Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20030181922 A1
Type de publicationDemande
Numéro de demandeUS 10/103,487
Date de publication25 sept. 2003
Date de dépôt20 mars 2002
Date de priorité20 mars 2002
Autre référence de publicationUS8021385, US8177805, US8603127, US8926647, US20080119866, US20110283998, US20120165856, US20140128903, US20150305749
Numéro de publication10103487, 103487, US 2003/0181922 A1, US 2003/181922 A1, US 20030181922 A1, US 20030181922A1, US 2003181922 A1, US 2003181922A1, US-A1-20030181922, US-A1-2003181922, US2003/0181922A1, US2003/181922A1, US20030181922 A1, US20030181922A1, US2003181922 A1, US2003181922A1
InventeursClifton Alferness
Cessionnaire d'origineSpiration, Inc.
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Removable anchored lung volume reduction devices and methods
US 20030181922 A1
Résumé
An intra-bronchial device may be placed and anchored in an air passageway of a patient to collapse a lung portion associated with the air passageway. The device includes an obstructing member that prevents air from being inhaled into the lung portion, and an anchor that anchors the obstruction device within the air passageway. The anchor may piercingly engage the air passageway wall. The anchor may be releasable from the air passageway for removal of the obstructing member. The anchor may be releasable by collapsing a portion of the obstructing member, or by drawing the obstructing member toward the larynx. The obstructing member may be a one-way valve.
Images(15)
Previous page
Next page
Revendications(22)
What is claimed is:
1. An intra-bronchial device for placement in an air passageway of a patient to collapse a lung portion associated with the air passageway, the device comprising:
an obstructing member that prevents air from being inhaled into the lung portion to collapse the lung portion; and
an anchor that anchors the obstruction device within the air passageway when the anchor is deployed.
2. The intra-bronchial device of claim 1, wherein the anchor engages the air passageway wall.
3. The intra-bronchial device of claim 1, wherein the anchor pierces into the air passageway wall.
4. The intra-bronchial device of claim 1, wherein the obstructing member and the anchor are simultaneously deployable.
5. The intra-bronchial device of claim 1, wherein the anchor is releasable from the air passageway for removal of the obstructing member.
6. The intra-bronchial device of claim 1 wherein a portion of the intra-bronchial device is collapsible.
7. The intra-bronchial device of claim 6, wherein the anchor is releasable from the air passageway for removal of the obstructing member by collapsing a portion of the obstructing member.
8. The intra-bronchial device of claim 6, wherein the anchor is releasable from the air passageway for removal of the obstructing member by drawing the obstructing member proximally.
9. The intra-bronchial device of claim 1, wherein the anchor includes a resilient material for imparting a force against the air passageway to deform the air passageway to more positively anchor the obstructing member.
10. The intra-bronchial device of claim 1, wherein the obstructing member comprises material having memory of an original shape, and resiliency to return the material to that shape.
11. The intra-bronchial device of claim 1, wherein the anchor comprises material having memory of an original shape, and resiliency to return the material to that shape.
12. The intra-bronchial device of claim 1, wherein the obstructing member is a one-way valve.
13. A method of reducing the size of a lung by collapsing a portion of the lung, the method including the steps of:
providing an intra-bronchial device comprising an obstructing member which is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and an anchor that anchors the obstructing member when the anchor is deployed;
placing the obstructing member in the air passageway; and
deploying the anchor.
14. The method of claim 13, wherein the anchor is releasable for removal of the obstructing member.
15. The method of claim 13, wherein the obstructing member forms a one-way valve.
16. The method of claim 13, wherein a portion of the obstructing member is collapsible.
17. A method of reducing the size of a lung by collapsing a portion of the lung with a removable device, the method including the steps of:
providing an intra-bronchial device an obstructing member which is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and an anchor that anchors the obstructing member when the anchor is deployed;
placing the obstructing member in the air passageway;
deploying an anchor; and
removing the obstructing member.
18. The method of claim 17, wherein the anchor is releasable from the air passageway for removal of the intra-bronchial device, and the step of removing the obstructing member includes the further step of releasing the anchor.
19. The method of claim 17, wherein the obstructing member forms a one-way valve.
20. The method of claim 17, wherein at least a portion of the obstructing member is collapsible, and the step of removing the obstructing member includes the further step of collapsing a portion of the obstructing member.
21. An air passageway obstructing device comprising:
obstructing means for obstructing air flow within the air passageway; and
anchoring means to anchor the air passageway obstructing device within the air passageway.
22. An air passageway obstructing device comprising:
obstructing means for obstructing air flow within the air passageway; and
anchoring means to anchor the air passageway obstructing device within the air passageway, the anchoring means being releasable for removal of the obstructing means from the air passageway.
Description
    BACKGROUND
  • [0001]
    The present invention is generally directed to a removable anchored device, system, and method for treating Chronic Obstructive Pulmonary Disease (COPD). The present invention is more particularly directed to providing an anchored intra-bronchial obstruction that may be removable.
  • [0002]
    COPD has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.
  • [0003]
    The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991, COPD was the fourth leading cause of death in the United States and had increased 33% since 1979. COPD affects the patient's whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking uphill. Later, it may be noticed when simply walking in the kitchen. Over time, it may occur with less and less effort until it is present all of the time. COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
  • [0004]
    The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.
  • [0005]
    Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled beta-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pneumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
  • [0006]
    About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the lung volume reduction surgery (LVRS) procedure was abandoned. LVRS was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure has fallen out of favor when Medicare stopping reimbursing for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. However, what data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life. Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory muscaulature, and improved right ventricular filling.
  • [0007]
    Lastly, lung transplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.
  • [0008]
    There is a need for additional non-surgical options for permanently treating COPD without surgery. A promising new therapy includes non-surgical apparatus and procedures for lung volume reduction by permanently obstructing the air passageway that communicates with the portion of the lung to be collapsed. The therapy includes placing an obstruction in the air passageway that prevents inhaled air from flowing into the portion of the lung to be collapsed. Lung volume reduction with concomitant improved pulmonary function may be obtained without the need for surgery. The effectiveness of obstructions may be enhanced if it is anchored in place. The effectiveness may also be enhanced if the obstruction is removable. However, no readily available apparatus and method exists for anchoring the obstruction, and for removal if required.
  • [0009]
    In view of the foregoing, there is a need in the art for a new and improved apparatus and method for permanently obstructing an air passageway that is anchored in place, and that may be removed if required. The present invention is directed to a device, system, and method that provide such an improved apparatus and method for treating COPD.
  • SUMMARY
  • [0010]
    The present invention provides an anchored intra-bronchial device for placement in an air passageway of a patient to collapse a lung portion associated with the air passageway. The device includes an obstructing member that prevents air from being inhaled into the lung portion to collapse the lung portion, and an anchor that anchors the obstruction device within the air passageway when the anchor is deployed. The anchor may engage the air passageway wall, and may pierce into the air passageway wall. The obstructing member and the anchor may be simultaneously deployable. The anchor may be releasable from the air passageway for removal of the obstructing member. A portion of the intra-bronchial device may be collapsible. The anchor may be releasable from the air passageway for removal of the obstructing member by collapsing a portion of the obstructing member, or by drawing the obstructing member proximally. The anchor may include a resilient material for imparting a force against the air passageway to deform the air passageway to more positively anchor the obstructing member. The anchor may comprise material having memory of an original shape, and resiliency to return the material to that shape. The obstructing member may comprise material having memory of an original shape, and resiliency to return the material to that shape. The obstructing member may be a one-way valve.
  • [0011]
    In another embodiment of the present invention, a method of reducing the size of a lung by collapsing a portion of the lung is provided. The method includes the step of providing an intra-bronchial device comprising an obstructing member which is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and an anchor that anchors the obstructing member when the anchor is deployed. The method further includes the steps of placing the obstructing member in the air passageway, and deploying the anchor. The anchor may be releasable for removal of the obstructing member. The obstructing member may form a one-way valve. A portion of the obstructing member may be collapsible.
  • [0012]
    In a further embodiment of the present invention, a method of reducing the size of a lung by collapsing a portion of the lung with a removable device is provided. The method includes the step of providing an intra-bronchial device and an obstructing member that is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and an anchor that anchors the obstructing member when the anchor is deployed. The method includes the additional steps of placing the obstructing member in the air passageway, deploying an anchor, and removing the obstructing member. The anchor is releasable from the air passageway for removal of the intra-bronchial device, and the step of removing the obstructing member includes the further step of releasing the anchor. The obstructing member may form a one-way valve. At least a portion of the obstructing member may be collapsible, and the step of removing the obstructing member includes the further step of collapsing a portion of the obstructing member.
  • [0013]
    In yet another embodiment of the present invention, an air passageway-obstructing device is provided. The obstructing device includes obstructing means for obstructing air flow within the air passageway, and anchoring means to anchor the air passageway obstructing device within the air passageway.
  • [0014]
    In yet a further embodiment of the present invention, an air passageway-obstructing device is provided that includes obstructing means for obstructing air flow within the air passageway, and anchoring means to anchor the air passageway obstructing device within the air passageway, the anchoring means being releasable for removal of the obstructing means from the air passageway.
  • [0015]
    These and various other features as well as advantages which characterize the present invention will be apparent from a reading of the following detailed description and a review of the associated drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0016]
    The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like referenced numerals identify like elements, and wherein:
  • [0017]
    [0017]FIG. 1 is a simplified sectional view of a thorax illustrating a healthy respiratory system;
  • [0018]
    [0018]FIG. 2 is a sectional view similar to FIG. 1, but illustrating a respiratory system suffering from COPD and the execution of a first step in treating the COPD condition by reducing the size of a lung portion in accordance with the present invention;
  • [0019]
    [0019]FIG. 3 is perspective view, partially in section, and to an enlarged scale, illustrating an intermediate step in the treatment;
  • [0020]
    [0020]FIG. 4 is a perspective view of a conduit that may be utilized in practicing the present invention;
  • [0021]
    [0021]FIG. 5 is a perspective view of an intra-bronchial device, with anchors located proximally on peripheral portions of the support members, as the device would appear when fully deployed in an air passageway in accordance with the present invention;
  • [0022]
    [0022]FIG. 6 is a partial section view of the device of FIG. 5 showing additional details of the support structure;
  • [0023]
    [0023]FIG. 7 is a perspective view of the intra-bronchial device of FIG. 5 anchored in an air passageway;
  • [0024]
    [0024]FIG. 8 illustrates an intra-bronchial device, with anchors carried distally on the central support structure, fully deployed in an air passageway in accordance with an alternative embodiment of the invention;
  • [0025]
    [0025]FIG. 9 is a perspective view of an intra-bronchial device, with proximal anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0026]
    [0026]FIG. 10 is a side view of an intra-bronchial device, with proximal anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0027]
    [0027]FIG. 11 is an end view of an intra-bronchial device, with proximal anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0028]
    [0028]FIG. 12 is a perspective view of an intra-bronchial device, with distal friction anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0029]
    [0029]FIG. 13 is a side view of an intra-bronchial device, with distal friction anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0030]
    [0030]FIG. 14 is an end view of an intra-bronchial device, with distal friction anchors carried on the central support structure, in accordance with an alternative embodiment of the invention;
  • [0031]
    [0031]FIG. 15 is a perspective view an intra-bronchial device similar to that of FIGS. 12-14 anchored in an air passageway;
  • [0032]
    [0032]FIG. 16 is a perspective view illustrating an alternative embodiment of a removable intra-bronchial device with proximal anchors carried on a peripheral portion of a plurality of support structure members in accord with the present invention;
  • [0033]
    [0033]FIG. 17 is a side view of the device of FIG. 16;
  • [0034]
    [0034]FIG. 18 is a perspective view of a device in its deployed state with anchors carried on an obstructing member, in accordance with an alternative embodiment of the invention;
  • [0035]
    [0035]FIG. 19 is a partial longitudinal sectional view of the device of FIG. 18 in a collapsed state and located into a lumen for placement in an air passageway;
  • [0036]
    [0036]FIG. 20 is a perspective view of the device of FIG. 18 in its deployed and anchored state in an air passageway, in accordance with the present invention;
  • [0037]
    [0037]FIG. 21 is a side view of an initial step in removing the device of FIG. 18 from an air passageway;
  • [0038]
    [0038]FIG. 22 is a side view of an intermediate step in removing the device of FIG. 18 from an air passageway;
  • [0039]
    [0039]FIG. 23 is a side view of another intermediate step in removing the device of FIG. 18 from an air passageway;
  • [0040]
    [0040]FIG. 24 is a side view illustrating the collapse of the device of FIG. 18 during its removal from an air passageway;
  • [0041]
    [0041]FIG. 25 is a perspective view of a device in its deployed state with anchors carried on the obstructing member, in accordance with an alternative embodiment of the present invention;
  • [0042]
    [0042]FIG. 26 illustrates the placement and securing of the obstructing member of the device of FIG. 25 to a support member; and
  • [0043]
    [0043]FIG. 27 is a perspective view of the intra-bronchial device of FIG. 25 fully deployed and anchored in an air passageway, in accordance with the present invention.
  • DETAILED DESCRIPTION
  • [0044]
    In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof. The detailed description and the drawings illustrate how specific exemplary embodiments by which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is understood that other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the present invention. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
  • [0045]
    Throughout the specification and claims, the following terms take the meanings explicitly associated herein unless the context clearly dictates otherwise. The meaning of “a”, “an”, and “the” include plural references. The meaning of “in” includes “in” and “on.” Referring to the drawings, like numbers indicate like parts throughout the views. Additionally, a reference to the singular includes a reference to the plural unless otherwise stated or inconsistent with the disclosure herein.
  • [0046]
    Additionally, throughout the specification, claims, and drawings, the term “proximal” means nearest the trachea, and “distal” means nearest the bronchioles.
  • [0047]
    Briefly stated, an aspect of the invention provides an anchored intra-bronchial device for placement in an air passageway of a patient to collapse a lung portion associated with the air passageway. A further aspect of the invention provides removability of the intra-bronchial device, either by releasing the anchors for removal of the entire device or by separating the obstructing member and removing it.
  • [0048]
    [0048]FIG. 1 is a sectional view of a healthy respiratory system. The respiratory system 20 resides within the thorax 22 that occupies a space defined by the chest wall 24 and the diaphragm 26.
  • [0049]
    The respiratory system 20 includes the trachea 28, the left mainstem bronchus 30, the right mainstem bronchus 32, the bronchial branches 34, 36, 38, 40, and 42 and sub-branches 44, 46, 48, and 50. The respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56, 58, and 60. Each bronchial branch and sub-branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof. As used herein, the term “air passageway” is meant to denote either a bronchi or bronchiole, and typically means a bronchial branch or sub-branch which communicates with a corresponding individual lung lobe or lung lobe portion to provide inhaled air thereto or conduct exhaled air therefrom.
  • [0050]
    Characteristic of a healthy respiratory system is the arched or inwardly arcuate diaphragm 26. As the individual inhales, the diaphragm 26 straightens to increase the volume of the thorax 22. This causes a negative pressure within the thorax. The negative pressure within the thorax in turn causes the lung lobes to fill with air. When the individual exhales, the diaphragm returns to its original arched condition to decrease the volume of the thorax. The decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.
  • [0051]
    In contrast to the healthy respiratory system of FIG. 1, FIG. 2 illustrates a respiratory system suffering from COPD. Here it may be seen that the lung lobes 52, 54, 56, 58, and 60 are enlarged and that the diaphragm 26 is not arched but substantially straight. Hence, this individual is incapable of breathing normally by moving diaphragm 28. Instead, in order to create the negative pressure in thorax 22 required for breathing, this individual must move the chest wall outwardly to increase the volume of the thorax. This results in inefficient breathing causing these individuals to breathe rapidly with shallow breaths.
  • [0052]
    It has been found that the apex portions 62 and 66 of the upper lung lobes 52 and 56, respectively, are most affected by COPD. Hence, bronchial sub-branch obstructing devices are generally employed for treating the apex 66 of the right, upper lung lobe 56. However, as will be appreciated by those skilled in the art, the present invention may be applied to any lung portion without departing from the present invention. As will be further appreciated by those skilled the in art, the present invention may be used with any type of obstructing member to provide an anchored obstructing device, which may be removed. The inventions disclosed and claimed in U.S. Pat. Nos. 6,258,100 and 6,293,951, both of which are incorporated herein by reference, provide an improved therapy for treating COPD by obstructing an air passageway using an intra-bronchial valve or plug. The present invention may be used with the apparatus, system, and methods of these patents as will be briefly described in conjunction with the disclosure of the preferred embodiments of the present invention.
  • [0053]
    The insertion of an obstructing member treats COPD by deriving the benefits of lung volume reduction surgery without the need of performing the surgery. The treatment contemplates permanent collapse of a lung portion. This leaves extra volume within the thorax for the diaphragm to assume its arched state for acting upon the remaining healthier lung tissue. As previously mentioned, this should result in improved pulmonary function due to enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricle filling. The present invention supports the use of intra-bronchial plugs to treat COPD by anchoring the obstruction device in the air passageway. The present invention further supports the use of intra-bronchial plugs by providing for their removal if necessary. Use of anchors can allow the obstructing member to be relatively loosely fitted against the air passageway wall, which may provide increased mucociliary transport of mucus and debris out of the collapsed lung portion.
  • [0054]
    [0054]FIG. 2 also illustrates a step in COPD treatment using an obstructing member. Treatment is initiated by feeding a conduit or catheter 70 down the trachea 28, into the right mainstem bronchus 32, into the bronchial branch 42 and into and terminating within the sub-branch 50. The sub-branch 50 is the air passageway that communicates with the lung portion 66 to be treated, and is also referred to herein as air passageway 50. The catheter 70 is preferably formed of flexible material such as polyethylene. Also, the catheter 70 is preferably preformed with a bend 72 to assist the feeding of the catheter from the right mainstem bronchus 32 into the bronchial branch 42.
  • [0055]
    [0055]FIG. 3 illustrates a further step in a method for placing an obstructing member 90 in a bronchial sub-branch using a catheter. The invention disclosed herein is not limited to use with the particular method illustrated herein. Catheter 70 includes an optional inflatable sealing member 74 for use with a vacuum to collapse lung portion 66 prior to insertion of obstructing member 90. The obstructing member 90 may be formed of resilient or collapsible material to enable the obstructing member 90 to be fed through the catheter 70 in a collapsed state. The obstructing member 90 and its anchors (not shown) are collapsed and fed into the catheter 70. The stylet 92 is used to push the obstructing member 90 to the end 77 of the catheter 70 for placing the obstructing member 90 within the air passageway 50 adjacent to the lung portion 66 to be permanently collapsed. Optional sealing member 74 is withdrawn after obstructing member 90 is inserted.
  • [0056]
    A function of the intra-bronchial device disclosed and claimed in this specification, including the detailed description and the claims, is described in terms of collapsing a lung portion associated with an air passageway. In some lungs, a portion of a lung may receive air from collateral air passageways. Obstructing one of the collateral air passageways may reduce the volume of the lung portion associated with the air passageway, but not completely collapse the lung portion as that term may be generally understood. As used herein, the meaning of “collapse” includes both a complete collapse of a lung portion and a partial collapse of a lung portion.
  • [0057]
    Once deployed, the obstructing member precludes inhaled air from entering the lung portion to be collapsed. In accordance with the present invention, it is preferable that the obstructing member takes the form of a one-way valve. In addition to precluding inhaled air from entering the lung portion, the member further allows air within the lung portion to be exhaled. This results in more rapid collapse of the lung portion. In addition, anchoring obstructing members that preclude both inhaled and exhaled airflow are contemplated as within the scope of the invention.
  • [0058]
    [0058]FIG. 4 illustrates the obstructing device in place within air passageway 50. Obstructing member 90 has expanded upon placement in the air passageway 50 to seal the air passageway 50. This causes the lung portion 66 to be maintained in a permanently collapsed state. The obstructing member 90 may be any shape suitable for accomplishing its purpose, and may be a solid material or a membrane.
  • [0059]
    More specifically, the obstructing member 90 has an outer dimension 91, and when expanded, enables a contact zone with the air passageway inner dimension 51. This seals the air passageway upon placement of the obstructing member 90 in the air passageway 50 for maintaining the lung portion 66 in the collapsed state.
  • [0060]
    Alternatively, the lung portion 66 may be collapsed using vacuum prior to placement of obstructing member 90, or sealing the air passageway 50 with obstructing member 90 may collapse it. Over time, the air within the lung portion 66 will be absorbed by the body and result in the collapse of lung portion 66. Alternatively, obstructing member 90 may include the function of a one-way valve that allows air to escape from lung portion 66. Lung portion 66 will then collapse, and the valve will prevent air from being inhaled.
  • [0061]
    [0061]FIG. 5 is a perspective view of an intra-bronchial device, with anchors located proximally on peripheral portions of the support members, as the device would appear when fully deployed in an air passageway in accordance with the present invention. Intra-bronchial device 100 includes a support structure 101, a central support structure 109; support members 102, 104, 106, and 108; anchors 112, 114, 116, and 118; anchor ends 122, 124, 126, and 128; and an obstructing member 110.
  • [0062]
    The support structure 101 of intra-bronchial device includes central support structure 109, and support members 102, 104, 106, and 108. The support members 102, 104, 106, and 108, carry anchors 112, 114, 116, and 118; and anchor ends 122, 124, 126, and 128, respectively. Central support structure 109 is a tubular member, preferably hypodermic needle tubing. Support members 102, 104, 106, and 108, are coupled mechanically to central support structure 109, such as by crimping, or by other methods such as adhesive or welding. Support members 102, 104, 106, and 108 are generally similar to each other. The support members are preferably formed of stainless steel, Nitinol, or other suitable material having a memory of its original shape, and resiliency to return the material to that shape.
  • [0063]
    Anchors 112, 114, 116, and 118 are extensions of support members 102, 104, 106, and 108. The anchors are formed by bending the support members to an angle that will result in a deployed anchor engaging the air passageway wall by piercing it approximately perpendicularly. In this preferred embodiment, the bend angle is approximately a right angle. Anchor ends 122, 124, 126, and 128 may be shaped to promote piercing the air passageway wall.
  • [0064]
    Obstructing member 110 is carried on the support structure 101, and includes a flexible membrane open in the proximal direction and which may be formed of silicone or polyurethane, for example. The obstructing member 110 is secured to the central support structure 109, and may be additionally secured to the support members at its larger diameter 91. It may be secured by adhesive, or other manner known in the art. Obstructing member 110 may be loosely carried on support members 102, 104, 106, and 108, such that it expands on inhalation to form a seal against a wall of the air passageway, and contracts on exhalation to allow air and mucociliary transport from the collapsed lung. This provides a one-way valve function.
  • [0065]
    [0065]FIG. 6 is a partial section view of the device of FIG. 5 showing additional detail of the support structure. The linear cross-section view of FIG. 6 exposes the arrangement of support members 106 and 108 in their deployed configuration. The details of support members 102 and 104 are omitted from FIG. 6 for clarity, but are the same as support members 106 and 108. The distal end of obstructing member 110 is carried on central support structure 109. Support members 106 and 108 are shown emanating from central support structure 109, and arranged to loosely support to obstructing member 110 at its larger diameter 91. This allows obstructing member 110 to expand on inhalation and seal at the contact zone 129, and to partially contract on exhalation to allow exhalation of air and mucociliary transport. In an alternative embodiment, support members 106 and 108 do not actively support obstructing member 110, and the expansion and contraction of obstructing member 110 is governed by its elasticity.
  • [0066]
    [0066]FIG. 7 is a perspective view of the intra-bronchial device of FIG. 5 anchored in an air passageway. Intra-bronchial device 100 is illustrated with anchors 112 and 116 piercing into the air passageway wall 130 of air passageway 50. This anchors the intra-bronchial device 100 in place.
  • [0067]
    Intra-bronchial device 100 is collapsible for insertion into an internal lumen of a catheter. At least the support members 102, 104, 106, and 108, and the obstructing member 110, may be collapsed. Intra-bronchial device 100 is inserted into the catheter lumen, which is typically already placed in the air passageway 50 as generally illustrated in FIG. 3. Using the stylet, intra-bronchial device 100 is advanced down the catheter lumen into the air passageway 50 to where the device is to be deployed. Once the point of deployment is reached, intra-bronchial device 100 is expelled from the catheter and assumes its deployed shape as illustrated in FIG. 5. Upon deployment, obstructing member 110 expands to form a contact zone 129 with the wall 130 of the air passageway 50 to prevent air from being inhaled into the lung portion to collapse the lung portion. Simultaneously upon deployment, the memory and resiliency of the support members 102, 104, 106, and 108 impart a force on the anchor ends 122, 124, 126, and 128, and urge the anchors 112, 114, 116, and 118 to engage air passageway wall 130 by piercing. The anchors pierce into and become embedded in the wall 130 of the air passageway 50, preferably without projecting through the wall 130. Stops may be incorporated into the anchors to limit piercing of the wall 130. For example, the bend between the support member and the anchor may form a stop.
  • [0068]
    The preclusion of air from being inhaled into the lung portion may be terminated by eliminating the obstructing effect of intra-bronchial device 100. The preclusion of air by the embodiment illustrated in FIGS. 5-7 may be eliminated by releasing anchors 112, 114, 116, and 118 from the air passageway wall 130. The anchors may be released by inserting a catheter into air passageway 50 in proximity to intra-bronchial device 100. A retractor device, such as biopsy forceps, capable of gripping a portion of intra-bronchial device 100 is inserted in the catheter. The forceps are used to engage a portion of the support structure 101 of intra-bronchial device 100, and draw it toward the catheter. The drawing action releases anchors 112, 114, 116, and 118 from air passageway wall 130. The intra-bronchial device 110 is then drawn into the catheter with the forceps, causing the support structure 101 and obstructing member 110 to collapse. The collapsed device 100 now fully enters the catheter lumen for removal from the patient. Alternatively, the obstructing effect may be eliminated by grabbing the obstructing member 110, releasing it from the support structure 101, and removing obstructing member 110 from the patient.
  • [0069]
    [0069]FIG. 8 illustrates an intra-bronchial device, with anchors carried distally on the central support structure, fully deployed in an air passageway in accordance with an alternative embodiment of the invention. The anchors 112, 114, 116, and 118 of intra-bronchial device 140 are carried on portions of support members 102, 104, 106, and 108 distal of the central support structure 109. The support members are gathered together and carried by the central support structure 109. Other than the anchors 112, 114, 116, and 118 being formed and carried on distal portions of support members 102, 104, 106, and 108, intra-bronchial device 140 is substantially similar in construction, operation, and removal as the intra-bronchial device 100 of FIG. 5.
  • [0070]
    When intra-bronchial device 140 is compressed for insertion into the catheter lumen for placement in the air passageway, the anchors 112, 114, 116, and 118 are collapsed into a first configuration. In the first configuration, the anchor ends 122, 124, 126, and 128 are moved toward obstructing member 110, and anchors 112, 114, 116, and 118 thereby folded toward obstructing member 110. When intra-bronchial device 100 is deployed from the catheter lumen, the memory and resiliency of the support members 102, 104, 106, and 108 impart a force that moves the anchors 112, 114, 116, and 118 into a second configuration to engage air passageway wall 130. This is the deployed configuration illustrated in FIG. 8. For removal, drawing intra-bronchial device 140 toward the catheter causes the anchor ends 122, 124, 126, and 128 to move away from obstructing member 110 to a third configuration. Anchors 112, 114, 116, and 118 are thereby folded away from obstructing member 110 and are released from engagement with air passageway wall 130 for removal of the intra-bronchial device 140. In an alternative embodiment, the anchors 112, 114, 116, and 118 may be formed on additional support members carried by central support structure 109, instead of being formed from distal portions of support members 102, 104, 106, and 108.
  • [0071]
    FIGS. 9-11 illustrate an intra-bronchial device, with proximal anchors carried on the central support structure, in accordance with an alternative embodiment of the invention. FIG. 9 is a perspective view, FIG. 10 is a side view, and FIG. 11 is an end view of the device. Intra-bronchial device 150 is generally similar in construction, operation, placement, and removal to the intra-bronchial device 100 of FIG. 5. Its structure has six support members and three anchors, with anchor stops. Anchors 112, 114, and 116 include stops 152, 154, and 156, respectively. Intra-bronchial device 150 also includes an anchor base 160, an anchor base aperture 165, anchor base angle 163, and additional support members 103 and 105.
  • [0072]
    Central support structure 109 extends both proximal and distal of obstructing member 110, and carries anchor base 161 proximal of obstructing member 110, carries anchors 112, 114, and 116, and includes anchor base aperture 165. The linear plane of anchors 112, 114, and 116 intersect anchor base 161 at anchor base angle 163. Anchor base angle 163 is selected to optimize anchor deployment force and anchor release. Stops 152, 154, and 156 include a flat area to limit the piercing of the air passageway wall by anchor ends 122, 124, and 126. In alternative embodiments, the stops can be any configuration or shape known to those skilled in the art to limit the piercing.
  • [0073]
    In operation, when intra-bronchial device 150 is compressed for insertion into the catheter lumen for placement in the air passageway, anchors 112, 114, and 116 are collapsed into a first configuration. In the first configuration, the anchor ends 122, 124, and 126 are moved toward obstructing member 110, thereby decreasing anchor base angle 163 and folding anchors 112, 114, and 116 toward obstructing member 110. The anchor ends and the anchors may be moved by sliding a catheter or hollow member over anchor base 161 and toward obstructing member 110. When intra-bronchial device 150 is deployed from the catheter lumen, the memory and resiliency of the anchors 112, 114, and 116, anchor angle 163, and anchor base 161 impart a force that moves the anchor members into a second configuration, which is the deployed configuration, to engage air passageway wall 130. The second or deployed configuration is illustrated in FIGS. 9-11. Stops 152, 154, and 156 limit the piercing of the air passageway wall by anchor ends 122, 124, and 126.
  • [0074]
    For removal, a retractor device is deployed from a catheter to engage anchor base 161 and restrain intra-bronchial device 150. The retractor device may be a biopsy forceps to engage anchor base 161, or a hooked device to engage anchor base aperture 165. A catheter is then moved distally over anchor base 161, and in contact with anchors 112, 114, and 116. The catheter is further moved against anchors 112, 114, and 116, while intra-bronchial device 150 is restrained at anchor base 161. This releases the anchors 112, 114, and 116 from the air passageway wall. This collapses the anchors into to the first configuration for removal. Intra-bronchial device 150 is then further drawn into the catheter by pulling on the retractor device used to engage anchor base 161. This collapses support structure 101 and obstructing member 110 so that they may be fully drawn into the catheter. Once drawn into the catheter, intra-bronchial device 160 may be removed from the air passageway and the patient.
  • [0075]
    FIGS. 12-14 illustrate an intra-bronchial device, with distal friction anchors carried on the central support structure, in accordance with an alternative embodiment of the invention. FIG. 12 is a perspective view, FIG. 13 is a side view, and FIG. 14 is an end view. Intra-bronchial device 160 is generally similar in construction, placement, and operation to the intra-bronchial device 150 of FIGS. 9-11. Intra-bronchial device 160 is removed in the manner described in conjunction with FIG. 7. However, Intra-bronchial device 160 differs from intra-bronchial device 150 in that the structure includes four distal anchors with anchor ends 122, 124, 126, and 128 shaped into pads that deform and frictionally engage the air passageway wall to more positively anchor intra-bronchial device 160 without piercing. The structure also includes an obstructing member support base 170.
  • [0076]
    Central support structure 109 extends distal of obstructing member 110, and carries anchor base 161 distal of obstructing member 110. Anchor base 161 carries anchors 112, 114, 116, and 118. The linear plane of anchors 112, 114, 116, and 118 intersects anchor base 161 at anchor angle 163. Anchor angle 163 is selected to optimize anchor deployment force and anchor release. The anchors 112, 114, 116, and 118, and anchor base 161 may be constructed by laser cutting a single piece of hypodermic tubing lengthwise to form the anchors 112, 114, 116, and 118, and then bending the anchors to form anchor angle 163. Anchor base 161 is secured to central support structure 109. Support members 102, 103, 104, 105, 106, and 108, and the obstructing member support member base 170 may be constructed in a like manner. Obstructing member 110 is secured to the obstructing member support base 170, and alternatively to support members 102, 103, 104, 105, 106, and 108. The assembly of obstructing member 110 and support base 170 is secured to central support structure 109. Central support structure 109 may extend proximal of support member base 170 to provide a surface for gripping the intra-bronchial device 160 for removal, and may include an aperture to be engaged by a hooked device.
  • [0077]
    [0077]FIG. 15 is a perspective view an intra-bronchial device similar to that of FIGS. 12-14 anchored in an air passageway. It illustrates pad-shaped anchor ends 122-128 of intra-bronchial device 180 deforming and frictionally engaging air passageway wall 130.
  • [0078]
    [0078]FIGS. 16 and 17 illustrate a removable intra-bronchial device with proximal anchors carried on a peripheral portion of a plurality of support structure members in accord with the present invention. FIG. 16 is a perspective view, as the device would appear when fully deployed in an air passageway. FIG. 17 is a side view of FIG. 16. In a preferred embodiment, the support structure 101 of intra-bronchial device 190 includes six support members, with two opposing pairs of support members carrying anchors and each member of a pair being joined together by a retracting member. Intra-bronchial device 190 includes a support structure 101 having a central support structure 109 and support members 102, 103, 104, 105, 106, and 108; four anchors 113, 114, 116, and 118 having anchor ends 123, 124, 126, and 128, respectively; two “U” shaped retracting members 192 and 194 having an apex 193 and 195, respectively; and obstructing member 110.
  • [0079]
    Intra-bronchial device 190 is generally similar in construction, operation, placement, and removal to the intra-bronchial device 150 of FIG. 9. Support structure 101 is a tubular member, preferably hypodermic needle tubing, or stainless steel, Nitinol, or other suitable material having a memory of its original shape and resiliency to return the material to that shape. Support members 102, 103, 104, 105, 106, and 108, and central support structure 109 may be formed by laser cutting a single piece of hypodermic needle tubing lengthwise, and bending the support members to a required shape. Support members 102, 103, 104, 105, 106, and 108 are generally similar to each other. Anchors 113, 114, 116, and 118 are disposed on support members 103, 104, 106, and 108, respectively, in any manner available in the art. Anchors 113-118 are disposed on support members 103, 104, 106, and 108 to be located proximally of obstructing member 110, and to engage an air passageway wall when intra-bronchial device 190 is deployed.
  • [0080]
    “U” shaped retracting member 192 is coupled to support members 103 and 104, and “U” shaped retracting member 194 is coupled to support members 106 and 108. “U” shaped retracting members 192 and 194 may be constructed of any material suitable for use within a patient, and may or may not be resilient as required by the particular embodiment. When intra-bronchial device 190 is fully deployed in an air passageway, the “U” shaped retracting members 192 and 194 are arranged opposite each other, and they partially overlap, with the apex of one lying within a space bounded by the “U” shape of the other member. In the deployed configuration, increasing the distance between apex 193 and apex 195 moves support member pairs 103-104 and 106-108 centrally.
  • [0081]
    In operation, when intra-bronchial device 190 is compressed for insertion into a catheter lumen and placement in an air passageway, support members 102, 103, 104, 105, 106, and 108 are collapsed centrally into a first configuration. This causes the anchor ends 123-124, and 126-128 to move centrally.
  • [0082]
    When intra-bronchial device 190 is deployed from the catheter lumen, the memory and resiliency of the support member pairs 103,104 and 106,108 impart a force that moves the anchors 113 and 114, and 116 and 118, and their anchor ends 123 and 124, and 126 and 128 into a second configuration, which is the deployed configuration to engage air passageway wall. In addition, deployment of intra-bronchial device 190 may include a step of forcibly decreasing the distance between apexes 193 and 195 to forcibly move the anchors 113 and 114, and 116 and 118 into engagement with the wall of the air passageway. While the anchors 113 and 114, and 116 and 118 of this embodiment do not include stops, the expansive or peripheral movement of the anchors will be limited by obstructing member 90. This may limit the piercing of the air passageway wall by anchors 113 and 114, and 116 and 118.
  • [0083]
    In an alternative embodiment, support member pairs 103,104 and 106,108 may be compressed for insertion into a catheter lumen by a device that increases the distance between apex 193 and apex 195. Such a device could be a tool with spreading jaws, or a tapered member inserted between the apexes. The device could be left in engagement after insertion into the catheter, and then withdrawn to allow support member pairs 103-104 and 106-108 to move apart and engage their anchors into the wall of the air passageway.
  • [0084]
    For removal, a retractor device is deployed from a catheter lumen to engage apex 193 and 195, and restrain intra-bronchial device 190. The retractor device may be any device that fits into the space defined by apexes 193 and 195 when the intra-bronchial device 190 is in its fully deployed configuration. The retractor device is used to increase the distance between apexes 193 and 195 until anchors 113-114 and 116-118, and anchor ends 123-124 and 126-128 are released from the air passageway wall. This collapses the anchors into to the first configuration for removal. Intra-bronchial device 190 is then further collapsed, and drawn into the catheter by pulling on the retractor device. This additionally collapses support structure 101 and obstructing member 110 into the first position so that they may be fully drawn into the catheter. Once drawn into the catheter, intra-bronchial device 190 may be removed from the air passageway and the patient.
  • [0085]
    [0085]FIG. 18 is a perspective view of an intra-bronchial device 200 with anchors carried on an obstructing member as the device would appear when fully deployed in an air passageway, in accordance with an alternative embodiment of the invention. Intra-bronchial device 200 includes an obstructing member 90, anchors 111, 112, 113, 114, 115, 116, 117, and 118 (hereafter collectively referred to as anchors 111-118), and anchor ends 121, 122, 123, 124, 125, 126, 127, and 128(hereafter collectively referred to as anchor ends 121-128).
  • [0086]
    Obstructing member 90 may be a single piece made from a collapsible, resilient material, such as silicone, polyurethane, rubber, or foam, and typically will be collapsible to at least one-half of its expanded size. In an alternative embodiment, obstructing member 90 may include multiple pieces, some being of collapsible material. In a further alternative embodiment, obstructing member 90 may include a membrane carried by a support structure such as described in conjunction with FIGS. 5-17.
  • [0087]
    Anchors 111-118 comprise material having memory of an original shape, and resiliency to return the material to that shape, and typically have a diameter small enough that penetration through an air passageway wall may not adversely effect a patient. Anchors 111-118 may be 0.003-inch diameter 316 stainless steel with a wire spring temper, Nitinol, or other resilient material. Anchor ends 121-128 may be shaped to promote or control piercing of the air passageway wall. In an alternative embodiment, the length of the anchors 111-118 may be limited to allow the anchors 111-118 to penetrate into but not through the air passageway wall. In the preferred embodiment illustrated in FIG. 18, the anchors include four pieces of material pushed through obstructing member 90. The four pieces would lie in approximately the same cross-sectional plane, and cross each other at approximately the centerline of obstructing member 90, with approximately equal portions of the anchor material projecting from opposite sides of the obstructing member 90. In this embodiment, for example, anchors 112 and 116 would be opposite portions of a single piece of material. Anchors 111-118 may be secured to control their position. For example, a centerline opening may be made in obstructing member 90 exposing the several pieces of anchoring material. The several pieces of material could them be joined together, or to obstructing member 90, at a location within the centerline opening by an adhesive, crimping, welding, or other method of mechanically joining materials known to those in the art.
  • [0088]
    In an alternative embodiment, the anchors may be formed by individual pieces of material. The individual pieces of material may be coupled to obstructing member 90 either at its periphery, or within its periphery.
  • [0089]
    [0089]FIG. 19 is a partial longitudinal sectional view of the intra-bronchial device of FIG. 18 collapsed and located into a delivery catheter lumen for placement in an air passageway to collapse a lung portion associated with the air passageway, in accordance with the present invention. Intra-bronchial device 200 is generally placed in an air passageway as described in FIGS. 2 and 3.
  • [0090]
    More specifically, intra-bronchial device 200 is collapsed and placed into delivery catheter lumen 70. Obstructing member 90 is collapsed into approximately a cylindrical shape. Anchors 111-118 are collapsed to a position in proximity to or against the outer periphery of collapsed obstructing member 90. Intra-bronchial device 200 is inserted into catheter lumen 70, the distal end of which is typically already placed in the air passageway 50 as generally illustrated in FIG. 3. Using stylet 92, intra-bronchial device 200 is advanced through the catheter lumen 70 into the air passageway to where it is to be deployed. Once the point of deployment is reached, intra-bronchial device 200 is expelled from catheter lumen 70, and assumes a deployed shape as illustrated in FIG. 18.
  • [0091]
    [0091]FIG. 20 is a perspective view of the intra-bronchial device of FIG. 18 in its fully deployed and anchored state in an air passageway, in accordance with the present invention. Intra-bronchial device 200 is illustrated after having been expelled from the catheter lumen in substantially the manner described in conjunction with FIG. 3, and having deployed anchors 112 and 116 by piercing into and through air passageway wall 130 of air passageway 50. The piercing engages the air passageway wall and anchors intra-bronchial device 200 within the air passageway 50.
  • [0092]
    The resiliency of obstructing member 90 imparts a force to expand the obstructing member 90 from the collapsed state to a deployed state. In its deployed state, obstructing member 90 forms a contact zone 129 with the wall 130 of air passageway 50 preventing air from being inhaled into the lung portion. The resiliency of the anchor members 111-118 moves them from their collapsed state illustrated in FIG. 19 to their deployed state. The resiliency of obstructing member 90 may assist anchor members 111-118 in deployment. In the alternative embodiment where the length of anchors 111-118 is limited to allow the anchors 111-118 to penetrate into but not through the air passageway wall, the anchors penetrate the air passageway wall 150 in the manner illustrated in FIG. 7.
  • [0093]
    FIGS. 21-24 are side views showing an embodiment of the present invention for removing the intra-bronchial device 200 from air passageway 50. The preclusion of air from being inhaled into the lung portion may be terminated by eliminating the obstructing effect of intra-bronchial device 200. The preclusion of air by the embodiment illustrated in FIG. 18 may be eliminated by releasing anchors 111-118 from the air passageway wall 130.
  • [0094]
    A bronchoscope 74 is placed in proximity to intra-bronchial device 200 in the air passageway 50. A catheter 70 having an internal lumen 71 is fed into the bronchoscope 74 and advanced to the proximal end of the intra-bronchial device 200. A retractor device, such as biopsy forceps 76, capable of gripping a portion of intra-bronchial device 200, is inserted in the catheter 70 of the bronchoscope 74 and advanced to the intra-bronchial device 200. The jaws of the forceps 76 are used to engage a portion of the obstructing member 90. The engagement may collapse a portion of obstructing member 90. The engagement with the obstructing member 90 is maintained and obstructing member 90 is drawn toward the catheter lumen 71 by the forceps 76. The drawing action releases anchors 111-118 from air passageway wall 130. The intra-bronchial device 200 is then drawn into the catheter lumen 71 with the forceps 76. The collapsed device 200 now fully enters the catheter lumen 71 for removal from the patient.
  • [0095]
    [0095]FIG. 25 is a perspective view of an intra-bronchial device with anchors projecting from a periphery of an obstructing member as the device would appear when fully deployed, in accordance with an alternative embodiment of the present invention. The intra-bronchial device 210 includes support members 102, 104, 106, and 108; an obstructing member 110; “s” shaped bends 212, 214, 216, and 218; and anchors 112, 114, 116, and 118.
  • [0096]
    The support members 102, 104, 106, and 108 form a support structure carrying obstructing member 110, and include anchors 112, 114, 116, and 118; and anchor ends 122, 124, 126, and 128, respectively. The support members 102, 104, 106, and 108 may be tubular members, and are preferably hypodermic needle tubing. Support members 102, 104, 106, and 108 form a support structure by being joined together at a location toward the distal portion of intra-bronchial device 210. They may be joined by a mechanical method, such as by crimping, or by other methods such as adhesive or welding. In an alternative embodiment, two support members may be formed from a single piece of material by bending it in the middle. Support members 102, 104, 106, and 108 are generally similar to each other. The support members are preferably formed of stainless steel, Nitinol, or other suitable material having a memory of its original shape, and resiliency to return the material to that shape.
  • [0097]
    Anchors 112, 114, 116, and 118 are extensions of support members 102, 104, 106, and 108. The anchors are formed by forming “s” shaped bends 212, 214, 216, and 218 in proximal portions of the support members. Anchor ends 122, 124, 126, and 128 may be shaped to promote piercing the air passageway wall.
  • [0098]
    The obstructing member 110 is carried on the support structure formed by support members 102, 104, 106, and 108. Obstructing member 110 includes a flexible membrane open in the proximal direction and which may be formed of silicone or polyurethane, for example. The obstructing member 110 includes openings 222, 224, 226, and 228 sized to sealingly admit the “s” shaped bends 212, 214, 216, and 218 of support members 102, 104, 106, and 108, respectively. FIG. 26 illustrates the placement and securing of the obstructing member 110 to support member 102 at “s” bend 212. Obstructing member 110 is fitted over the anchor end 122 and anchor 112 at opening 222. Obstructing member 110 engages the peripheral apex of the “s” shaped bend 212, and thus secures it. The obstructing member 110 is placed and secured to the other “s” bends 214, 216, and 218 in a similar manner. Obstructing member 110 may be loosely carried on support members 102, 104, 106, and 108 such that it expands on inhalation to form a seal against a wall of the air passageway, and contracts on exhalation to allow air and mucociliary transport from the collapsed lung. This provides a one-way valve function.
  • [0099]
    [0099]FIG. 27 is a perspective view of the intra-bronchial device of FIG. 25 fully deployed and anchored in an air passageway, in accordance with the present invention. Intra-bronchial device 210 is illustrated after having been expelled from the catheter lumen in substantially the manner described in conjunction with FIG. 3, and having deployed anchors 112, 114, 116, and 118 by piercing into air passageway wall 130 of air passageway 50. The piercing engages the air passageway wall and anchors intra-bronchial device 210 within the air passageway 50.
  • [0100]
    Deploying obstructing member 210 is much like opening an umbrella. Upon deployment, the memory and resiliency of the support members 102, 104, 106, and 108, expand obstructing member 210. The expanded obstructing member 210 forms a contact zone 129 with the wall 130 of the air passageway 50 to prevent air from being inhaled into the lung portion to collapse the lung portion. Simultaneously upon deployment, the memory and resiliency of the support members 102, 104, 106, and 108 impart a force on the anchor ends 122, 124, 126, and 128, and urge the anchors 112, 114, 116, and 118 to engage air passageway wall 130 by piercing. The anchors pierce into and become embedded in the wall 130 of the air passageway 50, preferably without projecting through the wall 130. Stops may be incorporated into the anchors to limit piercing of the wall 130. For example, the “s” bends 212, 214, 216, and 218 may form a stop.
  • [0101]
    The preclusion of air from being inhaled into the lung portion may be terminated by eliminating the obstructing effect of intra-bronchial device 210. The preclusion of air by the embodiment illustrated in FIGS. 25-27 may be eliminated by releasing anchors 112, 114, 116, and 118 from the air passageway wall 130. The anchors are released and the intra-bronchial device 210 is removed from air passageway 50 in substantially the same manner described in conjunction with FIGS. 7, and 21-24. The forceps are used to engage a portion of intra-bronchial device 210, and maneuvered to release anchors 112, 114, 116, and 118 from the air passageway wall 130. Intra-bronchial device 210 is then drawn into the catheter for removal from the patient. Alternatively, the obstructing effect may be eliminated by engaging the obstructing member 210, releasing it from the support members 102, 104, 106, and 108, and drawing obstructing member 110 into the catheter for removal from the patent.
  • [0102]
    Although the present invention has been described in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the spirit or scope of the appended claims should not be limited to the description of the embodiments contained herein. It is intended that the invention resides in the claims hereinafter appended.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US2981254 *12 nov. 195725 avr. 1961Vanderbilt Edwin GApparatus for the gas deflation of an animal's stomach
US3657744 *8 mai 197025 avr. 1972Univ MinnesotaMethod for fixing prosthetic implants in a living body
US3760808 *1 déc. 196925 sept. 1973Bleuer KTampon applicator assembly
US3788327 *30 mars 197129 janv. 1974Donowitz HSurgical implant device
US4014318 *22 mai 197529 mars 1977Dockum James MCirculatory assist device and system
US4086665 *16 déc. 19762 mai 1978Thermo Electron CorporationArtificial blood conduit
US4212463 *17 févr. 197815 juil. 1980Pratt Enoch BHumane bleeder arrow
US4250873 *17 avr. 197817 févr. 1981Richard Wolf GmbhEndoscopes
US4302854 *4 juin 19801 déc. 1981Runge Thomas MElectrically activated ferromagnetic/diamagnetic vascular shunt for left ventricular assist
US4619246 *20 mai 198528 oct. 1986William Cook, Europe A/SCollapsible filter basket
US4681110 *2 déc. 198521 juil. 1987Wiktor Dominik MCatheter arrangement having a blood vessel liner, and method of using it
US4710192 *17 oct. 19861 déc. 1987Liotta Domingo SDiaphragm and method for occlusion of the descending thoracic aorta
US4727873 *26 nov. 19861 mars 1988Mobin Uddin KaziEmbolus trap
US4732152 *5 déc. 198522 mars 1988Medinvent S.A.Device for implantation and a method of implantation in a vessel using such device
US4759758 *7 déc. 198426 juil. 1988Shlomo GabbayProsthetic heart valve
US4795449 *4 août 19863 janv. 1989Hollister IncorporatedFemale urinary incontinence device
US4808183 *3 juin 198028 févr. 1989University Of Iowa Research FoundationVoice button prosthesis and method for installing same
US4819664 *17 févr. 198811 avr. 1989Stefano NazariDevice for selective bronchial intubation and separate lung ventilation, particularly during anesthesia, intensive therapy and reanimation
US4830003 *17 juin 198816 mai 1989Wolff Rodney GCompressive stent and delivery system
US4832680 *3 juil. 198623 mai 1989C.R. Bard, Inc.Apparatus for hypodermically implanting a genitourinary prosthesis
US4846836 *3 oct. 198811 juil. 1989Reich Jonathan DArtificial lower gastrointestinal valve
US4850999 *26 mai 198125 juil. 1989Institute Fur Textil-Und Faserforschung Of StuttgartFlexible hollow organ
US4852568 *28 déc. 19871 août 1989Kensey Nash CorporationMethod and apparatus for sealing an opening in tissue of a living being
US4877025 *6 oct. 198831 oct. 1989Hanson Donald WTracheostomy tube valve apparatus
US4934999 *28 juil. 198819 juin 1990Paul BaderClosure for a male urethra
US4968294 *9 févr. 19896 nov. 1990Salama Fouad AUrinary control valve and method of using same
US5061274 *4 déc. 198929 oct. 1991Kensey Nash CorporationPlug device for sealing openings and method of use
US5116360 *27 déc. 199026 mai 1992Corvita CorporationMesh composite graft
US5116564 *10 oct. 198926 mai 1992Josef JansenMethod of producing a closing member having flexible closing elements, especially a heart valve
US5123919 *21 nov. 199123 juin 1992Carbomedics, Inc.Combined prosthetic aortic heart valve and vascular graft
US5151105 *7 oct. 199129 sept. 1992Kwan Gett CliffordCollapsible vessel sleeve implant
US5158548 *24 juil. 199127 oct. 1992Advanced Cardiovascular Systems, Inc.Method and system for stent delivery
US5161524 *2 août 199110 nov. 1992Glaxo Inc.Dosage inhalator with air flow velocity regulating means
US5283063 *31 janv. 19921 févr. 1994Eagle VisionPunctum plug method and apparatus
US5304199 *4 janv. 199319 avr. 1994Gene E. Myers Enterprises, Inc.Apparatus for arterial total occlusion plaque separation
US5306234 *23 mars 199326 avr. 1994Johnson W DudleyMethod for closing an atrial appendage
US5314473 *5 janv. 199324 mai 1994Godin Norman JProsthesis for preventing gastric reflux into the esophagus
US5352240 *31 mai 19894 oct. 1994Promedica International, Inc.Human heart valve replacement with porcine pulmonary valve
US5358518 *25 janv. 199325 oct. 1994Sante CamilliArtificial venous valve
US5366478 *27 juil. 199322 nov. 1994Ethicon, Inc.Endoscopic surgical sealing device
US5382261 *1 sept. 199217 janv. 1995Expandable Grafts PartnershipMethod and apparatus for occluding vessels
US5392775 *22 mars 199428 févr. 1995Adkins, Jr.; Claude N.Duckbill valve for a tracheostomy tube that permits speech
US5409019 *3 nov. 199325 avr. 1995Wilk; Peter J.Coronary artery by-pass method
US5411507 *5 janv. 19942 mai 1995Richard Wolf GmbhInstrument for implanting and extracting stents
US5411552 *14 juin 19942 mai 1995Andersen; Henning R.Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5413599 *13 déc. 19939 mai 1995Nippon Zeon Co., Ltd.Medical valve apparatus
US5417226 *9 juin 199423 mai 1995Juma; SaadFemale anti-incontinence device
US5445626 *15 mai 199229 août 1995Gigante; LuigiValve operated catheter for urinary incontinence and retention
US5453090 *1 mars 199426 sept. 1995Cordis CorporationMethod of stent delivery through an elongate softenable sheath
US5484444 *14 oct. 199316 janv. 1996Schneider (Europe) A.G.Device for the implantation of self-expanding endoprostheses
US5486154 *8 juin 199323 janv. 1996Kelleher; Brian S.Endoscope
US5499995 *25 mai 199419 mars 1996Teirstein; Paul S.Body passageway closure apparatus and method of use
US5500014 *9 mai 199419 mars 1996Baxter International Inc.Biological valvular prothesis
US5507754 *20 août 199316 avr. 1996United States Surgical CorporationApparatus and method for applying and adjusting an anchoring device
US5509900 *15 oct. 199323 avr. 1996Kirkman; Thomas R.Apparatus and method for retaining a catheter in a blood vessel in a fixed position
US5549628 *1 mai 199527 août 1996Bio-Vascular, Inc.Soft tissue stapling buttress
US5562608 *13 avr. 19958 oct. 1996Biopulmonics, Inc.Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation
US5603698 *23 août 199518 févr. 1997Boston Scientific CorporationProsthesis delivery system
US5645565 *13 juin 19958 juil. 1997Ethicon Endo-Surgery, Inc.Surgical plug
US5660175 *21 août 199526 août 1997Dayal; BimalEndotracheal device
US5662713 *14 sept. 19952 sept. 1997Boston Scientific CorporationMedical stents for body lumens exhibiting peristaltic motion
US5683451 *7 juin 19954 nov. 1997Cardiovascular Concepts, Inc.Apparatus and methods for deployment release of intraluminal prostheses
US5690644 *20 févr. 199625 nov. 1997Schneider (Usa) Inc.Apparatus for deploying body implantable stent
US5693089 *3 sept. 19962 déc. 1997Inoue; KanjiMethod of collapsing an implantable appliance
US5697968 *10 août 199516 déc. 1997Aeroquip CorporationCheck valve for intraluminal graft
US5702409 *21 juil. 199530 déc. 1997W. L. Gore & Associates, Inc.Device and method for reinforcing surgical staples
US5725519 *30 sept. 199610 mars 1998Medtronic Instent Israel Ltd.Stent loading device for a balloon catheter
US5752965 *21 oct. 199619 mai 1998Bio-Vascular, Inc.Apparatus and method for producing a reinforced surgical fastener suture line
US5800339 *2 mai 19971 sept. 1998Opticon Medical Inc.Urinary control valve
US5803078 *26 mai 19958 sept. 1998Brauner; Mark E.Methods and apparatus for intrapulmonary therapy and drug administration
US5810837 *31 oct. 199622 sept. 1998Schneider (Europe) A.G.Device for the implantation of a self-expanding endoprosthesis
US5817101 *13 mars 19976 oct. 1998Schneider (Usa) IncFluid actuated stent delivery system
US5925063 *26 sept. 199720 juil. 1999Khosravi; FarhadCoiled sheet valve, filter or occlusive device and methods of use
US5954636 *15 juil. 199721 sept. 1999Schwartz; Roy E.Pediatric endotracheal tube with bronchial blocker and method for selectively blocking respiratory airflow to a pediatric patient's lung
US6010525 *1 août 19974 janv. 2000Peter M. BonuttiMethod and apparatus for securing a suture
US6149664 *27 août 199821 nov. 2000Micrus CorporationShape memory pusher introducer for vasoocclusive devices
US6165179 *2 août 199926 déc. 2000Boston Scientific CorporationVena cava delivery system
US6203551 *4 oct. 199920 mars 2001Advanced Cardiovascular Systems, Inc.Chamber for applying therapeutic substances to an implant device
US6238334 *3 nov. 199829 mai 2001Cardio Technologies, Inc.Method and apparatus for assisting a heart to pump blood
US6241758 *28 mai 19995 juin 2001Advanced Cardiovascular Systems, Inc.Self-expanding stent delivery system and method of use
US6267775 *6 mars 200031 juil. 2001Schneider (Usa) Inc.Self-expanding medical device for centering radioactive treatment sources in body vessels
US6425916 *10 févr. 199930 juil. 2002Michi E. GarrisonMethods and devices for implanting cardiac valves
US6471718 *16 oct. 200029 oct. 2002American Medical Systems, Inc.Method and device for loading a stent
US6527761 *27 oct. 20004 mars 2003Pulmonx, Inc.Methods and devices for obstructing and aspirating lung tissue segments
US6558429 *26 mars 20016 mai 2003Reflux CorporationPerorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6629951 *18 juil. 20017 oct. 2003Broncus Technologies, Inc.Devices for creating collateral in the lungs
US6679264 *4 mars 200020 janv. 2004Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US6694979 *2 mars 200124 févr. 2004Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US6904909 *22 nov. 200214 juin 2005Emphasys Medical, Inc.Methods and devices for use in performing pulmonary procedures
US20010010017 *28 févr. 200126 juil. 2001Brice LetacAlve prosthesis for implantation in body channels
US20020052626 *20 avr. 20012 mai 2002Paul GilsonEmbolic protection system
US20030013935 *10 juil. 200116 janv. 2003Spiration, Inc.Constriction device viewable under X ray fluoroscopy
US20030167065 *1 mars 20024 sept. 2003Arvik Enterprises, LlcBlood vessel occlusion device
US20030212412 *9 mai 200213 nov. 2003Spiration, Inc.Intra-bronchial obstructing device that permits mucus transport
US20040039250 *28 mai 200326 févr. 2004David TholfsenGuidewire delivery of implantable bronchial isolation devices in accordance with lung treatment
US20040167636 *22 déc. 200326 août 2004Dillard David H.Methods of achieving lung volume reduction with removable anchored devices
US20040243140 *18 mai 20042 déc. 2004Alferness Clifton A.Collapsible intra-bronchial valve devices
US20050033310 *17 mai 200410 févr. 2005Alferness Clifton A.Intra-bronchial valve devices
US20050033344 *3 sept. 200410 févr. 2005Dillard David H.One-way valve devices for anchored implantation in a lung
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US7011094 *25 juil. 200314 mars 2006Emphasys Medical, Inc.Bronchial flow control devices and methods of use
US7094243 *7 mars 200322 août 2006Salviac LimitedCatheter with an expandable end portion
US74517651 juil. 200518 nov. 2008Mark AdlerIntra-bronchial apparatus for aspiration and insufflation of lung regions distal to placement or cross communication and deployment and placement system therefor
US76702822 mars 2010Pneumrx, Inc.Lung access device
US768233230 juin 200423 mars 2010Portaero, Inc.Methods to accelerate wound healing in thoracic anastomosis applications
US768601330 mars 2010Portaero, Inc.Variable resistance pulmonary ventilation bypass valve
US769986718 avr. 200520 avr. 2010Cook IncorporatedRemovable vena cava filter for reduced trauma in collapsed configuration
US771711525 nov. 200318 mai 2010Pulmonx CorporationDelivery methods and devices for implantable bronchial isolation devices
US772630512 févr. 20081 juin 2010Portaero, Inc.Variable resistance pulmonary ventilation bypass valve
US775305213 juil. 2010Portaero, Inc.Intra-thoracic collateral ventilation bypass system
US775769220 juil. 2010Spiration, Inc.Removable lung reduction devices, systems, and methods
US77668913 août 2010Pneumrx, Inc.Lung device with sealing features
US77669383 août 2010Pneumrx, Inc.Pleural effusion treatment device, method and material
US777596817 août 2010Pneumrx, Inc.Guided access to lung tissues
US77890837 sept. 2010Portaero, Inc.Intra/extra thoracic system for ameliorating a symptom of chronic obstructive pulmonary disease
US779814725 juil. 200321 sept. 2010Pulmonx CorporationBronchial flow control devices with membrane seal
US781127412 oct. 2010Portaero, Inc.Method for treating chronic obstructive pulmonary disease
US781491229 juin 200519 oct. 2010Pulmonx CorporationDelivery methods and devices for implantable bronchial isolation devices
US78243662 nov. 2010Portaero, Inc.Collateral ventilation device with chest tube/evacuation features and method
US78287899 nov. 2010Portaero, Inc.Device and method for creating a localized pleurodesis and treating a lung through the localized pleurodesis
US783769223 nov. 2010Salviac LimitedCatheter with an expandable end portion
US785422821 déc. 2010Pulmonx CorporationBronchial flow control devices and methods of use
US789222922 juin 200522 févr. 2011Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US78960081 mars 2011Portaero, Inc.Lung reduction system
US790980318 févr. 200922 mars 2011Portaero, Inc.Enhanced pneumostoma management device and methods for treatment of chronic obstructive pulmonary disease
US791369816 nov. 200529 mars 2011Uptake Medical Corp.Device and method for lung treatment
US792732418 févr. 200919 avr. 2011Portaero, Inc.Aspirator and method for pneumostoma management
US793164126 avr. 2011Portaero, Inc.Visceral pleura ring connector
US794293115 août 200517 mai 2011Spiration, Inc.Device and method for intra-bronchial provision of a therapeutic agent
US79723535 juil. 2011Cook Medical Technologies LlcRemovable vena cava filter with anchoring feature for reduced trauma
US79933239 août 2011Uptake Medical Corp.High pressure and high temperature vapor catheters and systems
US801682313 sept. 2011Tsunami Medtech, LlcMedical instrument and method of use
US802132020 sept. 2011Portaero, Inc.Self-sealing device and method for delivery of a therapeutic agent through a pneumostoma
US802138520 sept. 2011Spiration, Inc.Removable anchored lung volume reduction devices and methods
US80294924 oct. 2011Portaero, Inc.Method for treating chronic obstructive pulmonary disease
US804330125 oct. 2011Spiration, Inc.Valve loader method, system, and apparatus
US804332218 avr. 200525 oct. 2011Cook Medical Technologies LlcRemovable vena cava filter having inwardly positioned anchoring hooks in collapsed configuration
US806231522 nov. 2011Portaero, Inc.Variable parietal/visceral pleural coupling
US807936820 déc. 2011Spiration, Inc.Bronchoscopic lung volume reduction method
US810447423 août 200531 janv. 2012Portaero, Inc.Collateral ventilation bypass system with retention features
US810534918 avr. 200531 janv. 2012Cook Medical Technologies LlcRemovable vena cava filter having primary struts for enhanced retrieval and delivery
US813623010 oct. 200820 mars 2012Spiration, Inc.Valve loader method, system, and apparatus
US814245512 sept. 200827 mars 2012Pneumrx, Inc.Delivery of minimally invasive lung volume reduction devices
US814753222 oct. 20083 avr. 2012Uptake Medical Corp.Determining patient-specific vapor treatment and delivery parameters
US815782317 avr. 2012Pneumrx, Inc.Lung volume reduction devices, methods, and systems
US81578372 juin 200617 avr. 2012Pneumrx, Inc.Minimally invasive lung volume reduction device and method
US816303424 avr. 2012Portaero, Inc.Methods and devices to create a chemically and/or mechanically localized pleurodesis
US81679011 mai 2012Cook Medical Technologies LlcRemovable vena cava filter comprising struts having axial bends
US81778054 août 201115 mai 2012Spiration, Inc.Removable anchored lung volume reduction devices and methods
US818726929 mai 2012Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US822046017 juil. 2012Portaero, Inc.Evacuation device and method for creating a localized pleurodesis
US823158125 janv. 201131 juil. 2012Portaero, Inc.Enhanced pneumostoma management device and methods for treatment of chronic obstructive pulmonary disease
US824664821 août 2012Cook Medical Technologies LlcRemovable vena cava filter with improved leg
US82466514 mars 201021 août 2012Cook Medical Technologies LlcRemovable vena cava filter for reduced trauma in collapsed configuration
US824667219 déc. 200821 août 2012Cook Medical Technologies LlcEndovascular graft with separately positionable and removable frame units
US825106716 août 201028 août 2012Pulmonx CorporationBronchial flow control devices with membrane seal
US825200318 févr. 200928 août 2012Portaero, Inc.Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease
US825738115 déc. 20104 sept. 2012Spiration, Inc.One-way valve devices for anchored implantation in a lung
US82826609 oct. 2012Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US831348521 oct. 200820 nov. 2012Tsunami Medtech, LlcMethod for performing lung volume reduction
US83223354 déc. 2012Uptake Medical Corp.Determining patient-specific vapor treatment and delivery parameters
US832323020 janv. 20104 déc. 2012Portaero, Inc.Methods and devices to accelerate wound healing in thoracic anastomosis applications
US833654012 févr. 200925 déc. 2012Portaero, Inc.Pneumostoma management device and method for treatment of chronic obstructive pulmonary disease
US83478808 janv. 2013Potaero, Inc.Pneumostoma management system with secretion management features for treatment of chronic obstructive pulmonary disease
US83478818 janv. 2013Portaero, Inc.Pneumostoma management device with integrated patency sensor and method
US83489068 janv. 2013Portaero, Inc.Aspirator for pneumostoma management
US8357139 *4 nov. 200822 janv. 2013Pulmonx CorporationMethods and devices for use in performing pulmonary procedures
US836572218 févr. 20095 févr. 2013Portaero, Inc.Multi-layer pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US83886505 mars 2013Pulsar Vascular, Inc.Systems and methods for supporting or occluding a physiological opening or cavity
US84146559 avr. 2013Spiration, Inc.Removable lung reduction devices, systems, and methods
US843009418 févr. 200930 avr. 2013Portaero, Inc.Flexible pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US844463610 janv. 200621 mai 2013Tsunami Medtech, LlcMedical instrument and method of use
US84536374 juin 2013Portaero, Inc.Pneumostoma management system for treatment of chronic obstructive pulmonary disease
US845363818 févr. 20094 juin 2013Portaero, Inc.One-piece pneumostoma management system and methods for treatment of chronic obstructive pulmonary disease
US84547084 juin 2013Spiration, Inc.Articulable anchor
US846470818 févr. 200918 juin 2013Portaero, Inc.Pneumostoma management system having a cosmetic and/or protective cover
US847444918 févr. 20092 juil. 2013Portaero, Inc.Variable length pneumostoma management system for treatment of chronic obstructive pulmonary disease
US84753898 juin 20102 juil. 2013Portaero, Inc.Methods and devices for assessment of pneumostoma function
US849160218 févr. 200923 juil. 2013Portaero, Inc.Single-phase surgical procedure for creating a pneumostoma to treat chronic obstructive pulmonary disease
US85065776 juil. 201213 août 2013Portaero, Inc.Two-phase surgical procedure for creating a pneumostoma to treat chronic obstructive pulmonary disease
US851805311 févr. 201027 août 2013Portaero, Inc.Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease
US85455303 janv. 20061 oct. 2013Pulsar Vascular, Inc.Implantable aneurysm closure systems and methods
US855113219 avr. 20078 oct. 2013Pulsar Vascular, Inc.Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US857422624 oct. 20085 nov. 2013Tsunami Medtech, LlcMethod for treating tissue
US857988817 juin 200912 nov. 2013Tsunami Medtech, LlcMedical probes for the treatment of blood vessels
US85798922 juil. 200812 nov. 2013Tsunami Medtech, LlcMedical system and method of use
US857989322 janv. 201012 nov. 2013Tsunami Medtech, LlcMedical system and method of use
US858564513 nov. 200619 nov. 2013Uptake Medical Corp.Treatment with high temperature vapor
US863260511 sept. 200921 janv. 2014Pneumrx, Inc.Elongated lung volume reduction devices, methods, and systems
US864739226 avr. 201211 févr. 2014Spiration, Inc.Articulable anchor
US866870714 sept. 201211 mars 2014Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US87216328 sept. 200913 mai 2014Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US872173418 mai 201013 mai 2014Pneumrx, Inc.Cross-sectional modification during deployment of an elongate lung volume reduction device
US873438013 nov. 201227 mai 2014Uptake Medical Corp.Determining patient-specific vapor treatment and delivery parameters
US874092114 sept. 20123 juin 2014Pneumrx, Inc.Lung volume reduction devices, methods, and systems
US875834114 mai 200924 juin 2014Tsunami Medtech, LlcThermotherapy device
US879524113 mai 20115 août 2014Spiration, Inc.Deployment catheter
US885854914 mars 201214 oct. 2014Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US887679115 sept. 20104 nov. 2014Pulmonx CorporationCollateral pathway treatment using agent entrained by aspiration flow current
US888880013 mars 201218 nov. 2014Pneumrx, Inc.Lung volume reduction devices, methods, and systems
US89002238 nov. 20102 déc. 2014Tsunami Medtech, LlcTissue ablation systems and methods of use
US891143019 sept. 201316 déc. 2014Tsunami Medtech, LlcMedical probes for the treatment of blood vessels
US892664729 mars 20136 janv. 2015Spiration, Inc.Removable anchored lung volume reduction devices and methods
US893231014 sept. 201213 janv. 2015Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US8956319 *20 juil. 201217 févr. 2015Spiration, Inc.One-way valve devices for anchored implantation in a lung
US89744846 mars 201310 mars 2015Spiration, Inc.Removable lung reduction devices, systems, and methods
US897452729 mars 201310 mars 2015Spiration, Inc.Bronchoscopic repair of air leaks in a lung
US897989322 févr. 201317 mars 2015Pulsar Vascular, Inc.Systems and methods for supporting or occluding a physiological opening or cavity
US898633625 janv. 201124 mars 2015Spiration, Inc.Apparatus and method for deployment of a bronchial obstruction device
US905007628 mars 20119 juin 2015Uptake Medical Corp.Device and method for lung treatment
US911385824 juin 201125 août 2015Uptake Medical Corp.High pressure and high temperature vapor catheters and systems
US911394419 nov. 201225 août 2015Tsunami Medtech, LlcMethod for performing lung volume reduction
US91196255 oct. 20121 sept. 2015Pulsar Vascular, Inc.Devices, systems and methods for enclosing an anatomical opening
US912563923 nov. 20058 sept. 2015Pneumrx, Inc.Steerable device for accessing a target site and methods
US916180130 déc. 201020 oct. 2015Tsunami Medtech, LlcMedical system and method of use
US917366911 sept. 20093 nov. 2015Pneumrx, Inc.Enhanced efficacy lung volume reduction devices, methods, and systems
US919240319 déc. 201324 nov. 2015Pneumrx, Inc.Elongated lung volume reduction devices, methods, and systems
US919866913 déc. 20131 déc. 2015Spiration, Inc.Articulable anchor
US920488912 sept. 20118 déc. 2015Tsunami Medtech, LlcMedical instrument and method of use
US925922914 mars 201316 févr. 2016Pulsar Vascular, Inc.Systems and methods for enclosing an anatomical opening, including coil-tipped aneurysm devices
US92779243 sept. 20108 mars 2016Pulsar Vascular, Inc.Systems and methods for enclosing an anatomical opening
US93268736 déc. 20113 mai 2016Spiration, Inc.Valve loader method, system, and apparatus
US940263224 avr. 20142 août 2016Pneumrx, Inc.Lung volume reduction devices, methods, and systems
US940263313 mars 20142 août 2016Pneumrx, Inc.Torque alleviating intra-airway lung volume reduction compressive implant structures
US940297123 janv. 20142 août 2016Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US94334578 mars 20106 sept. 2016Tsunami Medtech, LlcMedical instruments and techniques for thermally-mediated therapies
US20030050648 *11 sept. 200113 mars 2003Spiration, Inc.Removable lung reduction devices, systems, and methods
US20030212412 *9 mai 200213 nov. 2003Spiration, Inc.Intra-bronchial obstructing device that permits mucus transport
US20040073230 *7 mars 200315 avr. 2004Ansamed LimitedCatheter with an expandable end portion
US20040074491 *20 août 200322 avr. 2004Michael HendricksenDelivery methods and devices for implantable bronchial isolation devices
US20040089306 *28 mai 200313 mai 2004Ronald HundertmarkDevices and methods for removing bronchial isolation devices implanted in the lung
US20060047291 *20 août 20052 mars 2006Uptake Medical CorporationNon-foreign occlusion of an airway and lung collapse
US20060161233 *16 nov. 200520 juil. 2006Uptake Medical Corp.Device and method for lung treatment
US20060264972 *5 juil. 200623 nov. 2006Salviac LimitedCatheter with an expandable end portion
US20080110457 *13 nov. 200615 mai 2008Uptake Medical Corp.Treatment with high temperature vapor
US20080132826 *22 juin 20055 juin 2008Shadduck John HMedical instruments and techniques for treating pulmonary disorders
US20090114226 *4 nov. 20087 mai 2009Deem Mark EMethods and devices for use in performing pulmonary procedures
US20090255537 *24 juin 200915 oct. 2009PulmonxDisease indications for selective endobronchial lung region isolation
US20110172786 *14 juil. 2011Rousseau Robert AImplantable Repair Device
US20120289989 *20 juil. 201215 nov. 2012Spiration, Inc.One-way valve devices for anchored implantation in a lung
EP1684667A2 *18 oct. 20042 août 2006Cordis CorporationImplantable valvular prothesis
EP1951129A2 *18 oct. 20066 août 2008Pulsar Vascular, IncorporatedMethods and systems for endovascularly clipping and repairing lumen and tissue defects
EP1951129A4 *18 oct. 200623 déc. 2009Pulsar Vascular IncMethods and systems for endovascularly clipping and repairing lumen and tissue defects
EP2545874A116 nov. 200516 janv. 2013Uptake Medical Corp.Device for lung treatment
WO2005044138A218 oct. 200419 mai 2005Cordis CorporationImplantable valvular prothesis
WO2006055047A2 *1 juil. 200526 mai 2006Mark AdlerIntra-bronchial apparatus for aspiration and insufflation of lung regions distal to placement or cross communication and deployment and placement system therefor
Classifications
Classification aux États-Unis606/108
Classification internationaleA61F2/04, A61B17/22, A61B17/12
Classification coopérativeA61B17/1204, A61B2017/22051, A61F2002/043, A61B2017/1205, A61B17/12022, A61B17/12172, A61B2017/22067, A61B17/12104, A61B17/12159
Classification européenneA61B17/12P7P, A61B17/12P7W1, A61B17/12P5A, A61B17/12P
Événements juridiques
DateCodeÉvénementDescription
20 mars 2002ASAssignment
Owner name: SPIRATION, INC., WASHINGTON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALFERNESS, CLIFTON A.;REEL/FRAME:012737/0395
Effective date: 20020320