US20030195546A1 - Enhanced catheter with alignment means - Google Patents

Enhanced catheter with alignment means Download PDF

Info

Publication number
US20030195546A1
US20030195546A1 US10/428,668 US42866803A US2003195546A1 US 20030195546 A1 US20030195546 A1 US 20030195546A1 US 42866803 A US42866803 A US 42866803A US 2003195546 A1 US2003195546 A1 US 2003195546A1
Authority
US
United States
Prior art keywords
balloon
delivery system
distal end
advancement
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/428,668
Inventor
Ronald Solar
Glen Lieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/312,529 external-priority patent/US6394995B1/en
Priority claimed from US09/454,255 external-priority patent/US6447501B1/en
Application filed by Individual filed Critical Individual
Priority to US10/428,668 priority Critical patent/US20030195546A1/en
Publication of US20030195546A1 publication Critical patent/US20030195546A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0008Catheters; Hollow probes having visible markings on its surface, i.e. visible to the naked eye, for any purpose, e.g. insertion depth markers, rotational markers or identification of type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0177Introducing, guiding, advancing, emplacing or holding catheters having external means for receiving guide wires, wires or stiffening members, e.g. loops, clamps or lateral tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1056Balloon catheters with special features or adapted for special applications having guide wire lumens outside the main shaft, i.e. the guide wire lumen is within or on the surface of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1061Balloon catheters with special features or adapted for special applications having separate inflations tubes, e.g. coaxial tubes or tubes otherwise arranged apart from the catheter tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1093Balloon catheters with special features or adapted for special applications having particular tip characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • A61M2029/025Dilators made of swellable material characterised by the guiding element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers

Definitions

  • This invention relates to the fields of angioplasty and other interventional procedures. More particularly, this invention relates to improved balloon dilatation systems where the distal end of the inflatable dilatation balloon is attached to a tubular tracking member or an advancement member and alignment means align the tracking member and an inflation channel.
  • Balloon dilatation catheters have been used to dilate various types of strictures in blood vessels and other body lumens for over twenty years.
  • catheters comprise a balloon mounted on the distal end of an elongated flexible shaft and an inflation tube or lumen extending longitudinally within the shaft from its proximal end to the interior of the balloon.
  • major advancements in balloon dilatation catheters have been the development of smaller catheters that can be used in smaller and/or more distal anatomical locations, and the development of catheters that can be rapidly exchanged. Examples of such catheters are described in U.S. Pat. No. 4,748,982 (Horzewski), Pat. No. 4,762,129 (Bonzel), Pat. No.
  • an enhanced balloon dilatation delivery system comprises an elongated advancement member which optionally terminates in a tubular tracking member, an inflatable dilatation balloon having proximal and distal ends and being in fluid communication with an inflation channel, and means for aligning the advancement member and the inflation channel.
  • the proximal end of the inflatable balloon is in fluid communication with the inflation channel, and the distal end of the inflatable balloon is attached to the tubular tracking member or the advancement member.
  • the inflatable dilatation balloon and inflation channel are somewhat coextensive with the advancement member.
  • the system is slidable over a guidewire.
  • FIGS. 1 to 3 are each a schematic, lateral view of an embodiment of the invention.
  • FIG. 4 is an enlarged illustration of the distal portion of an additional embodiment of the invention.
  • FIG. 5 is an enlarged illustration of the proximal portion of an alternate embodiment of the invention.
  • FIG. 6 is a cross-sectional view of a clamping member used in the FIG. 5 embodiment
  • FIGS. 7 and 8 are each a schematic, lateral view of an additional embodiment of the invention.
  • FIG. 9 is a schematic, partly cross-sectional view of another embodiment of the invention and FIG. 10 is a cross-sectional view across line 10 - 10 ;
  • FIG. 11 is an alternate cross-sectional view of FIG. 10;
  • FIGS. 12, 13 and 14 are each a schematic representation of another embodiment of the invention.
  • FIG. 15 is a detail of FIG. 14.
  • an enhanced catheter system designated generally as 1 , has an elongated advancement member 5 .
  • advancement member 5 is formed of a flexible wire or, alternately, of spring hollow hypotubing.
  • Advancement member 5 preferably has a diameter of from about 0.008′′ to 0.035′′, which diameter could be larger or smaller depending on the application.
  • Advancement member 5 has sufficient column strength and flexibility to provide for advancement of the catheter through tortuous anatomy.
  • advancement member 5 is rigid at its proximal end and becomes increasingly more flexible as it extends distally. This may be accomplished by a number of ways known in the art, including, but not limited to, tapering, selective heat treatment and/or forming advancement member 5 from a composite of materials with various properties.
  • Advancement member 5 terminates at its distal end 6 in an elongated tubular tracking member 7 .
  • Tracking member 7 has a tubular configuration and is adapted to slide over a standard guidewire 9 to allow system 1 to advance easily to a desired location within a patient's body.
  • Tracking member 7 has an open proximal end 11 and an open distal end 8 , and is preferably formed of a flexible polymeric tube, a spring coil, or a combination thereof.
  • Tracking member 7 is preferably about 10 to 50 cm long and has an inner diameter that is sized to accommodate guidewire 9 , most preferably approximately from about 0.012′′ to 0.040′′.
  • Optionally tracking member 7 has an inner, outer, or inner and outer coating with a lubricious material to aid in its movement over the guidewire. Lubricious materials for this purpose are well-known in the art.
  • Advancement member 5 and tracking member 7 are attached by any suitable means known in the art, such as by fusion or a non-toxic adhesive. Alternatively, advancement member 5 and tracking member 7 may be integrally formed during manufacture.
  • System 1 also has an inflatable balloon 10 having a proximal end 12 and distal end 14 .
  • Distal end 14 of balloon 10 is attached to tracking member 7 by any suitable means known in the art, such as by fusion, adhesive bonding or integral formation, and moves therewith.
  • Distal end 14 of balloon 10 may be attached to distal end 8 of tracking member 7 , as shown in FIG. 1, or preferably, distal end 14 of balloon 10 is attached to the proximal end 11 of tracking member 7 , as shown in FIG. 3.
  • Balloon 10 is formed of a very thin-walled, preferably less than 0.001′′ thick, polymeric material.
  • Balloon 10 may be formed of any one of a variety of suitable materials known in the art.
  • balloon 10 may be suitable for dilatation and/or deployment of a stent.
  • Proximal end 12 of balloon 10 communicates with an elongated inflation channel 15 that extends proximally through a corporeal lumen.
  • Inflation means 15 is formed preferably of a polymeric tubular film that will allow inflation channel 15 to collapse to a smaller profile when not being used for inflation of balloon 10 .
  • the wall thickness of inflation channel 15 should preferably be less than 0.001′′.
  • inflation channel 15 When inflated, inflation channel 15 will have a diameter of approximately 0.010′′ or more, depending upon the application.
  • inflation channel 15 may be fabricated out of a non-collapsible tubing material as would be familiar to one skilled in this art.
  • inflation channel 15 may have position markers 13 on its proximal portion. Position markers 13 , which may be applied by ink or other suitable means known in the art, correspond to similar markers on advancement member 5 . Such markers provide visual confirmation of concurrent movement of inflation channel 15 and advancement member 5 during advancement and withdrawal of system 1 .
  • Inflation channel 15 has a hub 16 at its opposite, proximal end.
  • Hub 16 is a standard LUER® lock connector that allows connection of inflation means 15 to standard balloon inflator devices or syringes (not shown). By this means, balloon 10 is in fluid communication with an inflator.
  • tubular tracking member 7 As noted above, distal end 14 of inflatable balloon 10 is attached to tubular tracking member 7 . In this way, as tubular tracking member 7 travels through the body along the path of guidewire 9 , inflatable balloon 10 is pulled along with tracking member 7 to the desired site. However, although balloon 10 lies coextensively with advancement member 5 (FIGS. 2 and 3) and/or tracking member 7 (FIG. 1), it is unattached to advancement member 5 . In this most preferred embodiment of least attachment, pushing on advancement member 5 causes balloon 10 to be easily pulled through the anatomy and tight strictures and stenoses. Since the balloon is not being pushed through a stenosis, there is no tendency for the balloon to compress longitudinally and increase in profile and bulk.
  • a wire 2 can optionally extend at least partially within the inflation channel 15 to the distal end 14 of balloon 10 .
  • Wire 2 may provide support to the inflation channel 15 and balloon 10 which may be required in some applications.
  • the support wire may be permanently mounted, or alternatively, it may be removable and used as needed.
  • the dilatation system may have radiopaque markers 17 to allow the system's position to be monitored, and the proximal ends of the advancement member 5 and/or inflation channel 15 may have one or more visual markers 13 to indicate the lengths inserted.
  • the radiopaque markers may be comprised of conventional radiopaque materials such as gold or platinum, and the visual markers may be comprised of physiological acceptable inks or coatings, preferably in bright or fluorescent colors.
  • the embodiment of the invention shown in FIG. 7 has an inflatable balloon 22 and a flexible, torqueable, advancement member 23 .
  • the distal portion 24 of balloon 22 is fixedly attached to the distal end 25 of advancement member 23 .
  • Advancement member distal end 25 may optionally have a flexible spring tip 26 .
  • proximal portion 27 of balloon 22 is in fluid communication with an inflation channel or means 28 having a hub 29 for connection to an inflation source (not shown).
  • Inflation channel 28 preferably is attached to or wound about advancement member 23 in spiral fashion, in such a way to lower the profile of the system but to not interfere with the fluid communication.
  • a torquer or rotator member 30 may optionally grip the proximal portion of advancement member 23 and inflation channel 28 , to allow radial positioning of advancement member 23 .
  • the inflation means spirally wrap around the advancement member. Turning the proximal end of the advancement member with torquer 30 will allow distal end 25 of the advancement member 23 to be positioned at a desired radial location relative to balloon 22 within a corporeal lumen.
  • a torquer 30 could also be used with the embodiments shown in FIGS. 1 and 2, where the tracking means and advancement means would be radially positioned.
  • an enhanced balloon dilatation system designated generally as 80 , has an elongated advancement member 82 .
  • advancement member 82 is formed of a flexible wire or, alternately, of spring hollow hypotubing, and has the characteristics described above.
  • Advancement member 82 terminates at its distal end 84 in a tubular tracking member 86 .
  • Tracking member 86 has a tubular configuration and is adapted to slide over a standard guidewire 88 to allow system 80 to advance easily to a desired location within a patient's body.
  • Tracking member 86 has an open proximal end 90 and an open distal end 92 , and is preferably formed of a flexible polymeric tube, a spring coil, or a combination thereof.
  • Tracking member 86 is preferably about 3 to 30 cm long and has an inner diameter that is sized to accommodate guidewire 88 , most preferably approximately from about 0.012′′ to 0.040′′.
  • tracking member 86 has an inner, outer, or inner and outer coating with a lubricious material to aid in its movement over the guidewire.
  • Advancement member 82 and tracking member 86 are attached by any suitable means known in the art, such as by fusion or a non-toxic adhesive, or, alternatively, have been integrally formed during manufacture.
  • System 80 also has an inflatable balloon 94 having a proximal end 96 and distal end 98 .
  • Distal end 98 of balloon 94 is attached to advancement member 82 or tracking member 86 by any suitable means known in the art, such as by fusion, adhesive bonding or integral formation, and moves therewith.
  • Distal end 98 of balloon 94 may be attached to advancement member 82 , as shown in FIG. 9, or optionally distal end 98 of balloon 94 can be attached to the proximal end 90 of tracking member 86 , as similar to the arrangement shown in FIG. 3.
  • Balloon 94 is formed of a very thin-walled, preferably less than 0.001′′ thick, polymeric material, of any one of a variety of suitable materials known in the art.
  • Proximal end 96 of balloon 94 communicates with an elongated inflation channel 100 that extends proximally through a corporeal lumen.
  • Inflation channel 100 is formed preferably of a polymeric tubular film that will allow inflation channel 100 to collapse to a smaller profile when not being used for inflation of balloon 94 .
  • inflation channel 100 When inflated, inflation channel 100 will have a diameter of approximately 0.010′′ or more, depending on the application.
  • inflation channel 100 may be fabricated out of a non-collapsible tubing material as would be familiar to one skilled in this art.
  • Inflation channel 100 has a hub 101 at its opposite, proximal end.
  • Hub 101 is a standard LUER® lock connector that allows connection of inflation channel 100 to standard balloon inflator devices or syringes (not shown).
  • balloon 94 is in fluid communication with an inflator.
  • An alignment member or sheath 102 extends longitudinally, whereby it encompasses at least inflation channel 100 .
  • Alignment member 102 preferably is attached to or integral with advancement member 82 , and preferably advancement member 82 also is encompassed by alignment member 102 .
  • Alignment member 102 can be comprised of any suitable flexible or substantially flexible medically acceptable material, such as a polymer or metal.
  • alignment sheath comprises a stainless steel hypotube and advancement member 82 is bonded to its inner or outer surface.
  • the distal end 104 of alignment member 102 is open, and the proximal end 106 of alignment member 102 is optionally attached to hub 101 , optionally with an opening for the proximal portion 108 of advancement member 82 .
  • advancement member 82 and inflation channel 100 are positioned within alignment member 102 .
  • advancement member 82 is attached to the outer surface 110 of alignment member 102 .
  • the advancement member has a proximal portion and a distal portion.
  • the proximal portion has at least one lumen having open ends.
  • Inflation channel 100 is positioned within one of said lumens and the proximal portion of the advancement member functions as the alignment member.
  • the distal portion of the advancement member extends distally from the distal end of the proximal portion of the advancement member.
  • a stent or stent graft may be delivered.
  • An example of this preferred embodiment is shown in FIG. 12.
  • an inflatable balloon 40 is folded and formed into a tubular shape, and a stent or stent graft 42 is mounted onto the balloon by various methods known in the art such as, for example, crimping, interference fit, or encapsulation. See, for example, U.S. Pat. Nos. 4,800,882 and 5,836,965.
  • the distal end 44 of balloon 40 is attached to advancement means 46 adjacent to the distal end of advancement means 46 , and the balloon/stent assembly 40 / 42 acts as a tracking member.
  • the proximal end 48 of balloon 40 is in fluid communication with hub 50 through flexible conduit 52 .
  • the embodiment illustrated in FIG. 1 may be used to deliver a stent or stent graft.
  • the balloon With the distal end 14 of balloon 10 attached to the distal end 8 of the tracking member 7 , the balloon is folded around tracking member 7 , and the stent/stent graft 54 is mounted onto the folded balloon (FIGS. 1 and 13). Tracking member 7 is advanced over guidewire 9 .
  • the distal end 62 of an inflatable balloon 64 is attached to the proximal end 66 of a tracking member 68 .
  • Balloon 64 is folded and formed into a tubular shape, and a stent or stent graft 70 is mounted onto the balloon by various methods known in the art.
  • a sheath can be extended over the stent (various designs and methods are known in the art).
  • a guidewire is first laid in place within a corporeal lumen through any of the means well-known in the art.
  • a tracking member or folded balloon is advanced into the corporeal lumen over the guidewire.
  • an inflatable balloon is pulled along with it by virtue of the attachment of its distal end to the tracking member or the advancement member.
  • the balloon is inflated via the inflation means and hub.
  • the tracking member can be varied to provide alternative embodiments of the catheter system of the invention.
  • the length of the tracking member may either be made longer or shorter.
  • the tracking means has been shortened to a loop 18 .
  • the tracking member may extend as an elongated tubular member the full length of system, from a proximal position outside the body lumen all the way to its distal end, to allow fluid administration of the treatment site.
  • the distal end of the advancement member could extend distally of the tracking member.
  • the inflatable balloon may be detachable.
  • the tracking member may be single-lumen, so that it accommodates only a guidewire, or it may be multi-lumen, so that it can perform other functions as well.
  • the multi-lumen tracking member 19 shown in FIG. 4 contains lumen 3 for advancing over guidewire 9 and lumen 20 , which provides a convenient means for attachment to advancement member 5 .
  • Advancement member 5 may be hollow to provide an alternative means for fluid administration to the treatment site.
  • Lumen 20 may be open at the distal end 4 of tracking member 19 , and tracking member 19 may alternatively have side holes 21 which provide communication from lumen 20 to the exterior of tracking member 19 .
  • Tracking member 19 may also be enlarged and/or lengthened to facilitate perfusion during balloon inflation.
  • a preferred method of attachment employs a removable clamping member 22 as shown in FIGS. 5 and 6.
  • Clamping member 22 holds inflation channel 15 stationary with respect to advancement member 5 during withdrawal of catheter system 1 .
  • Clamping member 22 is preferably removed or loosened during catheter system advancement to optimize the pulling forces on the balloon. It is contemplated that in some instances more than one clamp 22 might be used.
  • the inflatable balloon and the inflation channel may be formed from the same material or they may be formed independently and subsequently attached by suitable known means.
  • the distal extension of the balloon may be molded or otherwise formed to the shape of the tracking member.
  • the advancement member and the tracking member may be formed in multiple segments each having varying mechanical properties which will allow for the customization of the catheter to a particular need.
  • the catheter systems of the present invention provides the user with a number of significant advantages not otherwise obtainable with currently available catheters. For example, they are less bulky than other available catheter systems and thus the balloon is able to move against resistance more easily, which allows less traumatic crossing of restrictions. Also, pushing on the advancement member has the effect of pulling the balloon along through the stenosis, and avoids the problem of bunching or gathering which occurs with other catheters. With a thin film balloon and inflation channel there is no dead space or volume that needs to be evacuated prior to use; therefore, little or no preparation is required.
  • the smaller profile of the catheter system of the invention allows the inflatable balloon to be passed through stents easily. Partial inflation of the inflatable balloon can grab a previously inserted stent and facilitate retrieval of the stent. The smaller profile also permits passage through displaced stent struts.
  • a further advantage of the present invention is that the design allows additional catheters or devices to be placed over the guidewire adjacent to the inflatable balloon, and to be exchanged without first removing the catheter system.
  • the advancement member may also act as an additional guidewire.
  • a second dilatation system or catheter may be advanced over the advancement member and its balloon positioned along side the first balloon (to increase the effective diameter of the dilatation) or adjacent to the first balloon (to increase the effective length of the dilatation).
  • An imaging catheter such as an intravascular ultrasound catheter may be placed next to the first balloon to access the progress of the treatment without removing the balloon.
  • a drug delivery catheter may be utilized in this manner, and the balloon of system 1 may be inflated at low pressure to provide vascular occlusion to improve the efficacy of the drug delivery.
  • various other catheters and devices may be suitably employed.
  • FIG. 8 advancement member 5 terminates in a tubular tracking member 7 , which tracks over guidewire 9 .
  • Distal end 32 of instrumentality 31 is attached to tracking member 7 .
  • Proximal end 33 of instrumentality 31 is unattached to either advancement member 5 or tracking member 7 .
  • Instrumentality 31 may be a laser, infusion tube, suction device, atherectomy means, other stent expansion means or another therapeutic or diagnostic apparatus.
  • a connecting member 34 may be attached to instrumentality 31 .
  • Connecting member 34 may be an electrical conducting wire, optical fiber, tube, or the like.

Abstract

A balloon dilatation system is comprised of an elongated flexible advancement member which terminates in a tubular tracking member slidable over a guidewire. An inflatable balloon has proximal and distal ends, the proximal end communicating with an inflation channel, and the distal end attaching to the tracking member. The balloon portion is coextensive with but not attached to the advancement member. An alignment member aligns the advancement member and the inflation channel. Other embodiments relate to delivery of stents or other medical instrumentalities.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 09/629,768, filed Jul. 31, 2000, which in turn is a continuation-in-part of U.S. patent application Ser. No. 09/454,255, filed, Dec. 2, 1999, now U.S. Pat. No. 6,447,501, which is a continuation-in-part of U.S. patent application Serial No. 09/312,529, filed May 14, 1999, now U.S. Pat. No. 6,394,995, which is based upon U.S. Provisional Patent Application Serial No. 60/085,636, filed May 15, 1998.[0001]
  • SCOPE OF THE INVENTION
  • This invention relates to the fields of angioplasty and other interventional procedures. More particularly, this invention relates to improved balloon dilatation systems where the distal end of the inflatable dilatation balloon is attached to a tubular tracking member or an advancement member and alignment means align the tracking member and an inflation channel. [0002]
  • BACKGROUND OF THE INVENTION
  • Balloon dilatation catheters have been used to dilate various types of strictures in blood vessels and other body lumens for over twenty years. Typically, such catheters comprise a balloon mounted on the distal end of an elongated flexible shaft and an inflation tube or lumen extending longitudinally within the shaft from its proximal end to the interior of the balloon. Among the major advancements in balloon dilatation catheters have been the development of smaller catheters that can be used in smaller and/or more distal anatomical locations, and the development of catheters that can be rapidly exchanged. Examples of such catheters are described in U.S. Pat. No. 4,748,982 (Horzewski), Pat. No. 4,762,129 (Bonzel), Pat. No. 5,040,548 (Yock), Pat. No. 5,061,273 (Yock), Pat. No. 5,569,199 (Solar) and Pat. No. 5,728,067 (Enger). Because these catheters have become more sophisticated and complex in design, and despite the manufacturers's experience in manufacturing them, these catheters are expensive to make. Furthermore, despite these improvements, difficulties are still encountered in advancing catheters through tortuous anatomy and safely crossing very tight strictures and stenoses in the vascular system and other body lumens or cavities. [0003]
  • Recently vascular stents have been shown to play an important role in reducing the restenosis rates associated with balloon angioplasty. However, stents are sometimes lost from the delivery systems and are difficult to retrieve safely. In addition, stents cannot completely overcome the trauma and injury that result from balloon dilatation. Thus, there is a need for enhanced balloon dilatation catheters. [0004]
  • OBJECTS OF THE INVENTION
  • It is an object of the invention to provide an enhanced dilatation system that is extremely low-profile to more easily and safely cross very tight strictures and stenoses in the vascular system and other body lumens or cavities. [0005]
  • It is also an object of the invention to provide an enhanced dilatation system that provides for an improved means for crossing tight stenoses, as well as to navigate tortuous anatomy. [0006]
  • It is another object of the invention to provide an enhanced dilatation system that has the ability to be exchanged rapidly. [0007]
  • It is yet another object of the invention to provide an enhanced dilatation system that can be used to retrieve dislodged stents. [0008]
  • It is a further object of the invention to provide an enhanced dilatation system that can be manufactured inexpensively and more reliably then currently available balloon dilatation systems. [0009]
  • It is also an object of the invention to provide an enhanced dilatation system that allows placement of an additional catheter or instrumentality adjacent to a catheter. [0010]
  • It is likewise an object of the invention to provide an enhanced dilatation system that facilitates placement of stents or stent grafts. [0011]
  • It is a yet further object of the invention to provide a balloon catheter system and a stent delivery system having a smaller profile for crossing tight stenoses. [0012]
  • These and other objects of the invention will become more apparent from the discussion below. [0013]
  • SUMMARY OF THE INVENTION
  • According to the invention, an enhanced balloon dilatation delivery system comprises an elongated advancement member which optionally terminates in a tubular tracking member, an inflatable dilatation balloon having proximal and distal ends and being in fluid communication with an inflation channel, and means for aligning the advancement member and the inflation channel. The proximal end of the inflatable balloon is in fluid communication with the inflation channel, and the distal end of the inflatable balloon is attached to the tubular tracking member or the advancement member. During advancement of the system, the inflatable dilatation balloon and inflation channel are somewhat coextensive with the advancement member. The system is slidable over a guidewire. [0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which the reference characters refer to like parts throughout and in which: [0015]
  • FIGS. [0016] 1 to 3 are each a schematic, lateral view of an embodiment of the invention;
  • FIG. 4 is an enlarged illustration of the distal portion of an additional embodiment of the invention; [0017]
  • FIG. 5 is an enlarged illustration of the proximal portion of an alternate embodiment of the invention; [0018]
  • FIG. 6 is a cross-sectional view of a clamping member used in the FIG. 5 embodiment; [0019]
  • FIGS. 7 and 8 are each a schematic, lateral view of an additional embodiment of the invention; [0020]
  • FIG. 9 is a schematic, partly cross-sectional view of another embodiment of the invention and FIG. 10 is a cross-sectional view across line [0021] 10-10;
  • FIG. 11 is an alternate cross-sectional view of FIG. 10; [0022]
  • FIGS. 12, 13 and [0023] 14 are each a schematic representation of another embodiment of the invention; and
  • FIG. 15 is a detail of FIG. 14. [0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to FIGS. [0025] 1 to 3, an enhanced catheter system, designated generally as 1, has an elongated advancement member 5. Preferably advancement member 5 is formed of a flexible wire or, alternately, of spring hollow hypotubing. Advancement member 5 preferably has a diameter of from about 0.008″ to 0.035″, which diameter could be larger or smaller depending on the application. Advancement member 5 has sufficient column strength and flexibility to provide for advancement of the catheter through tortuous anatomy. Preferably, advancement member 5 is rigid at its proximal end and becomes increasingly more flexible as it extends distally. This may be accomplished by a number of ways known in the art, including, but not limited to, tapering, selective heat treatment and/or forming advancement member 5 from a composite of materials with various properties.
  • [0026] Advancement member 5 terminates at its distal end 6 in an elongated tubular tracking member 7. Tracking member 7 has a tubular configuration and is adapted to slide over a standard guidewire 9 to allow system 1 to advance easily to a desired location within a patient's body. Tracking member 7 has an open proximal end 11 and an open distal end 8, and is preferably formed of a flexible polymeric tube, a spring coil, or a combination thereof. Tracking member 7 is preferably about 10 to 50 cm long and has an inner diameter that is sized to accommodate guidewire 9, most preferably approximately from about 0.012″ to 0.040″. Optionally tracking member 7 has an inner, outer, or inner and outer coating with a lubricious material to aid in its movement over the guidewire. Lubricious materials for this purpose are well-known in the art.
  • [0027] Advancement member 5 and tracking member 7 are attached by any suitable means known in the art, such as by fusion or a non-toxic adhesive. Alternatively, advancement member 5 and tracking member 7 may be integrally formed during manufacture.
  • [0028] System 1 also has an inflatable balloon 10 having a proximal end 12 and distal end 14. Distal end 14 of balloon 10 is attached to tracking member 7 by any suitable means known in the art, such as by fusion, adhesive bonding or integral formation, and moves therewith. Distal end 14 of balloon 10 may be attached to distal end 8 of tracking member 7, as shown in FIG. 1, or preferably, distal end 14 of balloon 10 is attached to the proximal end 11 of tracking member 7, as shown in FIG. 3. Balloon 10 is formed of a very thin-walled, preferably less than 0.001″ thick, polymeric material. Balloon 10 may be formed of any one of a variety of suitable materials known in the art. Optionally balloon 10 may be suitable for dilatation and/or deployment of a stent.
  • [0029] Proximal end 12 of balloon 10 communicates with an elongated inflation channel 15 that extends proximally through a corporeal lumen. Inflation means 15 is formed preferably of a polymeric tubular film that will allow inflation channel 15 to collapse to a smaller profile when not being used for inflation of balloon 10. The wall thickness of inflation channel 15 should preferably be less than 0.001″. When inflated, inflation channel 15 will have a diameter of approximately 0.010″ or more, depending upon the application. Alternatively, inflation channel 15 may be fabricated out of a non-collapsible tubing material as would be familiar to one skilled in this art. As shown in FIG. 3, inflation channel 15 may have position markers 13 on its proximal portion. Position markers 13, which may be applied by ink or other suitable means known in the art, correspond to similar markers on advancement member 5. Such markers provide visual confirmation of concurrent movement of inflation channel 15 and advancement member 5 during advancement and withdrawal of system 1.
  • [0030] Inflation channel 15 has a hub 16 at its opposite, proximal end. Hub 16 is a standard LUER® lock connector that allows connection of inflation means 15 to standard balloon inflator devices or syringes (not shown). By this means, balloon 10 is in fluid communication with an inflator.
  • As noted above, [0031] distal end 14 of inflatable balloon 10 is attached to tubular tracking member 7. In this way, as tubular tracking member 7 travels through the body along the path of guidewire 9, inflatable balloon 10 is pulled along with tracking member 7 to the desired site. However, although balloon 10 lies coextensively with advancement member 5 (FIGS. 2 and 3) and/or tracking member 7 (FIG. 1), it is unattached to advancement member 5. In this most preferred embodiment of least attachment, pushing on advancement member 5 causes balloon 10 to be easily pulled through the anatomy and tight strictures and stenoses. Since the balloon is not being pushed through a stenosis, there is no tendency for the balloon to compress longitudinally and increase in profile and bulk. Such an occurrence, which may be found in prior art catheters where the balloon is attached proximally and distally to the catheter shaft, can impede advancement and crossing, as well as result in vascular trauma and clinical complications. Since there is no bulky catheter structure within the interior of the balloon (as is found in prior art catheters), the very thin balloon material can easily fold and conform as required to cross a stenosis with minimal friction and trauma as it is pulled across by the tracking member.
  • As shown in FIG. 3 a wire [0032] 2 can optionally extend at least partially within the inflation channel 15 to the distal end 14 of balloon 10. Wire 2 may provide support to the inflation channel 15 and balloon 10 which may be required in some applications. The support wire may be permanently mounted, or alternatively, it may be removable and used as needed. Also, as shown in FIG. 3, the dilatation system may have radiopaque markers 17 to allow the system's position to be monitored, and the proximal ends of the advancement member 5 and/or inflation channel 15 may have one or more visual markers 13 to indicate the lengths inserted. The radiopaque markers may be comprised of conventional radiopaque materials such as gold or platinum, and the visual markers may be comprised of physiological acceptable inks or coatings, preferably in bright or fluorescent colors.
  • The embodiment of the invention shown in FIG. 7 has an [0033] inflatable balloon 22 and a flexible, torqueable, advancement member 23. The distal portion 24 of balloon 22 is fixedly attached to the distal end 25 of advancement member 23. Advancement member distal end 25 may optionally have a flexible spring tip 26.
  • The [0034] proximal portion 27 of balloon 22 is in fluid communication with an inflation channel or means 28 having a hub 29 for connection to an inflation source (not shown). Inflation channel 28 preferably is attached to or wound about advancement member 23 in spiral fashion, in such a way to lower the profile of the system but to not interfere with the fluid communication.
  • A torquer or [0035] rotator member 30 may optionally grip the proximal portion of advancement member 23 and inflation channel 28, to allow radial positioning of advancement member 23. In this embodiment it is preferred that the inflation means spirally wrap around the advancement member. Turning the proximal end of the advancement member with torquer 30 will allow distal end 25 of the advancement member 23 to be positioned at a desired radial location relative to balloon 22 within a corporeal lumen. A torquer 30 could also be used with the embodiments shown in FIGS. 1 and 2, where the tracking means and advancement means would be radially positioned.
  • In FIG. 9, an enhanced balloon dilatation system, designated generally as [0036] 80, has an elongated advancement member 82. Preferably advancement member 82 is formed of a flexible wire or, alternately, of spring hollow hypotubing, and has the characteristics described above.
  • [0037] Advancement member 82 terminates at its distal end 84 in a tubular tracking member 86. Tracking member 86 has a tubular configuration and is adapted to slide over a standard guidewire 88 to allow system 80 to advance easily to a desired location within a patient's body. Tracking member 86 has an open proximal end 90 and an open distal end 92, and is preferably formed of a flexible polymeric tube, a spring coil, or a combination thereof. Tracking member 86 is preferably about 3 to 30 cm long and has an inner diameter that is sized to accommodate guidewire 88, most preferably approximately from about 0.012″ to 0.040″. Optionally tracking member 86 has an inner, outer, or inner and outer coating with a lubricious material to aid in its movement over the guidewire.
  • [0038] Advancement member 82 and tracking member 86 are attached by any suitable means known in the art, such as by fusion or a non-toxic adhesive, or, alternatively, have been integrally formed during manufacture.
  • [0039] System 80 also has an inflatable balloon 94 having a proximal end 96 and distal end 98. Distal end 98 of balloon 94 is attached to advancement member 82 or tracking member 86 by any suitable means known in the art, such as by fusion, adhesive bonding or integral formation, and moves therewith. Distal end 98 of balloon 94 may be attached to advancement member 82, as shown in FIG. 9, or optionally distal end 98 of balloon 94 can be attached to the proximal end 90 of tracking member 86, as similar to the arrangement shown in FIG. 3. Balloon 94 is formed of a very thin-walled, preferably less than 0.001″ thick, polymeric material, of any one of a variety of suitable materials known in the art.
  • [0040] Proximal end 96 of balloon 94 communicates with an elongated inflation channel 100 that extends proximally through a corporeal lumen. Inflation channel 100 is formed preferably of a polymeric tubular film that will allow inflation channel 100 to collapse to a smaller profile when not being used for inflation of balloon 94. When inflated, inflation channel 100 will have a diameter of approximately 0.010″ or more, depending on the application. Alternatively, inflation channel 100 may be fabricated out of a non-collapsible tubing material as would be familiar to one skilled in this art.
  • [0041] Inflation channel 100 has a hub 101 at its opposite, proximal end. Hub 101 is a standard LUER® lock connector that allows connection of inflation channel 100 to standard balloon inflator devices or syringes (not shown). By this means, balloon 94 is in fluid communication with an inflator.
  • An alignment member or [0042] sheath 102 extends longitudinally, whereby it encompasses at least inflation channel 100. Alignment member 102 preferably is attached to or integral with advancement member 82, and preferably advancement member 82 also is encompassed by alignment member 102. Alignment member 102 can be comprised of any suitable flexible or substantially flexible medically acceptable material, such as a polymer or metal. In a preferred embodiment alignment sheath comprises a stainless steel hypotube and advancement member 82 is bonded to its inner or outer surface.
  • The [0043] distal end 104 of alignment member 102 is open, and the proximal end 106 of alignment member 102 is optionally attached to hub 101, optionally with an opening for the proximal portion 108 of advancement member 82.
  • In the cross-sectional view along line [0044] 10-10 in FIG. 9 that is represented by FIG. 10, advancement member 82 and inflation channel 100 are positioned within alignment member 102. However, in an alternative embodiment reflected in FIG. 11, advancement member 82 is attached to the outer surface 110 of alignment member 102.
  • In a preferred embodiment the advancement member has a proximal portion and a distal portion. The proximal portion has at least one lumen having open ends. [0045] Inflation channel 100 is positioned within one of said lumens and the proximal portion of the advancement member functions as the alignment member. The distal portion of the advancement member extends distally from the distal end of the proximal portion of the advancement member.
  • In a preferred embodiment of the invention a stent or stent graft may be delivered. An example of this preferred embodiment is shown in FIG. 12. In this embodiment, an [0046] inflatable balloon 40 is folded and formed into a tubular shape, and a stent or stent graft 42 is mounted onto the balloon by various methods known in the art such as, for example, crimping, interference fit, or encapsulation. See, for example, U.S. Pat. Nos. 4,800,882 and 5,836,965. In this embodiment, the distal end 44 of balloon 40 is attached to advancement means 46 adjacent to the distal end of advancement means 46, and the balloon/stent assembly 40/42 acts as a tracking member. The proximal end 48 of balloon 40 is in fluid communication with hub 50 through flexible conduit 52.
  • Alternatively, the embodiment illustrated in FIG. 1 may be used to deliver a stent or stent graft. With the [0047] distal end 14 of balloon 10 attached to the distal end 8 of the tracking member 7, the balloon is folded around tracking member 7, and the stent/stent graft 54 is mounted onto the folded balloon (FIGS. 1 and 13). Tracking member 7 is advanced over guidewire 9.
  • In the embodiment shown in FIGS. 14 and 15, the [0048] distal end 62 of an inflatable balloon 64 is attached to the proximal end 66 of a tracking member 68. Balloon 64 is folded and formed into a tubular shape, and a stent or stent graft 70 is mounted onto the balloon by various methods known in the art. Optionally, a sheath can be extended over the stent (various designs and methods are known in the art).
  • To summarize use of the embodiments of the present invention described above, a guidewire is first laid in place within a corporeal lumen through any of the means well-known in the art. With use of an advancement member, a tracking member or folded balloon is advanced into the corporeal lumen over the guidewire. As the advancement member or folded balloon is advanced into the corporeal lumen, an inflatable balloon is pulled along with it by virtue of the attachment of its distal end to the tracking member or the advancement member. Once the inflatable balloon is in a desired position within the corporeal lumen, the balloon is inflated via the inflation means and hub. [0049]
  • It is contemplated that the tracking member can be varied to provide alternative embodiments of the catheter system of the invention. For example, the length of the tracking member may either be made longer or shorter. In the embodiment of the invention shown in FIG. 2, the tracking means has been shortened to a loop [0050] 18. Alternatively, it is contemplated that the tracking member may extend as an elongated tubular member the full length of system, from a proximal position outside the body lumen all the way to its distal end, to allow fluid administration of the treatment site. Also, the distal end of the advancement member could extend distally of the tracking member. Moreover, in one embodiment of the invention the inflatable balloon may be detachable.
  • In addition, it is contemplated that the tracking member may be single-lumen, so that it accommodates only a guidewire, or it may be multi-lumen, so that it can perform other functions as well. For example, the [0051] multi-lumen tracking member 19 shown in FIG. 4 contains lumen 3 for advancing over guidewire 9 and lumen 20, which provides a convenient means for attachment to advancement member 5. Advancement member 5 may be hollow to provide an alternative means for fluid administration to the treatment site. Lumen 20 may be open at the distal end 4 of tracking member 19, and tracking member 19 may alternatively have side holes 21 which provide communication from lumen 20 to the exterior of tracking member 19. Tracking member 19 may also be enlarged and/or lengthened to facilitate perfusion during balloon inflation.
  • It is further contemplated that, in some applications, it may be deemed desirable to provide one or more additional attachment points between the inflation channel and the advancement member at various locations along the advancement member's length. A preferred method of attachment employs a [0052] removable clamping member 22 as shown in FIGS. 5 and 6. Clamping member 22 holds inflation channel 15 stationary with respect to advancement member 5 during withdrawal of catheter system 1. Clamping member 22 is preferably removed or loosened during catheter system advancement to optimize the pulling forces on the balloon. It is contemplated that in some instances more than one clamp 22 might be used.
  • Further, it is envisioned that the inflatable balloon and the inflation channel may be formed from the same material or they may be formed independently and subsequently attached by suitable known means. In addition, the distal extension of the balloon may be molded or otherwise formed to the shape of the tracking member. [0053]
  • In yet another alternative preferred embodiment of the invention, the advancement member and the tracking member may be formed in multiple segments each having varying mechanical properties which will allow for the customization of the catheter to a particular need. [0054]
  • The catheter systems of the present invention provides the user with a number of significant advantages not otherwise obtainable with currently available catheters. For example, they are less bulky than other available catheter systems and thus the balloon is able to move against resistance more easily, which allows less traumatic crossing of restrictions. Also, pushing on the advancement member has the effect of pulling the balloon along through the stenosis, and avoids the problem of bunching or gathering which occurs with other catheters. With a thin film balloon and inflation channel there is no dead space or volume that needs to be evacuated prior to use; therefore, little or no preparation is required. The smaller profile of the catheter system of the invention allows the inflatable balloon to be passed through stents easily. Partial inflation of the inflatable balloon can grab a previously inserted stent and facilitate retrieval of the stent. The smaller profile also permits passage through displaced stent struts. [0055]
  • Separating the inflatable balloon from a catheter shaft allows greater design flexibility to allow one to provide catheter systems with improved handling characteristics, and the fewer bonds between the balloon and the advancement shaft results in greater reliability. The simplicity of construction of the system of the present invention results in lower manufacturing costs. For example, fewer bonding operations are required, and expensive balloon folding processes can be avoided. Inflating the balloon against the advancement member or tracking member provides a focused force to enable the user to crack hard lesions at low pressure before the balloon is fully inflated. Doing so would allow vessel stretching to occur at a lower strain rate, which would minimize the trauma associated with balloon dilatation. With a guidewire in place, the balloon can be inflated additionally against the guidewire, thus providing an additional area of focused force. [0056]
  • A further advantage of the present invention is that the design allows additional catheters or devices to be placed over the guidewire adjacent to the inflatable balloon, and to be exchanged without first removing the catheter system. In addition, the advancement member may also act as an additional guidewire. For example, while [0057] balloon catheter 1 is in place within a vascular lesion, a second dilatation system or catheter may be advanced over the advancement member and its balloon positioned along side the first balloon (to increase the effective diameter of the dilatation) or adjacent to the first balloon (to increase the effective length of the dilatation). An imaging catheter such as an intravascular ultrasound catheter may be placed next to the first balloon to access the progress of the treatment without removing the balloon. A drug delivery catheter may be utilized in this manner, and the balloon of system 1 may be inflated at low pressure to provide vascular occlusion to improve the efficacy of the drug delivery. Likewise, various other catheters and devices may be suitably employed.
  • Although the discussion above has been concerned with inflatable balloon systems and/or catheters, other types of catheters or systems may embody the present invention as schematically illustrated in FIG. 8. In FIG. 8, [0058] advancement member 5 terminates in a tubular tracking member 7, which tracks over guidewire 9. Distal end 32 of instrumentality 31 is attached to tracking member 7. Proximal end 33 of instrumentality 31 is unattached to either advancement member 5 or tracking member 7. Instrumentality 31 may be a laser, infusion tube, suction device, atherectomy means, other stent expansion means or another therapeutic or diagnostic apparatus. As required, a connecting member 34 may be attached to instrumentality 31. Connecting member 34 may be an electrical conducting wire, optical fiber, tube, or the like.
  • It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in the constructions set forth without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. [0059]
  • It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention, which, as a matter of language, might be said to fall therebetween. [0060]

Claims (63)

What is claimed is:
1. A balloon dilatation catheter system comprising:
a flexible elongated advancement member having a distal end,
a tracking member having a proximal end and a distal end, said tracking member being adapted to slide over a guidewire and being fixedly attached to the distal end of the advancement member,
an inflation channel, and
an inflatable dilatation balloon having proximal end and distal end, the proximal end of the balloon being in fluid communication with the inflation channel,
wherein the distal end of the balloon is attached to the tracking member and an alignment member aligns the advancement member and the inflation channel in the longitudinal direction.
2. The catheter system of claim 1, wherein the tracking member comprises two or more lumens.
3. The catheter system of claim 1, wherein the dilatation balloon is attached to the distal end of the tracking member.
4. The catheter system of claim 1, wherein the dilatation balloon is attached to the proximal end of the tracking member.
5. The catheter system of claim 1, wherein the tracking member has a lubricious coating.
6. The catheter system of claim 1, wherein the tracking member is formed integral with the dilatation balloon.
7. A balloon dilatation catheter system comprising:
a flexible elongated advancement member having a distal end,
a dilatation balloon having a proximal end and a distal end, and
an inflation channel, the proximal end of the balloon being in fluid communication with the inflation channel,
wherein the distal end of the balloon is attached to the distal end of the advancement member and an alignment member aligns the advancement member and the inflation channel in the longitudinal direction.
8. The catheter system of claim 1 or 7, wherein the inflation channel is substantially coextensive with the advancement member.
9. The catheter system of claim 1 or 7, wherein the inflation channel is in a spiral configuration around the advancement member.
10. The catheter system of claim 1 or 7, wherein the advancement member comprises a flexible wire or hypotube.
11. The catheter system of claim 1 or 7, wherein the advancement member is rigid at its proximal end and increasingly more flexible as it extends distally.
12. The catheter system of claim 1 or 7, wherein the inflation channel is collapsible or noncollapsible.
13. The catheter system of claim 1 or 7, wherein the dilatation balloon or the inflation channel, or both, have a wire reinforcement.
14. The catheter system of claim 1 or 7, wherein the dilatation balloon and the inflation channel are formed integrally.
15. The catheter system of claim 1 or 7, wherein the inflation channel is attached to the advancement member at at least one point.
16. The catheter system of claim 1 or 7, which also comprises a torquer attached to the proximal end of the advancement member.
17. The catheter system of claim 1 or 7, wherein the inflation channel is not attached to the advancement member.
18. The catheter system of claim 1 or 7, wherein the balloon and/or the inflation channel are attached to the advancement member.
19. The catheter system of claim 1 or 7, wherein the advancement member is attached to or integral with the alignment member.
20. The catheter system of claim 19, wherein the advancement member is attached to the inner surface of the alignment member.
21. The catheter system of claim 1 or 7, wherein the alignment member is a hypotube.
22. A method of positioning the distal end of a dilatation system at a desired location within a patient's body, which comprises the step of:
advancing a dilatation system of claim 1 or 7 over a guidewire through a corporeal lumen so that the distal end of said dilatation system is positioned at a desired location.
23. A medical delivery system comprising:
a flexible elongated advancement member having a distal end,
a tracking member having a proximal end and a distal end, said tracking member being adapted to slide over a guidewire and being fixedly attached to the distal end of the advancement member, and
a medical instrumentality having proximal end and distal end, the proximal end of the instrumentality being in communication with a source,
wherein the distal end of the medical instrumentality is attached to the tracking member and an alignment member aligns the advancement member and any communication member connected to the medical instrumentality.
24. The delivery system of claim 23, wherein the tracking member comprises two or more lumens.
25. The delivery system of claim 23, wherein the medical instrumentality is attached to the distal end of the tracking member.
26. The delivery system of claim 23, wherein the medical instrumentality is attached to the proximal end of the tracking member.
27. The delivery system of claim 23, wherein the tracking member has a lubricious coating.
28. The delivery system of claim 23, wherein the tracking member is formed integral with the medical instrumentality.
29. A medical delivery system comprising:
a flexible elongated advancement member having a distal end,
a medical instrumentality having a proximal end and a distal end, and
a communication member, the proximal end of the medical instrumentality being in communication with the communication member,
wherein the distal end of the medical instrumentality is attached to the distal end of the advancement member and an alignment member aligns the advancement member and the communication member in the longitudinal direction.
30. The delivery system of claim 23 or 29, wherein the communication member is substantially coextensive with the advancement member.
31. The delivery system of claim 23 or 29, wherein the communication member is in a spiral configuration around the advancement member.
32. The delivery system of claim 23 or 29, wherein the advancement member comprises a flexible wire or hypotube.
33. The delivery system of claim 23 or 29, wherein the advancement member is rigid at its proximal end and increasingly more flexible as it extends distally.
34. The delivery system of claim 23 or 29, wherein the medical instrumentality and the communication member are formed integrally.
35. The delivery system of claim 23 or 29, wherein the communication member is attached to the advancement member at at least one point.
36. The delivery system of claim 23 or 29, wherein the communication member is not attached to the advancement member.
37. The delivery system of claim 23 or 29, wherein the medical instrumentality and/or the communication member are attached to the advancement member.
38. The delivery system of claim 23 or 29, wherein the advancement member is attached to or integral with the alignment member.
39. The delivery system of claim 38, wherein the advancement member is attached to the inner surface of the alignment member.
40. The delivery system of claim 23 or 29, wherein the alignment member is a hypotube.
41. A method of positioning the distal end of a medical instrumentality at a desired location within a patient's body, which comprises the step of:
advancing a delivery system of claim 23 or 29 over a guidewire through a corporeal lumen so that the medical instrumentality is positioned at a desired location.
42. A stent delivery system comprising:
a flexible elongated advancement member having a proximal end and a distal end,
a tracking member having a proximal end and a distal end, said tracking member being adapted to slide over a guidewire and being fixedly attached to the distal end of the advancement member,
an inflation channel, and
an inflatable balloon having a proximal end and a distal end, the proximal end of the balloon being in fluid communication with the inflation channel,
wherein the distal end of the balloon is attached to the tracking member, wherein a stent can be arranged concentric to the balloon, and wherein an alignment member aligns the advancement member and the inflation channel in the longitudinal direction.
43. The delivery system of claim 42, wherein the tracking member comprises two or more lumens.
44. The delivery system of claim 42, wherein the balloon is attached to the distal end of the tracking member.
45. The delivery system of claim 42, wherein the balloon is attached to the proximal end of the tracking member.
46. The delivery system of claim 42, wherein the tracking member has a lubricious coating.
47. The delivery system of claim 42, wherein the tracking member is formed integral with the balloon.
48. A stent delivery system comprising:
a flexible elongated advancement member having a proximal end and a distal end,
an inflatable balloon having a proximal end and a distal end, and
an inflation channel, the proximal end of the balloon being in fluid communication with the inflation channel,
wherein the distal end of the balloon is attached to the distal end of the advancement member. wherein a stent can be arranged concentric to the balloon, and wherein an alignment member aligns the advancement member and the inflation channel in the longitudinal direction.
49. The delivery system of claim 48, wherein the balloon is folded to form a tracking member adapted to slide over a guidewire.
50. The delivery system of claim 42 or 48, wherein the inflation channel is substantially coextensive with the advancement member.
51. The delivery system of claim 42 or 48, wherein the inflation channel is in a spiral configuration around the advancement member.
52. The delivery system of claim 42 or 48, wherein the advancement member comprises a flexible wire or hypotubing.
53. The delivery system of claim 42 or 48, wherein the advancement member is rigid at its proximal end and increasingly more flexible as it extends distally.
54. The delivery system of claim 42 or 48, wherein the inflation channel is collapsible or noncollapsible.
55. The delivery system of claim 42 or 48, wherein the balloon or the inflation channel, or both, have a wire reinforcement.
56. The delivery system of claim 42 or 48, wherein the balloon and the inflation channel are formed integral.
57. The delivery system of claim 42 or 48, wherein the inflation channel is attached to the advancement member at at least one point.
58. The delivery system of claim 42 or 48, which also comprises a torquer attached to the proximal end of the advancement member.
59. The delivery system of claim 42 or 48, wherein the inflation channel is unattached to the advancement member.
60. A method of positioning a stent at a desired location within a patient's body, which comprises the step of:
advancing a delivery system of claim 42 or 48 through a corporeal lumen so that the distal end of said delivery system is positioned at a desired location.
61. The method of claim 60, wherein another delivery system or other medical device is advanced distally over the catheter of claim 42 or 48.
62. A method of positioning a stent at a desired location within a patient's body, which comprises the step of:
advancing a delivery system of claim 42 or 48 over a guidewire through a coporeal lumen so that the stent is positioned at a desired location.
63. The method of claim 62, wherein in another step another medical instrumentality is advanced distally over the guidewire and positioned adjacent to the delivery system of claim 42 or 48.
US10/428,668 1998-05-15 2003-05-02 Enhanced catheter with alignment means Abandoned US20030195546A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/428,668 US20030195546A1 (en) 1998-05-15 2003-05-02 Enhanced catheter with alignment means

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8563698P 1998-05-15 1998-05-15
US09/312,529 US6394995B1 (en) 1998-05-15 1999-05-14 Enhanced balloon dilatation system
US09/454,255 US6447501B1 (en) 1998-05-15 1999-12-02 Enhanced stent delivery system
US09/629,768 US6740104B1 (en) 1998-05-15 2000-07-31 Enhanced catheter with alignment means
US10/428,668 US20030195546A1 (en) 1998-05-15 2003-05-02 Enhanced catheter with alignment means

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/629,768 Continuation US6740104B1 (en) 1998-05-15 2000-07-31 Enhanced catheter with alignment means

Publications (1)

Publication Number Publication Date
US20030195546A1 true US20030195546A1 (en) 2003-10-16

Family

ID=46203899

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/629,768 Expired - Lifetime US6740104B1 (en) 1998-05-15 2000-07-31 Enhanced catheter with alignment means
US10/428,668 Abandoned US20030195546A1 (en) 1998-05-15 2003-05-02 Enhanced catheter with alignment means

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/629,768 Expired - Lifetime US6740104B1 (en) 1998-05-15 2000-07-31 Enhanced catheter with alignment means

Country Status (1)

Country Link
US (2) US6740104B1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070260219A1 (en) * 2006-05-03 2007-11-08 Howard Root Coaxial guide catheter for interventional cardiology procedures
US7686841B2 (en) * 2003-12-29 2010-03-30 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery system
US7744619B2 (en) 2004-02-24 2010-06-29 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US7922740B2 (en) 2004-02-24 2011-04-12 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US7922753B2 (en) 2004-01-13 2011-04-12 Boston Scientific Scimed, Inc. Bifurcated stent delivery system
US8012192B2 (en) 2004-02-18 2011-09-06 Boston Scientific Scimed, Inc. Multi-stent delivery system
US8133199B2 (en) 2008-08-27 2012-03-13 Boston Scientific Scimed, Inc. Electroactive polymer activation system for a medical device
US8333003B2 (en) 2008-05-19 2012-12-18 Boston Scientific Scimed, Inc. Bifurcation stent crimping systems and methods
US20130237962A1 (en) * 2010-01-14 2013-09-12 Goodman Co., Ltd. Catheter assembly
US20140058251A1 (en) * 2012-08-23 2014-02-27 Volcano Corporation Device, System, and Method for Anatomical Lesion Length Estimation
US8685050B2 (en) 2010-10-06 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US8685049B2 (en) 2010-11-18 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US8702736B2 (en) 2010-11-22 2014-04-22 Rex Medical L.P. Cutting wire assembly for use with a catheter
US8784472B2 (en) 2003-08-15 2014-07-22 Boston Scientific Scimed, Inc. Clutch driven stent delivery system
US20140277068A1 (en) * 2013-03-14 2014-09-18 Boston Scientific Scimed, Inc. Systems, apparatus and methods for treating blood vessels
WO2014149431A3 (en) * 2013-03-15 2015-02-26 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
US9282991B2 (en) 2010-10-06 2016-03-15 Rex Medical, L.P. Cutting wire assembly with coating for use with a catheter
US9623213B2 (en) 2013-03-15 2017-04-18 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
CN108283758A (en) * 2018-01-24 2018-07-17 张海军 It is a kind of that there is broken, thrombolysis Biochemical analyzer function medicine eluting balloon catheter
US10441745B2 (en) 2016-02-24 2019-10-15 Incept, Llc Neurovascular catheter with enlargeable distal end
US10617847B2 (en) 2014-11-04 2020-04-14 Orbusneich Medical Pte. Ltd. Variable flexibility catheter support frame
US10653426B2 (en) 2017-01-06 2020-05-19 Incept, Llc Thromboresistant coatings for aneurysm treatment devices
US10653434B1 (en) 2018-05-01 2020-05-19 Imperative Care, Inc. Devices and methods for removing obstructive material from an intravascular site
US10688277B2 (en) 2015-09-23 2020-06-23 Medtronic Vascular, Inc. Guide extension catheter with perfusion openings
US10751514B2 (en) 2016-12-09 2020-08-25 Teleflex Life Sciences Limited Guide extension catheter
US10946177B2 (en) 2018-12-19 2021-03-16 Teleflex Life Sciences Limited Guide extension catheter
US10953197B2 (en) 2019-01-07 2021-03-23 Teleflex Life Sciences Limited Guide extension catheter
US10974028B2 (en) 2015-05-26 2021-04-13 Teleflex Life Sciences Limited Guidewire fixation
US11065018B2 (en) 2019-12-18 2021-07-20 Imperative Care, Inc. Methods and systems for advancing a catheter to a target site
CN113365685A (en) * 2019-02-06 2021-09-07 株式会社钟化 Extension catheter and method of manufacturing the same
US11134859B2 (en) 2019-10-15 2021-10-05 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11134982B2 (en) 2017-03-31 2021-10-05 Terumo Kabushiki Kaisha Medical elongated body and medical instrument set
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
US11439799B2 (en) 2019-12-18 2022-09-13 Imperative Care, Inc. Split dilator aspiration system
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
US11524142B2 (en) 2018-11-27 2022-12-13 Teleflex Life Sciences Limited Guide extension catheter
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11565082B2 (en) 2020-03-10 2023-01-31 Imperative Care, Inc. Enhanced flexibility neurovascular catheter
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
US11839722B2 (en) 2014-11-04 2023-12-12 Orbusneich Medical Pte. Ltd. Progressive flexibility catheter support frame

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125761A1 (en) * 2001-05-08 2003-07-03 Meens Hendrik Jozef Maria Balloon catheter
US7300415B2 (en) * 2002-12-20 2007-11-27 Advanced Cardiovascular Systems, Inc. Balloon catheter having an external guidewire
US7261730B2 (en) * 2003-11-14 2007-08-28 Lumerx, Inc. Phototherapy device and system
US7553323B1 (en) 2004-01-08 2009-06-30 Perez Juan I Steerable endovascular graft delivery system
US7316709B2 (en) * 2004-01-13 2008-01-08 Advanced Cardiovascular Systems, Inc. Balloon catheter having a textured member for enhancing balloon or stent retention
US7766951B2 (en) 2004-03-04 2010-08-03 Y Med, Inc. Vessel treatment devices
US7780715B2 (en) 2004-03-04 2010-08-24 Y Med, Inc. Vessel treatment devices
US9050437B2 (en) * 2004-03-04 2015-06-09 YMED, Inc. Positioning device for ostial lesions
US7753951B2 (en) * 2004-03-04 2010-07-13 Y Med, Inc. Vessel treatment devices
US7727228B2 (en) * 2004-03-23 2010-06-01 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US9555223B2 (en) 2004-03-23 2017-01-31 Medtronic Cryocath Lp Method and apparatus for inflating and deflating balloon catheters
US8491636B2 (en) * 2004-03-23 2013-07-23 Medtronic Cryopath LP Method and apparatus for inflating and deflating balloon catheters
US20060201601A1 (en) * 2005-03-03 2006-09-14 Icon Interventional Systems, Inc. Flexible markers
US7794455B2 (en) 2005-04-29 2010-09-14 Medtronic Cryocath Lp Wide area ablation of myocardial tissue
US7727191B2 (en) * 2005-05-13 2010-06-01 Medtronic Cryocath Lp Compliant balloon catheter
US20070078436A1 (en) * 2005-07-07 2007-04-05 Leung Andrea Y Balloon assisted apparatus and method for accessing an intervertebral disc
JP2009509622A (en) * 2005-10-03 2009-03-12 ワイ メッド インク Vascular treatment device
US8043258B2 (en) * 2006-01-24 2011-10-25 Boston Scientific Scimed, Inc. Flow-inflated diffusion therapeutic delivery
US7901378B2 (en) * 2006-05-11 2011-03-08 Y-Med, Inc. Systems and methods for treating a vessel using focused force
US8486025B2 (en) * 2006-05-11 2013-07-16 Ronald J. Solar Systems and methods for treating a vessel using focused force
WO2008144632A1 (en) * 2007-05-18 2008-11-27 The Mclean Hospital Corporation Apparatus and method for convection enhanced therapeutic delivery
US9387031B2 (en) 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
EP4101399A1 (en) 2011-08-05 2022-12-14 Route 92 Medical, Inc. System for treatment of acute ischemic stroke
US9113911B2 (en) 2012-09-06 2015-08-25 Medtronic Ablation Frontiers Llc Ablation device and method for electroporating tissue cells
EP3925655B1 (en) * 2012-12-31 2023-07-12 Clearstream Technologies Limited Catheter with markings to facilitate alignment
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US9820761B2 (en) 2014-03-21 2017-11-21 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
DE202016009165U1 (en) 2015-02-04 2023-04-26 Route 92 Medical, Inc. Rapid Aspiration Thrombectomy System
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
WO2017019564A1 (en) 2015-07-24 2017-02-02 Route 92 Medical, Inc. Methods of intracerebral implant delivery
WO2018132387A1 (en) 2017-01-10 2018-07-19 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
WO2018136745A1 (en) 2017-01-20 2018-07-26 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
AU2019269606A1 (en) 2018-05-17 2020-12-03 Route 92 Medical, Inc. Aspiration catheter systems and methods of use

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811448A (en) * 1972-10-25 1974-05-21 A Morton Urinary drainage catheter
US4195637A (en) * 1977-10-21 1980-04-01 Schneider Medintag Ag Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element
US4323071A (en) * 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
USRE31800E (en) * 1977-05-13 1985-01-15 Probe
US4493711A (en) * 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
US4573470A (en) * 1984-05-30 1986-03-04 Advanced Cardiovascular Systems, Inc. Low-profile steerable intraoperative balloon dilitation catheter
US4619263A (en) * 1984-05-30 1986-10-28 Advanced Cardiovascular Systems, Inc. Adjustable rotation limiter device for steerable dilatation catheters
US4641649A (en) * 1985-10-30 1987-02-10 Rca Corporation Method and apparatus for high frequency catheter ablation
US4643186A (en) * 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
US4748982A (en) * 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4762129A (en) * 1984-11-23 1988-08-09 Tassilo Bonzel Dilatation catheter
US4790315A (en) * 1986-09-02 1988-12-13 Advanced Cardiovascular Systems, Inc. Perfusion dilatation catheter and method of manufacture
US4798193A (en) * 1987-05-18 1989-01-17 Thomas J. Fogarty Protective sheath instrument carrier
US4824435A (en) * 1987-05-18 1989-04-25 Thomas J. Fogarty Instrument guidance system
US5003990A (en) * 1988-07-28 1991-04-02 Peter Osypka Apparatus for implanting electrodes and the like in animal bodies
US5040548A (en) * 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US5045061A (en) * 1990-02-02 1991-09-03 C. R. Bard, Inc. Balloon catheter and locking guidewire system
US5061273A (en) * 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5090958A (en) * 1988-11-23 1992-02-25 Harvinder Sahota Balloon catheters
US5324257A (en) * 1992-05-04 1994-06-28 Cook, Incorporated Balloon catheter having an integrally formed guide wire channel
US5395332A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Intravascualr catheter with distal tip guide wire lumen
US5413557A (en) * 1993-08-24 1995-05-09 Pameda N.V. Dilatation catheter with eccentric balloon
US5415634A (en) * 1990-08-23 1995-05-16 Devices For Vascular Intervention, Inc. Catheter having helical inflation lumen
US5540659A (en) * 1993-07-15 1996-07-30 Teirstein; Paul S. Irradiation catheter and method of use
US5578009A (en) * 1994-07-20 1996-11-26 Danforth Biomedical Incorporated Catheter system with push rod for advancement of balloon along guidewire
US5667493A (en) * 1994-12-30 1997-09-16 Janacek; Jaroslav Dilation catheter
US5667521A (en) * 1992-11-12 1997-09-16 Medtronic, Inc. Rapid exchange catheter
US5690642A (en) * 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US5728067A (en) * 1989-01-30 1998-03-17 C. R. Bard, Inc. Rapidly exchangeable coronary catheter
US5730698A (en) * 1995-05-09 1998-03-24 Fischell; Robert E. Balloon expandable temporary radioisotope stent system
US5863285A (en) * 1997-01-30 1999-01-26 Cordis Corporation Balloon catheter with radioactive means
US5879305A (en) * 1995-06-06 1999-03-09 Cardiovascular Imaging Systems, Inc. Rotational correlation of intravascular ultrasound image with guide catheter position
US5882334A (en) * 1995-12-04 1999-03-16 Target Therapeutics, Inc. Balloon/delivery catheter assembly with adjustable balloon positioning
US6071285A (en) * 1996-03-25 2000-06-06 Lashinski; Robert D. Rapid exchange folded balloon catheter and stent delivery system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090957A (en) * 1988-10-05 1992-02-25 Abiomed, Inc. Intraaortic balloon insertion
US5324259A (en) * 1991-12-18 1994-06-28 Advanced Cardiovascular Systems, Inc. Intravascular catheter with means to seal guidewire port
US5571087A (en) * 1992-02-10 1996-11-05 Scimed Life Systems, Inc. Intravascular catheter with distal tip guide wire lumen
US5505702A (en) * 1992-04-09 1996-04-09 Scimed Life Systems, Inc. Balloon catheter for dilatation and perfusion
US5752932A (en) * 1993-04-29 1998-05-19 Scimed Life Systems, Inc. Intravascular catheter with a recoverable guide wire lumen and method of use
AU685575B2 (en) * 1994-03-10 1998-01-22 Schneider (Usa) Inc. Catheter having shaft of varying stiffness
US5706827A (en) * 1994-09-21 1998-01-13 Scimed Life Systems, Inc. Magnetic lumen catheter
US5575771A (en) * 1995-04-24 1996-11-19 Walinsky; Paul Balloon catheter with external guidewire
US6447501B1 (en) * 1998-05-15 2002-09-10 X Technologies Inc. Enhanced stent delivery system
JP2002515308A (en) * 1998-05-15 2002-05-28 メジネイション,インク. Enhanced balloon expansion system
US6500147B2 (en) * 1999-02-22 2002-12-31 Medtronic Percusurge, Inc. Flexible catheter

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811448A (en) * 1972-10-25 1974-05-21 A Morton Urinary drainage catheter
USRE31800E (en) * 1977-05-13 1985-01-15 Probe
US4195637A (en) * 1977-10-21 1980-04-01 Schneider Medintag Ag Catheter arrangement, method of catheterization, and method of manufacturing a dilatation element
US4323071B1 (en) * 1978-04-24 1990-05-29 Advanced Cardiovascular System
US4323071A (en) * 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
US4493711A (en) * 1982-06-25 1985-01-15 Thomas J. Fogarty Tubular extrusion catheter
US4573470A (en) * 1984-05-30 1986-03-04 Advanced Cardiovascular Systems, Inc. Low-profile steerable intraoperative balloon dilitation catheter
US4619263A (en) * 1984-05-30 1986-10-28 Advanced Cardiovascular Systems, Inc. Adjustable rotation limiter device for steerable dilatation catheters
US4762129A (en) * 1984-11-23 1988-08-09 Tassilo Bonzel Dilatation catheter
US4762129B1 (en) * 1984-11-23 1991-07-02 Tassilo Bonzel
US4643186A (en) * 1985-10-30 1987-02-17 Rca Corporation Percutaneous transluminal microwave catheter angioplasty
US4641649A (en) * 1985-10-30 1987-02-10 Rca Corporation Method and apparatus for high frequency catheter ablation
US4790315A (en) * 1986-09-02 1988-12-13 Advanced Cardiovascular Systems, Inc. Perfusion dilatation catheter and method of manufacture
US4748982A (en) * 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4798193A (en) * 1987-05-18 1989-01-17 Thomas J. Fogarty Protective sheath instrument carrier
US4824435A (en) * 1987-05-18 1989-04-25 Thomas J. Fogarty Instrument guidance system
US5003990A (en) * 1988-07-28 1991-04-02 Peter Osypka Apparatus for implanting electrodes and the like in animal bodies
US5090958A (en) * 1988-11-23 1992-02-25 Harvinder Sahota Balloon catheters
US5728067A (en) * 1989-01-30 1998-03-17 C. R. Bard, Inc. Rapidly exchangeable coronary catheter
US5040548A (en) * 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US5061273A (en) * 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5045061A (en) * 1990-02-02 1991-09-03 C. R. Bard, Inc. Balloon catheter and locking guidewire system
US5415634A (en) * 1990-08-23 1995-05-16 Devices For Vascular Intervention, Inc. Catheter having helical inflation lumen
US5395332A (en) * 1990-08-28 1995-03-07 Scimed Life Systems, Inc. Intravascualr catheter with distal tip guide wire lumen
US5324257A (en) * 1992-05-04 1994-06-28 Cook, Incorporated Balloon catheter having an integrally formed guide wire channel
US5667521A (en) * 1992-11-12 1997-09-16 Medtronic, Inc. Rapid exchange catheter
US5540659A (en) * 1993-07-15 1996-07-30 Teirstein; Paul S. Irradiation catheter and method of use
US5413557A (en) * 1993-08-24 1995-05-09 Pameda N.V. Dilatation catheter with eccentric balloon
US5569199A (en) * 1993-08-24 1996-10-29 Cordis Corporation Dilatation catheter with eccentric balloon
US5718680A (en) * 1994-07-20 1998-02-17 Danforth Biomedical Incorporated Catheter system with push rod for advancement of balloon along guidewire
US5578009A (en) * 1994-07-20 1996-11-26 Danforth Biomedical Incorporated Catheter system with push rod for advancement of balloon along guidewire
US5667493A (en) * 1994-12-30 1997-09-16 Janacek; Jaroslav Dilation catheter
US5730698A (en) * 1995-05-09 1998-03-24 Fischell; Robert E. Balloon expandable temporary radioisotope stent system
US5879305A (en) * 1995-06-06 1999-03-09 Cardiovascular Imaging Systems, Inc. Rotational correlation of intravascular ultrasound image with guide catheter position
US5882334A (en) * 1995-12-04 1999-03-16 Target Therapeutics, Inc. Balloon/delivery catheter assembly with adjustable balloon positioning
US5690642A (en) * 1996-01-18 1997-11-25 Cook Incorporated Rapid exchange stent delivery balloon catheter
US6071285A (en) * 1996-03-25 2000-06-06 Lashinski; Robert D. Rapid exchange folded balloon catheter and stent delivery system
US5863285A (en) * 1997-01-30 1999-01-26 Cordis Corporation Balloon catheter with radioactive means

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784472B2 (en) 2003-08-15 2014-07-22 Boston Scientific Scimed, Inc. Clutch driven stent delivery system
US7686841B2 (en) * 2003-12-29 2010-03-30 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery system
US7922753B2 (en) 2004-01-13 2011-04-12 Boston Scientific Scimed, Inc. Bifurcated stent delivery system
US8012192B2 (en) 2004-02-18 2011-09-06 Boston Scientific Scimed, Inc. Multi-stent delivery system
US8333784B2 (en) 2004-02-24 2012-12-18 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US7744619B2 (en) 2004-02-24 2010-06-29 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US7922740B2 (en) 2004-02-24 2011-04-12 Boston Scientific Scimed, Inc. Rotatable catheter assembly
US8142413B2 (en) 2006-05-03 2012-03-27 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
USRE45380E1 (en) 2006-05-03 2015-02-17 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US20070260219A1 (en) * 2006-05-03 2007-11-08 Howard Root Coaxial guide catheter for interventional cardiology procedures
US8292850B2 (en) 2006-05-03 2012-10-23 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US8048032B2 (en) * 2006-05-03 2011-11-01 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
USRE47379E1 (en) 2006-05-03 2019-05-07 Teleflex Innovations S.A.R.L. Coaxial guide catheter for interventional cardiology procedures
USRE46116E1 (en) 2006-05-03 2016-08-23 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
USRE45776E1 (en) 2006-05-03 2015-10-27 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US20100324567A1 (en) * 2006-05-03 2010-12-23 Howard Root Coaxial Guide Catheter for Interventional Cardiology Procedures
USRE45760E1 (en) 2006-05-03 2015-10-20 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US8333003B2 (en) 2008-05-19 2012-12-18 Boston Scientific Scimed, Inc. Bifurcation stent crimping systems and methods
US8133199B2 (en) 2008-08-27 2012-03-13 Boston Scientific Scimed, Inc. Electroactive polymer activation system for a medical device
US20130237962A1 (en) * 2010-01-14 2013-09-12 Goodman Co., Ltd. Catheter assembly
US8685050B2 (en) 2010-10-06 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US9282991B2 (en) 2010-10-06 2016-03-15 Rex Medical, L.P. Cutting wire assembly with coating for use with a catheter
US9532798B2 (en) 2010-10-06 2017-01-03 Rex Medical, L.P. Cutting wire assembly for use with a catheter
US10327802B2 (en) 2010-10-06 2019-06-25 Rex Medical, L.P. Cutting wire assembly for use with a catheter
US9622771B2 (en) 2010-10-06 2017-04-18 Rex Medical, L.P. Cutting wire assembly with coating for use with a catheter
US10548627B2 (en) 2010-11-18 2020-02-04 Rex Medical, L.P. Cutting wire assembly for use with a catheter
US8685049B2 (en) 2010-11-18 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US9615849B2 (en) 2010-11-18 2017-04-11 Rex Medical, L.P. Cutting wire assembly for use with a catheter
US8702736B2 (en) 2010-11-22 2014-04-22 Rex Medical L.P. Cutting wire assembly for use with a catheter
US9737330B2 (en) 2010-11-22 2017-08-22 Rex Medical, L.P. Cutting wire assembly for use with a catheter
US10226203B2 (en) * 2012-08-23 2019-03-12 Volcano Corporation Device for anatomical lesion length estimation
US20140058251A1 (en) * 2012-08-23 2014-02-27 Volcano Corporation Device, System, and Method for Anatomical Lesion Length Estimation
US10806474B2 (en) 2013-03-14 2020-10-20 Boston Scientific Scimed, Inc. Systems, apparatus and methods for treating blood vessels
US9878128B2 (en) * 2013-03-14 2018-01-30 Boston Scientific Scimed, Inc. Systems, apparatus and methods for treating blood vessels
US20140277068A1 (en) * 2013-03-14 2014-09-18 Boston Scientific Scimed, Inc. Systems, apparatus and methods for treating blood vessels
WO2014149431A3 (en) * 2013-03-15 2015-02-26 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
US9623213B2 (en) 2013-03-15 2017-04-18 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
US9615959B2 (en) 2013-03-15 2017-04-11 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
US10549076B2 (en) 2013-03-15 2020-02-04 Acclarent, Inc. Uncinate process support for ethmoid infundibulum illumination
US10617847B2 (en) 2014-11-04 2020-04-14 Orbusneich Medical Pte. Ltd. Variable flexibility catheter support frame
US11839722B2 (en) 2014-11-04 2023-12-12 Orbusneich Medical Pte. Ltd. Progressive flexibility catheter support frame
US10974028B2 (en) 2015-05-26 2021-04-13 Teleflex Life Sciences Limited Guidewire fixation
US10688277B2 (en) 2015-09-23 2020-06-23 Medtronic Vascular, Inc. Guide extension catheter with perfusion openings
US11147949B2 (en) 2016-02-24 2021-10-19 Incept, Llc Method of making an enhanced flexibility neurovascular catheter
US10835711B2 (en) 2016-02-24 2020-11-17 Incept, Llc Telescoping neurovascular catheter with enlargeable distal opening
US10661053B2 (en) 2016-02-24 2020-05-26 Incept, Llc Method of pulsatile neurovascular aspiration with telescoping catheter
US10441745B2 (en) 2016-02-24 2019-10-15 Incept, Llc Neurovascular catheter with enlargeable distal end
US10751514B2 (en) 2016-12-09 2020-08-25 Teleflex Life Sciences Limited Guide extension catheter
US11712544B2 (en) 2016-12-09 2023-08-01 Teleflex Life Sciences Limited Guide extension catheter
US10653426B2 (en) 2017-01-06 2020-05-19 Incept, Llc Thromboresistant coatings for aneurysm treatment devices
US11224434B2 (en) 2017-01-06 2022-01-18 Incept, Llc Thromboresistant coatings for aneurysm treatment devices
US11903588B2 (en) 2017-01-06 2024-02-20 Incept, Llc Thromboresistant coatings for aneurysm treatment devices
US11134982B2 (en) 2017-03-31 2021-10-05 Terumo Kabushiki Kaisha Medical elongated body and medical instrument set
CN108283758A (en) * 2018-01-24 2018-07-17 张海军 It is a kind of that there is broken, thrombolysis Biochemical analyzer function medicine eluting balloon catheter
US10653434B1 (en) 2018-05-01 2020-05-19 Imperative Care, Inc. Devices and methods for removing obstructive material from an intravascular site
US10835272B2 (en) 2018-05-01 2020-11-17 Incept, Llc Devices and methods for removing obstructive material from an intravascular site
US11123090B2 (en) 2018-05-01 2021-09-21 Incept, Llc Neurovascular catheter having atraumatic angled tip
US10786270B2 (en) 2018-05-01 2020-09-29 Imperative Care, Inc. Neurovascular aspiration catheter with elliptical aspiration port
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
US11311303B2 (en) 2018-05-01 2022-04-26 Incept, Llc Enhanced flexibility neurovascular catheter with tensile support
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US11524142B2 (en) 2018-11-27 2022-12-13 Teleflex Life Sciences Limited Guide extension catheter
US10946177B2 (en) 2018-12-19 2021-03-16 Teleflex Life Sciences Limited Guide extension catheter
US10953197B2 (en) 2019-01-07 2021-03-23 Teleflex Life Sciences Limited Guide extension catheter
CN113365685A (en) * 2019-02-06 2021-09-07 株式会社钟化 Extension catheter and method of manufacturing the same
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
US11134859B2 (en) 2019-10-15 2021-10-05 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11504020B2 (en) 2019-10-15 2022-11-22 Imperative Care, Inc. Systems and methods for multivariate stroke detection
US11253277B2 (en) 2019-12-18 2022-02-22 Imperative Care, Inc. Systems for accessing a central pulmonary artery
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
US11638637B2 (en) 2019-12-18 2023-05-02 Imperative Care, Inc. Method of removing embolic material with thrombus engagement tool
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11819228B2 (en) 2019-12-18 2023-11-21 Imperative Care, Inc. Methods and systems for treating a pulmonary embolism
US11457936B2 (en) 2019-12-18 2022-10-04 Imperative Care, Inc. Catheter system for treating thromboembolic disease
US11065018B2 (en) 2019-12-18 2021-07-20 Imperative Care, Inc. Methods and systems for advancing a catheter to a target site
US11439799B2 (en) 2019-12-18 2022-09-13 Imperative Care, Inc. Split dilator aspiration system
US11565082B2 (en) 2020-03-10 2023-01-31 Imperative Care, Inc. Enhanced flexibility neurovascular catheter
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength

Also Published As

Publication number Publication date
US6740104B1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
US6740104B1 (en) Enhanced catheter with alignment means
US6447501B1 (en) Enhanced stent delivery system
US6780199B2 (en) Enhanced stent delivery system
US6394995B1 (en) Enhanced balloon dilatation system
US20210259718A1 (en) Aspiration catheter systems and methods of use
US5709658A (en) Rapid exchange type over-the-wire catheter
US5300025A (en) Dilatation catheter having a coil supported inflation lumen
EP0712639B1 (en) Catheter system with catheter and guidewire exchange
US5439445A (en) Support catheter assembly
CA2322299C (en) Convertible catheter incorporating a collapsible lumen
EP0808192B1 (en) Esophageal dilation balloon catheter containing flexible nitinol wire
JPH0626576B2 (en) Device for performing angiogenesis
JPH06197972A (en) Rapidly exchangeable catheter system
US7189215B2 (en) Catheter with full-length core wire shaft for core wire interchangeability
EP1324798B1 (en) Corewire securement system
US20040092868A1 (en) Catheter with full-length core wire shaft for core wire interchangeability
US20090209941A1 (en) Implant deployment catheter
WO1994003229A1 (en) Catheter with distal tip guide wire lumen

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION