynell 1971. Mol. Gen. Genet. 113: 222-227) such as DH5α and UT5600 as host cell and where the phagemid pK7C3 is used for cloning the pray or bait as a pill fusion protein. Another embodiment of the invention is the construction of a subtraction library, with the use of lytic bacteriophages, preferentially barnase expressing bacteriophages. In this embodiment, a part of the host cell library is recognised by lytic phages such as barnase expressing phages and killed upon recognition of the artificial receptor by the artificial ligand, entering of the bacteriophage, pseudovirion or phagemid and expression of the lytic gene.
  • Another aspect of the invention is a method for selecting artificial receptor-artificial ligand interactions, comprising [0017]
  • growing a host cell or a mixture of host cells displaying one or more artificial receptors, [0018]
  • contacting said host cell or said mixture with a genetically modified bacteriophage, pseudovirion or phagemid or a mixture of genetically modified bacteriophages, pseudovirions or phagemids with one or more artificial ligands, [0019]
  • selecting those cells that have been entered by one or more bacteriophages, pseudovirion of phagemid. [0020]
  • One embodiment of the invention is said method, whereby the selection is based on an antibiotic resistance marker. Another embodiment is said method whereby the cells are selected by killing of the host cell, preferentially by expression of barnase. A preferred embodiment is said method, whereby the host cell is an [0021] E. coli cell, displaying the artificial receptor as a pOprl fusion protein, and the genetically modified bacteriophage, pseudovirion or phagemid is a genetically modified M13, displaying an artificial ligand as a pill fusion protein.
  • Definitions
  • The following definitions are set forth to illustrate and define the meaning and scope of the various terms used to describe the invention herein. [0022]
  • Genetically modified bacteriophage: a bacteriophage of which the genome has been modified, at least by the introduction of the gene encoding for an artificial ligand. This introduction can be as a replacement of one of the endogenous genes or as an additional gene besides the endogenous genes. [0023]
  • Natural receptor: protein domain, protein or protein complex situated on the host cell wall, involved in the natural initial interaction between a bacteriophage and said host cell, whereby this interaction is followed by introduction of the genetic material of the bacteriophage into the host cell. [0024]
  • Artificial receptor: protein domain, protein, fusion protein or protein complex on the host cell wall whereby said protein domain, protein, fusion protein or protein complex does not contain one or more peptide fragments of at least 10 contiguous amino acids derived from the natural bacteriophage receptor in the protein sequence or region that is involved in the interaction between bacteriophage, pseudovirion or phagemid and the artificial receptor. [0025]
  • Protein: encompasses peptide, protein, glycoprotein, lipoprotein or another form of modified protein, including chemically modified protein. [0026]
  • Protein complex: protein—protein complex, but also protein—compound complex, whereby said compound may be any chemical or biological compound, including simple or complex inorganic or organic molecules, peptido-mimetics, carbohydrates, nucleic acids or derivatives thereof. [0027]
  • Natural ligand: protein, protein domain or protein complex of the bacteriophage, pseudovirion, or phagemid involved in the natural initial interaction between said bacteriophage, pseudovirion, or phagemid, and a host cell, including recognition of and possibly binding to the natural receptor, whereby this interaction is followed by introduction of the genetic material of the bacteriophage into the host cell. [0028]
  • Artificial ligand: protein, protein domain or protein complex of the bacteriophage, pseudovirion, or phagemid, whereby said protein domain, protein, fusion protein or protein complex does not contain one or more peptide fragments of at least 10 contiguous amino acids derived from the natural ligand of the bacteriophage in the protein sequence or region that is involved in the interaction between bacteriophage, pseudovirion or phagemid and the artificial receptor. [0029]
  • Host cell: any bacterial cell that can allow a bacteriophage, pseudovirion or phagemid to enter said cell after interaction of a said bacteriophage, pseudovirion or phagemid with a natural or artificial receptor. As example, host cells include gram-negative or gram-positive bacteria, especially including [0030] E coli cells and in particular F cells which do not permit entering of bacteriophages, pseudovirions or phagemids through the pillin mechanism.
  • Entering bacteria: means that the bacteriophage, pseudovirion or phagemid can enter as a whole or as a part (e.g. only the genetic material) the host cell after specific binding to the artificial receptor. The mechanism by which the material is entering the host cell is not limited to specific ways and can be amongst others an active infection process or a passive uptake by the host cell. Methods for determination of the specific binding of the artificial ligand with the artificial receptor are illustrated in the examples. [0031]
  • Specific binding: means that the initial step of the entering is mediated by a specific interaction between the artificial receptor on the host cell wail and the artificial ligand of the bacteriophage, pseudovirion or phagemid. This specific interaction is preferentially a protein—protein interaction. This entering after specific interaction should be distinguished from the Calcium dependent pilus independent infection that can be detected with M13 bacteriophages in which the second N-terminal domain of glllp has been removed (Krebber et al., 1997, [0032] J. Mol. Biol. 268: 607-618).
  • According to particular embodiments, the invention relates to a genetically modified host cell, transformed with a nucleotide sequence encoding an artificial receptor in conditions enabling that the artificial receptor be expressed at the surface of the host cell, said host cell being further transformed with a nucleotide sequence encoding said artificial ligand whereby said nucleotide sequence encoding the ligand entered the host cell as a consequence of the interaction between said artificial ligand and a protein sequence or region on said artificial receptor. [0033]
  • Particular genetically modified host cells are those wherein the nucleotide sequence encoding the artificial receptor and/or the nucleotide sequence encoding the artificial ligand are not initially known. [0034]
  • According to another specific embodiment, the genetically modified host cell is a gram-negative bacterium, especially an [0035] E coli cell of the F type.
  • According to another particular embodiment, the genetically modified host cell is a transformed cell wherein the nucleotide sequences of the artificial receptor and the nucleotide sequence for the artificial ligand are respectively coding sequences of an antibody or a functional fragment thereof and coding sequence of an antigen, or are respectively coding sequences of an antigen and coding sequence of antibody or a functional fragment thereof. [0036]
  • In said genetically modified host cell of the invention, the functional antibody fragment can be a variable fragment of an antibody, encompassing four-chain antibodies or two-chain antibody as defined in international patent application WO 94/04678, including native or modified, especially truncated chains thereof. In a preferred embodiment the variable chain is a VHH fragment of a camelid antibody or a functional portion of said VHH, as disclosed in the above cited patent application which is incorporated by reference. [0037]
  • The invention relates also to the above defined genetically modified host cell, wherein the nucleotide sequence encoding the artificial receptor comprises a sequence encoding Oprl or a part of Oprl sufficient to enable the exposure, at the surface of the host cell, of a protein sequence or region capable of interacting with the artificial ligand. [0038]
  • A further object of the invention is a kit comprising a genetically modified host cell according to the above proposed definitions and specific embodiments or comprising a host cell and/or a bacteriophage, pseudovirion or phagemid and/or means including a cloning vector enabling the construction of said host cell and/or a bacteriophage, pseudovirion or phagemid according to the above definitions. [0039]
  • A particular kit is designed to be used for in vivo panning of antibody or antibody fragment library, or antigenic sequences library. [0040]
  • Said kit can also be used for the simultaneous in vivo panning of both an antibody fragment library, and an antigenic sequences library. [0041]
  • The invention therefore provides means for the identification of target sequences or molecules including especially amino acid sequences capable of interacting with a determined receptor, whether the nature or sequences of said receptor is known or unknown. Especially the invention can be used for the identification of therapeutic targets.[0042]
  • SHORT DESCRIPTION OF THE FIGURES
  • FIG. 1 gives a schematic representation of the screening of a proteome expression library against a camel VHH anti-proteome antibody library. FIG. 2: schematic representation of phagemid pK7C3. FIG. 3: schematic representation of plasmid ptrc-Oprl [0043]
  • FIG. 4: Results of the Western blot. From left to right: lane 1 shows the molecular weight markers. Lane 2 and 3 show the total lysate of [0044] E. coli, transformed with ptrc-Oprl, respectively after growth in LB (lane 2) and M9 (lane 3). Lane 4 and 5 show the total lysate of E. coli, transformed with ptrc-Oprl-OVA, respectively after growth in LB (lane 4) and M9 (lane 5). Proteins are visualised with anti-Oprl, as described in example II.
  • FIGS. [0045] 5(a and b): Schematic representation of barnase activation by inversion of the expression cassette, due to integrase activity induced by heat shock.
  • EXAMPLES Example I
  • Construction of M13 Pseudovirions Displaying Camel Heavy Chain Antibodies (VHH) [0046]
  • Immunisation of Camels [0047]
  • A camel (B) was immunised with 1 mg hen-egg ovalbumin (Sigma) in the presence of complete Freund adjuvant, and boosted in the presence of incomplete Freund adjuvant at days 7,14, 28, 35 and 42. Anticoagulated blood was collected for lymphocyte isolation on day 45. This results in VHH library CAMELB [0048]
  • Construction of Phagemid Library [0049]
  • Peripheral blood lymphocytes were prepared using Unisep (WAK Chemie, Germany). The camelid heavy chain antibodies (VHH's) from 10[0050] 7 lymphocytes were cloned after RT-PCR amplification in the Ncol-Notl site of the pK7C3 vector (FIG. 2) and transformed in TG1 (Lauwereys et al, 1998, the EMBO Journal, 17: 3512-3520). The primers for the amplification are
    CATGCGATGACTCGCGGCCCAGCCGGCCATGGC and
    GTGTGCGGCCGCTGAGGAGACRGTGACCWG.
  • The pK7C3 vector is a pHEN4 (Ghahroudi et al, 1997, [0051] FEBS letters, 414: 521-526) derivative where the ampicillin resistance gene was replaced by the chloramphenicol resistance gene and the haemaglutinin tag was replaced by a histidine and c-myc tag (Ghahroudi et al, 1997, FEBS letters, 414: 521-526)
  • Construction of M13 Pseudovirions Displaying Camel VHH [0052]
  • VHH's from the CAMELB library were expressed on phage after infection of the library with M13KO7 helper phage (pK7C3-VHHB) as described by Ghahroudi et al, 1997, [0053] FEBS letters, 414: 521-526. A library of 3×106 individual colonies was obtained of which 85% had the correct insert size, and 90% of these could produce a fusion protein between VHH and pIII.
  • Selection of Ovalbumin Specific Pseudovirions by Biopanning [0054]
  • The CAMELB library was panned for the presence of binders on ovalbumin coated in wells of microtitre plates (10 μg ovalbumin/well). Bound phages were eluted and allowed to infect TG1 cells (Stratagene). After two or three rounds of panning, individual colonies were grown, periplasmic extracts were prepared and screened for the presence of ovalbumin binders in ELISA. (Skerra and Pluckthun, 1988, [0055] Science, 240: 1038-1041). The plasmid of these binders was prepared and sequenced. We obtained 2 VHH binders of which 1DBOVA1 (DVQLVESGGGSVPAGSLRLSCAVSGYTYENRYMAWFRQAPGKEREGVAAIWR GGNNPYYADSVKGRFTISQDNAKNIVSLLMNSLKPEDTAIYYCAAQAGRFSGPLY ESTYDYWGQGTQVTVSS) was the most abundant.
  • Titre Determination [0056]
  • The titre of the phages was determined by incubation of 150 μl TG1 (F[0057] +) cells at OD600 nm=0.5 with 10 μl of phages of different dilutions, for 30 minutes at 37° C. This was plated on LB-agar plates containing 25 μg/ml chloramphenicol and 2% glucose.
  • The background for infection of DH5α (Gibco BRL) was determined under the same conditions as described above for TG1. [0058]
  • Preparation of the Phages Cultures of TG1 containing pK7C3-VHHB or 1 DBOVA1 were grown at 37° C. in 100 ml 2×TY medium containing 2% glucose, and 25 μg/ml chloramphenicol, until the OD600 nm reached 0.5. M13KO7 phages (10[0059] 12) were added and the mixture was incubated in a water bath at 37° C. for 2×30 minutes, first without shaking, then with shaking at 100 rpm. The culture was centrifuged (15′, 4300 rpm, room temperature). The bacterial pellet was dissolved in 600 ml of 2×TY medium containing 25 μg/ml chloramphenicol and 25 μg/ml kanamycin, and incubated overnight at 30° C., vigorously shaking at 250 rpm.
  • These overnight cultures were centrifuged for 15 minutes at 4300 rpm at 4° C. Phages were precipitated for 1 hour on ice with PEG (20% poly-ethylene-glycol and 1.5 M NaCl), pelleted by centrifugation (30′, 4300 rpm, 4° C.), dissolved in 10 ml PBS and centrifuged for another 10 minutes at 4300 rpm and 4° C. The supernatant was loaded on 2 ml Ni-NTA (QIAGEN), washed extensively with 50 mM Na[0060] 2HPO4. 1M NaCl pH=7.0, eluted with 50 mM NaAc, 1M NaCl pH=4.5 and neutralised with 1 M Tris pH=7.4. Phages were again PEG precipitated by immediate centrifugation for 30 minutes at 4300 rpm and 4° C. after PEG addition. The pellet (invisible) was dissolved in 1 ml PBS+100 μl PBS-caseine. 15% glycerol was added and the phages were stored at −80° C. for maximally 1 week, until further use.
  • Example II
  • Display of Oprl and Oprl-ovalbumin Fusion Protein on [0061] E. coli
  • The ptrc-Oprl (Cote-Sierra et al., 1998, [0062] Gene, 221:25-34; FIG. 3) or ptrc-Oprl-ova (obtained by amplifying the gene encoding for hen-egg ovalbumin, digesting the product with BamHI and EcoRI and cloning the digest in BgIII/EcoRI digested ptrc-Oprl) plasmids were transformed in E.coli Top10F′ (Invitrogen) and tested for expression in M9CAA and LB-medium in Western blot. Cells were induced with 1 mM ITPG (Calbiochem) at OD600 nm=0.6 and grown overnight at 37° C. on a rotary shaker at 200 rpm. Cells were centrifuged and concentrated 10-fold. Total cell lysates, obtained by sonication were loaded on a 12% SDS-PAGE and transferred to nitrocellulose for Western blotting. Transferred proteins were detected using a monoclonal anti-Oprl antibody QB2 (De Vos D. et al, Journal of general microbiology 1993, 139: 2215-2223). An anti-mouse IgG conjugated with alkaline phosphatase (Sigma) was applied and the blots were developed with the BCIP/NBT substrate. The results are shown in FIG. 4. A band at the position of intact fusion protein is clearly observed. However, large amounts of degradation products demonstrate the instability of the pOprl-ova form. Since these degradation products might interfere with the infection, conditions for growth and infection were optimised, amongst others by the use of UT5600 (F, ara-14, leuB6, azi-6, lacY1, proC14, tsx-67, entA403, trpE38, rfbD1, rpsL109, xyl-5, mtl-1, thi1, Δ ompT, fepC266) (Biolabs). UT5600 is an outer membrane protease T-deficient E. coli strain, which was used for the stable presentation of Ig scFv fusions (Maurer and Meyer, J. Bacteriol., 1997, 179: 794-804)
  • Example III
  • Receptor Independent Entering of [0063] E.coli by M13 Pseudovirions.
  • Cultures of [0064] E.coli strain DH5α containing ptrc-Oprl (Cote-Sierra et al, 1998, Gene, 221: 25-34) or ptrc-Oprl-OVA (indicated as DH5α{ptrc-Oprl-OVA}) were incubated at 37° C. at 220 rpm until the OD600 nm reached 0.6. Cells were centrifuged at 4300 rpm for 5 minutes and resuspended in the original volume and in the same medium (=washed cells*). A fraction of the cells was induced with 1 mM IPTG and grown at 37° C. for another 4 hours (**).
  • To test the pilus independent entering of [0065] E.coli displaying ovalbumin on its surface by M13 phages displaying ovalbumin specific antibodies, we incubated 150 μl of E.coli cells with 10 μl phages from pK7C3-VHHB of different dilutions for 1 hour at 37° C. without shaking.
  • Infection of [0066] E.coli was screened for by selection of incubation mixtures on LB-agar plates containing 100 μg/ml ampicilline, 25 μg/ml chloramphenicol and 2% glucose.
  • Individual colonies were screened in ELISA. Therefore, large single colonies (resistant to ampicilline and chloramphenicol) were inoculated in 10 ml TB medium containing 0.1% glucose, 100 μg/ml ampicilline and 25 μg/ml chloramphenicol for 8 hours. IPTG was added at a final concentration of 10 mM and the cultures were grown overnight at 37° C. at 200 rpm. [0067]
  • Individual colonies in TG1 and DH5α were picked and grown in 10 ml TB medium containing 0.1% glucose and 25 μg/ml chloramphenicol for 4 hours. IPTG was added at a final concentration of 1 mM and the cultures were grown overnight at 28° C. at 200 rpm. [0068]
  • Periplasmic fractions were prepared by pelleting the overnight cultures, and dissolving the pellet in 200 μl TES (0.2 M Tris-HCl, pH=8.0, 0.5 mM EDTA, 0.5 M sucrose). This was incubated on ice for 20 minutes. 300 μl TES/4 was added and incubated at 4° C. for 25 minutes. This suspension was centrifuged for 25 minutes at maximal speed in an eppendorf centrifuge and the supernatant was used for testing in ELISA. [0069]
  • Periplasmic fractions were tested in NUNC-plates coated overnight with ovalbumin (5 μg/ml) or casein as a negative control (1% w/v in PBS) and blocked overnight with 1% (w/v) casein. Samples were incubated for 2 hours at room temperature and ovalbumin binding VHH's were detected with a mouse anti-Histidine-tag (SEROTEC), anti-mouse-alkaline phosphatase conjugate (Sigma) and a chromogenic substrate (Sigma). The results are summarised in Table I [0070]
    TABLE 1
    Positives in ELISA
    TG1 1/337
    DH5α 0/7
    DH5α + ptrc-Oprl 2/141
    DH5α{ptrc-Oprl-OVA} 7/16, 17/38, 7/24
    DH5α{ptrc-Oprl-OVA}, washed* 14/19
    DH5α{ptrc-Oprl-ova} + IPTG** 3/12
  • Example IV
  • Receptor Independent Entering of [0071] E.coli by Pseudovirions is Specific for the Artificial Receptor
  • 150 μl of washed UT5600 containing ptrc-Oprl-OVA (indicated as UT5600{ptrc-Oprl-OVA}) or DH5α{ptrc-Oprl-OVA} cells at OD600 nm=0.6 were incubated with 10 μl phages of pK7C3-VHHB of different dilutions for 1 hour at 37° C. without shaking. [0072]
  • The same experiment was repeated after pre-incubation of the phages with [0073] 1ml ovalbumin (2 mg/ml) for 1 hour at room temperature. The phages were mixed with 150 μl of washed UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells at OD600 nm=0.6 and incubated for 1 hour at 37° C.
  • This was plated on LB agar plates containing 25 μg/ml chloramphenicol, 100 μg/ml ampicilline and 2% glucose. Expression of 25-45 clones in UT5600 cells and DH5α was carried out as described above. [0074]
  • The results are summarised in Table 2. [0075]
    TABLE 2
    DH5α UT5600
    cr, ar cr, ar
    E. coli (ptrc-Oprl-ova) + pK7C3- 150 90, 73
    VHHB phages
    E. coli (ptrc-Oprl-ova) + 1 2, 2
    ovalbumin pretreated pK7C3-
    VHHB phages
  • Infection of washed UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells with phages from pK7C3-VHHB pre-incubated with hen-egg ovalbumin protein, reduced the number of transformants significantly, which means that infection is dependent upon ovalbumin display on the host cell wall. [0076]
  • Example V
  • Survival of [0077] E.coli Cells and Phages Upon Coincubation
  • 150 μl of washed UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells at OD600 nm=0.6 were incubated with 10 μl phages of PK7C3-VHHB for 1 hour at 37° C. without shaking. [0078]
  • This was plated on LB agar plates containing 25 μg/ml chloramphenicol, 100 μg/ml ampicilline and 2% glucose (C). [0079]
  • Cells were also checked for survival upon growth (A) and upon incubation with phages (B) by dilution and plating on LB agar plates containing 100 μg/ml ampicilline and 2% glucose. The results are shown in Table 3. [0080]
    TABLE 3
    number of cells DH5α UT5600
    Before incubation (A) 2 × 108 109
    After incubation (B) 5 × 107 3 × 108
    entered (C) 64 150
  • The titre of pK7C3-VHHB phages was determined before incubation with washed DH5α{ptrc-Oprl-OVA} cells. Cells were centrifuged after incubation for 1 hour at 37° C. and the supernatant was used to determine the titre of unentered phages. The titres were determined by incubation of 150 μl TG1 cells at OD600 nm=0.5 with 10 μl of phages of different dilutions for 30 minutes at 37° C. This was plated on LB-agar plates containing 25 μg/ml chloramphenicol and 2% glucose. The number of transformants are listed in Table4. [0081]
    TABLE 4
    number of phages
    Before incubation 5.6 × 107
    After incubation 1.2 × 107
  • UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells survived very well when incubated with and entered by pK7C3-VHHB phages. The pK7C3-VHHB phages which did not enter UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells are still able to infect TG1 cells and are therefore stable under the conditions used. [0082]
  • Example VI
  • Individual [0083] E.coli Cells Displaying Ovalbumin on the Surface are Entered by a single Ovalbumin Specific Phaqe.
  • Positive clones were selected from experiment 2 for UT5600 (clone number 10, 11, 12, 13, 16, 17). They were inoculated in 5 ml LB containing 25 μg/ml chloramphenicol, and grown overnight at 37° C. Plasmid was prepared, transformed in TG1 and plated on LB agar plates containing 25 μg/ml chloramphenicol and 2% glucose. Individual colonies were tested in ELISA as described before (in TB containing 25 μg/ml chloramphenicol and 0.1% glucose). [0084]
    TABLE 5
    Positives in ELISA
    10 8/8
    11 8/8
    12 8/8
    13 7/8
    16 8/8
    17 8/8
  • Individual positive clones were selected and grown overnight for plasmid preparation. After transformation in TG1 individual colonies were tested in ELISA. All clones scored positive, therefore we can be sure that ovalbumin specific phages have entered the cell. Colony PCR on these individual colonies showed that they have the same length if they originate from the same original clone. [0085]
  • Example VII
  • Optimisation of the Conditions of Receptor Independent Entering [0086]
  • Cells of DH5α{ptrc-Oprl-OVA} and UT5600{ptrc-Oprl-OVA} were grown at 37° C. A 150 μl sample was removed at different time intervals, washed and 5×10[0087] 8 phages of pK7C3-VHHB were added. This suspension was incubated for 1 hour at 37° C. and plated on LB-agar plates with 2% glucose, 25 μg/ml chloramphenicol and 100 μg/ml ampicillin. Single colonies were tested in ELISA as described above. The results are shown in Table 6a and 6b.
    TABLE 6a
    UT5600
    Time of Positives
    growth OD600 in ELISA
    (minutes) nm tfu pK7C3-VHHB
    30 0.062 20 7/15
    60 0.076 56 7/15
    90 0.142 100 11/15, 2/3
    120 0.273 130 11/16 
    150 0.555 150 8/15
    210 1.24 120 2/13
    270 2.25 30 7/12
  • [0088]
    TABLE 6b
    DH5α
    Time of Positives
    growth OD600 in ELISA
    (minutes) nm tfu pK7C3-VHHB
    60 0.010 0
    120 0.038 23  5/13
    210 0.197 97 3/8
    270 0.600 84 3/5
    300 0.665 64 2/8
  • Cells of DH5α{ptrc-Oprl-OVA} and UT5600{ptrc-Oprl-OVA} were grown at 37° C. Increasing concentrations of pK7C3-VHHB phages were added to 150 μl of washed cells at OD600 nm=0.2-0.3 for UT5600{ptrc-Oprl-OVA} and 0.6 for DH5α{ptrc-Oprl-OVA}. This mixture was incubated for 1 hour at 37° C. and plated on B-agar plates with 2% glucose, 25 μg/ml chloramphenicol (Chl) and 100 μg/ml ampicillin (Amp). Single colonies were tested in ELISA as described before. [0089]
    TABLE 7a
    UT5600
    Number of
    Number Number of Number of positives
    of phages transformants positives in in ELISA
    added on Amp/Chl ELISA (%)
    7 × 106 30 0/2
    1 × 107 20 0/2
    7 × 107 85, 90, 150 0/5, 1/24, 2/24 —, 4, 8
    1 × 108 70 ¼ 25
    4 × 108 67 4/29 14
    7 × 108 300, 300 18/24, 20/20 75, 100
  • [0090]
    TABLE 7b
    DH5α
    Number of
    Number Number of Number of positives
    of phages transformants positives in in ELISA
    added on Amp/Chl ELISA (%)
    5 × 107 85 10/28 36
    2 × 105 250 21/43 49
    5 × 108 110 17/40 43
  • Optimal conditions for uptake of phages were tested by mixing pK7C3-VHHB phages with UT5600{ptrc-Oprl-OVA} or DH5α{ptrc-Oprl-OVA} cells at different optical densities. Individual colonies were tested in ELISA. For UT5600{ptrc-Oprl-OVA} the optimal density is between 0.15 and 0.3 and for DH5α{ptrc-Oprl-OVA} between 0.2 and 0.6. UT5600{ptrc-Oprl-OVA} cells grow much faster than DH5α{ptrc-Oprl-OVA} and are easier infected by anti-ovalbumin expressing phages (positive clones in ELISA) (73% versus 30-50% table 6a-b). When increasing amounts of phages were mixed with UT5600[ptrc-Oprl-OVA] cells (OD600 nm=0.2-0.3), more positive clones were obtained in ELISA (table 7a). 75-100% positive clones were obtained when 5-10×10[0091] 8 phages were mixed with 0.5×108 UT5600{ptrc-Oprl-OVA} cells resulting in 150-500 individual colonies. However, in DH5α{ptrc-Oprl-OVA}, no increase in positive clones in ELISA was observed upon addition of increasing amounts of phages (table 7b).
  • Example VIII
  • Selective Elimination by Killer Phases [0092]
  • Barnase is a extracellular ribonuclease from [0093] Bacillus amyloliquefaciens (Hartley & Rogerson 1972, Prep. Biochem. 2: 229-242). A very low level of intracellular expression of barnase in E.coli is lethal because barnase depolymerizes the RNA of its host. Jucovic & Hartley developed a tightly controlled system (pMI47a) for the intracellular expression of barnase in E.coli (Protein engineering, 8: 497-499, 1995). The plasmid encodes barstar (a strong polypeptide inhibitor of barnase) under the transcriptional control of the Tac promotor. A barnase gene (without secretion signal) has been cloned in the inverse orientation downstream from barstar. In pMI47a, the Tac promotor is followed by attP, followed by barstar, followed by the inversed gene for barnase, followed by attB. AttP and attB are derived from the phage lambda attachment site. pMI47a is not toxic for E.coli because it overproduces barstar and no barnase (OFF configuration, FIG. 5a). The Integrase protein (INT function) from phage lambda recognises the attB and attP sequences and inverses the DNA fragment that is located between the attB and attP sites in vivo. In the resulting plasmid pMI47b the Tac promotor is followed by attR, followed by barnase, followed by the inversed gene for barstar, followed by attL. Sites attR and attL are the products of recombination between attP and attB (Jucovic & Hartley, 1995, Protein Engineering 8: 497-499). This plasmid is toxic for E.coli because it produces active barnase in the cytoplasm of the host (ON configuration, FIG. 5b). The system can be switched in vivo from the OFF to the ON configuration in the E.coli strain D1210HP (supE44 ara14 galK2 lacY1 D(gpt-proA)62 rpsL20 (Strr) xyl-5 mtl-1 recA13 D(mrcC-mrr)HsdS(rm) laclq LacY+ lxis-kil-cl857) (Stratagene) by a short incubation at 42° C. This strain encodes the integrase function (Int; lxis) from phage lambda, whereas D1210 doesn't have this function.
  • A conditionally lethal phage particle was made by cloning the conditionally lethal cassette of pMI47a into a phagemid. A DNA fragment of pMI47a including the Tac promotor, followed by attP, followed by barstar, followed by the inversed gene for barnase, and followed by attB was amplified by PCR. This PCR product was cloned as a blunt end fragment within the EcoRI site of the pK7C3-1DBOVA1 vector (example I) to give pK7C3BB-1DBOVA1 (Before ligation, pK7C3-1DBOVA1 was linearized with EcoRI and filled-in with Klenow DNA polymerase). [0094]
  • Plasmids of pK7C3BB-1DBOVA1, pK7C3, ptrc-Oprl-OVA and pMI47a were transformed in D1210 and D1210HP electrocompetent cells. Individual colonies were grown in LB with 25 μg/ml chloramphenicol or 100 μg/ml ampicilline and 2% glucose at 37° C. until the OD600 nm=1.2-1.3. Half of the culture was exposed to thermal induction (15 minutes at 42° C.). Both fractions (before and after induction) were spread after appropriate dilutions, on LB agar plates containing 25 μg/ml chloramphenicol or 100 μg/ml ampicilline and 2% glucose. The numbers of transformants were counted and are listed in table 8. [0095]
    TABLE 8
    Number of transformants with or without thermoinduction
    of D1210 or D1210HP cells containing PM147a, ptrc-Oprl-OVA,
    pK7C3 or pK7C3BB-1DBOVA1.
    Number of
    construct E. coli strain temperature transformants/ml
    PM147a D1210 37° C. 3 × 108 Ampr
    37° C.-42° C. 2 × 108 Ampr
    D1210HP 37° C. 2 × 108 Ampr
    37° C.-42° C. 280 Ampr
    Ptrc-Oprl-OVA D1210 37° C. 3 × 108 Ampr
    37° C.-42° C. 2 × 108 Ampr
    D1210HP 37° C. 3 × 108 Ampr
    37° C.-42° C. 2 × 108 Ampr
    pK7C3 D1210 37° C. 5 × 108 Chlr
    37° C.-42° C. 4 × 108 Chlr
    D1210HP 37° C. 6 × 108 Chlr
    37° C.-42° C. 3 × 108 Chlr
    pK7C3BB- D1210 37° C. 4 × 108 Chlr
    1DBOVA1 37° C.-42° C. 3 × 108 Chlr
    D1210HP 37° C. 5 × 108 Chlr
    37° C.-42° C. 560 Chlr
  • The results show that D1210 cells (lacking the Int gene) transformed with PMI47a, ptrc-Oprl-OVA, pK7C3 or pK7C3BB-1DBOVA1 survive well upon thermoinduction, which indicates that PMI47a, ptrc-Oprl-OVA, pK7C3 and pK7C3BB-1DBOVA1 are not harmful for [0096] E.coli. PMI47a, ptrc-Oprl-OVA, pK7C3 and pK7C3BB-1DBOVA1 can be transformed and maintained in D1210HP if the cells are maintained at 37° C. (OFF configuration). However, when cells are incubated at 42° C. for 15 minutes (ON configuration), the integrase function is activated, and D1210HP cells containing PMI47a or pK7C3BB-1DBOVA1 do not longer survive. These experiments show that the phagemid pK7C3BB-1 DBOVA1 is toxic for E.coli strain D1210HP if inversion is induced by thermoinduction of the Int gene.
  • Elimination Upon Recognition of an Artificial Receptor [0097]
  • D1210 and D1210HP electrocompetent cells were transformed with ptrc-Oprl-OVA. A single colony was used to inoculate a culture in LB containing 100 μg/ml ampicilline. Phages of pK7C3-1DBOVA1 or pK7C3BB-1DBOVA1 were prepared as described above. 150 μl of washed cells were incubated with 5×10[0098] 8 pK7C3-1DBOVA1 or pK7C3BB-1DBOVA1 phages for 1 hour at 37° C. Half of these mixtures was exposed to thermal induction (15 minutes at 42° C.). An aliquot (before and after induction) was spread on LB agar plates containing 25 μg/ml chloramphenicol and 100 μg/ml ampicilline and 2% glucose. The numbers of transformants were counted and are listed in table 9.
    TABLE 9
    Number of transformants when D1210 or D1210HP cells containing
    ptrc-Oprl-OVA were incubated with pK7C3-1 DBOVA1 or pK7C3BB-
    1DBOVA1 phages with or without thermal incubation.
    type of phages E. coli strain temperature Number of transformants
    pK7C3- D1210 37° C. 8000
    1DBOVA1 37° C.-42° C. 7800
    D1210HP 37° C. 8100
    37° C.-42° C. 8300
    pK7C3BB- D1210 37° C. 7800
    1DBOVA1 37° C.-42° C. 7900
    D1210HP 37° C. 7600
    37° C.-42° C. 2
  • D1210HP cells displaying ovalbumin on their surface are killed by pseudovirions containing phagemid pK7C3BB-1DBOVA1 after thermoinduction. This experiment clearly demonstrates that coli cells, expressing an artificial receptor can be recognised and killed by a bacteriophage with an artificial ligand that recognises the artificial receptor. [0099]
  • Example IX
  • Library Versus Library Screening (“Picup” Screening) [0100]
  • Fission yeast ([0101] Schizosaccharomyces pombe p2, h+, arg3−, ura4−) was grown in YES medium (0.5% (w/v) yeast extract, 3.0% (w/v) glucose +225 mg/l adenine, histidine, leucine, uracil and lysine hydrochloride). Cells were harvested by low speed centrifugation. 15 g wet cells were washed with 100 ml S-buffer (1.4 M sorbitol, 40 mM HEPES, 0.5 mM MgCl2 adjusted to pH 6.5). After centrifugation the pellet was resuspended in 100 ml S-buffer containing 10 mM 2-mercaptoethanol and 1 mM PMSF and incubated at 30° C. for 10 minutes. After centrifugation, the pellet was resuspended in 60 ml S-buffer containing 1 mM PMSF, and 460 mg Zymolase 20T (ICN Biomedicals) was added to prepare spheroplasts. After incubation for 3 hours at 30° C., the pellet was washed five times with 100 ml S-buffer containing 1 mM PMSF. Spheroplasts were resuspended in 60 ml Tris (25 mM, pH=7.5), 100 mM NaCl, 2 mM EDTA supplemented with 1 tablet protease inhibitor mix (Boehringer) and lysed by two passages in French press. The supernatant was recovered after centrifugation for 30 minutes at 15.000 rpm in SS34 rotor. 15.5 g solid ammoniumsulfate was added to 30 ml of the supernatant. After incubation on ice for 1 hour, precipitated material was recovered by centrifugation and resuspended in 20 ml PBS. The solution was equilibrated in PBS by passage over PD10 columns. Following this treatment, the protein concentration was determined with Bio-Rad protein assay kit, using BSA as reference protein. Six aliquots, each 5 ml in volume, with a protein concentration of 8 mg/ml, were prepared for camel immunisation.
  • The immunisation and blood withdrawal scheme is as follows: [0102]
    Day 0 Collect preimmune serum
    Day 0 inject subcutaneously 1 tube (40 mg protein) + complete freund
    adjuvant
    Day 7 inject subcutaneously 1 tube + incomplete freund adjuvant
    Day 14 inject subcutaneously 1 tube + incomplete freund adjuvant
    Day 21 Collect anticoagulated blood and serum
    Day 21 inject subcutaneously 1 tube + incomplete freund adjuvant
    Day 28 inject subcutaneously 1 tube + incomplete freund adjuvant
    Day 35 inject subcutaneously 1 tube + incomplete freund adjuvant
    Day 38 Collect anticoagulated blood and serum
  • A cDNA library of [0103] Schizosaccharomyces pombe is constructed by recloning the S.pombe cDNA bank that is used in Two-hybrid system (Clontech). The cDNA inserts are amplified with specific primers harbouring restriction enzyme sites compatible for cloning into the multiple cloning site of ptrc-Oprl. The library is transformed in UT5600 or in D1210HP electro-competent cells.
  • The serum immunoglobulins from the immunised animal (day 21 or 38) are passed over protein A and protein G columns to purify the conventional antibodies and the heavy chain antibodies. Each fraction is used in a Western blot to evaluate the presence and titre of anti-[0104] S.pombe protein immunoglobulins.
  • Peripheral blood lymphocytes from the immunised camel are prepared using Unisep (WAK Chemie, Germany) from the anticoagulated blood isolated at days 21 and 42. The camel heavy chain antibodies (VHH's) from 10[0105] 7 lymphocytes are ligated after RT-PCR amplification in the Sfil-Notl sites of the pK7C3 or pK7C3-BB (pK7C3 with the barnase-barstar inversion system) vector and transformed in TG1 as described above, in order to obtain a library of 108 individual clones. The VHH phages is prepared by infection of the E.coli culture with M13K07 and enriched for virions with a VHH-gpIII fusion by IMAC chromatography (see before).
  • For the PICUP experiment, 10[0106] 7-108 UT5600 cells from the cDNA library of S.pombe are mixed with 1012 phages obtained from the camel VHH library. The mixture is incubated for 1 hour at 37° C. and plated on LB agar plates containing 100 μg/ml ampicillin, 25 μg/ml chloramphenicol and 2% glucose. Colonies can only grow on this medium if the UT5600 cells are expressing a S.pombe antigen that is recognised and subsequently infected by a virion carrying an antigen-specific VHH. For each colony the VHH insert is sequenced with a primer annealing in the gene pill sequence, while the cDNA coding for the antigen is directly sequenced with an Oprl specific primer. The latter sequence is screened in a BLAST on the S.pombe genome sequence database to identify the gene. The specificity of the VHH (having a his-tag) is also tested in a Western blot in which the S.pombe extracted proteins are separated on SDS gels. The presence of the VHH is revealed with an anti-His monoclonal antibody (SEROTEC),
  • As a positive control, individual colonies from the cDNA library are used in a separate PICUP experiment. One single clone that is capable to produce a fusion protein with the lipoprotein (as seen by Western blot) is grown and challenged with the VHH phages from the library. The VHH from clones growing on Ampicilline and Chloramphenicol are induced with IPTG, extracted from the periplasm and it's binding to the yeast protein tested in Western blot and ELISA. [0107]
  • To eliminate particular antigens dominantly present in the matched pairs ([0108] S.pombe antigen—specific VHH) or particular VHH over-represented in the matched pairs, the killer phage strategy is used. To this end the UT5600 cells carrying the S.pombe cDNA library are incubated with the phages from the pK7C3-BB library of VHH. After infection the suspension is incubated at 42° C. to eliminate the E.coli cells that are infected with phages. The surviving cells are carrying S.pombe antigens that are less frequent represented in the ptrc-Oprl or pK7C3-BB libraries. In a second step these surviving cells are used to inoculate fresh medium and to restart the PICUP experiment as before.
  • 1 3 1 33 DNA Artificial Sequence primer 1 catgcgatga ctcgcggccc agccggccat ggc 33 2 30 DNA Artificial Sequence primer 2 gtgtgcggcc gctgaggaga crgtgaccwg 30 3 124 PRT Camel 3 Asp Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Pro Ala Gly Ser 1 5 10 15 Leu Arg Leu Ser Cys Ala Val Ser Gly Tyr Thr Tyr Glu Asn Arg Tyr 20 25 30 Met Ala Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val Ala 35 40 45 Ala Ile Trp Arg Gly Gly Asn Asn Pro Tyr Tyr Ala Asp Ser Val Lys 50 55 60 Gly Arg Phe Thr Ile Ser Gln Asp Asn Ala Lys Asn Ile Val Ser Leu 65 70 75 80 Leu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95 Ala Gln Ala Gly Arg Phe Ser Gly Pro Leu Tyr Glu Ser Thr Tyr Asp 100 105 110 Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser 115 120

Claims (29)

1. Genetically modified bacteriophage, pseudovirion or phagemid capable of entering a host cell by binding of its artificial ligand to an artificial receptor present on said host cell.
2. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 1, carrying a nucleotide sequence encoding an artificial ligand, in condition enabling expression of said ligand at the surface of the bacteriophage, pseudovirion or phagemid.
3. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 1 or 2, in which the artificial receptor is an endogenous cell wall protein of the host cell.
4. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 1 or 2, in which the artificial receptor is a fusion protein whereby the protein sequence or region of said fusion protein, involved in the binding of the receptor with said bacteriophage, pseudovirion or phagemid is free of peptide sequences having 10 or more contiguous amino acid residues involved in the wild type bacteriophage-host cell interaction.
5. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 1-3, where the binding is mediated by an antigen—antibody reaction.
6. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 14, in which the said bacteriophage, pseudovirion or phagemid is lytic.
7. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 6, in which the entering in the host cell of said bacteriophage, pseudovirion or phagemid is inducing expression of barnase in the host cell.
8. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 1-7, where the bacteriophage is M13.
9. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 8, where the artificial ligand is a pIII fusion protein.
10. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 9, in which the phagemid is a pK7C3 derived vector
11. Genetically modified bacteriophage, pseudovirion or phagemid according to claim anyone of claims 1 to 4, in which the fusion protein is an pOrpl fusion protein.
12. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 11, in which the host cell is transformed with an ptrc-Oprl derived vector.
13. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 12, in which the phagemid is a pK7C3 derived vector.
14. Genetically modified bacteriophage, pseudovirion or phagemid according to claim 5, in which the antibody is a camelid derived antibody, or is a functional fragment thereof, including a fragment comprising all or part of the VHH chain of a camelid heavy chain antibody.
15. Use of a bacteriophage, pseudovirion or phagemid according to claim 1-14 to detect and/or eliminate a specific bacterial population.
16. Use of a bacteriophage, pseudovirion or phagemid according to claim 1-14 to detect a artificial receptor-artificial ligand interaction.
17. Use of a bacteriophage, pseudovirion or phagemid according to claim 15 to screen an antigen and/or antibody library.
18. Method for selecting artificial receptor-artificial ligand interactions, comprising:
growing a host cell or a mixture of host cells displaying one or more artificial receptors,
contacting said host cell or said mixture with a genetically modified bacteriophage, pseudovirion or phagemid or a mixture of genetically modified bacteriophages, pseudovirions or phagemids with one or more artificial ligands,
selecting those cells that have been entered by one or more bacteriophages, pseudovirion of phagemid.
19. Method for selecting artificial ligand-artificial receptor interactions according to claim 18, in which the host cell is transformed with an ptrc-Oprl derived vector.
20. Method for selecting artificial ligand-artificial receptor interactions according to claim 18 or 19, in which the phagemid is a pK7C3 derived vector.
21. Genetically modified host cell, carrying a nucleotide sequence encoding an artificial receptor in conditions enabling that the artificial receptor be expressed at the surface of the host cell, said host cell being further transformed with a nucleotide sequence encoding said artificial ligand whereby said nucleotide sequence encoding the ligand entered the host cell as a consequence of the interaction between said artificial ligand and a protein sequence or region on said artificial receptor.
22. Genetically modified host cell according to claim 21, wherein the nucleotide sequence encoding the artificial receptor and/or the nucleotide sequence encoding the artificial ligand are not known.
23. Genetically modified host cell according to claim 21 or 22, which is a gram-negative bacterium, especially an E coli cell of the F strain.
24. Genetically modified host cell according to any of claims 21 to 23, wherein the nucleotide sequences of the artificial receptor and the nucleotide sequence for the artificial ligand are respectively coding sequences of an antibody or a functional fragment thereof and coding sequence of an antigen, or are respectively coding sequences of an antigen and coding sequence of antibody or a functional fragment thereof.
25. Genetically modified host cell according to claim 24, wherein the functional antibody fragment is a VHH fragment of a camelid antibody or a functional portion of said VHH.
26. Genetically modified host cell according to anyone of claims 21 to 25, wherein the nucleotide sequence encoding the artificial receptor comprises a sequence encoding Oprl or a part of Oprl sufficient to enable the exposure, at the surface of the host cell, of a protein sequence or region capable of interacting with the artificial ligand.
27. A kit comprising a genetically modified host cell according to anyone of claims 21 to 26 bacteriophage, pseudovirion or phagemid according to anyone of claims 1 to 20, or comprising a host cell and/or a bacteriophage, pseudovirion or phagemid and/or a cloning vector enabling the construction of said genetically modified host cell according to anyone of claims 21 to 26.
28. A kit according to claim 27 for in vivo panning of antibody or antibody fragment library, or antigenic sequences library.
29. A kit according to claim 27 or 28, for the simultaneous in vivo panning of both an antibody fragment library, and an antigenic sequences library.
US10/251,565 1999-09-24 2002-09-19 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor Abandoned US20030148508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/251,565 US20030148508A1 (en) 1999-09-24 2002-09-19 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99402348A EP1088892A1 (en) 1999-09-24 1999-09-24 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
EP99402348.9 1999-09-24
US09/433,404 US6479280B1 (en) 1999-09-24 1999-11-03 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
US10/251,565 US20030148508A1 (en) 1999-09-24 2002-09-19 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/433,404 Division US6479280B1 (en) 1999-09-24 1999-11-03 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor

Publications (1)

Publication Number Publication Date
US20030148508A1 true US20030148508A1 (en) 2003-08-07

Family

ID=8242120

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/433,404 Expired - Fee Related US6479280B1 (en) 1999-09-24 1999-11-03 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
US10/251,565 Abandoned US20030148508A1 (en) 1999-09-24 2002-09-19 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/433,404 Expired - Fee Related US6479280B1 (en) 1999-09-24 1999-11-03 Recombinant phages capable of entering host cells via specific interaction with an artificial receptor

Country Status (5)

Country Link
US (2) US6479280B1 (en)
EP (1) EP1214430A1 (en)
AU (1) AU770674B2 (en)
CA (1) CA2385664A1 (en)
WO (1) WO2001021817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196313B2 (en) 2004-04-02 2007-03-27 Fairchild Semiconductor Corporation Surface mount multi-channel optocoupler

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412496B1 (en) * 2001-07-03 2011-12-28 Vlaams Interuniversitair Instituut voor Biotechnologie vzw. Reversed mammalian protein-protein interaction trap
US6759229B2 (en) 2001-12-18 2004-07-06 President & Fellows Of Harvard College Toxin-phage bacteriocide antibiotic and uses thereof
GB0200689D0 (en) * 2002-01-10 2002-02-27 Univ Newcastle Fusion proteins
EP1847611B1 (en) * 2003-10-03 2009-09-09 Promega Corporation Rhamnose-inducible expression system
US8293503B2 (en) 2003-10-03 2012-10-23 Promega Corporation Vectors for directional cloning
PL1812585T3 (en) * 2004-11-01 2015-03-31 Erber Ag Bacteriophages as selective agents
DK2949668T3 (en) 2005-05-18 2019-11-11 Ablynx Nv IMPROVED NANOBODIES TM AGAINST TUMOR CANCER FACTOR-ALFA
PT3415535T (en) 2005-05-20 2021-02-02 Ablynx Nv Improved nanobodies tm for the treatment of aggregation-mediated disorders
SI3028716T1 (en) 2006-10-10 2021-01-29 Regenesance B.V. Complement inhibition for improved nerve regeneration
AU2007336242B2 (en) 2006-12-19 2012-08-30 Ablynx N.V. Amino acid sequences directed against GPCRs and polypeptides comprising the same for the treatment of GPCR-related diseases and disorders
EP2102244A2 (en) 2006-12-19 2009-09-23 Ablynx N.V. Amino acid sequences directed against a metalloproteinase from the adam family and polypeptides comprising the same for the treatment of adam-related diseases and disorders
PT2308514E (en) 2007-03-23 2013-09-06 To Bbb Holding B V Conjugates for targeted drug delivery across the blood-brain barrier
EP2173772A2 (en) 2007-07-03 2010-04-14 Ablynx N.V. Providing improved immunoglobulin sequences by mutating cdr and/or fr positions
US20110189203A1 (en) 2007-11-27 2011-08-04 Ablynx N.V. Immunoglobulin constructs
WO2009109572A2 (en) * 2008-03-03 2009-09-11 Ablynx Nv Monovalent phage display of single variable domains
DE112009000507T5 (en) 2008-03-05 2011-02-10 Ablynx Nv Novel antigen-binding dimer complexes, process for their preparation and their use
WO2009124931A2 (en) 2008-04-07 2009-10-15 Ablynx Nv Amino acid sequences directed against the notch pathways and uses thereof
AU2009237662A1 (en) 2008-04-17 2009-10-22 Ablynx N.V. Peptides capable of binding to serum proteins and compounds, constructs and polypeptides comprising the same
EP2403873A1 (en) 2009-03-05 2012-01-11 Ablynx N.V. Novel antigen binding dimer-complexes, methods of making/avoiding and uses thereof
AU2010243551B2 (en) 2009-04-30 2015-03-26 Ablynx Nv Method for the production of domain antibodies
EP2451839B1 (en) 2009-07-10 2020-04-22 Ablynx N.V. Method for the production of variable domains
PL2473528T3 (en) 2009-09-03 2015-05-29 Ablynx Nv Stable formulations of polypeptides and uses thereof
WO2011083140A1 (en) 2010-01-08 2011-07-14 Ablynx Nv Immunoglobulin single variable domain directed against human cxcr4
WO2011095545A1 (en) 2010-02-05 2011-08-11 Ablynx Nv Peptides capable of binding to serum albumin and compounds, constructs and polypeptides comprising the same
AU2011214299B2 (en) 2010-02-11 2014-07-31 Ablynx Nv Methods and compositions for the preparation of aerosols
US9556273B2 (en) 2010-03-29 2017-01-31 Vib Vzw Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages
US9101674B2 (en) 2010-03-29 2015-08-11 Vib Vzw Targeting and in vivo imaging of tumor-associated macrophages
WO2013174537A1 (en) 2012-05-24 2013-11-28 Vib Vzw Anti-macrophage mannose receptor single variable domains for targeting and in vivo imaging of tumor-associated macrophages
WO2011161263A1 (en) 2010-06-25 2011-12-29 Ablynx Nv Pharmaceutical compositions for cutaneous administration
DK2632946T3 (en) 2010-10-29 2018-03-12 Ablynx Nv PROCEDURE FOR MANUFACTURING VARIABLE IMMUNGLOBULIN SINGLE DOMAINS
WO2012130872A1 (en) 2011-03-28 2012-10-04 Ablynx Nv Method for producing solid formulations comprising immunoglobulin single variable domains
WO2012152823A1 (en) 2011-05-09 2012-11-15 Ablynx Nv Method for the production of immunoglobulin single variable domains
RU2661677C2 (en) 2011-05-27 2018-07-18 Аблинкс Нв Inhibition of bone resorption with rank-l binding peptides
IN2014CN00437A (en) 2011-06-23 2015-04-03 Ablynx Nv
WO2013041722A1 (en) 2011-09-23 2013-03-28 Ablynx Nv Prolonged inhibition of interleukin-6 mediated signaling
WO2014087010A1 (en) 2012-12-07 2014-06-12 Ablynx N.V. IMPROVED POLYPEPTIDES DIRECTED AGAINST IgE
HUE035315T2 (en) 2013-01-30 2018-05-02 Vib Vzw Novel chimeric polypeptides for screening and drug discovery purposes
AU2014214054B2 (en) 2013-02-05 2018-10-04 The Board Of Trustees Of The Leland Stanford Junior University Muscarinic acetylcholine receptor binding agents and uses thereof
AU2014229952B2 (en) 2013-03-15 2018-10-04 Vib Vzw Anti-macrophage mannose receptor single variable domains for use in cardiovascular diseases
CA2910632A1 (en) 2013-04-29 2014-12-04 Agrosavfe N.V. Compositions comprising polypeptides that bind glucosylceramide of a fungal pest
NL1040254C2 (en) 2013-05-17 2014-11-24 Ablynx Nv Stable formulations of immunoglobulin single variable domains and uses thereof.
EP2883883A1 (en) 2013-12-16 2015-06-17 Cardio3 Biosciences S.A. Therapeutic targets and agents useful in treating ischemia reperfusion injury
EP3099707B1 (en) 2014-01-30 2021-12-29 Vib Vzw Opioid receptor binding agents and uses thereof
NL2013661B1 (en) 2014-10-21 2016-10-05 Ablynx Nv KV1.3 Binding immunoglobulins.
CA2955554C (en) 2014-07-22 2022-07-05 Vib Vzw Methods to select for agents that stabilize protein complexes
EP3180037A1 (en) 2014-07-29 2017-06-21 Vrije Universiteit Brussel Radio-labelled antibody fragments for use in the prognosis, diagnosis of cancer as well as for the prediction of cancer therapy response
CA2954359C (en) 2014-07-29 2018-09-25 Vrije Universiteit Brussel Radio-labelled antibody fragments for use in the prevention and/or treatment of cancer
BR112017009330A2 (en) 2014-11-05 2017-12-19 Agrosavfe N V transgenic plant comprising a polynucleotide encoding a heavy chain antibody variable domain
US11426468B2 (en) 2014-12-19 2022-08-30 Ablynx N.V. Cysteine linked nanobody dimers
CN108025093B (en) 2015-07-17 2022-02-11 布鲁塞尔自由大学 Radiolabeled antibody fragments for use in the treatment of cancer
BR112018010802A2 (en) 2015-11-27 2018-11-27 Ablynx Nv cd40l inhibiting polypeptides
WO2017182603A1 (en) 2016-04-22 2017-10-26 Université Libre de Bruxelles A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells
WO2017182605A1 (en) 2016-04-22 2017-10-26 Université Libre de Bruxelles A new biomarker expressed in pancreatic beta cells useful in imaging or targeting beta cells
CA3022697A1 (en) 2016-05-02 2017-11-09 Ablynx Nv Treatment of rsv infection
WO2018007442A1 (en) 2016-07-06 2018-01-11 Ablynx N.V. Treatment of il-6r related diseases
WO2018029182A1 (en) 2016-08-08 2018-02-15 Ablynx N.V. Il-6r single variable domain antibodies for treatment of il-6r related diseases
EP3512880A1 (en) 2016-09-15 2019-07-24 Ablynx NV Immunoglobulin single variable domains directed against macrophage migration inhibitory factor
MX2019005696A (en) 2016-11-16 2019-08-14 Ablynx Nv T cell recruiting polypeptides capable of binding cd123 and tcr alpha/beta.
WO2018099968A1 (en) 2016-11-29 2018-06-07 Ablynx N.V. Treatment of infection by respiratory syncytial virus (rsv)
CA3054623A1 (en) 2017-02-28 2018-09-07 Vib Vzw Means and methods for oral protein delivery
US20200033347A1 (en) 2017-04-18 2020-01-30 Universite Libre De Bruxelles Biomarkers And Targets For Proliferative Diseases
US11891451B2 (en) 2017-05-11 2024-02-06 Vib Vzw Glycosylation of variable immunoglobulin domains
US11603401B2 (en) 2017-06-02 2023-03-14 Ablynx N.V. Aggrecan binding immunoglobulins
EP4272822A3 (en) 2017-06-02 2024-03-27 Merck Patent GmbH Adamts binding immunoglobulins
BR112019025097A2 (en) 2017-06-02 2020-07-28 Merck Patent Gmbh mmp13-binding immunoglobulins
AU2018277102A1 (en) 2017-06-02 2019-12-19 Ablynx N.V. Polypeptides binding ADAMTS5, MMP13 and Aggrecan
CA3070253A1 (en) 2017-07-19 2019-01-24 Vib Vzw Serum albumin binding agents
KR20200091400A (en) 2017-10-31 2020-07-30 브이아이비 브이지더블유 Novel antigen-binding chimeric proteins and methods and uses thereof
WO2019155041A1 (en) 2018-02-12 2019-08-15 Vib Vzw Gβγ COMPLEX ANTIBODIES AND USES THEREOF
EP3758742A1 (en) 2018-03-01 2021-01-06 Vrije Universiteit Brussel Human pd-l1-binding immunoglobulins
AU2019237215B2 (en) 2018-03-23 2023-11-02 Université Libre de Bruxelles Wnt signaling agonist molecules
US20210023187A1 (en) 2018-03-27 2021-01-28 Umc Utrecht Holding B.V. Targeted Thrombolysis for Treatment of Microvascular Thrombosis
CA3138028A1 (en) 2019-04-29 2020-11-05 Confo Therapeutics N.V. Chimeric proteins and methods to screen for compounds and ligands binding to gpcrs
EP3962599A1 (en) 2019-04-30 2022-03-09 Vib Vzw Cystic fibrosis transmembrane conductance regulator stabilizing agents
EP3976067A1 (en) 2019-05-28 2022-04-06 Vib Vzw Cd8+ t-cells lacking plexins and their application in cancer treatment
US20220220197A1 (en) 2019-05-28 2022-07-14 Vib Vzw Cancer Treatment by Targeting Plexins in the Immune Compartment
US20220380456A1 (en) 2019-10-21 2022-12-01 Vib Vzw Nanodisc-specific antigen-binding chimeric proteins
JP2023501004A (en) 2019-11-11 2023-01-17 アイビーアイ-エージー イノベイティブ バイオ インセクティサイズ リミテッド Insect control nanobodies and their uses
US20220411495A1 (en) 2019-11-27 2022-12-29 Vib Vzw Positive allosteric modulators of the calcium-sensing receptor
GB201918279D0 (en) 2019-12-12 2020-01-29 Vib Vzw Glycosylated single chain immunoglobulin domains
US20240027467A1 (en) 2019-12-20 2024-01-25 Vib Vzw Nanobody Exchange Chromatography
WO2021140205A1 (en) 2020-01-10 2021-07-15 Confo Therapeutics N.V. Methods for generating antibodies and antibody fragments and libraries comprising same
WO2021156490A2 (en) 2020-02-06 2021-08-12 Vib Vzw Corona virus binders
CN115698047A (en) 2020-02-25 2023-02-03 非营利性组织佛兰芒综合大学生物技术研究所 Leucine-rich repeat kinase 2 allosteric modulators
CN115915939A (en) 2020-03-31 2023-04-04 生物催化公司 Antifungal polypeptides
US20230279115A1 (en) 2020-04-22 2023-09-07 Mabwell (shanghai) Bioscience Co., Ltd. Single variable domain antibody targeting human programmed death ligand 1 (pd-l1) and derivative thereof
WO2021229104A1 (en) 2020-05-15 2021-11-18 Université de Liège Anti-cd38 single-domain antibodies in disease monitoring and treatment
WO2022003156A1 (en) 2020-07-02 2022-01-06 Oncurious Nv Ccr8 non-blocking binders
EP4189060A1 (en) 2020-07-31 2023-06-07 Biotalys NV Expression host
EP4216943A1 (en) 2020-09-24 2023-08-02 Vib Vzw Combination of p2y6 inhibitors and immune checkpoint inhibitors
WO2022063957A1 (en) 2020-09-24 2022-03-31 Vib Vzw Biomarker for anti-tumor therapy
US20220153854A1 (en) 2020-09-25 2022-05-19 Ablynx N.V. Polypeptides comprising immunoglobulin single variable domains targeting il-13 and ox40l
US20240018248A1 (en) 2020-12-02 2024-01-18 Vib Vzw An ltbr agonist in combination therapy against cancer
WO2022117569A1 (en) 2020-12-02 2022-06-09 Oncurious Nv A ccr8 antagonist antibody in combination with a lymphotoxin beta receptor agonist antibody in therapy against cancer
WO2022129572A1 (en) 2020-12-18 2022-06-23 Ablynx Nv Polypeptides comprising immunoglobulin single variable domains targeting il-6 and tnf-alpha
GB202020502D0 (en) 2020-12-23 2021-02-03 Vib Vzw Antibody composistion for treatment of corona virus infection
CA3206304A1 (en) 2020-12-24 2022-06-30 Vib Vzw Human ccr8 binders
US20240052044A1 (en) 2020-12-24 2024-02-15 Vib Vzw Non-blocking human ccr8 binders
EP4267621A1 (en) 2020-12-24 2023-11-01 Vib Vzw Murine cross-reactive human ccr8 binders
EP4288095A1 (en) 2021-02-05 2023-12-13 Vib Vzw Sarbecovirus binders
CN117794566A (en) 2021-02-05 2024-03-29 Vib研究所 Sha Bei viral binding agents
CA3211257A1 (en) 2021-02-17 2022-08-25 Vib Vzw Inhibition of slc4a4 in the treatment of cancer
IL305318A (en) 2021-02-19 2023-10-01 Vib Vzw Cation-independent mannose-6-phosphate receptor binders
WO2022199804A1 (en) 2021-03-24 2022-09-29 Vib Vzw Nek6 inhibition to treat als and ftd
WO2022242892A1 (en) 2021-05-17 2022-11-24 Université de Liège Anti-cd38 single-domain antibodies in disease monitoring and treatment
CA3225194A1 (en) 2021-06-23 2022-12-29 Vib Vzw Means and methods for selection of specific binders
WO2023274183A1 (en) 2021-06-29 2023-01-05 江苏先声药业有限公司 Cd16 antibody and use thereof
CN117751143A (en) 2021-07-30 2024-03-22 山东先声生物制药有限公司 anti-PVRIG/anti-TIGIT bispecific antibodies and uses
WO2023016828A2 (en) 2021-07-30 2023-02-16 Vib Vzw Cation-independent mannose-6-phosphate receptor binders for targeted protein degradation
WO2023057601A1 (en) 2021-10-06 2023-04-13 Biotalys NV Anti-fungal polypeptides
WO2023111266A1 (en) 2021-12-17 2023-06-22 Ablynx Nv POLYPEPTIDES COMPRISING IMMUNOGLOBULIN SINGLE VARIABLE DOMAINS TARGETING TCRαβ, CD33 AND CD123
WO2023135198A1 (en) 2022-01-12 2023-07-20 Vib Vzw Human ntcp binders for therapeutic use and liver-specific targeted delivery
WO2023148291A1 (en) 2022-02-02 2023-08-10 Biotalys NV Methods for genome editing
WO2023148397A1 (en) 2022-02-07 2023-08-10 Vib Vzw Engineered stabilizing aglycosylated fc-regions
WO2023198848A1 (en) 2022-04-13 2023-10-19 Vib Vzw An ltbr agonist in combination therapy against cancer
WO2023213751A1 (en) 2022-05-02 2023-11-09 Umc Utrecht Holding B.V Single domain antibodies for the detection of plasmin-cleaved vwf
WO2023222825A1 (en) 2022-05-18 2023-11-23 Vib Vzw Sarbecovirus spike s2 subunit binders
WO2024008755A1 (en) 2022-07-04 2024-01-11 Vib Vzw Blood-cerebrospinal fluid barrier crossing antibodies
WO2024068744A1 (en) 2022-09-27 2024-04-04 Vib Vzw Antivirals against human parainfluenza virus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637980A (en) * 1983-08-09 1987-01-20 Smithkline Beckman Corporation Externalization of products of bacteria
US5516637A (en) * 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001870A1 (en) 1988-08-22 1990-03-08 The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce Retroviral vectors expressing soluble cd4; a gene therapy for aids
PT1621554E (en) 1992-08-21 2009-07-13 Univ Bruxelles Immunoglobulins devoid of light chains
EP0614989A1 (en) 1993-02-17 1994-09-14 MorphoSys AG A method for in vivo selection of ligand-binding proteins
FR2708622B1 (en) 1993-08-02 1997-04-18 Raymond Hamers Recombinant vector containing a sequence of a structural lipoprotein gene for the expression of nucleotide sequences.
AU699322B2 (en) 1994-04-05 1998-12-03 Exponential Biotherapies, Inc. Antibacterial therapy with genotypically modified bacteriophage
SE9503151D0 (en) 1995-09-13 1995-09-13 Bioinvent Internatioal Ab Combined ligand and receptor display
RU2105064C1 (en) 1996-07-19 1998-02-20 Институт молекулярной биологии им.В.А.Энгельгардта РАН Vector pmt440 at positive selection for foreign dna fragments cloning
EP0983077A1 (en) 1997-05-15 2000-03-08 Ribozyme Pharmaceuticals, Inc. Pharmaceutical composition and diagnostic kit directed to a heterologeneous pathogenic organism in a host
IT1297016B1 (en) 1997-12-23 1999-08-03 San Raffaele Centro Fond SELECTION PROCESS OF T CD4 + LYMPHOCYTES FOR THE TRANSDUCTION OF ANTI-HIV GENES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637980A (en) * 1983-08-09 1987-01-20 Smithkline Beckman Corporation Externalization of products of bacteria
US5516637A (en) * 1994-06-10 1996-05-14 Dade International Inc. Method involving display of protein binding pairs on the surface of bacterial pili and bacteriophage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196313B2 (en) 2004-04-02 2007-03-27 Fairchild Semiconductor Corporation Surface mount multi-channel optocoupler

Also Published As

Publication number Publication date
CA2385664A1 (en) 2001-03-29
AU770674B2 (en) 2004-02-26
WO2001021817A1 (en) 2001-03-29
EP1214430A1 (en) 2002-06-19
US6479280B1 (en) 2002-11-12
AU7780300A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US6479280B1 (en) Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
US11078479B2 (en) Polypeptide display libraries and methods of making and using thereof
US9447142B2 (en) Phage display using contranslational translocation of fusion polypeptides
US9732143B2 (en) Methods and materials for enhancing functional protein expression in bacteria
US7772189B2 (en) Phage displayed cell binding peptides
JP4180111B2 (en) Materials and methods related to substance attachment and display on cell surfaces
US7544477B2 (en) Circularly permutated, interaction-activated proteins
JP2003500051A (en) Interaction activating protein
KR20170090509A (en) A novel display method of cyclic peptides on bacteriophage particles
EP1088892A1 (en) Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
US20030165877A1 (en) Recombinant phages capable of entering host cells via specific interaction with an artificial receptor
US20040038317A1 (en) Breakpoint fusion fragment complementation system
Rajaure The Role of Spanins in Phage Lysis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION