US20030186824A1 - Environmentally friendly lubricants - Google Patents

Environmentally friendly lubricants Download PDF

Info

Publication number
US20030186824A1
US20030186824A1 US10/253,126 US25312602A US2003186824A1 US 20030186824 A1 US20030186824 A1 US 20030186824A1 US 25312602 A US25312602 A US 25312602A US 2003186824 A1 US2003186824 A1 US 2003186824A1
Authority
US
United States
Prior art keywords
oil
environmentally friendly
ester
lubricant
friendly lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/253,126
Inventor
I-Ching Chiu
Selda Gunsel
Paul Lacey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pennzoil Quaker State Co
Original Assignee
Pennzoil Quaker State Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pennzoil Quaker State Co filed Critical Pennzoil Quaker State Co
Priority to US10/253,126 priority Critical patent/US20030186824A1/en
Assigned to PENNZOIL-QUAKER STATE COMPANY reassignment PENNZOIL-QUAKER STATE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIU, I-CHING, GUNSEL, SELDA, LACEY, PAUL
Publication of US20030186824A1 publication Critical patent/US20030186824A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/04Fatty oil fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • C10M2207/2825Esters of (cyclo)aliphatic oolycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/401Fatty vegetable or animal oils used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition

Definitions

  • This invention relates to environmentally friendly engine lubricant compositions suitable for internal combustion engines, and in particular for use in gasoline-fueled and diesel-fueled engines.
  • Vegetable oil triglycerides are available for use in food products and cooking. Many such vegetable oils contain natural antioxidants such as phospholipids and sterols that prevent oxidation during storage. Triglycerides are considered the esterification product of glycerol with three molecules of carboxylic acids. The amount of unsaturation in the carboxylic acid affects the susceptibility of the triglyceride to oxidze. Oxidation can include reactions that link two or more triglycerides together through reactions of atoms near the unsaturation. These reactions may form higher molecular weight material which can become insoluble and discolored e.g. sludge.
  • Oxidation can also result in cleavage of the ester linkage or other internal cleavage of the triglycerides.
  • the fragments of the triglyceride from the cleavage being lower in molecular weight, are more volatile.
  • Carboxylic acid groups generated from the oxidation of triglyceride make the lubricant acidic. Aldehyde groups may also be generated.
  • Carboxylic acid groups have attraction for oxidized metals and can solubilize them in oil promoting metal removal from some surfaces of lubricated metal parts.
  • Synthetic ester lubricants having little or no unsaturation in the carbon to carbon bonds are used in premium quality motor oils due to their desirable properties.
  • acids and alcohols used to make synthetic esters usually are derived from petroleum distillates and are thus not from a renewable source.
  • Synthetic lubricants are also more costly and less biodegradable than natural triglycerides.
  • oils high in natural oleic acid levels such as safflower, sunflower, corn, soybean and rapeseed oils. These polyunsaturated oils have lower oxidative stability, whereas fully saturated oils tend to crystallize at low temperatures.
  • oils with a high preponderance of the monounsaturated fat, oleic acid provides a reasonable compromise between these two extremes.
  • an oil for use in internal combustion engines should also satisfy the most current requirements of the GF-3/API SL minimum performance standards, including a gelation index of less than about 12; high temperature TEOST (thermo-oxidative engine oil simulation) of total deposits of 45 mg maximum; remain homogeneous and miscible when mixed with SAE reference mineral oils; low volatility; phosphorous level of 0.1% maximum; and has to pass foam, filterability and ball rust test.
  • TEOST thermo-oxidative engine oil simulation
  • an environmentally friendly lubricant comprises a transesterified triglyceride oil and a synthetic ester different from the triglyceride oil, the lubricant having a gelation index less than about 12 and being at least 60% biodegradable.
  • the lubricant can be used as an automobile engine oil and may further include viscosity index improvers and/or detergent inhibitor (DI) packages.
  • the automobile engine oil may also include other additives, such as a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor and anti-foaming agent. Additional embodiments are explained in the following description.
  • FIG. 1 is a graph of gelation index (Gi) against the weight percent of viscosity modifier (VII) for various lubricants made in embodiments of the invention.
  • Embodiments of the invention provide an environmentally friendly lubricant for use under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment.
  • the oil is at least about 60% biodegradable according to ASTM D5864-95 and meets one or more of the current standards according to the Society of Automotive Engineers (SAE), American Petroleum Institute (API) and the International Lubricant Standardization and Approval Committee (ILSAC), which are incorporated by reference herein in their entirety.
  • R R L +k*(R U ⁇ R L ), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . , 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent.
  • any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
  • ASTM stands for American Society for Testing and Materials which provides standard protocols for material evaluation.
  • BIODEGRADABILITY is a measure of a lubricants biodegradability.
  • ASTM D 5864 determines lubricant biodegradation. The test determines the rate and extent of aerobic aquatic biodegradation of lubricants when exposed to an inoculum under laboratory conditions. The degree of biodegradability is measured by calculating the rate of conversion of the lubricant to CO 2 . A lubricant is classified as readily biodegradable when 60 percent or more of the test material carbon is converted to CO 2 in 28 days, as determined using this test method. In some embodiments, the lubricants have a biodegradability of at least 65%, 70%, 75%, 80%, 85%, 90%, or 95%.
  • BROOKFIELD VISCOSITY is viscosity, in centipoises, as determined on the Brookfield viscometer.
  • the operating principle for the Brookfield viscometer is the torque resistance on a spindle rotating in the fluid being tested.
  • Brookfield viscosities are most frequently associated with low temperature properties of gear oils and transmission fluids, they are in fact determined for many other types of lubricants.
  • COLD CRANKING STIMULATOR is an intermediate shear rate viscometer and measures the resistance of an oil to engine cranking at low temperatures. CCS is controlled largely by the additives in the oil and the viscosity index of the base oil.
  • GELATION INDEX is defined as the largest rate of change of viscosity increase when slowly cooled from ⁇ 5° C. to the lowest test temperature.
  • the gelation index is a number indicating the oil's tendency to form a gelated structure in the oil at colder temperatures. Numbers above 6 indicate some gelation-forming tendencies. Numbers above 12 are of concern to engine makers. Numbers above 15 have been associated with field-failing oils.
  • Gelation index is determined in accordance with ASTM D-5133, which is incorporated by reference herein in its entirety. The gelation index can be measured by the Scanning Brookfield Technique in accordance with ASTM D5133. In this test, a tube of oil containing a rotor driven at 0.3 RPM is slowly cooled at 1° C.
  • the viscosity is measured by the increasing torque generated by a spindle rotating in the oil at constant speed. A plot of the overall viscosity curve is generated. The gelation index is determined accordingly.
  • GELATION POINT also known as GELATION TEMPERATURE is defined as the temperature at which the gelation index occurs. Gelation temperature is determined in accordance with ASTM D-5133, which is incorporated by reference herein in its entirety.
  • KINEMATIC VISCOSITY is viscosity now commonly reported in centistokes (cSt), measured at either 40° C. or 100° C.
  • YIELD STRESS AND Apparent LOW TEMPERATURE VISCOSITY measures the borderline pumping temperature for engine oils.
  • An engine oil is held at 80° C. in a mini-rotary viscometer and slowly cooled at a programmed cooling rate to a final test temperature, a low torque is applied to the rotor shaft to measure yield stress, then a higher torque is applied to determine the apparent viscosity of the sample.
  • POISE is the CGS unit of absolute viscosity. This is the shear stress (in dynes per square centimeter) required to move one layer of fluid along another over a total layer thickness of one centimeter at a shear rate of one centimeter per second. Dimensions are dyne-sec/cm 2 .
  • the centipoise (cP) is 1/100 of a poise and is the unit of absolute viscosity most commonly used. Whereas ordinary viscosity measurements depend on the force of gravity on the fluid to supply the shear stress and are thus subject to distortion by differences in fluid density, absolute viscosity measurements are independent of density and are directly related to resistance to flow.
  • POUR POINT is a widely used low-temperature flow indicator defined as the lowest temperature at which an oil or distillate fuel is observed to flow when cooled under conditions prescribed by test method ASTM D97.
  • the pour point is 3° C. (5° F.) above the temperature at which the oil in a test vessel shows no movement when the container is held horizontally for five seconds.
  • TESS TAPERED BEARING SIMULATOR
  • VISCOSITY INDEX measures the rate of change of viscosity with temperature, determined by formula from the viscosities at 40° C. and 100° C. in accordance with ASTM D567 (or D2270 for VI's above 100).
  • VISCOSITY is a measure of a fluid's resistance to flow. It is ordinarily expressed in terms of the time required for a standard quantity of the fluid at a certain temperature to flow through a standard orifice. The higher the value, the more viscous the fluid. Since, viscosity varies inversely with temperature, its value is meaningless unless accompanied by the temperature at which it is determined. With petroleum oils, viscosity is now commonly reported in Centistokes (cSt), measured at either 40° C. or 1 00C (ASTM Method D445—Kinematic Viscosity).
  • VOLATILITY is a property of a liquid that defines its evaporation characteristics. Of two liquids, the more volatile boils at a lower temperature, and it evaporates faster when both liquids are at the same temperature.
  • the volatility of petroleum products can be evaluated by tests for Flash Point, Simulation Distillation and volatility weight loss (NOACK).
  • the environmentally friendly lubricant in accordance with embodiments of the invention is a mixture of transesterified vegetable oil and esters.
  • the lubricant has a gelation index of less than about 12. In some embodiments, the gelation index is less than about 10, less than about 8, less than about 6, less than about 4, or less than about 2.
  • the lubricant meets one or more of the current standards of the Society of Automotive Engineers (SAE), American Petroleum Institute (API) and the International Lubricant Standardization and Approval Committee (ILSAC) and is at least about 60% biodegradable according to the ASTM D 5864 test which defines the lubricant as readily biodegradable.
  • SAE Society of Automotive Engineers
  • API American Petroleum Institute
  • IVSAC International Lubricant Standardization and Approval Committee
  • Various types of vegetable oils may be present in the lubricant.
  • the transesterified vegetable oil may be a mixture of transesterified corn, rapeseed, soybean, and sunflower oil.
  • the transesterified vegetable oil is mixed with esters that lower the gelation index and improve viscosity.
  • Table 2 indicates various compositions of environmentally friendly lubricant compositions in accordance with embodiments of the invention. TABLE 2 Preferred More Preferred Most Preferred Possible Component Range (wt. %) Range (wt. %) Range (wt. %) Range (wt. %) Range (wt. %) Range (wt. %) Range (wt. ).
  • the environmentally friendly lubricant is a mixture of a transesterified vegetable oil in an amount from about 30 to about 85%, more preferably from about 35 to about 75%, and most preferred from about 40 to about 65%; a synthetic ester in an amount from about 10 to about 30%, more preferred from about 12 to about 25%, and most preferred from about 15 to about 20%.
  • an ester type viscosity index improver may be added in an amount from about 0.1 to about 3.0%, more preferred from about 0.2 to about 2.5%, most preferred from about 0.5 to about 2%; further, an olefin copolymer type viscosity index improver is optionally added in an amount from about 0.1 to about 6.0%, more preferred from about 1 to about 5%, most preferred from about 2 to about 4%.
  • the environmental lubricant further optionally includes a dispersant/inhibitor package in an amount from about 8 to about 14%, more preferred from about 10 to about 12%; and other additives, such as a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor, and anti-foaming agent, in the amount from about 0.1 to about 5%, more preferred from about 0 to about 2%.
  • the environmentally friendly lubricant is formulated to have a gelation index of less than about 12 and is at least about 60% biodegradable in the ASTM D-5864-95 biodegradability test.
  • the environmentally friendly lubricant also meets all ILSAC GF-3/API SL bench tests.
  • transesterified vegetable oils in the environmentally friendly lubricant are in the amount from about 30 to about 85 wt %, more preferably from about 35 to about 75 wt %, and most preferred from about 40 to about 65 wt %.
  • Suitable transesterified vegetable oils include, but are not limited to those described in the following U.S. Patents which are incorporated by reference herein in their entirety: U.S. Pat. Nos. 6,420,322; 6,414,223; 6,291,409; 6,281,375; 6,278,006; 6,271,185; and 5,885,643.
  • one such transesterified vegetable oil comprises a glycerol polyol ester having the following formula, as disclosed in U.S. Pat. No. 6,278,006:
  • R 1 , R 2 , and R 3 are aliphatic hydrocarbyl groups having from about 4 to about 24 carbon atoms inclusive, wherein at least one of R 1 , R 2 , and R 3 have a saturated aliphatic hydrocarbyl moiety having about 4 to about 10 carbon atoms inclusive, and wherein at least one of R 1 , R 2 , and R 3 have an aliphatic hydrocarbyl moiety having from about 12 to about 24 carbon atoms inclusive.
  • These triglycerides are available from a variety of plants or their seeds and are commonly referred to as vegetable oils.
  • R 1 , R 2 and R 3 may be different moieties or the same moiety.
  • hydrocarbyl group having at least 60 percent monounsaturated character and containing from about 6 to about 24 carbon atoms.
  • hydrocarbyl group denotes a radical having a carbon atom directly attached to the remainder of the molecule.
  • the aliphatic hydrocarbyl groups include the following:
  • Aliphatic hydrocarbon groups that is, alkyl groups such as heptyl, nonyl, undecyl, tridecyl, heptadecyl; alkenyl groups containing a single double bond such as heptenyl, nonenyl, undecenyl, tridecenyl, heptadecenyl, heneicosenyl; alkenyl groups containing 2 or 3 double bonds such as 8,11-heptadecadienyl and 8,11,14-heptadecatrienyl. All isomers of these are included, but straight chain groups are preferred.
  • Substituted aliphatic hydrocarbon groups that is groups containing non-hydrocarbon substituents which do not alter the predominantly hydrocarbon character of the group.
  • substituents examples are hydroxy, carbalkoxy (especially lower carbalkoxy), and alkoxy (especially lower alkoxy).
  • lower denoting groups containing not more than 7 carbon atoms.
  • Hetero groups that is, groups which, while having predominantly aliphatic hydrocarbon character contain atoms other than carbon present in a chain or ring otherwise composed of aliphatic carbon atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for example, oxygen, nitrogen and sulfur.
  • Naturally occurring triglycerides are vegetable oil triglycerides.
  • Transesterified triglycerides may be formed by the reaction of one mole of glycerol with three moles of a fatty acid or mixture of fatty acids or by the chemical modification of a naturally occurring vegetable oil. Regardless of the source of the triglyceride oil, the fatty acid moieties are such that the triglyceride has a monounsaturated character of at least about 60 percent, preferably at least about 70 percent and most preferably at least about 80 percent.
  • the transesterified triglyceride may also have a monounsaturated character of at least about 85, 90, or 95%.
  • Preferred transesterified vegetable oils have relatively high oxidative stability and good low temperature viscosity properties.
  • Oxidative stability is related to the degree of unsaturation in the oil and can be measured, e.g., with an Oxidative Stability Index instrument, Omnion, Inc., Rockland, Mass. according to AOCS Official Method Cd 12b-92 (revised 1993).
  • Oxidative stability is often expressed in terms of “AOM” hours.
  • oxidative stability of oils can range from about 40 AOM hours to about 120 AOM hours or from about 80 AOM hours to about 120 AOM hours.
  • the transesterified vegetable oils used in some embodiments have excellent low temperature viscosity properties.
  • a higher viscosity index value indicates that the viscosity of the oil changes less with a change in temperature.
  • the higher the viscosity index the greater the resistance of the lubricant to thicken at low temperatures and thin out at high temperatures.
  • Transesterified vegetable oils used in certain embodiments have a pour point from about 0° C. to about ⁇ 30° C.
  • the vegetable oils are liquid at room temperature and have a melting point of about 6° C. or less.
  • the vegetable oils may be genetically modified such that they contain a higher than normal oleic acid content.
  • High oleic vegetable oils contain at least about 60% oleic acid. These high oleic oils have lower oxidative stability, whereas fully saturated oils tend to crystallize at low temperatures.
  • Normal sunflower oil has an oleic acid content of 25-30 percent. By genetically modifying the seeds of sunflowers, a sunflower oil can be obtained wherein the oleic acid content is from about 60 percent up to about 90 percent.
  • U.S. Pat. No. 4,627,192 and No. 4,743,402 are herein incorporated by reference for their disclosure to the preparation of high oleic sunflower oil and its method of measuring the oleic acid content.
  • High oleic vegetable oils can be high oleic safflower oil, high oleic corn oil, high oleic rapeseed oil, high oleic sunflower oil, high oleic soybean oil, high oleic cottonseed oil, high oleic lesquerella oil, high oleic meadowfoam oil and high oleic palm olein.
  • a preferred oil is the AGRI-PURE 560TM which is a transesterified high oleic acid sunflower oil with short saturated fatty acid esters.
  • AGRI-PURE 560TM is a synthetic polyolester TAG base oil by CARGILL (Minneapolis, Minn.).
  • AGRI-PURE 560TM The specifications according to the manufacturer for AGRI-PURE 560TM are: TABLE 3 AGRI-PURE 560 TM PROPERTY AGRI-PURE 560 TEST METHOD Viscosity at 40° C. 28.76 cSt ASTM D445 Viscosity at 100° C. 6.47 cSt ASTM D445 Viscosity Index 189 ASTM D2270 Noack volatility 3.5% ASTM D6375-99A Specific Gravity 0.924 g/ml ASTM D1298 Density 7.39 lbs/gal By conversion Flash Point 247° C. ASTM D92 Oxidative Stability >1500 hrs ASTM D943 Dry PDSC, 180° C. 38 minutes ASTM D6186-98 Biodegradability >95% CEC L33-A-94 Biodegradability >80% ASTM D5864-95
  • Additional preferred TAG base oils include a high oleic sunflower oil available as SUNYL 80TM and a high oleic rapeseed oil available as RS-80TM, both from SVO ENTERPRISES (Eastlake, Ohio).
  • Other high oleic oils include high oleic sunflower oils available from DOW, DUPONT, or Instituto de la Grasa, high oleic canola oils from CARGILL or DUPONT, high oleic soybean oils from DUPONT or MONSANTO, high oleic corn oils from DUPONT, and high oleic peanut oils from MYCOGEN or the University of Fla.
  • Non-genetically modified vegetable oils are sunflower oil, safflower oil, corn oil, soybean oil, rapeseed oil, meadowfoam oil, lesquerella oil, castor oil or olive oil. It is to be noted that olive oil is naturally high in oleic acid. The oleic acid content of olive oil typically ranges from about 65 to about 85 percent.
  • Any vegetable oil can be transesterified by the addition of a saturated ester, preferably a short chain fatty acid or a polyol ester. This addition results in random esterification of the short chain fatty acids to the glycerol backbone of the vegetable oil.
  • transesterification can be performed by adding a short chain fatty acid ester to a vegetable oil in the presence of a suitable catalyst and heating the mixture.
  • Esters of short chain fatty acids include methyl esters and polyol esters. Methyl esters can be produced, for example, by esterification of fatty acids.
  • Polyol esters also can be used in the transesterification of vegetable oils.
  • polyol esters refers to esters produced from polyols containing from two to about 10 carbon atoms and from two to six hydroxyl groups. Preferably, the polyols contain two to four hydroxyl moieties.
  • transesterification of a polyol ester with a vegetable oil results in the short fatty acid chains of the polyol and the long fatty acid chains of the TAG being randomly distributed among both the polyol and glycerol backbones.
  • transesterified vegetable contain TAGs having a structure as defined above, and/or a non-glycerol polyol ester having the following structure:
  • R 4 and R 5 are independently aliphatic hydrocarbyl groups having from about 4 to about 24 carbon atoms inclusive, wherein at least one of R 4 and R 5 have a saturated aliphatic hydrocarbyl moiety having about 4 to about 10 carbon atoms inclusive, and wherein at least one of R 4 and R 5 have an aliphatic hydrocarbyl moiety having from about 12 to about 24 carbon atoms inclusive.
  • These triglycerides are available from a variety of plants or their seeds and are commonly referred to as vegetable oils.
  • R 6 and R 7 are independently a hydrogen, an aliphatic hydrocarbyl moiety having one to four carbon atoms, or the following formula:
  • X is an integer of about 0 to about 6, and wherein R 8 is an aliphatic hydrocarbyl moiety having four to 24 carbon atoms.
  • transesterified vegetable oils are disclosed in U.S. Pat. No. 6,278,006, which is incorporated in its entirety herein.
  • Other triaglycerol oils that may be used are disclosed in U.S. Pat. Nos. 5,990,055 and 6,281,375, which are incorporated by reference in their entirety.
  • the transesterified vegetable oil may include the glycerol polyol ester (shown above) alone or the non-glycerol polyol ester (shown above) alone, or a mixture of both.
  • Vegetable oils tend to crystallize at low temperature because the triacyl structures tend to be quite regular and subject to packing. This causes the viscosity to abruptly increase at lower temperatures, resulting in the failure of gelation index tests.
  • a low gelation index saturated synthetic ester (which is different from the vegetable oil) is added. For example, from about 10 to about 30% of a saturated synthetic ester was blended in the formulation. It was discovered that the synthetic ester, particularly saturated esters, lowered the gelation index significantly.
  • the synthetic ester may be a dibasic ester such as adipate, a sebacate ester, a tribasic ester such as trimethylol ethane (TME), a trimethylol propane (TMP) ester, or a polyol ester, such as pentaerythritol ester.
  • the gelation index of the first ester added to the transesterified triglyceride oil should be less than about 10, less than about 8, or less than about 6.
  • the first ester used to lower the gelation index of the lubricant has a gelation index of less than about 5, such as about 4 or less, about 3 or less, about 2 or less, or about 1 or less.
  • Dibasic or dibasic acid esters are the products from a C 4 -C 12 dicarboxylic acid (such as succinic, glutaric acid, adipic acid, and sebacic acid) reacting with 2 moles of C 1 -C 12 alcohols.
  • a dicarboxylic acid such as succinic, glutaric acid, adipic acid, and sebacic acid
  • the dibasic ester should have a viscosity index of at least about 120 in order to function adequately.
  • Dibasic esters are of the formula:
  • R 1 and R 2 are a hydrocarbyl group having from about 1 to about 20 carbon atoms and n is an integer from about 1 to about 20.
  • a preferred dibasic ester is EMKARATE 1130TM which is the diester of a C 10 alcohol with sebacic acid by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.).
  • R 1 and R 2 may be different moieties or the same moieties.
  • Dibasic esters having similar characteristics as those in the following talbe are also useful: Property Value Flash Point, ° C. 230 (closed cup) 260 (open cup) Auto Ignition Temperature, ° C. 385 Density, g/ml 0.909 Pour Point, ° C. ⁇ 60 Kinematic Viscosity, cSt 20.2 @ 40° C. 4.8 @ 100° C.
  • Tribasic esters are the products from a C 4 -C 12 tricarboxylic acid reacting with 3 moles of C 1 -C 20 alcohols or made by a fatty acid condensing with a polyol (tri-ol).
  • the tribasic ester should have a viscosity index of at least about 120 in order to function adequately.
  • Tribasic esters are of the formula:
  • R 1 , R 2 , R 3 and R 4 are a hydrocarbyl group having from about 1 to about 20 carbon atoms.
  • a preferred tribasic ester is EMKARATE 1550TM made by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.).
  • R1, R2, R3 and R4 may be different moieties or the same moieties.
  • R 1 , R 2 , R 3 , and R 4 are a hydrocarbyl group having from about 1 to about 20 carbon atoms.
  • R 4 is CH 3
  • the resulting synthetic ester is a trimethylol ethane ester.
  • R 4 is CH 3 CH 2
  • the resulting synthetic ester is a trimethylol propane ester.
  • Suitable synthetic esters include EMKARATE 1700TM which is a pentaerythritol ester of a C 5 -C 7 alcohol, PRIOLUBE 3960TM, PRIOLUBE 3939TM, PRIOLUBE 1831TM which are polymers made from a dimer acid with a di-alcohol by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.)
  • R 1 , R 2 , R 3 and R 4 may be different moieties or the same moieties.
  • viscosity index improvers were added to the formulation.
  • viscosity modifier or viscosity index improver.
  • One is the relative polar ester-type, such as LUBRIZOL 7671TM, which is a long chain ester of maleic anhydride styrene copolymer (see also, LUBRIZOL 7764TM and LUBRIZOL 7783TM which are polymethacrylate copolymers).
  • OCP non-polar hydrogenated olefin copolymer
  • OCP non-polar hydrogenated olefin copolymer
  • LUBRIZOL 7075TM also included are hydrogenated styrene-diene copolymers, such as INFINEUM SV 200TM and INFINEUM SV 150TM, etc.
  • INFINEUM SV 200TM and INFINEUM SV 150TM etc.
  • a preferred polar ester-type viscosity modifier is LUBRIZOLTM 7671 made by LUBRIZOL (Wickliffe, Ohio).
  • LUBRIZOLTM 7671 is a polymethacrylate type thickener and also acts as a pour point depressant for vegetable oils.
  • Other polar ester-type viscosity modifiers include LUBRIZOLTM 7764, LUBRIZOLTM 7776, LUBRIZOLTM 7785, LUBRIZOLTM 7786, from LUBRIZOL (Wickliffe, Ohio) which are polymethacrylate copolymer viscosity index improvers.
  • Polar ester-type viscosity modifiers having similar properties as those in the following table are also useful: Property Value Flash Point, ° C. 165 Specific Gravity 0.90 Viscosity, cSt 8500 @ 40° C. 1500 @ 100° C.
  • a preferred non-polar hydrogenated olefin copolymer-type viscosity modifier is the LUBRIZOL 7075TM Series made by LUBRIZOL (Wickliffe, Ohio). This series is Lubrizol's next generation nondispersant olefin copolymer (OCP) viscosity modifier.
  • Hydrogenated olefin copolymers are the most widely used type of viscosity modifier for passenger car motor oils and heavy-duty diesel engine oils. Developed in the mid-1960s, hydrogenated olefin copolymers differ mainly in molecular weight and the ratio of ethylene to propylene. These polymers effectively minimize viscosity variations over typical engine operating temperatures. They are cost-effective and are suitable for formulating nearly any mainline engine oil. The polymers provide a cost-effective way to meet the latest international and original equipment manufacturer (OEM) specifications for passenger car and heavy-duty diesel engine oils.
  • OEM original equipment manufacturer
  • Non-polar hydrogenated olefin copolymer-type viscosity modifiers having the following characteristics may also be useful in embodiments: Property Value Flash Point, ° C. 190 Specific Gravity 0.87 Viscosity, cSt 825 @ 100° C.
  • LUBRIZOL 7075DTM is a preferred olefin copolymer type viscosity modifier from LUBRIZOL (Wickliffe, Ohio).
  • Other olefin copolymer type viscosity modifiers include the LUBRIZOL 7070TM series, 7077TM series, 7740TM series; INFINEUM SV140TM, SV145TM, SV200TM, SV205TM, SV300TM, SV305TM, (EXXONMOBIL, TX) and PARATONETM 8900 series by (CHEVRON,CA).
  • the ester type viscosity modifiers contribute to the lowering of the gelation index.
  • the maximum amount of ester viscosity modifiers allowable in the formulation without failing the gelation index specification is from about 1.7 to about 2.0%, see FIG. 1.
  • the viscosity grade of the formulated oil is a SAE 30 grade or lower.
  • Ester type viscosity modifiers having the following characteristics may also be useful in embodiments: Property Value Flash Point, ° C. 161 Specific Gravity 0.90 Viscosity, cSt 20.5 @ 100° C.
  • the solubility of the hydrogenated olefin copolymer-type viscosity modifier in vegetable oil is about 4 to about 6 wt % due to the polarity difference.
  • the formulation of the lubricant is a viscosity grade SAE 30 grade oil.
  • the ester type viscosity index improver may be added in an amount from about 0 to about 3.0%, more preferred from about 0.2 to about 2.5%, most preferred from about 0.5 to about 2% and the hydrogenated olefin copolymer type viscosity index improver may be added in an amount from about 0 to about 6.0%, more preferred from about 1 to about 5%, most preferred from about 2 to about 4%.
  • olefin polymers such as polybutene, hydrogenated polymers and copolymers and terpolymers of styrene with isoprene and/or butadiene, polymers of alkyl acrylates or alkyl methacrylates, copolymers of alkyl methacrylates with N-vinyl pyrrolidone or dimethylaminoalkyl methacrylate. These are used as required to provide the viscosity range desired in the finished oil, in accordance with known formulating techniques.
  • Esters obtained by co-polymerizing styrene and maleic anhydride in the presence of a free radical initiator and thereafter esterifying the copolymer with a mixture of C 4 -C 18 alcohols, are also useful as viscosity modifying additives.
  • the styrene esters generally are considered to be multi-functional premium viscosity modifiers.
  • the styrene esters in addition to their viscosity-modifying properties also are pour point depressants and exhibit dispersancy properties when the esterification is terminated before its completion leaving some unreacted anhydride or carboxylic acid groups. These acid groups can then be converted to amides by reaction with a primary amine.
  • SMA copolymer
  • Some SMA polymers that are commercially available from ROHMAX USA include VISCOPLEXTM 2-360, VISCOPLEXTM 2-500, VISCOPLEXTM 3-540, VISCOPLEXTM 4-671, and VISCOPLEXTM 6-054.
  • a dispersant/inhibitor additive package may be added to the lubricant to break insoluble particles already formed and to inhibit the formation of particles. Particles are kept finely divided so that they can remain dispersed or colloidally suspended in the oil.
  • the dispersant/inhibitor additive package is preferably in an amount from about 6 to about 18 wt %, more preferred from about 8 to about 16 wt %, and most preferred from about 10 to about 14 wt %.
  • Detergents and dispersants are polar materials that serve a cleaning function.
  • Detergents include metal sulfonates, metal salicylates and metal thiophosphonates.
  • Dispersants include polyamine succinimides, hydroxy benzyl polyamines, polyamine succinamides, polyhydroxy succinic esters and polyamine amide imidazolines.
  • Detergents are generally combined with dispersant additives in crankcase oils. Detergents chemically neutralize acidic contaminants in the oil before they become insoluble and fall out of the oil, forming a sludge. Neutral or basic compounds are created which can remain in suspension in the oil.
  • Lubricating oils typically contain from about 2 to about 5 wt % of detergent.
  • Suitable ashless dispersants may include, but are not limited to, polyalkenyl or borated polyalkenyl succinimide where the alkenyl group is derived from a C 3 -C 4 olefin, especially polyisobutenyl having a number average molecular weight of about 7,000 to 50,000.
  • Other well known dispersants include the oil soluble polyol esters of hydrocarbon substituted succinic anhydride, e.g.
  • polyisobutenyl succinic anhydride and the oil soluble oxazoline and lactone oxazoline dispersants derived from hydrocarbon substituted succinic anhydride and di-substituted amino alcohols, post-grafted polymers of ethylenepropylene with an active monomer such as maleic anhydride which may be further reacted with alcohol or an alkylene polyamine, styrene-maleic anhydride polymers post-reacted with alcohols and amines and the like.
  • an active monomer such as maleic anhydride which may be further reacted with alcohol or an alkylene polyamine, styrene-maleic anhydride polymers post-reacted with alcohols and amines and the like.
  • Dispersants typically contain a hydrocarbon chain attached to an amine or alcohol-containing polar group.
  • the hydrocarbon “tail” serves to solubilize the molecule in the lubricant base stock, while the polar group serves to attract the polar contaminants resulting from the lubricant breakdown.
  • the dispersant forms millions of micellar structures in the lubricant base stock which contain a highly polar core and disperse enormous amounts of polar contaminants.
  • These contaminants are products of oxidation which serve as precursors to varnish/carbon/sludge formation as well as already-formed varnish/carbon/sludge deposits.
  • the dispersed contaminants are held in “solution” in the basestock while already-formed deposits are cleaned off the metal and elastomer surfaces. Both the suspended precursors and deposits readily pass through commonly used filters.
  • the dispersant can no longer pick up contaminants, so the oil must be drained. However, the oil is usually drained well before this happens.
  • Lubricant oxidation is a chain reaction caused by the reaction of the oxygen in air with the lubricant base stock. Oxidation results in the formation of high molecular weight oil-insoluble polymers. These can settle out as sludges, varnishes and gums. They also cause an increase in the viscosity of the lubricant.
  • the function of the inhibitors is the prevention of the deterioration from the oxygen attack on the lubricant.
  • the oxidation inhibitors function either to destroy free radicals (phenolics or amines) or to decompose the peroxides (amines or ZDDPs) which are involved in the oxidation mechanism. As a result, the lubricant retains its cleanliness and viscosity allowing it to function properly over its drain interval.
  • a preferred dispersant/inhibitor additive package is LUBRIZOL 9850UTM from LUBRIZOL (Wickliffe, Ohio), or LUBRIZOL 9850TM.
  • the contents of DI packages are generally a proprietary secret, but usually contain an antiwear agent, such as ZDDP (Zinc dialkyl dithiophosphate); an antioxidant-phenolic and/or amine type antioxidant; a detergent (Mg and/or Ca sulfonate or phenate); a dispersant (polyisobutylene succinamide); a corrosion inhibitor; a rust inhibitor, a friction modifier; an anti-foaming agent, etc.
  • Suitable dispersant/inhibitor additive packages for gasoline and diesel engine oils are ORONITETM (CHEVRON, CA) and INFINEUMTM (EXXON-MOBIL, TX).
  • GF-3 DI packages include, for example, OLOA 55007TM and OLOA 59029TM (CHEVRON, CA), INFINEUM 5063TM, INFINEUM 3421TM, INFINEUM 3422TM (EXXON-MOBIL, TX), and LUBRIZOL 20,000TM and LUBRIZOL 20,000ATM (LUBRIZOL, OH).
  • Dispersant/inhibitor additive packages having similar characteristics as those listed below are also be useful: Property Value Flash Point, ° C. 146-167 Specific Gravity 0.96-0.97 Viscosity, cSt 1350-1400 @ 40° C. 100-125 @ 100° C.
  • the environmentally friendly lubricant may further include one or more additives.
  • additives include, but are not limited to antioxidants, pour point depressants, detergents, dispersants, friction modifiers, rust inhibitors, corrosion inhibitors and anti-foaming agents.
  • Typical antioxidants are aromatic amines, phenols, compounds containing sulfur or selenium, dithiophosphates, sulfurized polyalkenes, and tocopherols.
  • Hindered phenols are particularly useful, and include for example, 2,6-di-tert-butyl-p-cresol (DBPC), tert-butyl hydroquinone (TBHQ), cyclohexylphenol, and p-phenylphenol.
  • DBPC 2,6-di-tert-butyl-p-cresol
  • TBHQ tert-butyl hydroquinone
  • cyclohexylphenol and p-phenylphenol.
  • amine-type antioxidants include phenyl- ⁇ -napthylamine, alkylated diphenylamines and unsymmetrical diphenylhydrazine.
  • IRGANOX L-64 (Ciba Specialty Chemicals, Tarrytown, N.Y.) provides a mixture of antioxidants that is particularly useful.
  • Antioxidants are typically present in amounts from about 0.001 to about 10 weight %. In preferred embodiments, from about 0.01% to about 3.0% of an antioxidant is added to the lubricant.
  • U.S. Pat. Nos. 5,451,334 and 5,773,391 further disclose additional antioxidants and are hereby incorporated in their entirety by reference.
  • Pour point depressants lower the pour point of petroleum products containing wax by reducing the tendency of the wax to collect into a solid mass. Pour point depressants permit flow of the oil formulation below the pour point of the unmodified lubricant.
  • Common pour point depressants include polymethacrylates, wax alkylated naphthalene polymers, wax alkylated phenol polymers and chlorinated polymers.
  • U.S. Pat. Nos. 5,451,334 and 5,413,725 further disclose additional pour point depressants and are hereby incorporated in their entirety by reference.
  • pour point depressants are used generally in amounts of from about 0.01 to about 5 wt %, more typically from about 0.1 to about 1 wt %.
  • Illustrative of pour point depressants which are normally used in lubricating oil compositions are polymers and copolymers of n-alkyl methacrylate and n-alkyl acrylates, copolymers of di-n-alkyl fumarate and vinyl acetate, alpha-olefin copolymers, alkylated naphthalenes, copolymers or terpolymers of alpha-olefins and styrene and/or alkyl styrene, styrene dialkyl maleic copolymers and the like.
  • a preferred pour point depressant is ACRYLOID 3004 Oil Additive available by ROHMAX USA (Horsham, Pa.) that uses the commercial name VISCOPLEX 1-3004TM.
  • the chemistry is based on polymethacrylate (PMA).
  • Other VISCOPLEX series 1 wax modifiers that can be used include VISCOPLEX 1-6004, VISCOPLEX 1-331, and VISCOPLEX 1-600.
  • the VISCOPLEX series 10, such as VISCOPLEX 10-130, and 10-171 can also be used.
  • Suitable metal detergent additives are known in the art and may include one or more of overbased oil-soluble calcium, magnesium and barium phenates, sulfurized phenates, and sulfonates (especially the sulfonates of C 16 -C 50 alkyl substituted benzene or toluene sulfonic acids which have a total base number of about 80 to 300).
  • overbased materials may be used as the sole metal detergent additive or in combination with the same additives in the neutral form; but the overall metal detergent additive should have a basicity as represented by the foregoing total base number.
  • they are present in amounts of from about 3 to about 6 wt % with a mixture of overbased magnesium sulfurized phenate and neutral calcium sulfurized phenate (obtained from C 9 or C 12 alkyl phenols).
  • Suitable anti-wear additives are oil-soluble zinc dihydrocarbyldithiophosphates with a total of at least 5 carbon atoms and are typically used in amounts from about 1 to about 6 wt % by weight.
  • Other anti-wear additives include dithiophosphates and in particular, zinc dialkyl dithiophosphates, metal sulfonates, metal phenate sulfides, fatty acids, acid phosphate esters and alkyl succinic acids.
  • Anti-wear additives adsorb on metal, and provide a film that reduces metal-to-metal contact.
  • anti-wear additives include zinc dialkyldithiophosphates, tricresyl phosphate, didodecyl phosphite, sulfurized sperm oil, sulfurized terpenes and zinc dialkyldithiocarbamate.
  • Rust inhibitors protect surfaces against rust and include alkylsuccinic type organic acids and derivatives thereof, alkylthioacetic acids and derivatives thereof, organic amines, organic phosphates, polyhydric alcohols, and sodium and calcium sulphonates. Rust inhibitors are employed in very small proportions such as from about 0.1 to about 1 wt % with suitable rust inhibitors being exemplified by C 9 -C 30 aliphatic succinic acids or anhydrides such as dodecenyl succinic anhydride.
  • Anti-foam additives reduce or prevent the formation of a stable surface foam and are typically present in amounts from about 0.01 to about 1 wt %.
  • Polymethylsiloxanes, polymethacrylates, salts of alkylene dithiophosphates, amyl acrylate telomer and poly(2-ethylhexylacrylate-co-ethyl acrylate) are non-limiting examples of anti-foam additives.
  • Viscosity of an automotive oil is classified in SAE (Society of Automotive Engineers) viscosity grades represented by numbers such as 30, 40, 50. The higher the number, the thicker the oil and the greater it's effectiveness in high temperature operations. Lower numbered oils that are thinner oils with low viscosity are used in cold climates as they flow more easily and are identified by a “W” mark next to the grade of oil on the package. Multigrade oils 5Wxx, 10Wxx, 20Wxx, etc. are suitable for both low and high temperature conditions. Lubricating oils made specifically for industrial use have their viscosity classified by ISO (international Organization for Standardization) grades.
  • SAE grade motor oils high and low viscosity mineral oils are added to the environmentally friendly lubricant.
  • the SAE grade motor oils that can be achieved include 0W-30, 5W-30, 10W-30, and 10W-40.
  • Mineral oils from Group I to Group V are preferred.
  • Preferred examples useful in the formulation include: TABLE 4 Mineral Oils Kin. Visc. @ Kin. Visc. @ Group Example 40° C. (cSt) 100° C.
  • EXCEL 100-HCTM, 230-HCTM, and 575-HCTM are Group II mineral oils made by PENNZOIL-QUAKER STATE COMPANY (Houston, Tex.). Yubase 150NTM and 240NTM are Group III mineral oils made by Yukong (Seoul, Korea).
  • CHEVRON UCBO7RTM is a Group III mineral oil made by CHEVRON.
  • SHELL XHVI TM is a Group III mineral oil made by Shell Chemical Company. Mineral oils are used generally in amounts of from about 0 to about 40 wt %.
  • Table 5A and Table 5B provide the formulations and physical properties of lubricants using polar ester-type viscosity modifiers.
  • the dispersant/inhibitor package was LUBRIZOL 9850UTM.
  • the pour point depressant was Viscoplex 1-3004TM.
  • the mineral oil was Yubase 150NTM and the synthetic ester was Emkarate 1130TM.
  • the vegetable oil was AGRI-PURE 560TM.
  • the gelation index (Gi) for formulations including LUBRIZOL 7764TM and LUBRIZOL 7785TM were plotted against the weight percent of viscosity modifier (VII) as shown in FIG. 1.
  • This graph indicates that when the amount of viscosity modifier was higher than about 2.2 wt % and about 1.2 wt % of LUBRIZOL 7764TM and LUBRIZOL 7785TM, respectively, formulations failed the GF-3/API SL specification of the gelation index maximum of 12.
  • the formulations passed the gelation index, but the finished oils were limited to the SAE 30 viscosity grade.
  • using lower than 1.2 wt % of LUBRIZOL 7764TM gave formulations that passed the gelation index of 12, but the finished oils were limited to the SAE 20 viscosity grade.
  • Formulation I is an SAE 30 grade lubricant. It is possible to raise the viscosity of Formulation I to SAE 40 grade by increasing the non-biodegradable heavy oil, such as Excel 575-HC, which would decrease the biodegradability of the formulation.
  • Table 7A represents blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising Group III mineral oils (Yubase 150NTM and Yubase 240NTM), a dibasic ester, and modified vegetable oil (AGRI-PURE 560TM).
  • Table 7B discloses the physical properties of the oils in Table 7A. These formulations pass the GF-3/API SL gelation index specification of less than about 12 and meet other physical properties of a SAE 5W-30 grade oil.
  • Formulation K was submitted to independent testing laboratories for ASTM D-6335 Thermo-Oxidation Engine Oil Simulation Test (TEOST), and ASTM D-5864-95 Biodegradability tests were performed at BfB Oil Research in Belgium. Results are shown in Table 8.
  • TEOST may be useful in determining the piston deposit control capability of the motor oil. According to the GF-3/API SL specification the total deposit in TEOST is 45 mg maximum.
  • Group III mineral oils in Example 3 can be replaced by Group II mineral oils, such as Excel HC or Exxon HC (hydro-conversion) oils.
  • Table 9A discloses formulations, in which the different viscosity grades of Group II oils were used alone or in combination to make wide viscosity ranges of motor oils.
  • Table 9B shows the properties of the formulations.
  • additional antioxidants i.e. Irganox L-64TM
  • Irganox L-64TM can be added to the formulation as illustrated in the formulation Q.
  • Formulation R replaces the Irganox L-64TM with NAUGALUBE MOLYFM 2543TM (Crompton Corporation, Middlebury, Conn.) which is a multifunctional friction modifier, anti-wear, and antioxidant additive.
  • TABLE 9A Formulations M-R Formulation M N O P Q R SAE Grade Descrip- 0W-30 5W-30 10W-30 10W-40 10W-40 10W-30 Components tion wt % wt % wt % wt % wt % wt % wt % DI, Lz 9850U DI 12 12 12 12 12 12 12 12 12 Viscoplex 1-3004 PPD 0.1 0.1 0.1 0.1 0.1 0.1 Lz 7764 VII 1.7 1.2 1.1 1.7 1.7 0 Lz 7075D VII 3.3 1.5 0 3.3 3.3 3.3 3.3 Excel 100-HC Group II 25 10 0 0 0 25 Oil Excel 575-HC Group II 0 20 30 30 29.5 0 Oil Irganox
  • the formulation Q was submitted to PerkinElmer Automotive Research Laboratory (San Antonio, Tex.) for high temperature TEOST MHT-4 Thermo-Oxidation Engine Oil Simulation test, Homogeneity and Miscibility (H&M) test, Foam sequence I, II, and III test, High Temperature Foam test, EOFT (Engine Oil Filterability test), and EOWTT (Engine Oil Filterability/water tolerance test).
  • H&M Thermo-Oxidation Engine Oil Simulation test
  • H&M Homogeneity and Miscibility
  • Foam sequence I, II, and III test High Temperature Foam test
  • EOFT Engine Oil Filterability test
  • EOWTT Engine Oil Filterability/water tolerance test
  • the aging cycle was designed to mimic that of the sequence VI B aging with the following parameters: 1500 rpm, 71.4 ft. lbs. torque (load) for 7320 seconds, 18.9 ft. lbs. torque for 1920 seconds, 71.4 ft. lbs. torque for 100 seconds (total aging 9340 seconds), 212° F. coolant temperature, and 220° F. oil temperature.
  • the Highway cycle consisted of a 300 second cycle programmed as follows: minimum rpm: 850, maximum rpm 1840, load varied from: 5 to 28 ft. lbs.
  • the Metro cycle consisted of a 504 second, low rpm and load cycle programmed as follows: minimum rpm: 560, maximum rpm: 1320, load varied from: 0 to 40 ft. lbs. Emissions readings were taken beginning at the onset of each programmed test cycle and ran for the entire duration of each.
  • Table 12 represents a range of SAE grade lubricant oils formulated from blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HCTM and Excel 575-HCTM), a dibasic ester, and CARGILL modified vegetable oil, AGRI-PURE 560TM.
  • the dispersant/inhibitor additive package was Oloa 55007 and the pour point depressant was Viscoplex 1-3004.
  • Table 12 discloses the physical properties of the oils in Table 12. These formulations pass API SL gelation index specification of less than about 12 and meet other physical properties for their appropriate SAE grade.
  • Table 13 represents a range of SAE grade lubricant oils formulated from blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HCTM and Excel 575-HCTM), a dibasic ester, and modified vegetable oil (AGRI-PURE 560TM).
  • the dispersant/inhibitor additive package was Lubrizol 20000 and the pour point depressant was Viscoplex 1-3004.
  • Table 13B discloses the physical properties of the oils in Table 13A.
  • Table 14 represents a 5W-30 SAE grade lubricant oil formulation using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HCTM and Excel 575-HCTM), a dibasic ester, and modified vegetable oil (AGRI-PURE 560TM).
  • the dispersant/inhibitor additive package was Lubrizol 20000 and the pour point depressant was Viscoplex 1-3004. To enhance performance, an extra antioxidant was added. This formulation passed all API SL bench test requirements. Table 14 also discloses the physical properties of the formulation.
  • the formulation AA was submitted to PerkinElmer Automotive Research Laboratory (San Antonio, Tex.) for high temperature TEOST MHT-4 Thermo-Oxidation Engine Oil Simulation test, Homogeneity and Miscibility (H&M) test, Foam sequence I, II, and III test, High Temperature Foam test, EOFT (Engine Oil Filterability test), EOWTT (Engine Oil Filterability/water tolerance test), Gelation Index, NOACK Volatility, Volatility Loss, Phosphorous and Ball Rust Test. In the H&M test, the tested oil shall remain homogeneous and miscible when mixed with SAE reference oils. Table 15 discloses the results.
  • the formulation AA was also submitted for ASTM Sequence IIIF engine tests.
  • the Sequence IIIF Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, sludge and varnish deposition, oil consumption, and engine wear.
  • the Sequence IIIF Test utilizes a 1996 model Buick 3800 Series II, water-cooled, 4-cycle, V-6 engine as the test apparatus.
  • the Sequence IIIF test engine is an overhead valve design (OHV) and uses a single camshaft opeating both intake and exhaust valves via pushrods and hydrualic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder.
  • the Sequence IIIF Test consists of a 10-minute operational check, followed by 80 hours of engine operaton at moderately high speed, load, and temperature conditions. Following each 10-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 10-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil.
  • the Sequence IIIF Test is operated at the test states in Table 16 during the 80 hour portion of the test. Table 17 discloses the results. According to ASTM Sequence IIIF engine tests, the oil meets the bench test of the ILSAC GF-3/API SL minimum performance standard and passed all API-SL bench tests requirements. TABLE 16 Test states of Sequence IIIF testing Parameter Set Point Engine Speed 3600 r/min Engine Load 200 N-m Oil Filter Block Temperature 155° C. Coolant Outlet Temperature 122° C. Fuel Pressure 365 kPa Inlet Air Temperature 27° C. Inlet Air Pressure 0.05 kPa Inlet Air Dew Point 16.1° C.
  • embodiments of the invention provide an environmentally friendly lubricant that meets API SL bench test specifications, and is overall at least 60% biodegradable in ASTM D-5864-95 biodegradability testing. Additional characteristics and advantages provided by embodiments of the invention are apparent to those skilled in the art.
  • the compositions may include numerous compounds and/or characteristics not mentioned herein. In other embodiments, the compositions do not include, or are substantially free of, one or more compounds and/or characteristics not enumerated herein. Variations and modifications from the described embodiments exist.
  • the environmentally friendly lubricant need not be a mixture within the compositions given above. It can comprise any amount of components, so long as the properties desired in the environmentally friendly lubricant are met.
  • the application of the environmentally friendly lubricant composition is not limited to lubricants for automobiles; it can be used in any environment which requires an environmentally friendly lubricant, such as a trucks, vans or buses. It is noted that the methods for making and using the environmentally friendly lubricant composition are described with reference to a number of steps. These steps can be practiced in any sequence. One or more steps may be omitted or combined but still achieve substantially the same results. The appended claims intend to cover all such variations and modifications as falling within the scope of the invention.

Abstract

A biodegradable lubricant that is at least 60% biodegradable and has a gelation index of about 12 or less can be formulated using a transesterified triglyceride base oil together with a synthetic ester. A combination of an ester viscosity index improver and an olefin copolymer viscosity index improver also can be added. Further, the composition can be blended with mineral oils to lower the polarity in order to employ standard dispersant/inhibitor packages. Further, by mixing high and low viscosities of mineral oil in the formulation, it is possible to prepare a full range of SAE grade engine oils for gasoline-fueled and diesel-fueled engines.

Description

    PRIOR RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Serial No. 60/324,723 filed Sep. 25, 2001, which is incorporated herein by reference in its entirety.[0001]
  • FEDERALLY SPONSORED RESEARCH STATEMENT
  • Not applicable. [0002]
  • REFERENCE TO MICROFICHE APPENDIX
  • Not applicable. [0003]
  • FIELD OF THE INVENTION
  • This invention relates to environmentally friendly engine lubricant compositions suitable for internal combustion engines, and in particular for use in gasoline-fueled and diesel-fueled engines. [0004]
  • BACKGROUND OF THE INVENTION
  • Vegetable oil triglycerides are available for use in food products and cooking. Many such vegetable oils contain natural antioxidants such as phospholipids and sterols that prevent oxidation during storage. Triglycerides are considered the esterification product of glycerol with three molecules of carboxylic acids. The amount of unsaturation in the carboxylic acid affects the susceptibility of the triglyceride to oxidze. Oxidation can include reactions that link two or more triglycerides together through reactions of atoms near the unsaturation. These reactions may form higher molecular weight material which can become insoluble and discolored e.g. sludge. Oxidation can also result in cleavage of the ester linkage or other internal cleavage of the triglycerides. The fragments of the triglyceride from the cleavage, being lower in molecular weight, are more volatile. Carboxylic acid groups generated from the oxidation of triglyceride make the lubricant acidic. Aldehyde groups may also be generated. Carboxylic acid groups have attraction for oxidized metals and can solubilize them in oil promoting metal removal from some surfaces of lubricated metal parts. [0005]
  • Due to oxidation problems with natural triglycerides, most commercial lubricants are formulated from petroleum distillates which have lower amounts of unsaturation making them resistant to oxidation. Petroleum distillates require additives to reduce wear and oxidation, lower the pour point and modify the viscosity index (to adjust either the high or low temperature viscosity) etc. The petroleum distillates are resistant to biodegradation and the additives used to adjust certain characteristics (often containing metals and reactive compounds) further detract from the biodegradability of the spent lubricant. [0006]
  • Synthetic ester lubricants having little or no unsaturation in the carbon to carbon bonds are used in premium quality motor oils due to their desirable properties. However the acids and alcohols used to make synthetic esters usually are derived from petroleum distillates and are thus not from a renewable source. Synthetic lubricants are also more costly and less biodegradable than natural triglycerides. [0007]
  • The finite supply of petroleum coupled with concern over the environmental effects from spills and disposal of petroleum based lubricants has fueled interest in the use of vegetable oils as viable substitutes for lubricants. Vegetable oils have the advantages of having a high flash point and excellent lubricating properties, while also being biodegradable and renewable. However, vegetable oils also have relatively poor flow characteristics at low temperatures and relatively poor oxidative stability which prevent their uses in some of the more extreme environments. [0008]
  • The vast majority of efforts to produce vegetable oil lubricants have utilized oils high in natural oleic acid levels, such as safflower, sunflower, corn, soybean and rapeseed oils. These polyunsaturated oils have lower oxidative stability, whereas fully saturated oils tend to crystallize at low temperatures. Thus, the use of oils with a high preponderance of the monounsaturated fat, oleic acid, provides a reasonable compromise between these two extremes. [0009]
  • In order to provide engine lubricants based on vegetable oils, certain standards should be met, including specifications required by SAE (Society of Automotive Engineers), API (American Petroleum Institute) and ILSAC (International Lubricant Standardization and Approval Committee). In particular, the SAE low temperature viscosity requirements have been difficult to meet in vegetable based oils. Further, an oil for use in internal combustion engines should also satisfy the most current requirements of the GF-3/API SL minimum performance standards, including a gelation index of less than about 12; high temperature TEOST (thermo-oxidative engine oil simulation) of total deposits of 45 mg maximum; remain homogeneous and miscible when mixed with SAE reference mineral oils; low volatility; phosphorous level of 0.1% maximum; and has to pass foam, filterability and ball rust test. [0010]
  • Therefore, there is a need for a vegetable oil-based lubricant that can be used as internal combustion engine oils of varying SAE viscosities that meet the current GF-3/API SL specifications and are at least about 60% biodegradable. [0011]
  • SUMMARY OF THE INVENTION
  • The above need is met by various embodiments of the invention. In some embodiments, an environmentally friendly lubricant comprises a transesterified triglyceride oil and a synthetic ester different from the triglyceride oil, the lubricant having a gelation index less than about 12 and being at least 60% biodegradable. The lubricant can be used as an automobile engine oil and may further include viscosity index improvers and/or detergent inhibitor (DI) packages. The automobile engine oil may also include other additives, such as a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor and anti-foaming agent. Additional embodiments are explained in the following description.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph of gelation index (Gi) against the weight percent of viscosity modifier (VII) for various lubricants made in embodiments of the invention.[0013]
  • DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • Embodiments of the invention provide an environmentally friendly lubricant for use under a variety of operating conditions in automobiles, trucks, vans, buses, and off-highway farm, industrial, and construction equipment. Preferably, the oil is at least about 60% biodegradable according to ASTM D5864-95 and meets one or more of the current standards according to the Society of Automotive Engineers (SAE), American Petroleum Institute (API) and the International Lubricant Standardization and Approval Committee (ILSAC), which are incorporated by reference herein in their entirety. [0014]
  • In the following description, all numbers disclosed herein are approximate values, regardless whether the word “about” or “approximate” is used in connection therewith. They may vary by 1 percent, 2 percent, 5 percent, or, sometimes, 10 to 20 percent. Whenever a numerical range with a lower limit, R[0015] L and an upper limit, RU, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RL+k*(RU−RL), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . , 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
  • The following are test properties, definitions and test methods used in the description and examples that follow: [0016]
    TABLE 1
    Testing Methods and Terminology
    Properties Test Method
    Biodegradability ASTM D5864
    Scanning Brookfield Viscosity ASTM D5133
    Cold Cranking Stimulator (CCS) ASTM D5293
    Gelation Index ASTM D5133-99
    Gelation Temperature ASTM D5133-99
    Kinematic Viscosity ASTM D445
    Determination of Yield Stress and Apparent ASTM D4684-98
    Viscosity of Engine Oils at Low Temperature
    (MRV TP-1)
    Pour Point ASTM D97
    Viscosity at High Shear Rate and High ASTM D4683
    Temperature by Tapered Bearing Simulator
    (TBS)
    Viscosity Index ASTM D2270
    Viscosity ASTM D445
    Volatility at 371° C. (Simulated Distillation, ASTM 6417
    Flash Point)
    Evaporation % Wt. Loss (NOACK) ASTM D972
  • Definitions [0017]
  • ASTM stands for American Society for Testing and Materials which provides standard protocols for material evaluation. [0018]
  • BIODEGRADABILITY is a measure of a lubricants biodegradability. ASTM D 5864 determines lubricant biodegradation. The test determines the rate and extent of aerobic aquatic biodegradation of lubricants when exposed to an inoculum under laboratory conditions. The degree of biodegradability is measured by calculating the rate of conversion of the lubricant to CO[0019] 2. A lubricant is classified as readily biodegradable when 60 percent or more of the test material carbon is converted to CO2 in 28 days, as determined using this test method. In some embodiments, the lubricants have a biodegradability of at least 65%, 70%, 75%, 80%, 85%, 90%, or 95%.
  • BROOKFIELD VISCOSITY is viscosity, in centipoises, as determined on the Brookfield viscometer. The operating principle for the Brookfield viscometer is the torque resistance on a spindle rotating in the fluid being tested. Although Brookfield viscosities are most frequently associated with low temperature properties of gear oils and transmission fluids, they are in fact determined for many other types of lubricants. [0020]
  • COLD CRANKING STIMULATOR (CCS) is an intermediate shear rate viscometer and measures the resistance of an oil to engine cranking at low temperatures. CCS is controlled largely by the additives in the oil and the viscosity index of the base oil. [0021]
  • GELATION INDEX is defined as the largest rate of change of viscosity increase when slowly cooled from −5° C. to the lowest test temperature. The gelation index is a number indicating the oil's tendency to form a gelated structure in the oil at colder temperatures. Numbers above 6 indicate some gelation-forming tendencies. Numbers above 12 are of concern to engine makers. Numbers above 15 have been associated with field-failing oils. Gelation index is determined in accordance with ASTM D-5133, which is incorporated by reference herein in its entirety. The gelation index can be measured by the Scanning Brookfield Technique in accordance with ASTM D5133. In this test, a tube of oil containing a rotor driven at 0.3 RPM is slowly cooled at 1° C. per hour for approximately two days, typically from −5° C. (23° F.) to −45° C. (−40° F.). As the sample is cooled, the viscosity is measured by the increasing torque generated by a spindle rotating in the oil at constant speed. A plot of the overall viscosity curve is generated. The gelation index is determined accordingly. [0022]
  • GELATION POINT also known as GELATION TEMPERATURE is defined as the temperature at which the gelation index occurs. Gelation temperature is determined in accordance with ASTM D-5133, which is incorporated by reference herein in its entirety. [0023]
  • KINEMATIC VISCOSITY (KV) is viscosity now commonly reported in centistokes (cSt), measured at either 40° C. or 100° C. [0024]
  • YIELD STRESS AND Apparent LOW TEMPERATURE VISCOSITY (MRV YS and MRV TP-1) measures the borderline pumping temperature for engine oils. An engine oil is held at 80° C. in a mini-rotary viscometer and slowly cooled at a programmed cooling rate to a final test temperature, a low torque is applied to the rotor shaft to measure yield stress, then a higher torque is applied to determine the apparent viscosity of the sample. [0025]
  • POISE is the CGS unit of absolute viscosity. This is the shear stress (in dynes per square centimeter) required to move one layer of fluid along another over a total layer thickness of one centimeter at a shear rate of one centimeter per second. Dimensions are dyne-sec/cm[0026] 2. The centipoise (cP) is 1/100 of a poise and is the unit of absolute viscosity most commonly used. Whereas ordinary viscosity measurements depend on the force of gravity on the fluid to supply the shear stress and are thus subject to distortion by differences in fluid density, absolute viscosity measurements are independent of density and are directly related to resistance to flow.
  • POUR POINT is a widely used low-temperature flow indicator defined as the lowest temperature at which an oil or distillate fuel is observed to flow when cooled under conditions prescribed by test method ASTM D97. The pour point is 3° C. (5° F.) above the temperature at which the oil in a test vessel shows no movement when the container is held horizontally for five seconds. [0027]
  • TAPERED BEARING SIMULATOR (TBS) measures high temperature high shear rate viscosity of motor oils, very high shear rates are obtained by using an extremely small gap between the rotor and stator wall. [0028]
  • VISCOSITY INDEX (VI) measures the rate of change of viscosity with temperature, determined by formula from the viscosities at 40° C. and 100° C. in accordance with ASTM D567 (or D2270 for VI's above 100). [0029]
  • VISCOSITY is a measure of a fluid's resistance to flow. It is ordinarily expressed in terms of the time required for a standard quantity of the fluid at a certain temperature to flow through a standard orifice. The higher the value, the more viscous the fluid. Since, viscosity varies inversely with temperature, its value is meaningless unless accompanied by the temperature at which it is determined. With petroleum oils, viscosity is now commonly reported in Centistokes (cSt), measured at either 40° C. or 1 00C (ASTM Method D445—Kinematic Viscosity). [0030]
  • VOLATILITY is a property of a liquid that defines its evaporation characteristics. Of two liquids, the more volatile boils at a lower temperature, and it evaporates faster when both liquids are at the same temperature. The volatility of petroleum products can be evaluated by tests for Flash Point, Simulation Distillation and volatility weight loss (NOACK). [0031]
  • Generally, the environmentally friendly lubricant in accordance with embodiments of the invention is a mixture of transesterified vegetable oil and esters. The lubricant has a gelation index of less than about 12. In some embodiments, the gelation index is less than about 10, less than about 8, less than about 6, less than about 4, or less than about 2. Preferably, the lubricant meets one or more of the current standards of the Society of Automotive Engineers (SAE), American Petroleum Institute (API) and the International Lubricant Standardization and Approval Committee (ILSAC) and is at least about 60% biodegradable according to the ASTM D 5864 test which defines the lubricant as readily biodegradable. Various types of vegetable oils may be present in the lubricant. For example, the transesterified vegetable oil may be a mixture of transesterified corn, rapeseed, soybean, and sunflower oil. The transesterified vegetable oil is mixed with esters that lower the gelation index and improve viscosity. Table 2 indicates various compositions of environmentally friendly lubricant compositions in accordance with embodiments of the invention. [0032]
    TABLE 2
    Preferred More Preferred Most Preferred Possible
    Component Range (wt. %) Range (wt. %) Range (wt. %) Range (wt. %)
    Transesterified Triglyceride 30-85  35-75 40-65 0.5-99.5
    Synthetic Ester 10-30  12-25 15-20 0.5-99.5
    Ester Type Viscosity Index 0-3  0.2-2.5 0.5-2   0.5-99.5
    Improver
    Olefin Copolymer Type Viscosity 0-6  1-5 2-4 0.5-99.5
    Index Improver
    Dispersant/Inhibitor Package 8-16 10-12  5-10 0.5-99.5
    Additives 0-5  0-2 1-2 0.5-99.5
    Mineral Oil 0-40  5-30 10-25 0.5-99.5
  • In some embodiments, the environmentally friendly lubricant is a mixture of a transesterified vegetable oil in an amount from about 30 to about 85%, more preferably from about 35 to about 75%, and most preferred from about 40 to about 65%; a synthetic ester in an amount from about 10 to about 30%, more preferred from about 12 to about 25%, and most preferred from about 15 to about 20%. Optionally, an ester type viscosity index improver may be added in an amount from about 0.1 to about 3.0%, more preferred from about 0.2 to about 2.5%, most preferred from about 0.5 to about 2%; further, an olefin copolymer type viscosity index improver is optionally added in an amount from about 0.1 to about 6.0%, more preferred from about 1 to about 5%, most preferred from about 2 to about 4%. The environmental lubricant further optionally includes a dispersant/inhibitor package in an amount from about 8 to about 14%, more preferred from about 10 to about 12%; and other additives, such as a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor, and anti-foaming agent, in the amount from about 0.1 to about 5%, more preferred from about 0 to about 2%. The environmentally friendly lubricant is formulated to have a gelation index of less than about 12 and is at least about 60% biodegradable in the ASTM D-5864-95 biodegradability test. The environmentally friendly lubricant also meets all ILSAC GF-3/API SL bench tests. [0033]
  • In other embodiments, transesterified vegetable oils in the environmentally friendly lubricant are in the amount from about 30 to about 85 wt %, more preferably from about 35 to about 75 wt %, and most preferred from about 40 to about 65 wt %. Suitable transesterified vegetable oils include, but are not limited to those described in the following U.S. Patents which are incorporated by reference herein in their entirety: U.S. Pat. Nos. 6,420,322; 6,414,223; 6,291,409; 6,281,375; 6,278,006; 6,271,185; and 5,885,643. [0034]
  • For example, one such transesterified vegetable oil comprises a glycerol polyol ester having the following formula, as disclosed in U.S. Pat. No. 6,278,006: [0035]
    Figure US20030186824A1-20031002-C00001
  • wherein R[0036] 1, R2, and R3 are aliphatic hydrocarbyl groups having from about 4 to about 24 carbon atoms inclusive, wherein at least one of R1, R2, and R3 have a saturated aliphatic hydrocarbyl moiety having about 4 to about 10 carbon atoms inclusive, and wherein at least one of R1, R2, and R3 have an aliphatic hydrocarbyl moiety having from about 12 to about 24 carbon atoms inclusive. These triglycerides are available from a variety of plants or their seeds and are commonly referred to as vegetable oils. R1, R2 and R3 may be different moieties or the same moiety.
  • Within the triglyceride formula are aliphatic hydrocarbyl groups having at least 60 percent monounsaturated character and containing from about 6 to about 24 carbon atoms. The term “hydrocarbyl group” as used herein denotes a radical having a carbon atom directly attached to the remainder of the molecule. The aliphatic hydrocarbyl groups include the following: [0037]
  • (1) Aliphatic hydrocarbon groups; that is, alkyl groups such as heptyl, nonyl, undecyl, tridecyl, heptadecyl; alkenyl groups containing a single double bond such as heptenyl, nonenyl, undecenyl, tridecenyl, heptadecenyl, heneicosenyl; alkenyl groups containing 2 or 3 double bonds such as 8,11-heptadecadienyl and 8,11,14-heptadecatrienyl. All isomers of these are included, but straight chain groups are preferred. [0038]
  • (2) Substituted aliphatic hydrocarbon groups; that is groups containing non-hydrocarbon substituents which do not alter the predominantly hydrocarbon character of the group. Those skilled in the art will be aware of suitable substituents; examples are hydroxy, carbalkoxy (especially lower carbalkoxy), and alkoxy (especially lower alkoxy). The term, “lower” denoting groups containing not more than 7 carbon atoms. [0039]
  • (3) Hetero groups; that is, groups which, while having predominantly aliphatic hydrocarbon character contain atoms other than carbon present in a chain or ring otherwise composed of aliphatic carbon atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for example, oxygen, nitrogen and sulfur. [0040]
  • Naturally occurring triglycerides are vegetable oil triglycerides. Transesterified triglycerides may be formed by the reaction of one mole of glycerol with three moles of a fatty acid or mixture of fatty acids or by the chemical modification of a naturally occurring vegetable oil. Regardless of the source of the triglyceride oil, the fatty acid moieties are such that the triglyceride has a monounsaturated character of at least about 60 percent, preferably at least about 70 percent and most preferably at least about 80 percent. The transesterified triglyceride may also have a monounsaturated character of at least about 85, 90, or 95%. [0041]
  • Preferred transesterified vegetable oils have relatively high oxidative stability and good low temperature viscosity properties. Oxidative stability is related to the degree of unsaturation in the oil and can be measured, e.g., with an Oxidative Stability Index instrument, Omnion, Inc., Rockland, Mass. according to AOCS Official Method Cd 12b-92 (revised 1993). Oxidative stability is often expressed in terms of “AOM” hours. For example, oxidative stability of oils can range from about 40 AOM hours to about 120 AOM hours or from about 80 AOM hours to about 120 AOM hours. The transesterified vegetable oils used in some embodiments have excellent low temperature viscosity properties. A higher viscosity index value indicates that the viscosity of the oil changes less with a change in temperature. In other words, the higher the viscosity index, the greater the resistance of the lubricant to thicken at low temperatures and thin out at high temperatures. Transesterified vegetable oils used in certain embodiments have a pour point from about 0° C. to about −30° C. The vegetable oils are liquid at room temperature and have a melting point of about 6° C. or less. [0042]
  • The vegetable oils may be genetically modified such that they contain a higher than normal oleic acid content. High oleic vegetable oils contain at least about 60% oleic acid. These high oleic oils have lower oxidative stability, whereas fully saturated oils tend to crystallize at low temperatures. Normal sunflower oil has an oleic acid content of 25-30 percent. By genetically modifying the seeds of sunflowers, a sunflower oil can be obtained wherein the oleic acid content is from about 60 percent up to about 90 percent. U.S. Pat. No. 4,627,192 and No. 4,743,402 are herein incorporated by reference for their disclosure to the preparation of high oleic sunflower oil and its method of measuring the oleic acid content. [0043]
  • High oleic vegetable oils can be high oleic safflower oil, high oleic corn oil, high oleic rapeseed oil, high oleic sunflower oil, high oleic soybean oil, high oleic cottonseed oil, high oleic lesquerella oil, high oleic meadowfoam oil and high oleic palm olein. A preferred oil is the AGRI-PURE 560™ which is a transesterified high oleic acid sunflower oil with short saturated fatty acid esters. AGRI-PURE 560™ is a synthetic polyolester TAG base oil by CARGILL (Minneapolis, Minn.). [0044]
  • The specifications according to the manufacturer for AGRI-PURE 560™ are: [0045]
    TABLE 3
    AGRI-PURE 560 ™
    PROPERTY AGRI-PURE 560 TEST METHOD
    Viscosity at 40° C. 28.76 cSt ASTM D445
    Viscosity at 100° C. 6.47 cSt ASTM D445
    Viscosity Index 189 ASTM D2270
    Noack volatility 3.5% ASTM D6375-99A
    Specific Gravity 0.924 g/ml ASTM D1298
    Density 7.39 lbs/gal By conversion
    Flash Point 247° C. ASTM D92
    Oxidative Stability >1500 hrs ASTM D943 Dry
    PDSC, 180° C. 38 minutes ASTM D6186-98
    Biodegradability >95% CEC L33-A-94
    Biodegradability >80% ASTM D5864-95
  • Additional preferred TAG base oils include a high oleic sunflower oil available as SUNYL 80™ and a high oleic rapeseed oil available as RS-80™, both from SVO ENTERPRISES (Eastlake, Ohio). Other high oleic oils include high oleic sunflower oils available from DOW, DUPONT, or Instituto de la Grasa, high oleic canola oils from CARGILL or DUPONT, high oleic soybean oils from DUPONT or MONSANTO, high oleic corn oils from DUPONT, and high oleic peanut oils from MYCOGEN or the University of Fla. [0046]
  • Non-genetically modified vegetable oils are sunflower oil, safflower oil, corn oil, soybean oil, rapeseed oil, meadowfoam oil, lesquerella oil, castor oil or olive oil. It is to be noted that olive oil is naturally high in oleic acid. The oleic acid content of olive oil typically ranges from about 65 to about 85 percent. [0047]
  • Any vegetable oil can be transesterified by the addition of a saturated ester, preferably a short chain fatty acid or a polyol ester. This addition results in random esterification of the short chain fatty acids to the glycerol backbone of the vegetable oil. In general, transesterification can be performed by adding a short chain fatty acid ester to a vegetable oil in the presence of a suitable catalyst and heating the mixture. Esters of short chain fatty acids include methyl esters and polyol esters. Methyl esters can be produced, for example, by esterification of fatty acids. [0048]
  • Polyol esters also can be used in the transesterification of vegetable oils. As used herein, “polyol esters” refers to esters produced from polyols containing from two to about 10 carbon atoms and from two to six hydroxyl groups. Preferably, the polyols contain two to four hydroxyl moieties. [0049]
  • Transesterification of a polyol ester with a vegetable oil results in the short fatty acid chains of the polyol and the long fatty acid chains of the TAG being randomly distributed among both the polyol and glycerol backbones. In one embodiment, transesterified vegetable contain TAGs having a structure as defined above, and/or a non-glycerol polyol ester having the following structure: [0050]
    Figure US20030186824A1-20031002-C00002
  • wherein R[0051] 4 and R5 are independently aliphatic hydrocarbyl groups having from about 4 to about 24 carbon atoms inclusive, wherein at least one of R4 and R5 have a saturated aliphatic hydrocarbyl moiety having about 4 to about 10 carbon atoms inclusive, and wherein at least one of R4 and R5 have an aliphatic hydrocarbyl moiety having from about 12 to about 24 carbon atoms inclusive. These triglycerides are available from a variety of plants or their seeds and are commonly referred to as vegetable oils. R6 and R7 are independently a hydrogen, an aliphatic hydrocarbyl moiety having one to four carbon atoms, or the following formula:
    Figure US20030186824A1-20031002-C00003
  • wherein X is an integer of about 0 to about 6, and wherein R[0052] 8 is an aliphatic hydrocarbyl moiety having four to 24 carbon atoms.
  • Methods to produce the above transesterified vegetable oils are disclosed in U.S. Pat. No. 6,278,006, which is incorporated in its entirety herein. Other triaglycerol oils that may be used are disclosed in U.S. Pat. Nos. 5,990,055 and 6,281,375, which are incorporated by reference in their entirety. The transesterified vegetable oil may include the glycerol polyol ester (shown above) alone or the non-glycerol polyol ester (shown above) alone, or a mixture of both. [0053]
  • Vegetable oils tend to crystallize at low temperature because the triacyl structures tend to be quite regular and subject to packing. This causes the viscosity to abruptly increase at lower temperatures, resulting in the failure of gelation index tests. To meet the gelation index requirement of less than about 12 as specified by the GF-3/API SL bench test specification, a low gelation index saturated synthetic ester (which is different from the vegetable oil) is added. For example, from about 10 to about 30% of a saturated synthetic ester was blended in the formulation. It was discovered that the synthetic ester, particularly saturated esters, lowered the gelation index significantly. The synthetic ester may be a dibasic ester such as adipate, a sebacate ester, a tribasic ester such as trimethylol ethane (TME), a trimethylol propane (TMP) ester, or a polyol ester, such as pentaerythritol ester. Preferably, the gelation index of the first ester added to the transesterified triglyceride oil should be less than about 10, less than about 8, or less than about 6. In some embodiments, the first ester used to lower the gelation index of the lubricant has a gelation index of less than about 5, such as about 4 or less, about 3 or less, about 2 or less, or about 1 or less. [0054]
  • Dibasic or dibasic acid esters are the products from a C[0055] 4-C12 dicarboxylic acid (such as succinic, glutaric acid, adipic acid, and sebacic acid) reacting with 2 moles of C1-C12 alcohols. One example is di(2-ethylhexyl)adipate. The dibasic ester should have a viscosity index of at least about 120 in order to function adequately. Dibasic esters are of the formula:
    Figure US20030186824A1-20031002-C00004
  • wherein R[0056] 1 and R2 are a hydrocarbyl group having from about 1 to about 20 carbon atoms and n is an integer from about 1 to about 20. A preferred dibasic ester is EMKARATE 1130™ which is the diester of a C10 alcohol with sebacic acid by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.). R1 and R2 may be different moieties or the same moieties.
  • Dibasic esters having similar characteristics as those in the following talbe are also useful: [0057]
    Property Value
    Flash Point, ° C. 230 (closed cup)
    260 (open cup)
    Auto Ignition Temperature, ° C. 385
    Density, g/ml   0.909
    Pour Point, ° C. −60
    Kinematic Viscosity, cSt  20.2 @ 40° C.
      4.8 @ 100° C.
  • Tribasic esters are the products from a C[0058] 4-C12 tricarboxylic acid reacting with 3 moles of C1-C20 alcohols or made by a fatty acid condensing with a polyol (tri-ol). The tribasic ester should have a viscosity index of at least about 120 in order to function adequately. Tribasic esters are of the formula:
    Figure US20030186824A1-20031002-C00005
  • wherein R[0059] 1, R2, R3 and R4 are a hydrocarbyl group having from about 1 to about 20 carbon atoms. A preferred tribasic ester is EMKARATE 1550™ made by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.). R1, R2, R3 and R4 may be different moieties or the same moieties.
  • Other synthetic esters have the following formula: [0060]
    Figure US20030186824A1-20031002-C00006
  • wherein R[0061] 1, R2, R3, and R4 are a hydrocarbyl group having from about 1 to about 20 carbon atoms. When R4 is CH3, the resulting synthetic ester is a trimethylol ethane ester. When R4 is CH3CH2, the resulting synthetic ester is a trimethylol propane ester. Other suitable synthetic esters include EMKARATE 1700™ which is a pentaerythritol ester of a C5-C7 alcohol, PRIOLUBE 3960™, PRIOLUBE 3939™, PRIOLUBE 1831™ which are polymers made from a dimer acid with a di-alcohol by UNIQEMA PERFORMANCE CHEMICALS (New Castle, Del.) R1, R2, R3 and R4 may be different moieties or the same moieties.
  • To increase the viscosity at higher temperatures, viscosity index improvers were added to the formulation. Generally speaking, there are two types of viscosity modifier (or viscosity index improver). One is the relative polar ester-type, such as LUBRIZOL 7671™, which is a long chain ester of maleic anhydride styrene copolymer (see also, [0062] LUBRIZOL 7764™ and LUBRIZOL 7783™ which are polymethacrylate copolymers). The other is the non-polar hydrogenated olefin copolymer (OCP) type, such as LUBRIZOL 7075™, (also included are hydrogenated styrene-diene copolymers, such as INFINEUM SV 200™ and INFINEUM SV 150™, etc.) which are amorphous hydrocarbon polymers. Both of these viscosity modifiers were tested in the formulations.
  • By combining polar and non-polar types of viscosity modifiers, a wide range of viscosity grades of motor oils can be blended. Further, when blended with the synthetic esters, a motor oil is produced meeting the desired viscosity, gelation index specifications, and other specifications needed to make a renewable, environmentally friendly engine lubricant. [0063]
  • A preferred polar ester-type viscosity modifier is LUBRIZOL™ 7671 made by LUBRIZOL (Wickliffe, Ohio). LUBRIZOL™ 7671 is a polymethacrylate type thickener and also acts as a pour point depressant for vegetable oils. Other polar ester-type viscosity modifiers include [0064] LUBRIZOL™ 7764, LUBRIZOL™ 7776, LUBRIZOL™ 7785, LUBRIZOL™ 7786, from LUBRIZOL (Wickliffe, Ohio) which are polymethacrylate copolymer viscosity index improvers.
  • Polar ester-type viscosity modifiers having similar properties as those in the following table are also useful: [0065]
    Property Value
    Flash Point, ° C.  165
    Specific Gravity    0.90
    Viscosity, cSt 8500 @ 40° C.
    1500 @ 100° C.
  • A preferred non-polar hydrogenated olefin copolymer-type viscosity modifier is the LUBRIZOL 7075™ Series made by LUBRIZOL (Wickliffe, Ohio). This series is Lubrizol's next generation nondispersant olefin copolymer (OCP) viscosity modifier. Hydrogenated olefin copolymers are the most widely used type of viscosity modifier for passenger car motor oils and heavy-duty diesel engine oils. Developed in the mid-1960s, hydrogenated olefin copolymers differ mainly in molecular weight and the ratio of ethylene to propylene. These polymers effectively minimize viscosity variations over typical engine operating temperatures. They are cost-effective and are suitable for formulating nearly any mainline engine oil. The polymers provide a cost-effective way to meet the latest international and original equipment manufacturer (OEM) specifications for passenger car and heavy-duty diesel engine oils. [0066]
  • Non-polar hydrogenated olefin copolymer-type viscosity modifiers having the following characteristics may also be useful in embodiments: [0067]
    Property Value
    Flash Point, ° C. 190
    Specific Gravity   0.87
    Viscosity, cSt 825 @ 100° C.
  • LUBRIZOL 7075D™ is a preferred olefin copolymer type viscosity modifier from LUBRIZOL (Wickliffe, Ohio). Other olefin copolymer type viscosity modifiers include the LUBRIZOL 7070™ series, 7077™ series, 7740™ series; INFINEUM SV140™, SV145™, SV200™, SV205™, SV300™, SV305™, (EXXONMOBIL, TX) and PARATONE™ 8900 series by (CHEVRON,CA). [0068]
  • The ester type viscosity modifiers contribute to the lowering of the gelation index. Using [0069] LUBRIZOL™ 7764 and LUBRIZOL™ 7785, the maximum amount of ester viscosity modifiers allowable in the formulation without failing the gelation index specification is from about 1.7 to about 2.0%, see FIG. 1. At this low concentration of the ester type viscosity modifier alone, the viscosity grade of the formulated oil is a SAE 30 grade or lower.
  • Ester type viscosity modifiers having the following characteristics may also be useful in embodiments: [0070]
    Property Value
    Flash Point, ° C. 161
    Specific Gravity   0.90
    Viscosity, cSt  20.5 @ 100° C.
  • The solubility of the hydrogenated olefin copolymer-type viscosity modifier in vegetable oil is about 4 to about 6 wt % due to the polarity difference. When using the hydrogenated olefin copolymer-type viscosity modifier alone, the formulation of the lubricant is a viscosity grade SAE 30 grade oil. [0071]
  • However, a combination of these two types of viscosity modifiers produces a wide range of viscosity grades of motor oils. Further, when combined with the vegetable oil and the synthetic ester, a motor oil was produced meeting the desired viscosity, gelation index specifications, and other bench test specifications. The ester type viscosity index improver may be added in an amount from about 0 to about 3.0%, more preferred from about 0.2 to about 2.5%, most preferred from about 0.5 to about 2% and the hydrogenated olefin copolymer type viscosity index improver may be added in an amount from about 0 to about 6.0%, more preferred from about 1 to about 5%, most preferred from about 2 to about 4%. [0072]
  • Other suitable conventional viscosity index improvers, or viscosity modifiers, are olefin polymers, such as polybutene, hydrogenated polymers and copolymers and terpolymers of styrene with isoprene and/or butadiene, polymers of alkyl acrylates or alkyl methacrylates, copolymers of alkyl methacrylates with N-vinyl pyrrolidone or dimethylaminoalkyl methacrylate. These are used as required to provide the viscosity range desired in the finished oil, in accordance with known formulating techniques. [0073]
  • Esters obtained by co-polymerizing styrene and maleic anhydride in the presence of a free radical initiator and thereafter esterifying the copolymer with a mixture of C[0074] 4-C18 alcohols, are also useful as viscosity modifying additives. The styrene esters generally are considered to be multi-functional premium viscosity modifiers. The styrene esters in addition to their viscosity-modifying properties also are pour point depressants and exhibit dispersancy properties when the esterification is terminated before its completion leaving some unreacted anhydride or carboxylic acid groups. These acid groups can then be converted to amides by reaction with a primary amine. The co-polymerization of styrene with maleic anhydride creates a copolymer (SMA) which has a higher glass transition temperature than polystyrene and is chemically reactive with certain functional groups. Thus, SMA polymers are often used in blends or composites where interaction or reaction of the maleic anhydride provides for desirable interfacial effects. Some SMA polymers that are commercially available from ROHMAX USA (Horsham, Pa.) include VISCOPLEX™ 2-360, VISCOPLEX™ 2-500, VISCOPLEX™ 3-540, VISCOPLEX™ 4-671, and VISCOPLEX™ 6-054.
  • One difference between mineral oil and vegetable oil is that the former is predominantly non-polar hydrocarbons whereas the latter has polar ester functional groups. There is lack of dispersant/inhibitor (DI) packages formulated specially for use with the more polar vegetable oils. Therefore, conventional DI packages were used in embodiments of the formulation. In order to solubilize conventional DI packages in vegetable oil, about 10 to about 30% of API Group I to Group III mineral oils or Group IV poly-α-olefin (PAO) synthetic oils are blended with the vegetable oil to lower the polarity. The resulting oils are clear and homogeneous. [0075]
  • A dispersant/inhibitor additive package may be added to the lubricant to break insoluble particles already formed and to inhibit the formation of particles. Particles are kept finely divided so that they can remain dispersed or colloidally suspended in the oil. The dispersant/inhibitor additive package is preferably in an amount from about 6 to about 18 wt %, more preferred from about 8 to about 16 wt %, and most preferred from about 10 to about 14 wt %. [0076]
  • Detergents and dispersants are polar materials that serve a cleaning function. Detergents include metal sulfonates, metal salicylates and metal thiophosphonates. Dispersants include polyamine succinimides, hydroxy benzyl polyamines, polyamine succinamides, polyhydroxy succinic esters and polyamine amide imidazolines. Detergents are generally combined with dispersant additives in crankcase oils. Detergents chemically neutralize acidic contaminants in the oil before they become insoluble and fall out of the oil, forming a sludge. Neutral or basic compounds are created which can remain in suspension in the oil. Lubricating oils typically contain from about 2 to about 5 wt % of detergent. [0077]
  • Suitable ashless dispersants may include, but are not limited to, polyalkenyl or borated polyalkenyl succinimide where the alkenyl group is derived from a C[0078] 3-C4 olefin, especially polyisobutenyl having a number average molecular weight of about 7,000 to 50,000. Other well known dispersants include the oil soluble polyol esters of hydrocarbon substituted succinic anhydride, e.g. polyisobutenyl succinic anhydride, and the oil soluble oxazoline and lactone oxazoline dispersants derived from hydrocarbon substituted succinic anhydride and di-substituted amino alcohols, post-grafted polymers of ethylenepropylene with an active monomer such as maleic anhydride which may be further reacted with alcohol or an alkylene polyamine, styrene-maleic anhydride polymers post-reacted with alcohols and amines and the like.
  • Dispersants typically contain a hydrocarbon chain attached to an amine or alcohol-containing polar group. The hydrocarbon “tail” serves to solubilize the molecule in the lubricant base stock, while the polar group serves to attract the polar contaminants resulting from the lubricant breakdown. The dispersant forms millions of micellar structures in the lubricant base stock which contain a highly polar core and disperse enormous amounts of polar contaminants. These contaminants are products of oxidation which serve as precursors to varnish/carbon/sludge formation as well as already-formed varnish/carbon/sludge deposits. The dispersed contaminants are held in “solution” in the basestock while already-formed deposits are cleaned off the metal and elastomer surfaces. Both the suspended precursors and deposits readily pass through commonly used filters. Ultimately, when these cores are saturated, the dispersant can no longer pick up contaminants, so the oil must be drained. However, the oil is usually drained well before this happens. [0079]
  • Lubricant oxidation is a chain reaction caused by the reaction of the oxygen in air with the lubricant base stock. Oxidation results in the formation of high molecular weight oil-insoluble polymers. These can settle out as sludges, varnishes and gums. They also cause an increase in the viscosity of the lubricant. The function of the inhibitors is the prevention of the deterioration from the oxygen attack on the lubricant. The oxidation inhibitors function either to destroy free radicals (phenolics or amines) or to decompose the peroxides (amines or ZDDPs) which are involved in the oxidation mechanism. As a result, the lubricant retains its cleanliness and viscosity allowing it to function properly over its drain interval. [0080]
  • A preferred dispersant/inhibitor additive package is LUBRIZOL 9850U™ from LUBRIZOL (Wickliffe, Ohio), or LUBRIZOL 9850™. The contents of DI packages are generally a proprietary secret, but usually contain an antiwear agent, such as ZDDP (Zinc dialkyl dithiophosphate); an antioxidant-phenolic and/or amine type antioxidant; a detergent (Mg and/or Ca sulfonate or phenate); a dispersant (polyisobutylene succinamide); a corrosion inhibitor; a rust inhibitor, a friction modifier; an anti-foaming agent, etc. Other suitable dispersant/inhibitor additive packages for gasoline and diesel engine oils are ORONITE™ (CHEVRON, CA) and INFINEUM™ (EXXON-MOBIL, TX). GF-3 DI packages include, for example, OLOA 55007™ and OLOA 59029™ (CHEVRON, CA), INFINEUM 5063™, INFINEUM 3421™, INFINEUM 3422™ (EXXON-MOBIL, TX), and LUBRIZOL 20,000™ and LUBRIZOL 20,000A™ (LUBRIZOL, OH). [0081]
  • Dispersant/inhibitor additive packages having similar characteristics as those listed below are also be useful: [0082]
    Property Value
    Flash Point, ° C. 146-167       
    Specific Gravity 0.96-0.97       
    Viscosity, cSt 1350-1400 @ 40° C. 
    100-125 @ 100° C.
  • The environmentally friendly lubricant may further include one or more additives. Such additives include, but are not limited to antioxidants, pour point depressants, detergents, dispersants, friction modifiers, rust inhibitors, corrosion inhibitors and anti-foaming agents. [0083]
  • Typical antioxidants are aromatic amines, phenols, compounds containing sulfur or selenium, dithiophosphates, sulfurized polyalkenes, and tocopherols. Hindered phenols are particularly useful, and include for example, 2,6-di-tert-butyl-p-cresol (DBPC), tert-butyl hydroquinone (TBHQ), cyclohexylphenol, and p-phenylphenol. Example of amine-type antioxidants include phenyl-α-napthylamine, alkylated diphenylamines and unsymmetrical diphenylhydrazine. Zinc dithiophosphates, metal dithiocarbamates, phenol sulfides, metal phenol sulfides, metal salicylates, phospho-sulfurized fats and olefins, sulfurized olefins, sulfurized fats and fat derivatives, sulfurized paraffins, sulfurized carboxylic acids, disalieylal-1,2,-propane diamine, 2,4-bis (alkyldithio)-1,3,4-thiadiazoles) and dilauryl selenide are examples of useful antioxidants. IRGANOX L-64 (Ciba Specialty Chemicals, Tarrytown, N.Y.) provides a mixture of antioxidants that is particularly useful. Antioxidants are typically present in amounts from about 0.001 to about 10 weight %. In preferred embodiments, from about 0.01% to about 3.0% of an antioxidant is added to the lubricant. U.S. Pat. Nos. 5,451,334 and 5,773,391 further disclose additional antioxidants and are hereby incorporated in their entirety by reference. [0084]
  • Pour point depressants (PPD) lower the pour point of petroleum products containing wax by reducing the tendency of the wax to collect into a solid mass. Pour point depressants permit flow of the oil formulation below the pour point of the unmodified lubricant. Common pour point depressants include polymethacrylates, wax alkylated naphthalene polymers, wax alkylated phenol polymers and chlorinated polymers. U.S. Pat. Nos. 5,451,334 and 5,413,725 further disclose additional pour point depressants and are hereby incorporated in their entirety by reference. [0085]
  • Pour point depressants are used generally in amounts of from about 0.01 to about 5 wt %, more typically from about 0.1 to about 1 wt %. Illustrative of pour point depressants which are normally used in lubricating oil compositions are polymers and copolymers of n-alkyl methacrylate and n-alkyl acrylates, copolymers of di-n-alkyl fumarate and vinyl acetate, alpha-olefin copolymers, alkylated naphthalenes, copolymers or terpolymers of alpha-olefins and styrene and/or alkyl styrene, styrene dialkyl maleic copolymers and the like. A preferred pour point depressant is ACRYLOID 3004 Oil Additive available by ROHMAX USA (Horsham, Pa.) that uses the commercial name VISCOPLEX 1-3004™. The chemistry is based on polymethacrylate (PMA). [0086] Other VISCOPLEX series 1 wax modifiers that can be used include VISCOPLEX 1-6004, VISCOPLEX 1-331, and VISCOPLEX 1-600. The VISCOPLEX series 10, such as VISCOPLEX 10-130, and 10-171 can also be used.
  • Suitable metal detergent additives are known in the art and may include one or more of overbased oil-soluble calcium, magnesium and barium phenates, sulfurized phenates, and sulfonates (especially the sulfonates of C[0087] 16-C50 alkyl substituted benzene or toluene sulfonic acids which have a total base number of about 80 to 300). These overbased materials may be used as the sole metal detergent additive or in combination with the same additives in the neutral form; but the overall metal detergent additive should have a basicity as represented by the foregoing total base number. Preferably they are present in amounts of from about 3 to about 6 wt % with a mixture of overbased magnesium sulfurized phenate and neutral calcium sulfurized phenate (obtained from C9 or C12 alkyl phenols).
  • Suitable anti-wear additives are oil-soluble zinc dihydrocarbyldithiophosphates with a total of at least 5 carbon atoms and are typically used in amounts from about 1 to about 6 wt % by weight. Other anti-wear additives include dithiophosphates and in particular, zinc dialkyl dithiophosphates, metal sulfonates, metal phenate sulfides, fatty acids, acid phosphate esters and alkyl succinic acids. Anti-wear additives adsorb on metal, and provide a film that reduces metal-to-metal contact. In general, anti-wear additives include zinc dialkyldithiophosphates, tricresyl phosphate, didodecyl phosphite, sulfurized sperm oil, sulfurized terpenes and zinc dialkyldithiocarbamate. [0088]
  • Rust inhibitors protect surfaces against rust and include alkylsuccinic type organic acids and derivatives thereof, alkylthioacetic acids and derivatives thereof, organic amines, organic phosphates, polyhydric alcohols, and sodium and calcium sulphonates. Rust inhibitors are employed in very small proportions such as from about 0.1 to about 1 wt % with suitable rust inhibitors being exemplified by C[0089] 9-C30 aliphatic succinic acids or anhydrides such as dodecenyl succinic anhydride.
  • Anti-foam additives reduce or prevent the formation of a stable surface foam and are typically present in amounts from about 0.01 to about 1 wt %. Polymethylsiloxanes, polymethacrylates, salts of alkylene dithiophosphates, amyl acrylate telomer and poly(2-ethylhexylacrylate-co-ethyl acrylate) are non-limiting examples of anti-foam additives. [0090]
  • Additionally, by mixing high and low viscosity mineral oils in the formulation, it was possible to prepare a full range of SAE grade motor oils. Viscosity of an automotive oil is classified in SAE (Society of Automotive Engineers) viscosity grades represented by numbers such as 30, 40, 50. The higher the number, the thicker the oil and the greater it's effectiveness in high temperature operations. Lower numbered oils that are thinner oils with low viscosity are used in cold climates as they flow more easily and are identified by a “W” mark next to the grade of oil on the package. Multigrade oils 5Wxx, 10Wxx, 20Wxx, etc. are suitable for both low and high temperature conditions. Lubricating oils made specifically for industrial use have their viscosity classified by ISO (international Organization for Standardization) grades. [0091]
  • To prepare a wide range of SAE grade motor oils, high and low viscosity mineral oils are added to the environmentally friendly lubricant. The SAE grade motor oils that can be achieved include 0W-30, 5W-30, 10W-30, and 10W-40. Mineral oils from Group I to Group V are preferred. Preferred examples useful in the formulation include: [0092]
    TABLE 4
    Mineral Oils
    Kin. Visc. @ Kin. Visc. @
    Group Example 40° C. (cSt) 100° C. (cSt) VI
    II EXCEL 100-HC ™ 20.85 4.2 101
    II EXCEL 230-HC ™ 42.5 6.4 100
    II EXCEL 575-HC ™ 111 12.3 100
    III Yubase 150N ™ 37.9 6.6 129
    III Yubase 240N ™ 47.4 7.7 129
    III CHEVRON UCBO7R ™ 28.2 6.8 137
    III SHELL XHVI ™ 47.3 8.2 148
  • EXCEL 100-HC™, 230-HC™, and 575-HC™ are Group II mineral oils made by PENNZOIL-QUAKER STATE COMPANY (Houston, Tex.). Yubase 150N™ and 240N™ are Group III mineral oils made by Yukong (Seoul, Korea). CHEVRON UCBO7R™ is a Group III mineral oil made by CHEVRON. SHELL XHVI ™ is a Group III mineral oil made by Shell Chemical Company. Mineral oils are used generally in amounts of from about 0 to about 40 wt %. [0093]
  • The following examples exemplify embodiments of the invention. They do not limit the invention as otherwise described and claimed herein. All numbers in the examples are approximate values. [0094]
  • EXAMPLE 1
  • Table 5A and Table 5B provide the formulations and physical properties of lubricants using polar ester-type viscosity modifiers. Formulations A to C used [0095] LUBRIZOL 7764™, which is a polymethacrylate copolymer, and formulations D to F used LUBRIZOL 7785™ which is a polymethacrylate copolymer dispersed in vegetable oil. The dispersant/inhibitor package was LUBRIZOL 9850U™. The pour point depressant was Viscoplex 1-3004™. The mineral oil was Yubase 150N™ and the synthetic ester was Emkarate 1130™. The vegetable oil was AGRI-PURE 560™.
    TABLE 5A
    Formulations A-F
    Formulation Descrip- A B C D E F
    Component tion Wt % Wt % Wt % Wt % Wt % Wt %
    Lubrizol
    7764 ™ VII 1 1.5 2 0 0 0
    Lubrizol 7785 ™ VII 0 0 0 1 2 3
    Lubrizol 9850U ™ DI 12 12 12 12 12 12
    Viscoplex 1-3004 ™ PPD 0.1 0.1 0.1 0.1 0.1 0.1
    Yubase 150N ™ Group III 25 25 25 25 25 25
    oil
    Emkarate 1130  Dibase 20 20 20 20 20 20
    ester
    AGRI-PURE 560 ™ Modified balance balance balance balance balance balance
    vegetable
    oil
    Total wt % 100 100 100 100 100 100
  • [0096]
    TABLE 5B
    Properties of Formulations A-F
    Physical Properties A B C D E F
    KV @ 100° C., cSt 8.7 9.32 10.02 8.79 10.25 11.36
    KV @ 40° C., cSt 43 46.3 49.5 43.4 50.8 64.7
    VI 187 190 195 187 195 171
    Gelation Index 5.7 8.2 10.5 10 20.9 25.7
  • The gelation index (Gi) for [0097] formulations including LUBRIZOL 7764™ and LUBRIZOL 7785™ were plotted against the weight percent of viscosity modifier (VII) as shown in FIG. 1. This graph indicates that when the amount of viscosity modifier was higher than about 2.2 wt % and about 1.2 wt % of LUBRIZOL 7764™ and LUBRIZOL 7785™, respectively, formulations failed the GF-3/API SL specification of the gelation index maximum of 12. When using less than 2.2 wt % of LUBRIZOL 7785™ the formulations passed the gelation index, but the finished oils were limited to the SAE 30 viscosity grade. Similarly, using lower than 1.2 wt % of LUBRIZOL 7764™ gave formulations that passed the gelation index of 12, but the finished oils were limited to the SAE 20 viscosity grade.
  • EXAMPLE 2
  • The following formulations in Table 6A were prepared using an olefin copolymer type viscosity modifier, LUBRIZOL 7075D™ in place of the polar-ester type viscosity modifier used above. The physical properties of these formulations are provided in Table 6B. The formulations were clear and homogeneous at ambient temperature. However, when attempting to measure the gelation index in formulations G and H according to the ASTM D 5133 procedure, the viscosity modifier was found to separate and stick to the wall of the test cell during the chilling process, whereas formulation I stayed clear and homogeneous. This suggested that the formulation using the olefin copolymer type viscosity modifier, LUBRIZOL 7075D™, may be limited to about 0 to about 6 wt % in the formulation. [0098]
    TABLE 6A
    Formulations G-I
    Formulation G H I
    Components Description Wt % Wt % Wt %
    Lubrizol 7075D ™ VII 6.3 7.98 3.94
    Lubrizol 9850U ™ DI 12 12 12
    Viscoplex 1-3004 ™ PPD 0.1 0.1 0.1
    Excel 100-HC ™ Group II oil 0 25 0
    Excel 230-HC ™ Group II oil 25 0 0
    Excel 575-HC ™ Group II oil 0 0 25
    Emkarate 1130  Dibase ester 20 20 20
    AGRI-PURE 560 ™ Modified balance balance balance
    vegetable oil
    Total wt % 100 100 100
  • [0099]
    TABLE 6B
    Properties of Formulations G-I
    Physical Properties G H I
    KV @ 100° C., CST 10.3 10.3 10.3
    KV @ 40° C., CST 54.6 51.9 55.9
    VI 179 192 174
    CCS @ −25° C. 2390 1830 3270
    CCS @ −30° C. N/A 1027 6060
    MRV TP-1 @ −35° C. 9100 6600 14100
    MRV YS @ −35° C. 0 0 0
    Scanning Brookfield Temp.
    @ 30,000 cp. N/A N/A −31.9° C.
    @ 40,000 cp. N/A N/A   −34° C.
    Gelation Index N/A N/A 6
    Gelation Temp., ° C. N/A N/A −12°
  • Formulation I is an SAE 30 grade lubricant. It is possible to raise the viscosity of Formulation I to SAE 40 grade by increasing the non-biodegradable heavy oil, such as Excel 575-HC, which would decrease the biodegradability of the formulation. [0100]
  • EXAMPLE 3
  • Table 7A represents blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising Group III mineral oils (Yubase 150N™ and Yubase 240N™), a dibasic ester, and modified vegetable oil (AGRI-PURE 560™). Table 7B discloses the physical properties of the oils in Table 7A. These formulations pass the GF-3/API SL gelation index specification of less than about 12 and meet other physical properties of a SAE 5W-30 grade oil. [0101]
    TABLE 7A
    Formulations J-L
    Formulation J K L
    Component Description wt % wt % wt %
    Lubrizol 7785 ™ VII 1 0 0
    Lubrizol 7764 ™ VII 0 1.7 1.7
    Lubrizol 7075D ™ VII 3.28 1.89 1.4
    Lubrizol 9850U ™ DI 12 12 12
    Viscoplex 1-3004 ™ PPD 0.1 0.1 0.1
    Yubase 150N ™ Group III Oil 25 25 0
    Yubase 240N ™ Group III Oil 0 0 25
    Emkarate 1130  Dibase Ester 20 20 20
    AGRI-PURE 560 ™ Vegetable Oil balance balance balance
    Total wt % 100 100 100
  • [0102]
    TABLE 7B
    Properties of Formulations J-L
    Test
    Physical Properties Method J K L
    KV @ 100° C. D-445 10.3 10.5 10.53
    KV @ 40° C. D-445 51.8 52.9 53.52
    VI D-2270 193 194 191
    Pour Point,° C. D-5950   −47° C.   −47° C.   −45° C.
    CCS @ −30° C. D-5293 3540
    CCS @ −25° C. D-5293 2050 2090 2230
    HTHS Viscosity, D-4683 3.42 3.37 3.37
    cP @ 150° C.
    MRV TP-1 @ −35° C. D-4684 9800 10400
    MRV YS @ −35° C. D-4684 0 0
    MRV TP-1 @ −30° C. D-4684 3800 4600 4800
    MRV YS @ −30° C. D-4684 0 0 0
    Scanning D-5133
    Brookfield Temp.
    @ 30,000 cP −31.5° C. −33.4° C. −31.4° C.
    @ 40,000 cP −32.6° C. −34.1° C. −32.2° C.
    Gelation Index D-5133 10.4 10.4 10.9
    Gelation D-5133   −31° C.   −34° C.   −32.2° C.
    Temp., ° C.
    NOACK volatility, D-5800 N/A 7.8 N/A
    Wt % Loss
    % off at 700° C. D-2687 N/A 5.1 N/A
    (Sim. Dist.)
  • EXAMPLE 4
  • Formulation K was submitted to independent testing laboratories for ASTM D-6335 Thermo-Oxidation Engine Oil Simulation Test (TEOST), and ASTM D-5864-95 Biodegradability tests were performed at BfB Oil Research in Belgium. Results are shown in Table 8. TEOST may be useful in determining the piston deposit control capability of the motor oil. According to the GF-3/API SL specification the total deposit in TEOST is 45 mg maximum. [0103]
  • According to the ASTM D-5964-95 biodegradability test, if the carbon dioxide released is higher than 60% (within 28 days), the material is qualified as easily biodegradable. [0104]
    TABLE 8
    Formula K
    Test Test Method K
    TEOST, Total Deposit D-6335 11.6 mg
    Biodegradability D 5864-95 62%
  • EXAMPLE 5
  • To reduce the cost of the lubricants, Group III mineral oils in Example 3 can be replaced by Group II mineral oils, such as Excel HC or Exxon HC (hydro-conversion) oils. Table 9A discloses formulations, in which the different viscosity grades of Group II oils were used alone or in combination to make wide viscosity ranges of motor oils. Table 9B shows the properties of the formulations. To enhance the oxidative stability, additional antioxidants (i.e. Irganox L-64™) can be added to the formulation as illustrated in the formulation Q. Formulation R replaces the Irganox L-64™ with NAUGALUBE MOLYFM 2543™ (Crompton Corporation, Middlebury, Conn.) which is a multifunctional friction modifier, anti-wear, and antioxidant additive. [0105]
    TABLE 9A
    Formulations M-R
    Formulation M N O P Q R
    SAE Grade Descrip- 0W-30 5W-30 10W-30 10W-40 10W-40 10W-30
    Components tion wt % wt % wt % wt % wt % wt %
    DI, Lz 9850U DI 12 12 12 12 12 12
    Viscoplex 1-3004 PPD 0.1 0.1 0.1 0.1 0.1 0.1
    Lz 7764 VII 1.7 1.2 1.1 1.7 1.7 0
    Lz 7075D VII 3.3 1.5 0 3.3 3.3 3.3
    Excel 100-HC Group II 25 10 0 0 0 25
    Oil
    Excel 575-HC Group II 0 20 30 30 29.5 0
    Oil
    Irganox L-64 Anti- 0.5
    oxidant
    Emkarate 1130 Dibase 20 20 20 20 20 20
    ester
    Naugalube Friction 0.5
    MolyFM 2543 modifier
    Anti-
    oxidant
    Cargill AP-560 Modified balance balance balance balance balance balance
    vegetable
    oil
    Total wt % 100 100 100 100 100 100
  • [0106]
    TABLE 9B
    Properties of Formulations M-R
    Physical Properties M N O P Q R
    SAE Grade 0W-30 5W-30 10W-30 10W-40 10W-40 10W-30
    KV @ 100° C. 10.03 10.15 10.28 13.42 13.5 9.9
    KV @ 40° C. 49.3 54.8 57.8 77.7 78.8 55.6
    VI 196 176 168 177 176 165
    Pour Point, ° C. −45 −51 −33 −45 <−50 <−54
    CCS @ −30° C. 3220
    CCS @ −25° C. 2860 4260 3550
    CCS @ −20° C. 2160 2330 2510 2020
    HTHS Viscosity, cP @ 150° C. 3.27 3.37 3.43 4 4.08 3.4
    MRV TP-1 @ −40° C. 17,600
    MRV YS @ −40° C. 0
    MRV TP-1 @ −35° C. 14,000 17,800
    MRV YS @ −35° C. 0 0
    MRV TP-1 @ −30° C. 7,600 11,300 10,000
    MRV YS @ −30° C. 0 0 0
    Scanning Brookfield Temp.
    @ 30,000 cP −33.8° C. −31.7° C. −33.2° C. −27.7° C. −30.5° C. −28.7° C.
    @ 40,000 cP −35.1° C. −32.4° C. −36.5° C. −29.4° C. −31.4° C. −30.4° C.
    Gelation Index 9.4 8.4 7.8 7.3 8.4 6.2
    Gelation Temp., ° C. −34 −33 −25 −7 −32 −10
    NOACK volatility, Wt % Loss 12.8 9.29 6.66 7.2 7.2 8.2
    % off at 700° C. (Sim. Dist.) 9.8 4.7 3.1 3.7 6.1 5.1
  • EXAMPLE 6
  • The formulation Q was submitted to PerkinElmer Automotive Research Laboratory (San Antonio, Tex.) for high temperature TEOST MHT-4 Thermo-Oxidation Engine Oil Simulation test, Homogeneity and Miscibility (H&M) test, Foam sequence I, II, and III test, High Temperature Foam test, EOFT (Engine Oil Filterability test), and EOWTT (Engine Oil Filterability/water tolerance test). In the H&M test, the tested oil shall remain homogeneous and miscible when mixed with SAE reference oils. Table 10 discloses the results. According to ASTM D 4485-99b, the oil meets the bench test of API SL minimum performance standard. [0107]
    TABLE 10
    Formula Q
    Description
    of the Test Test Method Test Result GF-3 Limit
    H&M (Homogeneity & FTM-3470.1 non- non-
    Miscibility) Test separation separation
    TEOST MHT4, D 6335M / /
    Total Deposit 21.6 mg 45 mg (max)
    (Rod + Filter)
    Foam Test GF-3 D 892 / /
    Sequence I, 0/0 10 max./0
    foaming/setting
    Sequence II, 0/0 50 max./0
    foaming/setting
    Sequence III, 0/0 10 max./0
    foaming/setting
    High Temperature D 6082 / /
    Foam Test
    Foam Tendency
    20 ml 100 ml (max)
    Foam Stability 0 ml 0
    EOFT (Engine Oil GM 9099P / /
    Filterability Test),
    % Flow Reduction 24.82 50 (max)
    EOWTT (Engine Oil GM 9099P / /
    Filterability/Water
    Tolerance Test)
    with 0.6% water 19.69 50 (max)
    with 1.0% water 15.53 50 (max)
    with 2.0% water 17.05 50 (max)
    with 3.0% water 12.36 50 (max)
    Gelation Index D 5133 8.4 12 (max)
  • EXAMPLE 7
  • The R formulation was tested by a modified ASTM Sequence VI B Fuel Economy test in a Ford V-8 4.6 L engine mounted on a dynamometer as follows: [0108]
  • 1. The engine was drained of existing oil and a 6-qt. quantity of test oil was run for 10 minutes with a fresh filter. [0109]
  • 2. The engine was allowed to drain and a new oil filter and another 6 quarts of test oil was installed. [0110]
  • 3. The engine was then started and an aging cycle was initiated 10 seconds later. [0111]
  • 4. The aging cycle was designed to mimic that of the sequence VI B aging with the following parameters: 1500 rpm, 71.4 ft. lbs. torque (load) for 7320 seconds, 18.9 ft. lbs. torque for 1920 seconds, 71.4 ft. lbs. torque for 100 seconds (total aging 9340 seconds), 212° F. coolant temperature, and 220° F. oil temperature. [0112]
  • 5. At completion of the aging cycle, the highway cycle was conducted after exactly 5 minutes of a 600 rpm idle with no load. [0113]
  • 6. Following the highway cycle, a metro (city) cycle was initiated after exactly 5 minutes of a 600 rpm idle with 0 load. [0114]
  • 7. Following the metro cycle, the engine was stopped and test oil was drained and samples were taken at that time. Cooling water temperatures (4000 gallon engine water tank) were consistent on each day of testing at 83° F. Vapor pressure, fuel specific gravity and relative humidity were recorded and entered into the dynamometer prior to each day's test sequence. [0115]
  • The Highway cycle consisted of a 300 second cycle programmed as follows: minimum rpm: 850, maximum rpm 1840, load varied from: 5 to 28 ft. lbs. The Metro cycle consisted of a 504 second, low rpm and load cycle programmed as follows: minimum rpm: 560, maximum rpm: 1320, load varied from: 0 to 40 ft. lbs. Emissions readings were taken beginning at the onset of each programmed test cycle and ran for the entire duration of each. [0116]
  • The results show that as compared with a reference oil and a commercial 10W-30 oil, the R formulation reduced the emission, especially, the hydrocarbon exhaust gas as shown in Table 11. [0117]
    TABLE 11
    Formula R
    Hydrocarbon, ppm CO % CO2 % O2 %
    Metro
    Reference Oil 590 0.90 12.91 1.71
    Commercial 10W30 308 1.20 12.89 1.50
    Formula R 162 1.10 13.65 1.52
    Highway
    Reference Oil 141 1.10 13.22 1.14
    Commercial 10W30 207 1.00 13.21 1.18
    Formula R 93 1.20 13.90 1.16
    4-Hour Aging
    Reference Oil 117 0.90 13.40 0.94
    Commercial 10W30 238 0.83 13.28 1.13
    Formula R 111 0.86 14.08 1.09
  • EXAMPLE 8
  • Table 12 represents a range of SAE grade lubricant oils formulated from blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HC™ and Excel 575-HC™), a dibasic ester, and CARGILL modified vegetable oil, AGRI-PURE 560™. The dispersant/inhibitor additive package was Oloa 55007 and the pour point depressant was Viscoplex 1-3004. Table 12 discloses the physical properties of the oils in Table 12. These formulations pass API SL gelation index specification of less than about 12 and meet other physical properties for their appropriate SAE grade. [0118]
    TABLE 12A
    Formulations S-V
    Formulation S T U V
    SAE Grade 0W-30 5W-30 10W-30 10W-40
    Components Description wt % wt % wt % wt %
    Lz
    7764 VII 1.70 1.70 1.00 1.70
    Lz 7075F VII 3.50 3.50 2.40 3.80
    Excel 100-HC Group II Oil 20.00 15.00 0.00 0.00
    Excel 575-HC Group II Oil 0.00 5.00 30.00 29.00
    Cargill AP560 Modified 45.54 45.54 37.34 36.24
    vegetable
    oil
    Emkarate 1130 Dibase ester 20.00 20.00 20.00 20.00
    Oloa 55007 DI 9.16 9.16 9.16 9.16
    Viscoplex 1-3004 PPD 0.10 0.10 0.10 0.10
    Total wt % 100.0% 100.0% 100.0% 100.0%
  • [0119]
    TABLE 12B
    Properties of Formulations S-V
    Physical Properties S T U V
    SAE Grade 0W-30 5W-30 10W-30 10W-40
    KV 100° C., cSt 9.62 10.0 10.9 13.1
    KV 40° C., cSt 43.3 46.1 61.4 72.9
    VI 215.8 211.6 171 181
    CCS −35° C., cP 5420 6541
    CCS −30° C., cP 3013 3290 6650 6734
    CCS −25° C., cP 3530 3650
    Scanning Brookfield
    Temp.
    @30000 cP −34.9° C. −34.5° C. −30.5° C. −30.7° C.
    @40000 cP −36.5° C. −35.9° C. −31.7° C. −31.4° C.
    GELATION INDEX 10.4 9.6 5.8 8.9
    GELATION TEMP.   −34° C.   −34° C.   −33° C.   −32° C.
  • EXAMPLE 9
  • Table 13 represents a range of SAE grade lubricant oils formulated from blends using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HC™ and Excel 575-HC™), a dibasic ester, and modified vegetable oil (AGRI-PURE 560™). The dispersant/inhibitor additive package was Lubrizol 20000 and the pour point depressant was Viscoplex 1-3004. Table 13B discloses the physical properties of the oils in Table 13A. [0120]
    TABLE 13A
    Formulations W-Z
    Formulation W X Y Z
    SAE Grade 0W-30 5W-30 10W-30 10W-40
    Components Description wt % wt % wt % wt %
    Lz
    7764 VII 2.60 1.40 1.00 1.60
    Lz 7075F VII 1.40 1.40 1.00 2.50
    Excel 100-HC Group II Oil 25.00 5.00 0.00 0.00
    Excel 575-HC Group II Oil 2.00 20.00 30.00 30.00
    Cargill AP560 Modified 36.90 40.10 35.90 33.80
    vegetable
    oil
    Emkarate 1130 Dibase ester 20.00 20.00 20.00 20.00
    Lubrizol 20000 DI 12.00 12.00 12.00 12.00
    Viscoplex 1-3004 PPD 0.10 0.10 0.10 0.10
    Total wt % 100.0% 100.0% 100.0% 100.0%
  • [0121]
    TABLE 13B
    Properties of Formulations W-Z
    Physical Properties W X Y Z
    SAE Grade 0W-30 5W-30 10W-30 10W-40
    KV 100° C., cSt 11.1 10.9 11.2 13.2
    KV 40° C., cSt 51.9 58.69 61.7 75.2
    VI 212 182 176 179
    CCS −35° C., cP 5671 10390
    CCS −30° C., cP 5160 6650 6734
    CCS −25° C., cP 3530 3650
  • EXAMPLE 10
  • Table 14 represents a 5W-30 SAE grade lubricant oil formulation using a combination of the ester-type and the olefin copolymer type viscosity modifiers in a base oil comprising a blend of Group II mineral oils (Excel 100-HC™ and Excel 575-HC™), a dibasic ester, and modified vegetable oil (AGRI-PURE 560™). The dispersant/inhibitor additive package was Lubrizol 20000 and the pour point depressant was Viscoplex 1-3004. To enhance performance, an extra antioxidant was added. This formulation passed all API SL bench test requirements. Table 14 also discloses the physical properties of the formulation. [0122]
    TABLE 14
    Formulation and Physical Properties of Formulation AA
    Formulation AA
    SAE Grade 5W-30
    Components Description wt %
    Lz
    7764 VII 1.30
    Lz 7075F VII 1.2
    Excel 100-HC Group II Oil 5
    Excel 575-HC Group II Oil 19
    Cargill AP560 Modified vegetable oil 40.40
    Emkarate 1130 Dibase ester 20.0
    Lubrizol 20000A DI 12.00
    Viscoplex 1-3004 PPD 0.1
    Irganox L-64 Antioxidant 1.0
    Total wt % 100.00%
    Physical Properties
    Kin. Vis @ 100° C. 10.94 cSt
    @ 40° C. 59.09 cSt
    VI 180
    CCS −35° C. 12160 cP
    CCS −30° C. 6180 cP
    TBS@ 150° C. 3.5
    Brookfield Temp
    @ 30,000 cP −31.2° C.
    @ 40,000 cP −32° C.
    Gelation Index 8.3
    Gelation Temp. −32° C.
    MRV TP-1 @ −35° C. 15900 cP
    MRV YS @ −35° C. 0
    Pour Point <−52° C.
  • EXAMPLE 11
  • The formulation AA was submitted to PerkinElmer Automotive Research Laboratory (San Antonio, Tex.) for high temperature TEOST MHT-4 Thermo-Oxidation Engine Oil Simulation test, Homogeneity and Miscibility (H&M) test, Foam sequence I, II, and III test, High Temperature Foam test, EOFT (Engine Oil Filterability test), EOWTT (Engine Oil Filterability/water tolerance test), Gelation Index, NOACK Volatility, Volatility Loss, Phosphorous and Ball Rust Test. In the H&M test, the tested oil shall remain homogeneous and miscible when mixed with SAE reference oils. Table 15 discloses the results. According to ASTM D 4485-99b, the oil meets the bench test of the ILSAC GF-3/API SL minimum performance standard and passed all API-SL bench tests requirements. [0123]
    TABLE 15
    Formula AA
    Description GF-3/API
    of the Test Test Method Test Result SL Limit
    H&M (Homogeneity & FTM-3470.1 non- non-
    Miscibility) Test separation separation
    TEOST MHT
    4, D 6335M / /
    Total Deposit 20.6 mg 45 mg (max)
    (Rod + Filter)
    Foam Test GF-3 D 892 / /
    Sequence I, 0/0 10 max./0
    foaming/setting
    Sequence II, 5/0 50 max./0
    foaming/setting
    Sequence III, 0/0 10 max./0
    foaming/setting
    High Temperature D 6082 / /
    Foam Test
    Foam Tendency
    20 100 ml (max)
    Foam Stability 0 0
    EOFT (Engine Oil GM 9099P / /
    Filterability Test),
    % Flow Reduction 15.07 50 (max)
    EOWTT (Engine Oil GM 9099P / /
    Filterability/Water
    Tolerance Test)
    with 0.6% water 22.12 50 (max)
    with 1.0% water 12.17 50 (max)
    with 2.0% water 13.9 50 (max)
    with 3.0% water 15.63 50 (max)
    Gelation Index D 5133 8.3 12 (max)
    NOACK, Volatility % D 972 7.11 15 max
    wt loss
    Volatility Loss D 6417 3.20% 10% max
    at 371° F.
    Phosphorous, wt % D 4951 0.093 0.1% max
    Ball Rust Test, D 6557 134 100 min
    Average Gray Value
  • The formulation AA was also submitted for ASTM Sequence IIIF engine tests. The Sequence IIIF Test is a fired-engine, dynamometer lubricant test for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, sludge and varnish deposition, oil consumption, and engine wear. The Sequence IIIF Test utilizes a 1996 model Buick 3800 Series II, water-cooled, 4-cycle, V-6 engine as the test apparatus. The Sequence IIIF test engine is an overhead valve design (OHV) and uses a single camshaft opeating both intake and exhaust valves via pushrods and hydrualic valve lifters in a sliding-follower arrangement. The engine uses one intake and one exhaust valve per cylinder. Introduction is handled by a modified GM port fuel injection system setting the Air-to-Fuel ratio at 15: 1. The test engine is overhauled prior to each test, during which critical engine dimensions are measured and rated or measured parts (pistons, camshaft, valve lifters, etc). The Sequence IIIF Test consists of a 10-minute operational check, followed by 80 hours of engine operaton at moderately high speed, load, and temperature conditions. Following each 10-hour segment, and the 10-minute operational check, oil samples are drawn from the engine. The kinematic viscosities of the 10-hour segment samples are compared to the viscosity of the 10-minute sample to determine the viscosity increase of the test oil. [0124]
  • The Sequence IIIF Test is operated at the test states in Table 16 during the 80 hour portion of the test. Table 17 discloses the results. According to ASTM Sequence IIIF engine tests, the oil meets the bench test of the ILSAC GF-3/API SL minimum performance standard and passed all API-SL bench tests requirements. [0125]
    TABLE 16
    Test states of Sequence IIIF testing
    Parameter Set Point
    Engine Speed 3600 r/min
    Engine Load 200 N-m
    Oil Filter Block Temperature 155° C.
    Coolant Outlet Temperature 122° C.
    Fuel Pressure 365 kPa
    Inlet Air Temperature 27° C.
    Inlet Air Pressure 0.05 kPa
    Inlet Air Dew Point 16.1° C.
    Exhaust Back Pressure 6 kPa
    Engine Coolant Flow 160 L/min
    Breather Tube Coolant Flow 10 L/min
    Engine Oil Cooler Flow 12 L/min
    Air-to-Fuel Ratio 15.0:1
    Breather Tube Coolant Outlet Temperature 40° C.
  • [0126]
    TABLE 17
    Formula AA
    Description of the Test Test Result GF-3/API SL Limit
    Viscosity Increase (KV 40° C.) 156.10% 275% max
    Weighted Piston Skirt Vanish Rating 9.59 9.0 min
    Weighted Piston Deposit Rating 6.19 4.0 min
    Hot Struck Piston Rings 0 None Allowed
    Cam plus Lifter Wear, Average, μm 16.7 20 max
    Oil Consumption L 1.83 5.2 max
    Number of Cold Struck Rings 0 N.R.
    Average Oil Ring Plugging, % 0 N.R.
  • EXAMPLE 12
  • To reduce the cost of the lubricants, a less expensive dibase ester, Esterex A41, was used. Table 18 discloses a prototype formulation for an 5W-30 SAE grade. Other grades are also easy to formulate with the less expensive dibase ester. Other less expensive dibase esters include Esterex NP 451 and NP 471. Table 18 further shows the properties of the formulation. [0127]
    TABLE 18
    Formulation and Physical Properties of Formulation AB
    Formulation AB
    SAE Grade 5W-30
    Components Description wt %
    Lz
    7764 VII 1.30
    Lz 7075F VII 1.3
    Excel 575-HC Group II Oil 25
    Cargill AP560 Modified vegetable oil 40.30
    Esterex A41 Dibase ester 20.0
    Lubrizol 20000 DI 12.00
    Viscoplex I-3004 PPD 0.1
    Total wt % 100.00%
    Physical Properties
    Kin. Vis @ 100° C. 10.5 cSt
    @ 40° C. 56.1 cSt
    VI 179
    CCS −35° C. 5210
    CCS −30° C. 10270
    TBS @ 150° C. 3.32
    Brookfield Temp
    @ 30,000 cP −30.3° C.
    @ 40,000 cP −31.4° C.
    Gelation Index 8.1
    Gelation Temp. −32° C.
    MRV TP-1 @ −35° C. 15000 cP
    MRV YS @ −35° C. 0
    Pour Point <−50° C.
    NOACK, wt % loss 8.6
  • As demonstrated above, embodiments of the invention provide an environmentally friendly lubricant that meets API SL bench test specifications, and is overall at least 60% biodegradable in ASTM D-5864-95 biodegradability testing. Additional characteristics and advantages provided by embodiments of the invention are apparent to those skilled in the art. [0128]
  • While the invention has been described with respect to a limited number of embodiments, the specific features of one embodiment should not be attributed to other embodiments of the invention. No single embodiment is representative of all aspects of the inventions. In some embodiments, the compositions may include numerous compounds and/or characteristics not mentioned herein. In other embodiments, the compositions do not include, or are substantially free of, one or more compounds and/or characteristics not enumerated herein. Variations and modifications from the described embodiments exist. For example, the environmentally friendly lubricant need not be a mixture within the compositions given above. It can comprise any amount of components, so long as the properties desired in the environmentally friendly lubricant are met. It should be noted that the application of the environmentally friendly lubricant composition is not limited to lubricants for automobiles; it can be used in any environment which requires an environmentally friendly lubricant, such as a trucks, vans or buses. It is noted that the methods for making and using the environmentally friendly lubricant composition are described with reference to a number of steps. These steps can be practiced in any sequence. One or more steps may be omitted or combined but still achieve substantially the same results. The appended claims intend to cover all such variations and modifications as falling within the scope of the invention.[0129]

Claims (26)

What is claimed is:
1. An environmentally friendly lubricant, comprising:
a) a transesterified triglycerol oil; and
b) a first ester different from the triglycerol oil;
wherein the environmentally friendly lubricant is at least 60% biodegradable and has a gelation index less than about 12.
2. The environmentally friendly lubricant of claim 1 further comprising:
c) a second ester as a polar viscosity index improver; and
d) a hydrogenated copolymer as a non-polar viscosity index improver wherein the second ester is different from the first ester and the triglycerol oil.
3. The environmentally friendly lubricant of claim 2 further comprising:
e) a dispersant/inhibitor package; and
f) at least one additive.
4. The environmentally friendly lubricant of claim 2 wherein the hydrogenated olefin copolymer is a hydrogenated ethylene-propene viscosity index improver.
5. The environmentally friendly lubricant of claim 1 wherein the triglyceride is in the amount from about 30 to about 85 wt %.
6. The environmentally friendly lubricant of claim 1 wherein the first ester is in the amount from about 10 to about 30 wt %.
7. The environmentally friendly lubricant of claim 2 wherein the second ester is in the amount from about 0.1 to about 3 wt %.
8. The environmentally friendly lubricant of claim 2 wherein the hydrogenated olefin copolymer is in the amount from about 0.1 to about 6 wt %.
9. The environmentally friendly lubricant of claim 3 wherein the dispersant/inhibitor package is in the amount from about 8 to about 14 wt %.
10. The environmentally friendly lubricant of claim 3 wherein the at least one additive is a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor anti-foaming agent or a combination thereof in the amount from about 0.1 to about 5 wt %.
11. The environmentally friendly lubricant of claim 2 further comprising mineral oil or synthetic oil.
12. The environmentally friendly lubricant of claim 11 wherein the mineral oil or synthetic oil is in the amount from about 0.1 to about 30 wt %.
13. The environmentally friendly lubricant of claim 1, wherein the transesterified triglycerol oil is a mixture of a glycerol polyol ester and a non-glycerol polyol ester.
14. The environmentally friendly lubricant of claim 1, wherein the transesterified triglycerol oil comprises a glycerol polyol ester but not a non-glycerol polyol ester.
15. The environmentally friendly lubricant of claim 1, wherein the transesterified triglycerol oil comprises a non- glycerol polyol ester but not a glycerol polyol ester.
16. The environmentally friendly lubricant of claim 1, wherein the transesterified triglycerol oil is obtained by transesterifying a vegetable oil with an ester of short-chain fatty acids.
17. The environmentally friendly lubricant of claim 1, wherein the transesterified triglycerol oil is obtained by transesterifying a vegetable oil with a polyol ester.
18. The environmentally friendly lubricant of claim 1, wherein the first ester is dibasic ester.
19. The environmentally friendly lubricant of claim 1, wherein the first ester is tribasic ester.
20. The environmentally friendly lubricant of claim 1, wherein the first ester is polyol ester.
21. The environmentally friendly lubricant of claim 1, wherein the lubricant is an automobile engine oil.
22. An environmentally friendly automobile engine oil, comprising:
a) from about 0.1 to about 6 wt % of an ester as a polar viscosity index improver or a hydrogenated olefin copolymer as a non-polar viscosity index improver or a blend thereof;
b) from about 15 to about 25 wt % of a synthetic ester different from the ester viscosity index improver;
c) from about 20 to about 30 wt % of an mineral oil or a blend thereof; and
d) the balance is made up with a transesterified triglycerol oil,
wherein the environmentally friendly automobile engine oil is at least 60% biodegradable and has a gelation index less than about 12 and the synthetic ester is capable of lowering the gelation index of the engine oil.
23. The environmentally friendly automobile engine oil of claim 22 further comprising: from about 0.1 to about 5% of at least one additive.
24. The environmentally friendly automobile engine oil of claim 22 wherein the at least one additive is a pour point depressant, antioxidant, friction modifier, rust inhibitor, corrosion inhibitor anti-foaming agent or a combination thereof.
25. The environmentally friendly automobile engine oil of claim of claim 22 wherein the automobile engine oil has a viscosity grade of from 0W-20 to 15W-75.
26. A method of making an environmentally friendly lubricant, the method comprising:
blending a transesterified triglycerol oil and a first ester
wherein the environmentally friendly lubricant is at least 60% biodegradable and has a gelation index less than about 12.
US10/253,126 2001-09-25 2002-09-24 Environmentally friendly lubricants Abandoned US20030186824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/253,126 US20030186824A1 (en) 2001-09-25 2002-09-24 Environmentally friendly lubricants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32472301P 2001-09-25 2001-09-25
US10/253,126 US20030186824A1 (en) 2001-09-25 2002-09-24 Environmentally friendly lubricants

Publications (1)

Publication Number Publication Date
US20030186824A1 true US20030186824A1 (en) 2003-10-02

Family

ID=23264809

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/253,126 Abandoned US20030186824A1 (en) 2001-09-25 2002-09-24 Environmentally friendly lubricants

Country Status (17)

Country Link
US (1) US20030186824A1 (en)
EP (1) EP1436369B1 (en)
JP (1) JP2005504141A (en)
KR (1) KR20040039416A (en)
CN (1) CN100384968C (en)
AR (1) AR036616A1 (en)
AT (1) ATE317889T1 (en)
AU (1) AU2002334650B2 (en)
BR (1) BR0212786A (en)
CA (1) CA2461158A1 (en)
DE (1) DE60209260T2 (en)
DK (1) DK1436369T3 (en)
ES (1) ES2258172T3 (en)
MY (1) MY128504A (en)
TW (1) TWI258503B (en)
WO (1) WO2003027212A1 (en)
ZA (1) ZA200402221B (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018484A1 (en) * 1999-09-17 2001-08-30 Bitler Steven P. Polymeric thickeners for oil-containing compositions
US20030176301A1 (en) * 2002-03-13 2003-09-18 Barnes John F. Lubricant for two-cycle engines
US20040241309A1 (en) * 2003-05-30 2004-12-02 Renewable Lubricants. Food-grade-lubricant
US20050059562A1 (en) * 2003-09-12 2005-03-17 Renewable Lubricants Vegetable oil lubricant comprising all-hydroprocessed synthetic oils
US20050070450A1 (en) * 2003-09-30 2005-03-31 Roby Stephen H. Engine oil compositions
US20050070449A1 (en) * 2003-09-30 2005-03-31 Roby Stephen H. Engine oil compositions
US20050112267A1 (en) * 2003-11-20 2005-05-26 Kian Yeong S. Lubricant base from palm oil and its by-products
US20060035794A1 (en) * 2004-08-11 2006-02-16 Daniel Graiver Triglyceride based lubricant
US20060113512A1 (en) * 2004-12-01 2006-06-01 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US20060135378A1 (en) * 2003-02-21 2006-06-22 Nippon Oil Corporation Lubricating oil composition for transmissions
US20060172898A1 (en) * 2005-01-31 2006-08-03 Roby Stephen H Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20060211585A1 (en) * 2003-09-12 2006-09-21 Renewable Lubricants, Inc. Vegetable oil lubricant comprising Fischer Tropsch synthetic oils
WO2008013698A1 (en) * 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
US20080300157A1 (en) * 2007-03-30 2008-12-04 Wu Margaret M Lubricating oil compositions having improved low temperature properties
US20090031614A1 (en) * 2007-08-01 2009-02-05 Ian Macpherson Environmentally-Friendly Fuel Compositions
US20090156442A1 (en) * 2007-12-17 2009-06-18 Laurent Chambard Lubricant Compositions With Low HTHS for a Given SAE Viscosity Grade
US20090163393A1 (en) * 2007-12-21 2009-06-25 Boffa Alexander B Lubricating oil compositions for internal combustion engines
WO2010043371A1 (en) * 2008-10-14 2010-04-22 Natoil Ag Vegetable oil-based hydraulic fluid and transmission fluid
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
US20100212624A1 (en) * 2004-12-22 2010-08-26 Breon Lewis D Method of Viscosity Control
US20100216678A1 (en) * 2009-02-24 2010-08-26 Abhimanyu Onkar Patil Lubricant compositions containing glycerol tri-esters
US20100240564A1 (en) * 2007-07-20 2010-09-23 Jean-Emile Zanetto Formulations of carboxylic acid diesters useful for treating/cleaning textile and other materials
US20100240567A1 (en) * 2007-07-20 2010-09-23 Jean-Emile Zanetto Treatment/cleaning of textile materials utilizing formulations of carboxylic acid diesters
US20120289445A1 (en) * 2011-03-08 2012-11-15 Cognis Ip Management Gmbh High Viscosity Lubricant Compositions Meeting Low Temperature Performance Requirements
US20130017984A1 (en) * 2010-03-31 2013-01-17 Idemitsu Kosan Co., Ltd. Biodegradable lubricating oil composition having flame retardancy
US8586518B2 (en) 2011-08-26 2013-11-19 State Industrial Products Corporation Biobased penetrating oil
EP2853801A1 (en) * 2013-09-26 2015-04-01 M-I Finland Oy Drag reducing agent composition, process for its preparation and method for reducing drag
EP2853802A1 (en) * 2013-09-26 2015-04-01 M-I Finland Oy Flow improver aid composition, process for its preparation and methods of using it
US9028727B2 (en) 2011-09-23 2015-05-12 E I Du Pont De Nemours And Company Dielectric fluids comprising polyol esters
US9296969B2 (en) 2009-02-16 2016-03-29 Chemtura Corporation Fatty sorbitan ester based friction modifiers
US20160137948A1 (en) * 2013-07-05 2016-05-19 Tsubakimoto Chain Co. Lubricant composition for chains, and chain
WO2016156313A1 (en) * 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
US20180094203A1 (en) * 2016-09-30 2018-04-05 Chevron U.S.A. Inc. Fuel composition
US11525100B2 (en) * 2020-07-01 2022-12-13 Petro-Canada Lubricants Inc. Biodegradable fluids

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107010B2 (en) * 2007-12-11 2012-12-26 日清オイリオグループ株式会社 Hydrogenated oil and lubricating oil containing it
BRPI0908289A2 (en) 2008-05-06 2015-07-21 Archer Daniels Midland Co "Process for the production of a biobased lubricant additive and lubricant composition"
CN101845354B (en) * 2010-02-02 2013-06-19 新疆现代石油化工股份有限公司 Cotton picker spindle oil and preparation method thereof
US20190270947A1 (en) 2018-03-02 2019-09-05 Chevron Oronite Technology B.V. Lubricating oil composition providing wear protection at low viscosity
CN112135893A (en) 2018-03-02 2020-12-25 雪佛龙奥伦耐技术有限责任公司 Lubricating oil compositions providing wear protection at low viscosity
CN110330430B (en) * 2019-06-06 2022-04-19 深圳市优宝新材料科技有限公司 Poly-alpha-olefin compound with polar ester group branched chain and preparation method thereof
JP2023049434A (en) * 2021-09-29 2023-04-10 出光興産株式会社 lubricant base oil

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339275A (en) * 1970-12-28 1994-08-16 Hyatt Gilbert P Analog memory system
US5338471A (en) * 1993-10-15 1994-08-16 The Lubrizol Corporation Pour point depressants for industrial lubricants containing mixtures of fatty acid esters and vegetable oils
US5451334A (en) * 1989-08-17 1995-09-19 Henkel Kommanditgesellschaft Auf Aktien Environment-friendly basic oil for formulating hydraulic fluids
US5681800A (en) * 1994-12-08 1997-10-28 Exxon Chemical Patents Inc. Biodegradable branched synthetic ester base stocks and lubricants formed therefrom
US5773391A (en) * 1994-11-15 1998-06-30 The Lubrizol Corporation High oleic polyol esters, compositions and lubricants, functional fluids and greases containing the same
US5885643A (en) * 1996-05-21 1999-03-23 Cargill, Incorporated High stability canola oils
US5942474A (en) * 1995-11-22 1999-08-24 Exxon Chemical Patents Inc Two-cycle ester based synthetic lubricating oil
US5942475A (en) * 1996-09-06 1999-08-24 Exxon Chemical Patents Inc. Engine oil lubricants formed from complex alcohol esters
US5990055A (en) * 1996-05-15 1999-11-23 Renewable Lubricants, Inc. Biodegradable lubricant composition from triglycerides and oil soluble antimony
US5994278A (en) * 1996-09-06 1999-11-30 Exxon Chemical Patents Inc. Blends of lubricant basestocks with high viscosity complex alcohol esters
US6054420A (en) * 1997-09-22 2000-04-25 Exxon Chemical Patents Inc. Synthetic biodegradable lubricants and functional fluids
US6271185B1 (en) * 1999-10-29 2001-08-07 Cargill, Incorporated Water soluble vegetable oil esters for industrial applications
US6551968B2 (en) * 2001-01-05 2003-04-22 Hatco Corporation Biodegradable polyneopentyl polyol based synthetic ester blends and lubricants thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399275A (en) * 1992-12-18 1995-03-21 The Lubrizol Corporation Environmentally friendly viscosity index improving compositions
US5728658A (en) * 1996-05-21 1998-03-17 Exxon Chemical Patents Inc Biodegradable synthetic ester base stocks formed from branched oxo acids
US6117827A (en) * 1996-06-04 2000-09-12 Fuji Oil Co., Ltd. Biodegradable lubricant base oil and its manufacturing process
KR100517190B1 (en) * 1997-08-22 2005-09-28 로막스 아디티페스 게엠베하 Method for maintaining low-temperature fluidity of lubricating oil composition, a concentrate for use in lubricating oil composition and a lubricating oil composition
JP3992369B2 (en) * 1998-07-17 2007-10-17 出光興産株式会社 Lubricating oil composition for internal combustion engines
JP4354027B2 (en) * 1998-08-13 2009-10-28 出光興産株式会社 2-cycle engine oil composition
US6278006B1 (en) * 1999-01-19 2001-08-21 Cargill, Incorporated Transesterified oils

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339275A (en) * 1970-12-28 1994-08-16 Hyatt Gilbert P Analog memory system
US5451334A (en) * 1989-08-17 1995-09-19 Henkel Kommanditgesellschaft Auf Aktien Environment-friendly basic oil for formulating hydraulic fluids
US5338471A (en) * 1993-10-15 1994-08-16 The Lubrizol Corporation Pour point depressants for industrial lubricants containing mixtures of fatty acid esters and vegetable oils
US5773391A (en) * 1994-11-15 1998-06-30 The Lubrizol Corporation High oleic polyol esters, compositions and lubricants, functional fluids and greases containing the same
US5681800A (en) * 1994-12-08 1997-10-28 Exxon Chemical Patents Inc. Biodegradable branched synthetic ester base stocks and lubricants formed therefrom
US5817607A (en) * 1994-12-08 1998-10-06 Exxon Chemical Patents Inc. Biodegradable branched synthetic ester base stocks and lubricants formed therefrom
US5942474A (en) * 1995-11-22 1999-08-24 Exxon Chemical Patents Inc Two-cycle ester based synthetic lubricating oil
US5990055A (en) * 1996-05-15 1999-11-23 Renewable Lubricants, Inc. Biodegradable lubricant composition from triglycerides and oil soluble antimony
US5885643A (en) * 1996-05-21 1999-03-23 Cargill, Incorporated High stability canola oils
US5942475A (en) * 1996-09-06 1999-08-24 Exxon Chemical Patents Inc. Engine oil lubricants formed from complex alcohol esters
US5994278A (en) * 1996-09-06 1999-11-30 Exxon Chemical Patents Inc. Blends of lubricant basestocks with high viscosity complex alcohol esters
US6054420A (en) * 1997-09-22 2000-04-25 Exxon Chemical Patents Inc. Synthetic biodegradable lubricants and functional fluids
US6271185B1 (en) * 1999-10-29 2001-08-07 Cargill, Incorporated Water soluble vegetable oil esters for industrial applications
US6551968B2 (en) * 2001-01-05 2003-04-22 Hatco Corporation Biodegradable polyneopentyl polyol based synthetic ester blends and lubricants thereof

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018484A1 (en) * 1999-09-17 2001-08-30 Bitler Steven P. Polymeric thickeners for oil-containing compositions
US7449511B2 (en) 1999-09-17 2008-11-11 Landec Corp. Polymeric thickeners for oil-containing compositions
US20050272618A1 (en) * 1999-09-17 2005-12-08 Bitler Steven P Polymeric thickeners for oil-containing compositions
US6989417B2 (en) * 1999-09-17 2006-01-24 Landec Corporation Polymeric thickeners for oil-containing compositions
US7101928B1 (en) * 1999-09-17 2006-09-05 Landec Corporation Polymeric thickeners for oil-containing compositions
US20030176301A1 (en) * 2002-03-13 2003-09-18 Barnes John F. Lubricant for two-cycle engines
US20060135378A1 (en) * 2003-02-21 2006-06-22 Nippon Oil Corporation Lubricating oil composition for transmissions
US9102897B2 (en) * 2003-02-21 2015-08-11 Nippon Oil Corporation Lubricating oil composition for transmissions
US20040241309A1 (en) * 2003-05-30 2004-12-02 Renewable Lubricants. Food-grade-lubricant
US20050059562A1 (en) * 2003-09-12 2005-03-17 Renewable Lubricants Vegetable oil lubricant comprising all-hydroprocessed synthetic oils
WO2005026300A1 (en) * 2003-09-12 2005-03-24 Renewable Lubricants, Inc. Vegetable oil lubricant comprising all-hydroprocessed synthetic oils
US20060211585A1 (en) * 2003-09-12 2006-09-21 Renewable Lubricants, Inc. Vegetable oil lubricant comprising Fischer Tropsch synthetic oils
US20100132645A1 (en) * 2003-09-30 2010-06-03 Chevron Oronite Company Llc Engine oil compositions
US20050070450A1 (en) * 2003-09-30 2005-03-31 Roby Stephen H. Engine oil compositions
US7926453B2 (en) * 2003-09-30 2011-04-19 Chevron Oronite Company Llc Engine oil compositions
US20050070449A1 (en) * 2003-09-30 2005-03-31 Roby Stephen H. Engine oil compositions
US7678747B2 (en) * 2003-09-30 2010-03-16 Cherron Oronite Company LLC Engine oil compositions
US20090197783A1 (en) * 2003-09-30 2009-08-06 Chevron Oronite Company Llc Engine oil compostions
US7781384B2 (en) * 2003-11-20 2010-08-24 Malaysian Palm Oil Board Lubricant base from palm oil and its by-products
US20050112267A1 (en) * 2003-11-20 2005-05-26 Kian Yeong S. Lubricant base from palm oil and its by-products
US7601677B2 (en) * 2004-08-11 2009-10-13 Daniel Graiver Triglyceride based lubricant
US20060035794A1 (en) * 2004-08-11 2006-02-16 Daniel Graiver Triglyceride based lubricant
US20060113512A1 (en) * 2004-12-01 2006-06-01 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US7510674B2 (en) * 2004-12-01 2009-03-31 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US20100212624A1 (en) * 2004-12-22 2010-08-26 Breon Lewis D Method of Viscosity Control
US7465696B2 (en) 2005-01-31 2008-12-16 Chevron Oronite Company, Llc Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20060172898A1 (en) * 2005-01-31 2006-08-03 Roby Stephen H Lubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
US20080248983A1 (en) * 2006-07-21 2008-10-09 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
WO2008013698A1 (en) * 2006-07-21 2008-01-31 Exxonmobil Research And Engineering Company Method for lubricating heavy duty geared apparatus
US20080300157A1 (en) * 2007-03-30 2008-12-04 Wu Margaret M Lubricating oil compositions having improved low temperature properties
US20100152078A1 (en) * 2007-05-04 2010-06-17 Ian Macpherson Environmentally-friendly lubricant compositions
US7863232B2 (en) * 2007-07-20 2011-01-04 Rhodia Operations Treatment/cleaning of textile materials utilizing formulations of branched carboxylic acid diesters
US7871970B2 (en) * 2007-07-20 2011-01-18 Rhodia Operations Formulations of carboxylic acid diesters useful for treating/cleaning textile and other materials
US20100240564A1 (en) * 2007-07-20 2010-09-23 Jean-Emile Zanetto Formulations of carboxylic acid diesters useful for treating/cleaning textile and other materials
US20100240567A1 (en) * 2007-07-20 2010-09-23 Jean-Emile Zanetto Treatment/cleaning of textile materials utilizing formulations of carboxylic acid diesters
US20090031614A1 (en) * 2007-08-01 2009-02-05 Ian Macpherson Environmentally-Friendly Fuel Compositions
US20090156442A1 (en) * 2007-12-17 2009-06-18 Laurent Chambard Lubricant Compositions With Low HTHS for a Given SAE Viscosity Grade
US8703677B2 (en) 2007-12-21 2014-04-22 Chevron Japan Ltd Lubricating oil compositions for internal combustion engines
US20090163393A1 (en) * 2007-12-21 2009-06-25 Boffa Alexander B Lubricating oil compositions for internal combustion engines
WO2010043371A1 (en) * 2008-10-14 2010-04-22 Natoil Ag Vegetable oil-based hydraulic fluid and transmission fluid
US9296969B2 (en) 2009-02-16 2016-03-29 Chemtura Corporation Fatty sorbitan ester based friction modifiers
US20100216678A1 (en) * 2009-02-24 2010-08-26 Abhimanyu Onkar Patil Lubricant compositions containing glycerol tri-esters
WO2010098825A1 (en) * 2009-02-24 2010-09-02 Exxonmobil Research And Engineering Company Lubricant compositions containing glycerol tri-esters
US20130017984A1 (en) * 2010-03-31 2013-01-17 Idemitsu Kosan Co., Ltd. Biodegradable lubricating oil composition having flame retardancy
US20120289445A1 (en) * 2011-03-08 2012-11-15 Cognis Ip Management Gmbh High Viscosity Lubricant Compositions Meeting Low Temperature Performance Requirements
US9783761B2 (en) * 2011-03-08 2017-10-10 Cognis Ip Management Gmbh High viscosity lubricant compositions meeting low temperature performance requirements
US8586518B2 (en) 2011-08-26 2013-11-19 State Industrial Products Corporation Biobased penetrating oil
US9028727B2 (en) 2011-09-23 2015-05-12 E I Du Pont De Nemours And Company Dielectric fluids comprising polyol esters
US20160137948A1 (en) * 2013-07-05 2016-05-19 Tsubakimoto Chain Co. Lubricant composition for chains, and chain
WO2015048386A1 (en) * 2013-09-26 2015-04-02 M-I Finland Oy Flow improver aid composition, process for its preparation and methods of using it
EP2853802A1 (en) * 2013-09-26 2015-04-01 M-I Finland Oy Flow improver aid composition, process for its preparation and methods of using it
EP2853801A1 (en) * 2013-09-26 2015-04-01 M-I Finland Oy Drag reducing agent composition, process for its preparation and method for reducing drag
WO2016156313A1 (en) * 2015-03-30 2016-10-06 Basf Se Lubricants leading to better equipment cleanliness
US20180094203A1 (en) * 2016-09-30 2018-04-05 Chevron U.S.A. Inc. Fuel composition
US10301566B2 (en) * 2016-09-30 2019-05-28 Chevron U.S.A. Inc. Fuel composition
US11525100B2 (en) * 2020-07-01 2022-12-13 Petro-Canada Lubricants Inc. Biodegradable fluids

Also Published As

Publication number Publication date
AR036616A1 (en) 2004-09-22
ES2258172T3 (en) 2006-08-16
DK1436369T3 (en) 2006-06-19
CN1568360A (en) 2005-01-19
ATE317889T1 (en) 2006-03-15
CN100384968C (en) 2008-04-30
TWI258503B (en) 2006-07-21
JP2005504141A (en) 2005-02-10
KR20040039416A (en) 2004-05-10
EP1436369B1 (en) 2006-02-15
ZA200402221B (en) 2005-04-15
EP1436369A1 (en) 2004-07-14
MY128504A (en) 2007-02-28
CA2461158A1 (en) 2003-04-03
DE60209260D1 (en) 2006-04-20
BR0212786A (en) 2004-10-05
DE60209260T2 (en) 2006-11-23
WO2003027212A1 (en) 2003-04-03
AU2002334650B2 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
EP1436369B1 (en) Environmentall friendly lubricants
AU2002334650A1 (en) Enviromentally Friendly Lubricants
RU2627696C2 (en) Lubricant composition for marine engine
TWI447223B (en) Lubricating oil composition
US20110177989A1 (en) Lubricating compositions for transmissions
JPH0931483A (en) Lubricant composition
EP2177596A1 (en) Method of operating a hybrid engine
US8470752B2 (en) Automotive lubricant composition
JP6226615B2 (en) Lubricating oil composition
AU727582B2 (en) Biodegradable grease compositions
JP2011195837A (en) Lubricating composition
JP2024015129A (en) Lubricating oil compositions that provide anti-wear properties with low viscosity
JPS59133297A (en) High-temperature lubricating oil composition
US20160002559A1 (en) Lubricating composition based on aminated compounds
US9683192B2 (en) Lubricant composition based on polyglycerol ether
JP4094118B2 (en) Gear oil composition
US6455477B1 (en) Two-cycle lubricating oil with reduced smoke generation
JP3807743B2 (en) 2-cycle lubricant
JP2000026879A (en) Lubricating oil composition for internal combustion engine
JP2554668B2 (en) Lubricating base oil for internal combustion engine and composition
JPH0734084A (en) Lubricant for 2 cycle engine
JPH0734085A (en) Lubricant composition for 2 cycle engine
JP2000144166A (en) Lubricating oil composition for internal-combustion engine
JP2022020971A (en) Engine oil composition
JPH06240276A (en) Lubricating oil composition for two-cycle engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: PENNZOIL-QUAKER STATE COMPANY, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIU, I-CHING;GUNSEL, SELDA;LACEY, PAUL;REEL/FRAME:013561/0892

Effective date: 20021107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION