US20030168742A1 - Microelectronic die including low rc under-layer interconnects - Google Patents

Microelectronic die including low rc under-layer interconnects Download PDF

Info

Publication number
US20030168742A1
US20030168742A1 US10/095,362 US9536202A US2003168742A1 US 20030168742 A1 US20030168742 A1 US 20030168742A1 US 9536202 A US9536202 A US 9536202A US 2003168742 A1 US2003168742 A1 US 2003168742A1
Authority
US
United States
Prior art keywords
layer
area
forming
insulative material
metallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/095,362
Other versions
US6624515B1 (en
Inventor
Jay Parks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US10/095,362 priority Critical patent/US6624515B1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARKS, JAY S.
Priority to US10/428,449 priority patent/US6784026B2/en
Publication of US20030168742A1 publication Critical patent/US20030168742A1/en
Application granted granted Critical
Publication of US6624515B1 publication Critical patent/US6624515B1/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor

Definitions

  • the present invention relates generally to microelectronic dies, semiconductor chips or the like, and more particularly to a microelectronic die including a low resistive/capacitive (RC) under-layer interconnect structure.
  • RC resistive/capacitive
  • Low RC interconnects, memory cells and systems are provided by the present invention that efficiently utilize the existing available area on a die and do not require that the die be made bigger.
  • Methods of fabricating low RC interconnects, memory devices and systems are also provided by the present invention that require minimal additional processing and actually form the low RC interconnects utilizing some of the same operations used to form other components.
  • a microelectronic die includes a first area, a second area and an under-layer of conductive material formed in the second area to interconnect components.
  • a microelectronic die includes a first area and a second area.
  • An elongated trench is formed in the second area and extends substantially across the microelectronic die.
  • a line of metallization is formed in the elongated trench to transmit signals between different components or across the microelectronic die.
  • an electronic system includes a processor and a memory system coupled to the processor.
  • the memory system includes a layer of insulative material and an array of memory cells formed in a first area of the layer of insulative material. At least one trench is formed in a second area of the layer of insulative material. A plurality of components is formed in a third area of the layer of insulative material and at least one line of metallization formed in the at least one trench to transmit signals between the plurality of components.
  • a method of making a microelectronic die includes forming a layer of insulative material on a substrate; forming at least one trench in the layer of insulative material extending from proximate one edge of the microelectronic die to proximate another edge of the microelectronic die; and forming at least one line of conductive material in each of the at least one trenches to transmit signals across the microelectronic die.
  • FIGS. 1 A- 1 F illustrate the operations in forming a microelectronic die including low RC under-layer interconnects in accordance with the present invention.
  • FIG. 2 is a cross-sectional view of a microelectronic die including low RC under-layer interconnects in accordance with another embodiment of the present invention.
  • FIG. 3 is a top view of the microelectronic die of FIGS. 1 A- 1 F including low RC under-layer interconnects in accordance with the present invention.
  • FIG. 4 is a top view of a wafer or substrate containing microelectronic or semiconductor dies in accordance with an embodiment of the present invention.
  • FIG. 5 is a block schematic diagram of a circuit module including microelectronic dies in accordance with an embodiment of the present invention.
  • FIG. 6 is a block schematic diagram of a memory module including microelectronic dies in accordance with an embodiment of the present invention.
  • FIG. 7 is a block schematic diagram of an electronic system in accordance with another embodiment the present invention.
  • FIG. 8 is a block schematic diagram of a memory system in accordance with an embodiment of the present invention.
  • FIG. 9 is a block schematic diagram of a computer system in accordance with an embodiment of the present invention.
  • the transistors described herein include transistors from bipolar-junction technology (BJT), field effect technology (FET), or complimentary metal-oxide-semiconductor (CMOS) technology.
  • a metal-oxide-semiconductor (MOS) transistor includes a gate, a first node (drain) and a second node (source). Since a MOS transistor is typically a symmetrical device, the true designation of “source” and “drain” is only possible once voltage is impressed on the terminals. The designations of source and drain herein should be interpreted, therefore, in the broadest sense.
  • a P-channel MOS transistor could alternatively be used for an N-channel MOS transistor and vice versa with the polarity of the associated gate voltages merely being reversed. For example, applying a negative gate voltage in the situation of a P-channel MOS transistor to activate the transistor and reversing the polarity to apply a positive gate voltage to activate an N-channel transistor if an N-channel MOS transistor is substituted for a P-channel transistor.
  • FIGS. 1 A- 1 F illustrate the operations in forming a semiconductor die, microelectronic die 100 or the like including low RC under-layer interconnects in accordance with the present invention.
  • the microelectronic die 100 shown in FIGS. 1 A- 1 F is a memory system, such as a dynamic random access memory (DRAM) or the like.
  • DRAM dynamic random access memory
  • the principles and features of the present invention may be applied to any type microelectronic die containing other kinds of systems or devices.
  • an array of memory cells 102 is formed in a first area 104 or core array of the microelectronic die 100 .
  • other kinds of devices or systems can be formed in the first area 104 .
  • a second area 106 or peripheral area can separate the first area 104 from a third area 108 where other devices, such as transistors 110 , as shown by way of example in FIG. 1A, can be formed.
  • the second area 106 and the third area 108 can be combined or there may be a single peripheral area 202 .
  • the microelectronic die 100 includes a substrate 112 .
  • Doped regions 114 can be formed in a surface 116 of the substrate 112 to provide source/drains for the memory cells 102 and the other devices or transistors 110 .
  • Insulated gates 118 can be formed over the doped source/drain (S/D) regions 114 to control operation of the memory cells 102 and transistors 110 .
  • a landing pad or plug 120 can be formed in contact with each of the doped S/D regions 114 to facilitate connection to a contact in a later operation.
  • the landing pads or plugs 120 can be formed from polysilicon.
  • a layer 122 of insulation material can be formed on the substrate 112 and a capacitor 124 can be formed and coupled to one of the doped regions 114 of each of the memory cells 102 .
  • the capacitors 124 can be formed by standard photolithographic and deposition techniques.
  • a mask 126 can be formed on the insulation layer 122 .
  • the mask 126 has a predetermined pattern to form trenches 128 in the second area 106 in a top surface 130 of the insulation layer 122 .
  • the trenches 128 can be formed by a standard etching process.
  • the trenches 128 can be elongated and extend substantially completely across the microelectronic die 100 .
  • a layer 132 of conductive material or metallization can be formed in each of the trenches 128 .
  • the layer 132 of conductive material can be for example copper, aluminum or an alloy of copper and aluminum to define an elongated low resistance/capacitance (RC) under-layer interconnect 134 or line of conductive material that can extend across the microelectronic die 100 .
  • the low RC interconnect 134 can be used to interconnect different components at different locations and distances from one another and can be used to transmit signals across the die 100 and between components or can be used to supply power across the die 100 .
  • the mask can be removed and the trenches 128 can be filed with insulation material to fill in the insulation layer 122 and to cover the low RC interconnects 134 or under-layers of conductive material.
  • a second mask 136 can be formed on the insulation layer 122 .
  • the second mask 136 has a predetermined pattern to form vias 138 to expose the landing pads or contact plugs 120 and the under-layer interconnects 134 .
  • the second mask 136 can also be patterned to form vias 140 (shown by broken lines in FIGS. 1 D- 1 F) at different locations on the die 100 to expose the gates 118 .
  • the vias 138 and 140 can be formed by standard etching processes.
  • contacts 142 of conductive material can be formed in the vias 138 and 140 .
  • the contacts 142 can be formed from any conductive material.
  • the contacts 142 can be formed by first forming a thin layer 144 of titanium to improve contact or adhesion to the plugs 120 .
  • a second layer 146 of tungsten can then be formed over the titanium layer 144 and to fill the vias 138 and 140 to complete formation of the contacts 142 .
  • subsequent processing operations can include forming a first layer 148 of metallization having a selected pattern to make contact to the memory cells 102 , to at least one of the low RC under-layer interconnects 134 and to any devices or transistors 110 formed in the third area 108 .
  • the contacts 142 can connect the under-layer interconnects 134 to the first layer of metallization 148 .
  • Additional processing operations can include forming a second layer of insulation material 150 on the first layer 148 of metallization and exposed portions of the first insulation layer 122 , and forming a second layer 152 of metallization on the second layer 150 of insulation material.
  • Vias 154 can be formed in the second insulation layer 150 and contacts 156 can be formed in the vias 154 to make connections between the first layer 148 of metallization and second layer 152 of metallization.
  • FIG. 2 is a cross-sectional view of a microelectronic die 200 including low RC under-layer interconnects 234 in accordance with another embodiment of the present invention.
  • the low RC interconnects 234 are similar to the RC interconnects 134 in FIGS. 1 B- 1 F.
  • the microelectronic die 200 there is a single peripheral area 202 .
  • the under-layer interconnects 234 can be formed above or in the same area as the other devices or transistors 210 .
  • Contacts 242 to the transistors 210 and to the under-layer interconnects 234 can be made at different locations across the microelectronic die 200 .
  • the vias 238 and 240 to the gate 218 and plugs 220 of transistor 210 are shown by dashed or broken lines in FIG. 2 to illustrate that the vias 238 and 240 can be formed in different planes than the plane of the cross-section shown in FIG. 2.
  • FIG. 3 is a top view of the microelectronic die 100 of FIGS. 1 A- 1 F. Any upper layers of material have been removed in FIG. 3 to more clearly show the under-layer interconnects 134 and for purposes of understanding the present invention more clearly.
  • the under-layer interconnects 134 can extend substantially completely across one dimension of the microelectronic die 100 from proximate one edge 300 of the microelectronic die 100 to proximate another or opposite edge 302 of the microelectronic die 100 . Accordingly, the under-layer interconnects 134 provide a low RC connection to transmit signals between different components at different locations and distances across the microelectronic die 100 .
  • the low RC interconnect 134 A can be connected to a first component or a gate 118 A of a first transistor 110 A formed in one portion 304 of the third area 108 and to a second component or one source/drain 114 B of a second transistor 110 B formed in another portion 306 of the third area 108 of the microelectronic die 100 , and the interconnect 134 B can be connected to one source/drain 114 C of a third transistor 114 C and to another component (not shown in FIG. 2) of the microelectronic die 100 .
  • At least one of the underlayer interconnects 134 can be connected to a pad 308 or terminal at one or both edges 300 and 302 of the die 100 or at another location on the die 100 to couple the at least one interconnect 134 to another die or component 306 in an electronic system, such as a system 700 , 800 or 900 shown in FIGS. 7, 8 and 9 .
  • a semiconductor or microelectronic die 410 can be produced from a silicon wafer 400 .
  • a die 410 is an individual pattern, typically rectangular, on a substrate that contains circuitry to perform a specific function.
  • a semiconductor wafer 400 will typically contain a repeated pattern of such dies 410 containing the same functionality.
  • Die 410 can further contain additional circuitry to extend to such complex devices as a monolithic processor with multiple functionality.
  • Die 410 is typically packaged in a protective casing (not shown) with leads extending therefrom (not shown) providing access to the circuitry of the die 410 for unilateral or bilateral communication and control.
  • circuit module 500 can be a combination of dies 410 representing a variety of functions, or a combination of dies 410 containing the same functionality.
  • Some examples of a circuit module 500 include memory modules, device drivers, power modules, communication modems, processor modules and application-specific modules and can include multi-layer, multi-chip modules.
  • Circuit module 500 can be a sub-component of a variety of electronic systems, such as a clock, a television, a cell phone, a personal computer, an automobile, an industrial control system, an aircraft and others. Circuit module 500 will have a variety of leads 510 extending therefrom providing unilateral or bilateral communication and control.
  • FIG. 6 shows one embodiment of a circuit module as a memory module 600 containing circuitry for the low RC interconnect structure 134 (FIG. 1) of the present invention.
  • Memory module 600 generally depicts a Single In-line Memory Module (SIMM) or Dual In-line Memory Module (DIMM).
  • SIMM or DIMM can generally be a printed circuit board (PCB) or other support containing a series of memory devices. While a SIMM will have a single in-line set of contacts or leads, a DIMM will have a set of leads on each side of the support with each set representing separate I/O signals.
  • Memory module 600 contains multiple memory devices 610 contained on support 615 , the number depending upon the desired bus width and the desire for parity.
  • Memory module 600 can contain memory devices 610 on both sides of support 615 .
  • Memory module 600 accepts a command signal from an external controller (not shown) on a command link 620 and provides for data input and data output on data links 630 .
  • the under-layer interconnects 134 of the present invention can be used to form the command link 620 and the data links 630 .
  • the command link 620 and data links 630 are connected to leads 640 extending from the support 615 . Leads 640 are shown for conceptual purposes and are not limited to the positions shown in FIG. 6.
  • FIG. 7 shows an electronic system 700 containing one or more circuit modules 500 as described above containing the novel memory system 600 and the low RC interconnect structure 134 (FIG. 1) of the present invention.
  • Electronic system 700 generally contains a user interface 710 .
  • User interface 710 provides a user of the electronic system 700 with some form of control or observation of the results of the electronic system 700 .
  • Some examples of user interface 710 include the keyboard, pointing device, monitor and printer of a personal computer; the tuning dial, display and speakers of a radio; the ignition switch and gas pedal of an automobile; and the card reader, keypad, display and currency dispenser of an automated teller machine.
  • User interface 710 can further describe access ports provided to electronic system 700 .
  • Access ports are used to connect an electronic system to the more tangible user interface components previously exemplified.
  • One or more circuit modules such as the circuit modules 500 in FIG. 5, can be a processor providing some form of manipulation, control or direction of inputs from or outputs to user interface 710 , or of other information either preprogrammed into, or otherwise provided to, electronic system 700 .
  • electronic system 700 will often contain certain mechanical components (not shown) in addition to the circuit modules 500 and user interface 710 . It will be appreciated that the one or more circuit modules 500 in electronic system 700 can be replaced by a single integrated circuit.
  • electronic system 700 can be a sub-component of a larger electronic system.
  • FIG. 8 shows one embodiment of an electronic system as memory system 800 .
  • Memory system 800 contains one or more memory modules 600 as described above including the interconnect structure 134 (FIGS. 1 and 2) in accordance with the present invention and a memory controller 810 .
  • Memory controller 810 provides and controls a bidirectional interface between memory system 800 and an external system bus 820 .
  • Memory system 800 accepts a command signal from the external bus 820 and relays it to the one or more memory modules 600 on a command link 830 .
  • Memory system 800 provides for data input and data output between the one or more memory modules 600 and external system bus 820 on data links 840 .
  • the under-layer interconnects 134 can form at least portions of the data links 840 and command links 830 .
  • FIG. 9 shows a further embodiment of an electronic system as a computer system 900 .
  • Computer system 900 contains a processor 910 and a memory system 800 housed in a computer unit 905 .
  • Computer system 900 is but one example of an electronic system containing another electronic system, i.e. memory system 800 .
  • the memory system 800 can include an under-layer interconnect, shown as interconnect 134 in FIG. 1, in accordance with the present invention.
  • Computer system 900 optionally contains user interface components. Depicted in FIG. 9 are a keyboard 920 , a pointing device 930 , a monitor 940 , a printer 950 and a bulk storage device 960 .
  • processor 910 and the memory system 800 of the computer system 900 can be incorporated on a single integrated circuit and can use the under-layer interconnect structure 134 of the present invention to interconnect the various components. Such single package processing units reduce the communication time between the processor 910 and the memory system 800 .
  • the present invention thus provides low RC interconnects that efficiently utilize the available area on a microelectronic die without requiring additional area or that the die be made bigger. Additionally, the present invention provides a method of forming low RC interconnects that require a minimum of additional process steps and therefore minimize the additional time and expense of forming the additional low RC interconnects.

Abstract

A microelectronic die comprises a first area, a second area and an under-layer of conductive material formed in the second area to interconnect components. A method of making a microelectronic die comprises forming a layer of insulative material on a substrate; forming at least one trench in the layer of insulative material; and forming at least one line of conductive material in each of the at least one trenches to transmit signals.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to microelectronic dies, semiconductor chips or the like, and more particularly to a microelectronic die including a low resistive/capacitive (RC) under-layer interconnect structure. [0001]
  • BACKGROUND OF THE INVENTION
  • In semiconductor chips, microelectronic dies or the like, some components may need to be interconnected for the transmission of signals between the components or so that power from a single source can be routed to the different components. These interconnected components are sometimes formed at different locations on the chip or die and can be at extreme distances across the die from one another because of design constraints. As the distance between interconnected components becomes longer, the more desirable that the conductive interconnect be denser or of a material to provide a lower resistance/capacitance (RC) interconnect for efficient and proper operation of the components. There is a tradeoff between providing denser, lower RC interconnects between components and the size of the microelectronic die or chip. Current structures providing additional low RC interconnects between components have necessitated that the dies or chips be made larger. However, the trend is to pack more components per square area on a die, to more efficiently utilize the available area on a die and to actually reduce the size of the die. Providing additional low RC interconnects between components can also result in several additional process steps that increase the time and expense of manufacturing the chip. [0002]
  • Accordingly, for the reasons stated above, and for other reasons that will become apparent upon reading and understanding the present specification, there is a need for low RC interconnects that efficiently utilize the available area on a microelectronic die without requiring additional area or requiring that the die be made bigger. Additionally, there is a need for a method of forming low RC interconnects that require a minimum of additional process steps and therefore minimize the additional time and expense of forming the low RC interconnects. [0003]
  • SUMMARY OF THE INVENTION
  • The above mentioned problems with forming low RC interconnects are addressed by the present invention and will be understood by reading and studying the following specification. Low RC interconnects, memory cells and systems are provided by the present invention that efficiently utilize the existing available area on a die and do not require that the die be made bigger. Methods of fabricating low RC interconnects, memory devices and systems are also provided by the present invention that require minimal additional processing and actually form the low RC interconnects utilizing some of the same operations used to form other components. [0004]
  • In accordance with the present invention, a microelectronic die includes a first area, a second area and an under-layer of conductive material formed in the second area to interconnect components. [0005]
  • In accordance with an embodiment of the present invention, a microelectronic die includes a first area and a second area. An elongated trench is formed in the second area and extends substantially across the microelectronic die. A line of metallization is formed in the elongated trench to transmit signals between different components or across the microelectronic die. [0006]
  • In accordance with another embodiment of the present invention an electronic system includes a processor and a memory system coupled to the processor. The memory system includes a layer of insulative material and an array of memory cells formed in a first area of the layer of insulative material. At least one trench is formed in a second area of the layer of insulative material. A plurality of components is formed in a third area of the layer of insulative material and at least one line of metallization formed in the at least one trench to transmit signals between the plurality of components. [0007]
  • In accordance with another embodiment of the present invention, a method of making a microelectronic die includes forming a layer of insulative material on a substrate; forming at least one trench in the layer of insulative material extending from proximate one edge of the microelectronic die to proximate another edge of the microelectronic die; and forming at least one line of conductive material in each of the at least one trenches to transmit signals across the microelectronic die. [0008]
  • These and other embodiments, aspects, advantages and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like numerals describe substantially similar components throughout the several views. Like numerals having different letter suffixes or primed (X′) represent different occurrences of substantially similar components. [0010]
  • FIGS. [0011] 1A-1F illustrate the operations in forming a microelectronic die including low RC under-layer interconnects in accordance with the present invention.
  • FIG. 2 is a cross-sectional view of a microelectronic die including low RC under-layer interconnects in accordance with another embodiment of the present invention. [0012]
  • FIG. 3 is a top view of the microelectronic die of FIGS. [0013] 1A-1F including low RC under-layer interconnects in accordance with the present invention.
  • FIG. 4 is a top view of a wafer or substrate containing microelectronic or semiconductor dies in accordance with an embodiment of the present invention. [0014]
  • FIG. 5 is a block schematic diagram of a circuit module including microelectronic dies in accordance with an embodiment of the present invention. [0015]
  • FIG. 6 is a block schematic diagram of a memory module including microelectronic dies in accordance with an embodiment of the present invention. [0016]
  • FIG. 7 is a block schematic diagram of an electronic system in accordance with another embodiment the present invention. [0017]
  • FIG. 8 is a block schematic diagram of a memory system in accordance with an embodiment of the present invention. [0018]
  • FIG. 9 is a block schematic diagram of a computer system in accordance with an embodiment of the present invention.[0019]
  • DESCRIPTION OF THE EMBODIMENTS
  • In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments can be utilized and that process or mechanical changes may be made without departing from the scope of the present invention. The terms wafer and substrate used in the following description include any base semiconductor structure. Both are to be understood as including silicon-on-sapphire (SOS) technology, silicon-on-insulator (SOI) technology, thin film transistor (TFT) technology, doped and undoped semiconductors, epitaxial layers of a silicon supported by a base semiconductor, as well as other semiconductor support structures well known to one skilled in the art. Furthermore, when reference is made to a wafer or substrate in the following description, previous process operations may have been utilized to form regions/junctions in the base semiconductor structure. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims. [0020]
  • The transistors described herein include transistors from bipolar-junction technology (BJT), field effect technology (FET), or complimentary metal-oxide-semiconductor (CMOS) technology. A metal-oxide-semiconductor (MOS) transistor includes a gate, a first node (drain) and a second node (source). Since a MOS transistor is typically a symmetrical device, the true designation of “source” and “drain” is only possible once voltage is impressed on the terminals. The designations of source and drain herein should be interpreted, therefore, in the broadest sense. It should also be noted that a P-channel MOS transistor could alternatively be used for an N-channel MOS transistor and vice versa with the polarity of the associated gate voltages merely being reversed. For example, applying a negative gate voltage in the situation of a P-channel MOS transistor to activate the transistor and reversing the polarity to apply a positive gate voltage to activate an N-channel transistor if an N-channel MOS transistor is substituted for a P-channel transistor. [0021]
  • FIGS. [0022] 1A-1F illustrate the operations in forming a semiconductor die, microelectronic die 100 or the like including low RC under-layer interconnects in accordance with the present invention. As an example, the microelectronic die 100 shown in FIGS. 1A-1F is a memory system, such as a dynamic random access memory (DRAM) or the like. However, the principles and features of the present invention may be applied to any type microelectronic die containing other kinds of systems or devices. For the memory system example of the microelectronic die 100 in FIG. 1A, an array of memory cells 102 is formed in a first area 104 or core array of the microelectronic die 100. For other types of microelectronic dies, other kinds of devices or systems can be formed in the first area 104.
  • A [0023] second area 106 or peripheral area can separate the first area 104 from a third area 108 where other devices, such as transistors 110, as shown by way of example in FIG. 1A, can be formed. In another embodiment of the present invention (shown in FIG. 2), the second area 106 and the third area 108 can be combined or there may be a single peripheral area 202. Referring back to FIG. 1A, the microelectronic die 100 includes a substrate 112. Doped regions 114 can be formed in a surface 116 of the substrate 112 to provide source/drains for the memory cells 102 and the other devices or transistors 110. Insulated gates 118 can be formed over the doped source/drain (S/D) regions 114 to control operation of the memory cells 102 and transistors 110. A landing pad or plug 120 can be formed in contact with each of the doped S/D regions 114 to facilitate connection to a contact in a later operation. The landing pads or plugs 120 can be formed from polysilicon. A layer 122 of insulation material can be formed on the substrate 112 and a capacitor 124 can be formed and coupled to one of the doped regions 114 of each of the memory cells 102. The capacitors 124 can be formed by standard photolithographic and deposition techniques.
  • In FIG. 1B, in accordance with the present invention, a [0024] mask 126 can be formed on the insulation layer 122. The mask 126 has a predetermined pattern to form trenches 128 in the second area 106 in a top surface 130 of the insulation layer 122. The trenches 128 can be formed by a standard etching process. The trenches 128 can be elongated and extend substantially completely across the microelectronic die 100. A layer 132 of conductive material or metallization can be formed in each of the trenches 128. The layer 132 of conductive material can be for example copper, aluminum or an alloy of copper and aluminum to define an elongated low resistance/capacitance (RC) under-layer interconnect 134 or line of conductive material that can extend across the microelectronic die 100. The low RC interconnect 134 can be used to interconnect different components at different locations and distances from one another and can be used to transmit signals across the die 100 and between components or can be used to supply power across the die 100.
  • In FIG. 1C, the mask can be removed and the [0025] trenches 128 can be filed with insulation material to fill in the insulation layer 122 and to cover the low RC interconnects 134 or under-layers of conductive material.
  • In FIG. 1D, a [0026] second mask 136 can be formed on the insulation layer 122. The second mask 136 has a predetermined pattern to form vias 138 to expose the landing pads or contact plugs 120 and the under-layer interconnects 134. The second mask 136 can also be patterned to form vias 140 (shown by broken lines in FIGS. 1D-1F) at different locations on the die 100 to expose the gates 118. The vias 138 and 140 can be formed by standard etching processes.
  • In FIG. 1E, [0027] contacts 142 of conductive material can be formed in the vias 138 and 140. The contacts 142 can be formed from any conductive material. For example, the contacts 142 can be formed by first forming a thin layer 144 of titanium to improve contact or adhesion to the plugs 120. A second layer 146 of tungsten can then be formed over the titanium layer 144 and to fill the vias 138 and 140 to complete formation of the contacts 142.
  • In FIG. 1F, subsequent processing operations can include forming a [0028] first layer 148 of metallization having a selected pattern to make contact to the memory cells 102, to at least one of the low RC under-layer interconnects 134 and to any devices or transistors 110 formed in the third area 108. The contacts 142 can connect the under-layer interconnects 134 to the first layer of metallization 148. Additional processing operations can include forming a second layer of insulation material 150 on the first layer 148 of metallization and exposed portions of the first insulation layer 122, and forming a second layer 152 of metallization on the second layer 150 of insulation material. Vias 154 can be formed in the second insulation layer 150 and contacts 156 can be formed in the vias 154 to make connections between the first layer 148 of metallization and second layer 152 of metallization.
  • FIG. 2 is a cross-sectional view of a [0029] microelectronic die 200 including low RC under-layer interconnects 234 in accordance with another embodiment of the present invention. The low RC interconnects 234 are similar to the RC interconnects 134 in FIGS. 1B-1F. In the microelectronic die 200, there is a single peripheral area 202. In the peripheral area 202, the under-layer interconnects 234 can be formed above or in the same area as the other devices or transistors 210. Contacts 242 to the transistors 210 and to the under-layer interconnects 234 can be made at different locations across the microelectronic die 200. The vias 238 and 240 to the gate 218 and plugs 220 of transistor 210 are shown by dashed or broken lines in FIG. 2 to illustrate that the vias 238 and 240 can be formed in different planes than the plane of the cross-section shown in FIG. 2.
  • FIG. 3 is a top view of the microelectronic die [0030] 100 of FIGS. 1A-1F. Any upper layers of material have been removed in FIG. 3 to more clearly show the under-layer interconnects 134 and for purposes of understanding the present invention more clearly. As shown in FIG. 3, the under-layer interconnects 134 can extend substantially completely across one dimension of the microelectronic die 100 from proximate one edge 300 of the microelectronic die 100 to proximate another or opposite edge 302 of the microelectronic die 100. Accordingly, the under-layer interconnects 134 provide a low RC connection to transmit signals between different components at different locations and distances across the microelectronic die 100. For example, the low RC interconnect 134A can be connected to a first component or a gate 118A of a first transistor 110A formed in one portion 304 of the third area 108 and to a second component or one source/drain 114B of a second transistor 110B formed in another portion 306 of the third area 108 of the microelectronic die 100, and the interconnect 134B can be connected to one source/drain 114C of a third transistor 114C and to another component (not shown in FIG. 2) of the microelectronic die 100.
  • In another embodiment of the present invention, at least one of the underlayer interconnects [0031] 134 can be connected to a pad 308 or terminal at one or both edges 300 and 302 of the die 100 or at another location on the die 100 to couple the at least one interconnect 134 to another die or component 306 in an electronic system, such as a system 700, 800 or 900 shown in FIGS. 7, 8 and 9.
  • With reference to FIG. 4, a semiconductor or [0032] microelectronic die 410, similar to the microelectronic die 100 that includes low RC under-layer interconnects 134 as shown in FIGS. 1 and 2 in accordance with the present invention, can be produced from a silicon wafer 400. A die 410 is an individual pattern, typically rectangular, on a substrate that contains circuitry to perform a specific function. A semiconductor wafer 400 will typically contain a repeated pattern of such dies 410 containing the same functionality. Die 410 can further contain additional circuitry to extend to such complex devices as a monolithic processor with multiple functionality. Die 410 is typically packaged in a protective casing (not shown) with leads extending therefrom (not shown) providing access to the circuitry of the die 410 for unilateral or bilateral communication and control.
  • As shown in FIG. 5, two or more dies [0033] 410, including the low RC interconnect structure 134 (FIGS. 1 and 2) in accordance with the present invention, can be combined, with or without a protective casing, into a circuit module 500 to enhance or extend the functionality of an individual die 410. Circuit module 500 can be a combination of dies 410 representing a variety of functions, or a combination of dies 410 containing the same functionality. Some examples of a circuit module 500 include memory modules, device drivers, power modules, communication modems, processor modules and application-specific modules and can include multi-layer, multi-chip modules. Circuit module 500 can be a sub-component of a variety of electronic systems, such as a clock, a television, a cell phone, a personal computer, an automobile, an industrial control system, an aircraft and others. Circuit module 500 will have a variety of leads 510 extending therefrom providing unilateral or bilateral communication and control.
  • FIG. 6 shows one embodiment of a circuit module as a [0034] memory module 600 containing circuitry for the low RC interconnect structure 134 (FIG. 1) of the present invention. Memory module 600 generally depicts a Single In-line Memory Module (SIMM) or Dual In-line Memory Module (DIMM). A SIMM or DIMM can generally be a printed circuit board (PCB) or other support containing a series of memory devices. While a SIMM will have a single in-line set of contacts or leads, a DIMM will have a set of leads on each side of the support with each set representing separate I/O signals. Memory module 600 contains multiple memory devices 610 contained on support 615, the number depending upon the desired bus width and the desire for parity. Memory module 600 can contain memory devices 610 on both sides of support 615. Memory module 600 accepts a command signal from an external controller (not shown) on a command link 620 and provides for data input and data output on data links 630. The under-layer interconnects 134 of the present invention can be used to form the command link 620 and the data links 630. The command link 620 and data links 630 are connected to leads 640 extending from the support 615. Leads 640 are shown for conceptual purposes and are not limited to the positions shown in FIG. 6.
  • FIG. 7 shows an [0035] electronic system 700 containing one or more circuit modules 500 as described above containing the novel memory system 600 and the low RC interconnect structure 134 (FIG. 1) of the present invention. Electronic system 700 generally contains a user interface 710. User interface 710 provides a user of the electronic system 700 with some form of control or observation of the results of the electronic system 700. Some examples of user interface 710 include the keyboard, pointing device, monitor and printer of a personal computer; the tuning dial, display and speakers of a radio; the ignition switch and gas pedal of an automobile; and the card reader, keypad, display and currency dispenser of an automated teller machine. User interface 710 can further describe access ports provided to electronic system 700. Access ports are used to connect an electronic system to the more tangible user interface components previously exemplified. One or more circuit modules, such as the circuit modules 500 in FIG. 5, can be a processor providing some form of manipulation, control or direction of inputs from or outputs to user interface 710, or of other information either preprogrammed into, or otherwise provided to, electronic system 700. As will be apparent from the lists of examples previously given, electronic system 700 will often contain certain mechanical components (not shown) in addition to the circuit modules 500 and user interface 710. It will be appreciated that the one or more circuit modules 500 in electronic system 700 can be replaced by a single integrated circuit. Furthermore, electronic system 700 can be a sub-component of a larger electronic system.
  • FIG. 8 shows one embodiment of an electronic system as [0036] memory system 800. Memory system 800 contains one or more memory modules 600 as described above including the interconnect structure 134 (FIGS. 1 and 2) in accordance with the present invention and a memory controller 810. Memory controller 810 provides and controls a bidirectional interface between memory system 800 and an external system bus 820. Memory system 800 accepts a command signal from the external bus 820 and relays it to the one or more memory modules 600 on a command link 830. Memory system 800 provides for data input and data output between the one or more memory modules 600 and external system bus 820 on data links 840. The under-layer interconnects 134 can form at least portions of the data links 840 and command links 830.
  • FIG. 9 shows a further embodiment of an electronic system as a [0037] computer system 900. Computer system 900 contains a processor 910 and a memory system 800 housed in a computer unit 905. Computer system 900 is but one example of an electronic system containing another electronic system, i.e. memory system 800. The memory system 800 can include an under-layer interconnect, shown as interconnect 134 in FIG. 1, in accordance with the present invention. Computer system 900 optionally contains user interface components. Depicted in FIG. 9 are a keyboard 920, a pointing device 930, a monitor 940, a printer 950 and a bulk storage device 960. It will be appreciated that other components are often associated with the computer system 900 such as modems, device driver cards, additional storage devices, etc. It will further be appreciated that the processor 910 and the memory system 800 of the computer system 900 can be incorporated on a single integrated circuit and can use the under-layer interconnect structure 134 of the present invention to interconnect the various components. Such single package processing units reduce the communication time between the processor 910 and the memory system 800.
  • Conclusion
  • The present invention thus provides low RC interconnects that efficiently utilize the available area on a microelectronic die without requiring additional area or that the die be made bigger. Additionally, the present invention provides a method of forming low RC interconnects that require a minimum of additional process steps and therefore minimize the additional time and expense of forming the additional low RC interconnects. [0038]
  • Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof. [0039]

Claims (70)

What is claimed is:
1. A microelectronic die, comprising:
a first area;
a second area; and
an under-layer of conductive material formed in the second area to interconnect components.
2. The microelectronic die of claim 1, further comprising a memory system formed in the first area.
3. The microelectronic die of claim 1, further comprising:
a first component formed in one portion of a third area; and
a second component formed in another portion of the third area, wherein the first component and the second component are interconnected by the under-layer of conductive material.
4. The microelectronic die of claim 1, further comprising:
a first transistor formed in one portion of a third area; and
a second transistor formed in another portion of the third area, wherein the first transistor and the second transistor are interconnected by the under-layer of conductive material.
5. The microelectronic die of claim 1, wherein the under-layer of conductive material is one of aluminum, copper or an alloy of aluminum and copper.
6. A microelectronic die, comprising:
a first area;
a second area; and
an under-layer of conductive material formed in an elongated trench formed in the second area to interconnect different components.
7. The microelectronic die of claim 6, further comprising an array of memory cells formed in the first area.
8. The microelectronic die of claim 6, further comprising:
a first component formed in one portion of the second area; and
a second component formed in another portion of the second area, wherein the first component and the second component are interconnected by the under-layer of conductive material.
9. The microelectronic die of claim 6, further comprising:
a layer of insulation material, wherein the under-layer of conductive material is formed in the layer of insulation material;
a layer of metallization formed on the layer of insulation material; and
a contact formed in the layer of insulation material to connect the under-layer of conductive material to the layer of metallization.
10. A microelectronic die, comprising:
a substrate;
a layer of insulative material formed on the substrate;
an array of memory cells formed in a first area of the insulative material layer; and
a layer of conductive material formed in a second area of the insulative material layer beneath a surface of the insulative material layer.
11. The microelectronic die of claim 10, further comprising:
a first component formed in one portion of a third area of the insulative material layer; and
a second component formed in another portion of the third area of the insulative material layer, wherein the first component and the second component are interconnected by the layer of conductive material.
12. The microelectronic die of claim 10, further comprising
a layer of metallization formed on the insulative material layer; and
a contact formed in the layer of insulative material and connecting the layer of conductive material to the layer of metallization.
13. The microelectronic die of claim 12, wherein the contact comprises:
a first layer of titanium; and
a second layer of tungsten, and wherein the layer of conductive material is one of aluminum, copper or a combination of aluminum and copper.
14. A microelectronic die, comprising:
a substrate;
a layer of insulative material formed on the substrate;
an array of memory cells formed in one area of the insulative material layer;
an elongated trench formed in another area of the insulative material layer and extending substantially from proximate one edge of the microelectronic die to proximate another edge of the microelectronic die; and
a line of metallization formed in the elongated trench beneath a surface of the insulative material layer.
15. The microelectronic die of claim 14, further comprising:
a first component; and
a second component at a distance from the first component, wherein the layer of metallization forms a low resistance/capacitance (RC) interconnect to carry signals between the first and second components.
16. A microelectronic die, comprising:
a first area;
a second area;
an elongated trench formed in the second area and extending substantially completely across the microelectronic die; and
a line of metallization formed in the elongated trench to transmit signals across the microelectronic die.
17. The microelectronic die of claim 16, further comprising an array of memory cells formed in the first area.
18. A microelectronic die, comprising:
a substrate;
a layer of insulative material formed on the substrate;
an array of memory cells formed in a first area of the layer of insulative material;
at least one elongated trench formed in a second area of the layer of insulative material and extending substantially across the microelectronic die; and
a line of metallization formed in the elongated trench beneath a surface of the layer of insulation material.
19. The microelectronic die of claim 18, further comprising a first layer of metallization formed on the layer of insulative material, wherein the first layer of metallization is selectively patterned to make contact to cells in the array of memory cells.
20. The microelectronic die of claim 19, further comprising at least one contact formed in the insulative layer to make contact between the line of metallization and the first layer of metallization.
21. The microelectronic die of claim 20, further comprising:
a second layer of insulative material;
a second layer of metallization formed on the second layer of insulative material; and
at least one contact formed in the second layer of insulative material to make contact between the first and second layers of metallization.
22. A memory, comprising:
a first area;
a second area;
an device formed in the first area; and
at least one conductive line formed in the second area within a layer of insulative material.
23. The memory of claim 22, further comprising:
a first transistor formed in one portion of a third area; and
a second transistor formed in another portion of the third area, wherein the first transistor and the second transistor are interconnected by the at least one conductive line.
24. The memory of claim 22, wherein the conductive line is one of aluminum, copper or an alloy of aluminum and copper.
25. A memory, comprising:
a first area
second area;
a device formed in the first area; and
an under-layer of conductive material formed in an elongated trench formed in the second area to transmit signals between different components.
26. The memory of claim 25, further comprising:
a first component formed in a third area; and
a second component formed in the third area at a distance from the first component, wherein the first component and the second component are interconnected by the under-layer of conductive material.
27. A memory, comprising:
a substrate;
a layer of insulative material formed on the substrate;
an array of memory cells formed in a first area of the insulative material layer;
a layer of conductive material formed in a second area of the insulative material layer beneath a surface of the insulative material layer; and
a layer of metallization formed on the insulative material layer.
28. The memory of claim 27, further comprising a plurality of components formed in a third area and interconnected by the layer of conductive material.
29. The memory of claim 27, further comprising a contact formed in the layer of insulative material and connecting the layer of conductive material to the layer of metallization.
30. A memory, comprising:
a first area;
a second area;
an array of memory cells formed in the first area;
an elongated trench formed in the second area and extending substantially completely along one dimension of the array of memory cells; and
a line of conductive material formed in the elongated trench to transmit signals across the memory.
31. The memory of claim 30, wherein the line of conductive material is formed from a metal to define a low RC interconnect.
32. The memory of claim 30, further comprising:
a layer of insulation material formed over the line of conductive material;
a layer of metallization formed on the layer of insulation material; and
a contact formed in the layer of insulation material to make contact between the line of conductive material and the layer of metallization.
33. A memory, comprising:
a layer of insulative material;
an array of memory cells formed in a first area of the layer of insulative material;
at least one trench formed in a second area of the layer of insulative material;
a plurality of components formed in a third area of the layer of insulative material; and
at least one line of metallization formed in the at least one trench to transmit signals between the plurality of components.
34. The memory of claim 33, further comprising:
a layer of metallization formed on the layer of insulative material; and
a contact formed in the layer of insulative material to make contact between the line of metallization and the layer of metallization.
35. The memory system of claim 34, wherein the contact is formed from at least tungsten and the line of metallization is one of copper, aluminum or a combination of copper and aluminum.
36. An electronic system, comprising:
a processor; and
a memory system coupled to the processor, the memory system comprising:
a first area;
a second area;
an array of memory cells formed in the second area; and
at least one conductive line formed in the second area within a layer of insulative material to transmit signals between other components.
37. The electronic system of claim 36, further comprising:
a first component formed in one portion of a third area; and
a second component formed in another portion of the third area, wherein the first component and the second component are interconnected by the at least one conductive line.
38. An electronic system, comprising:
a processor; and
a memory system coupled to the processor, the memory system comprising:
a substrate;
a layer of insulative material formed on the substrate;
an array of memory cells formed in a first area of the insulative material layer;
a layer of conductive material formed in a second area of the insulative material layer beneath a surface of the insulative material layer; and
a layer of metallization formed on the insulative material layer.
39. The electronic system of claim 38, further comprising a plurality of components formed in a third area and interconnected by the layer of conductive material.
40. The electronic system of claim 38, further comprising a contact formed in the layer of insulative material and connecting the layer of conductive material to the layer of metallization.
41. An electronic system, comprising:
a processor; and
a memory system coupled to the processor, the memory system comprising:
a first area;
a second area;
an array of memory cells formed in the first area;
an elongated trench formed in the second area and extending substantially completely along one dimension of the array of memory cells; and
a line of conductive material formed in the elongated trench to transmit signals across the memory.
42. The electronic system of claim 41, wherein the line of conductive material is formed from a metal to define a low RC interconnect.
43. The electronic system of claim 41, further comprising:
a layer of insulation material formed over the line of conductive material;
a layer of metallization formed on the layer of insulation material; and
a contact formed in the layer of insulation material to make contact between the line of conductive material and the layer of metallization.
44. An electronic system, comprising:
a processor; and
a memory system coupled to the processor, the memory system comprising:
a layer of insulative material;
an array of memory cells formed in a first area of the layer of insulative material;
at least one trench formed in a second area of the layer of insulative material;
a plurality of components formed in a third area of the layer of insulative material; and
at least one line of metallization formed in the at least one trench to transmit signals between the plurality of components.
45. The electronic system of claim 44, further comprising:
a layer of metallization formed on the layer of insulative material; and
a contact formed in the layer of insulative material to make contact between the line of metallization and the layer of metallization.
46. The electronic system of claim 45, wherein the contact is formed from at least tungsten and the line of metallization is one of copper, aluminum or a combination of copper and aluminum.
47. A method of making a microelectronic die, comprising:
forming a layer of insulative material on a substrate;
forming at least one trench in the layer of insulative material extending from proximate one edge of the microelectronic die to proximate another edge of the microelectronic die; and
forming at least one line of conductive material in each of the at least one trenches to transmit signals across the microelectronic die.
48. The method of claim 47, further comprising:
forming a layer of metallization on the layer of insulative material; and
forming a contact in the layer of insulative material to make contact between the line of conductive material and the layer of metallization.
49. The method of claim 48, wherein forming the contact comprises:
forming an opening in the layer of insulative material to expose a portion of the line of conductive material;
forming a thin layer of titanium in the opening and on the exposed portion of the line of conductive material; and
forming a contact of tungsten on the thin layer of titanium.
50. A method of making a microelectronic die, comprising:
forming a layer of insulative material on a substrate;
forming at least one device in a first area of the layer of insulative material; and
forming an under-layer of conductive material in a second area beneath a surface of the insulative layer.
51. The method of claim 50, further comprising:
forming a first component in one portion of a third area; and
forming a second component in another portion of the third area, wherein the first component and the second component are interconnected by the under-layer of conductive material.
52. The method of claim 50, wherein forming the at least one device comprises forming a memory system.
53. The method of claim 50, wherein forming the under-layer of conductive material comprises:
forming a trench in the insulative layer; and
forming a line of metallization in the trench.
54. A method of forming a microelectronic die, comprising:
forming a layer of insulative material on a substrate;
forming at least one device in a first area of the layer of insulative material;
forming a trench in a second area of the layer of insulative material extending substantially across the microelectronic die; and
forming a line of metallization in the trench to transmit signals across the microelectronic die.
55. The method of claim 54, wherein forming the at least one device comprises forming an array of memory cells.
56. The method of claim 54, further comprising:
forming a first component in one portion of a third area; and
forming a second component in another portion of the third area, wherein the first component and the second component are interconnected by the line of metallization.
57. The method of claim 54, wherein forming the line of metallization comprises depositing a line including copper, aluminum or a combination of copper and aluminum.
58. A method of making a microelectronic die, comprising:
forming a layer of insulative material on a substrate;
forming an array of memory cells in a first area of the layer of insulative material;
forming a trench in a second area of the layer of insulative material;
forming a first component in a third area of the layer of insulative material;
forming a second component in the third area of the layer of insulative material; and
forming a line of metallization in the trench to transmit signals between the first component and the second component.
59. The method of claim 58, further comprising:
forming a layer of metallization on the layer of insulative material; and
forming a contact in the layer of insulative material to make contact between the layer of metallization and the line of metallization.
60. A method of making a microelectronic die, comprising:
forming a layer of insulative material on a substrate;
forming a device in a first area of the layer of insulative material;
forming a plurality of trenches in a second area of the layer of insulative material;
forming a plurality of components in a third area of the layer of insulative material; and
forming a line of metallization in each of the trenches to transmit signals between the plurality of components.
61. A method of making a memory, comprising:
forming a layer of insulative material on a substrate;
forming an array of memory cells in a first area of the layer of insulative material; and
forming an under-layer of conductive material in a second area beneath a surface of the insulative layer.
62. The method of claim 61, wherein forming the under-layer of conductive material comprises:
forming a trench in the insulative layer; and
forming a line of metallization in the trench.
63. A method of making a memory, comprising:
forming a layer of insulative material on a substrate;
forming an array of memory cells in a first area of the layer of insulative material;
forming at least one trench in a second area of the layer of insulative material extending substantially completely along one dimension of the memory; and
forming at least one line of conductive material in each of the at least one trenches to transmit signals across the memory.
64. The method of claim 63, further comprising:
forming a layer of metallization on the layer of insulative material; and
forming a contact in the layer of insulative material to make contact between the line of conductive material and the layer of metallization.
65. The method of claim 63, wherein forming the at least one line of conductive material comprises forming a line of metal to form a low RC interconnect.
66. A method of making an electronic system, comprising:
forming a processor; and
forming a memory system coupled to the processor, wherein forming the memory system includes:
forming a layer of insulative material on a substrate;
forming an array of memory cells in a first area of the layer of insulative material; and
forming an under-layer of conductive material in a second area beneath a surface of the insulative layer.
67. The method of claim 66, wherein forming the under-layer of conductive material comprises:
forming a trench in the insulative layer; and
forming a line of metallization in the trench.
68. A method of making an electronic system, comprising:
forming a processor; and
forming a memory system coupled to the processor, wherein forming the memory system includes:
forming a layer of insulative material on a substrate;
forming an array of memory cells in a first area of the layer of insulative material;
forming at least one trench in a second area of the layer of insulative material extending substantially completely along one dimension of the memory; and
forming at least one line of conductive material in each of the at least one trenches to transmit signals across the memory.
69. The method of claim 68, wherein forming the at least one line of conductive material comprises forming a line of metal to form a low RC interconnect.
70. The method of claim 68, further comprising forming a plurality of components in a third area of the layer of insulative material, wherein the at least one layer of conductive material interconnects the plurality of components.
US10/095,362 2002-03-11 2002-03-11 Microelectronic die including low RC under-layer interconnects Expired - Lifetime US6624515B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/095,362 US6624515B1 (en) 2002-03-11 2002-03-11 Microelectronic die including low RC under-layer interconnects
US10/428,449 US6784026B2 (en) 2002-03-11 2003-04-30 Microelectronic die including low RC under-layer interconnects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/095,362 US6624515B1 (en) 2002-03-11 2002-03-11 Microelectronic die including low RC under-layer interconnects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/428,449 Division US6784026B2 (en) 2002-03-11 2003-04-30 Microelectronic die including low RC under-layer interconnects

Publications (2)

Publication Number Publication Date
US20030168742A1 true US20030168742A1 (en) 2003-09-11
US6624515B1 US6624515B1 (en) 2003-09-23

Family

ID=27788240

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/095,362 Expired - Lifetime US6624515B1 (en) 2002-03-11 2002-03-11 Microelectronic die including low RC under-layer interconnects
US10/428,449 Expired - Lifetime US6784026B2 (en) 2002-03-11 2003-04-30 Microelectronic die including low RC under-layer interconnects

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/428,449 Expired - Lifetime US6784026B2 (en) 2002-03-11 2003-04-30 Microelectronic die including low RC under-layer interconnects

Country Status (1)

Country Link
US (2) US6624515B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235270A1 (en) * 2002-04-23 2004-11-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US20100052147A1 (en) * 2008-08-29 2010-03-04 Michael Grillberger Semiconductor device including stress relaxation gaps for enhancing chip package interaction stability

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200737486A (en) * 2006-03-24 2007-10-01 Lightuning Tech Inc Semiconductor integrated circuit chip with nano-structure-surface resin passivation and method of fabricating the same
US8723329B1 (en) * 2013-03-15 2014-05-13 Invensas Corporation In-package fly-by signaling
US9123555B2 (en) 2013-10-25 2015-09-01 Invensas Corporation Co-support for XFD packaging
CN104617092B (en) * 2014-11-06 2018-06-22 苏州捷芯威半导体有限公司 A kind of semiconductor devices and preparation method thereof

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932226A (en) 1974-12-06 1976-01-13 Rca Corporation Method of electrically interconnecting semiconductor elements
US4503451A (en) 1982-07-30 1985-03-05 Motorola, Inc. Low resistance buried power bus for integrated circuits
US4461041A (en) 1983-01-05 1984-07-17 Zenith Radio Corporation Integrated RF receiver/waveguide
US4670297A (en) 1985-06-21 1987-06-02 Raytheon Company Evaporated thick metal and airbridge interconnects and method of manufacture
US4977439A (en) 1987-04-03 1990-12-11 Esquivel Agerico L Buried multilevel interconnect system
US4939567A (en) 1987-12-21 1990-07-03 Ibm Corporation Trench interconnect for CMOS diffusion regions
US4857481A (en) 1989-03-14 1989-08-15 Motorola, Inc. Method of fabricating airbridge metal interconnects
JPH0821689B2 (en) 1990-02-26 1996-03-04 株式会社東芝 Semiconductor memory device and manufacturing method thereof
EP0481703B1 (en) * 1990-10-15 2003-09-17 Aptix Corporation Interconnect substrate having integrated circuit for programmable interconnection and sample testing
JP2660359B2 (en) * 1991-01-30 1997-10-08 三菱電機株式会社 Semiconductor device
US5158986A (en) 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5349743A (en) 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
JP3019884B2 (en) 1991-09-05 2000-03-13 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
US5270261A (en) 1991-09-13 1993-12-14 International Business Machines Corporation Three dimensional multichip package methods of fabrication
US5202754A (en) 1991-09-13 1993-04-13 International Business Machines Corporation Three-dimensional multichip packages and methods of fabrication
EP0534631B1 (en) 1991-09-23 1999-01-07 STMicroelectronics, Inc. Method of forming vias structure obtained
KR940006679B1 (en) 1991-09-26 1994-07-25 현대전자산업 주식회사 Dram cell having a vertical transistor and fabricating method thereof
US5232866A (en) 1991-10-23 1993-08-03 International Business Machines Corporation Isolated films using an air dielectric
US5227658A (en) 1991-10-23 1993-07-13 International Business Machines Corporation Buried air dielectric isolation of silicon islands
US5414221A (en) 1991-12-31 1995-05-09 Intel Corporation Embedded ground plane and shielding structures using sidewall insulators in high frequency circuits having vias
JPH05335529A (en) 1992-05-28 1993-12-17 Fujitsu Ltd Semiconductor device and manufacture thereof
US5268315A (en) 1992-09-04 1993-12-07 Tektronix, Inc. Implant-free heterojunction bioplar transistor integrated circuit process
US5260233A (en) 1992-11-06 1993-11-09 International Business Machines Corporation Semiconductor device and wafer structure having a planar buried interconnect by wafer bonding
US5436173A (en) 1993-01-04 1995-07-25 Texas Instruments Incorporated Method for forming a semiconductor on insulator device
US5438009A (en) 1993-04-02 1995-08-01 United Microelectronics Corporation Method of fabrication of MOSFET device with buried bit line
US5539227A (en) 1993-11-24 1996-07-23 Mitsubishi Denki Kabushiki Kaisha Multi-layer wiring
US5362665A (en) 1994-02-14 1994-11-08 Industrial Technology Research Institute Method of making vertical DRAM cross point memory cell
DE4410947C1 (en) 1994-03-29 1995-06-01 Siemens Ag Vertical integration semiconductor element
JP2658870B2 (en) 1994-04-22 1997-09-30 日本電気株式会社 Semiconductor memory device and method of manufacturing the same
DE19500392A1 (en) 1995-01-09 1996-07-18 Siemens Ag Integrated circuit structure (TI2> has diffusion zone formed in wall of groove fully enclosing silicon island in monocrystalline surface layer
US5497017A (en) 1995-01-26 1996-03-05 Micron Technology, Inc. Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
US5646067A (en) 1995-06-05 1997-07-08 Harris Corporation Method of bonding wafers having vias including conductive material
US5760456A (en) 1995-12-21 1998-06-02 Grzegorek; Andrew Z. Integrated circuit compatible planar inductors with increased Q
US5891513A (en) 1996-01-16 1999-04-06 Cornell Research Foundation Electroless CU deposition on a barrier layer by CU contact displacement for ULSI applications
US5734676A (en) 1996-05-24 1998-03-31 International Business Machines Corporation Apparatus, method and article of manufacture for carrier frequency compensation in a FM radio receiver
US5874770A (en) 1996-10-10 1999-02-23 General Electric Company Flexible interconnect film including resistor and capacitor layers
US5892425A (en) 1997-04-10 1999-04-06 Virginia Tech Intellectual Properties, Inc. Interwound center-tapped spiral inductor
US5892707A (en) 1997-04-25 1999-04-06 Micron Technology, Inc. Memory array having a digit line buried in an isolation region and method for forming same
US5969422A (en) * 1997-05-15 1999-10-19 Advanced Micro Devices, Inc. Plated copper interconnect structure
US6184121B1 (en) * 1997-07-10 2001-02-06 International Business Machines Corporation Chip interconnect wiring structure with low dielectric constant insulator and methods for fabricating the same
US5989623A (en) * 1997-08-19 1999-11-23 Applied Materials, Inc. Dual damascene metallization
JPH1197645A (en) * 1997-09-19 1999-04-09 Nec Corp Semiconductor storage device
US6025261A (en) 1998-04-29 2000-02-15 Micron Technology, Inc. Method for making high-Q inductive elements
US6081988A (en) 1998-04-30 2000-07-04 Lockheed Martin Corp. Fabrication of a circuit module with a coaxial transmission line
US6181163B1 (en) * 1999-01-21 2001-01-30 Vantis Corporation FPGA integrated circuit having embedded SRAM memory blocks and interconnect channel for broadcasting address and control signals
US6037258A (en) 1999-05-07 2000-03-14 Taiwan Semiconductor Manufacturing Company Method of forming a smooth copper seed layer for a copper damascene structure
JP2002026008A (en) * 2000-07-11 2002-01-25 Nec Corp Method of forming multilayer interconnect structure and wafer in which multilayer interconnect structure is formed
US6271087B1 (en) * 2000-10-10 2001-08-07 Advanced Micro Devices, Inc. Method for forming self-aligned contacts and local interconnects using self-aligned local interconnects

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235270A1 (en) * 2002-04-23 2004-11-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US8105856B2 (en) * 2002-04-23 2012-01-31 Semiconductor Components Industries, Llc Method of manufacturing semiconductor device with wiring on side surface thereof
US20100052147A1 (en) * 2008-08-29 2010-03-04 Michael Grillberger Semiconductor device including stress relaxation gaps for enhancing chip package interaction stability
US7982313B2 (en) * 2008-08-29 2011-07-19 Advanced Micro Devices, Inc. Semiconductor device including stress relaxation gaps for enhancing chip package interaction stability

Also Published As

Publication number Publication date
US20030205732A1 (en) 2003-11-06
US6784026B2 (en) 2004-08-31
US6624515B1 (en) 2003-09-23

Similar Documents

Publication Publication Date Title
US6815818B2 (en) Electrode structure for use in an integrated circuit
US6509245B2 (en) Electronic device with interleaved portions for use in integrated circuits
US20030235929A1 (en) Signal sharing circuit with microelectronic die isolation features
US7655560B2 (en) Wiring board, manufacturing method thereof, semiconductor device and manufacturing method thereof
US20090284944A1 (en) Split thin film capacitor for multiple voltages
CN105190875B (en) Method for forming interconnection structure under device
US20050095745A1 (en) High-density packaging of integrated circuits
US6888217B2 (en) Capacitor for use in an integrated circuit
US6784026B2 (en) Microelectronic die including low RC under-layer interconnects
US6429469B1 (en) Optical Proximity Correction Structures Having Decoupling Capacitors
US6346723B2 (en) Semiconductor memory device having memory cell area and peripheral circuit area
US8362539B2 (en) Semiconductor device and semiconductor package including the same
WO2002007221A2 (en) Embedded decoupling capacitor
JPH08116024A (en) Connecting method of bypass capacitor
KR20020012657A (en) Layout structure of pad-peripheral circuit in semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARKS, JAY S.;REEL/FRAME:012697/0443

Effective date: 20020222

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731