US20030198644A1 - HCV peptide antigens and methods for the determination of HCV - Google Patents

HCV peptide antigens and methods for the determination of HCV Download PDF

Info

Publication number
US20030198644A1
US20030198644A1 US10/371,540 US37154003A US2003198644A1 US 20030198644 A1 US20030198644 A1 US 20030198644A1 US 37154003 A US37154003 A US 37154003A US 2003198644 A1 US2003198644 A1 US 2003198644A1
Authority
US
United States
Prior art keywords
seq
peptide
hcv
peptide antigens
antigens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/371,540
Inventor
Christoph Seidel
Gertraud Ehrlich-Weinreich
Hubert Bayer
Ursula Wienhues
Gunther Jung
Hans Ihlenfeldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27202683&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030198644(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Roche Diagnostics GmbH filed Critical Roche Diagnostics GmbH
Priority to US10/371,540 priority Critical patent/US20030198644A1/en
Publication of US20030198644A1 publication Critical patent/US20030198644A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the invention concerns new HCV peptide antigens, a process for the production of these peptide antigens as well as a method for the determination of HCV using the peptide antigens.
  • NANB hepatitis The occurrence of viral hepatitis in the absence of serologic markers of previously known hepatotropic agents (e.g. hepatitis A virus, hepatitis B virus, hepatitis ⁇ virus, cytomegalovirus and Epstein-Barr virus) is termed non-A, non-B hepatitis (NANB hepatitis).
  • NANB hepatitis is in turn subdivided into parenterally and sporadically transmitted non-a, non-B hepatitis and non-A, non-B hepatitis transmitted by the intestinal route.
  • HCV hepatitis C virus
  • HCV is worldwide an important cause of NANB hepatitis and is transmitted by contaminated blood or blood products, by blood transfusions or close personal contact.
  • the amino acid sequence of the HCV viral proteins is known from EP-A 0 318 216, EP-A 0 363 025, EPA 388 232 and EP-A 0 396 748.
  • the genome of the HCV has a length of 10862 nucleotides.
  • the proteins arising from translation have a total length of ca. 3000 amino acids.
  • the proteins can be divided into structural proteins (envelope and core proteins) and non-structural proteins (NS1-NS5).
  • non-structural C 100-3-HCV protein can be used as a binding partner in immunological tests (tests from ABBOTT LABORATORIES, USA and ORTHO DIAGNOSTIC SYSTEMS INC., USA; Science 244 (1989) 359-364; Van der Poel C. L. et al. Lancet 337 (1991) 317; Alter H. J. J. Gastroent. Hepatol. (suppl.) 1990, 78).
  • a disadvantage of these tests is that a recombinant protein is used as antigen. Proteins are difficult to handle in diagnostic tests because of their susceptibility to denaturation and consequent reduced solubility and function. As a result of the low epitope density on a protein the magnitude of the measurement signal is also less than in a test in which a short-chained peptide antigen is used as the binding partner of the antibody.
  • proteins or long-chained peptides are used as antigens in an immunological test there can be an increase in cross-reactivities and unspecific bindings of antibodies.
  • reactions with proteins are often diffusion controlled which is an impediment to achieving the desired short times for immunological tests.
  • the production of protein which can be used for diagnostics in sufficient quantity and quality is time-consuming and expensive. Peptides are easily accessible by synthesis and are defined molecules.
  • the object of the present invention is therefore to provide peptide antigens which are specific for anti-HCV antibodies and are suitable for immunological tests for anti-HCV antibodies.
  • peptide antigens which represent partial sequences of these peptide antigens with a length of at least four, preferably of at least seven amino acids.
  • Suitable partial sequences are shown in the sequence protocols and are indicated by letters/number combinations (e.g. 6 a, 2 b).
  • Particularly preferred partial sequences are: from sequence 2: GluCysSerGlnHisLeuProTyrIleGluGlnGly- (sequence 2a) MetMetLeu MetMetLeuAlaGluGlnPheLysGlnLysAlaLeu- (sequence 2b) GlyLeuLeuGlnThrAla MetMetLeuAlaGluGlnPheLysGlnLysAlaLeu- (sequence 2c) GlyLeuLeuGlnThrAlaSerArgGln HisLeuProTyrIleGlu (sequence 2d) Ser Gln His Leu Pro Tyr Ile Glu Gln (sequence 2e) Lys Ala Leu Gly Leu Leu Gln (sequence 2f) Gln Lys Ala Leu Gly Leu Leu Gln Thr (sequence 2q) from sequence 4: Lys Asn Ly
  • Partial sequences are particularly preferred which have a maximum length of 9 amino acids. These are in particular the sequences 6b, 6d, 6e, 2e, 2f, 2d, 2g, 4a.
  • the peptide antigens with the sequences 1-3 are contained in the C 100-3 region of the HCV proteins and the peptide antigens with the sequences 4-8, 10-13 are contained in the env/core region of the HCV proteins.
  • the peptide antigens with the sequences 1-8, 10-13 according to the present invention and the peptide antigen 9 of sequence are specified in the sequence protocols SEQ ID NO: 1-32.
  • An anti-HCV antibody test is carried out according to methods known to one skilled in the art.
  • the invention therefore also concerns a method for the determination of HCV antibodies which is characterized in that the sample is incubated with a combination of at least two peptide antigens from the group of sequences 1-13 or peptide antigens which represent partial sequences of these peptide antigens which have a length of at least 4, preferably of at least 7 amino acids and the amount of anti-HCV antibodies bound to the peptide antigen is determined under conditions which allow the formation of an antibody-antigen complex.
  • a combination of at least two of the peptide antigens or partial sequences thereof according to the present invention are used. It is particularly preferred that the peptide antigens of sequences 1-3 or partial sequences thereof be combined with at least one peptide antigen from the group of the sequences 4-13 or partial sequences thereof.
  • Suitable partial sequences of sequence 9 are: (sequence 9a) ArgGlyProArgLeuGlyValArgAlaThrArgLysThrSerGlnArg- SerGlnProArgGly
  • the combination of the antigens can for example be carried out by using several individual peptide antigens or in that peptide antigens are covalently bound to one another, appropriately by means of an amino acid bridge which differs from the amino acid sequences that naturally occur in HCV proteins or by means of a peptide linker.
  • the antigens in the combinations are preferably used in approximately equimolar amounts.
  • the combination of the antigens of sequences 11, 12, 8a is particularly suitable for detecting patient sera in which a HCV infection has been cured (convalescent sera).
  • the antigens are preferably used separately without being covalently bound to one another or bound together using a peptide linker.
  • heterogeneous immunoassays are preferably used for the detection. These heterogeneous tests allow washing steps which considerably reduce the background measurement signal resulting in an increase in sensitivity.
  • the determination can for example be carried out by means of a radioimmunoassay, enzyme immunoassay or by immunofluorescence.
  • the peptide antigen is usually immobilized.
  • the sample which is to be examined for anti-HCV antibodies is added and the antibodies bound to the antigen are determined by means of a labelled anti-human immunoglobulin antibody.
  • the immobilization of the peptide antigen according to the present invention can be carried out adsorptively, covalently or by means of a biological binding pair such as biotin/streptavidin, antibody/antigen or sugar/lectin. In this process the peptide antigen is covalently bound to this partner.
  • the peptide antigens according to the present invention can preferably be immobilized according to methods familiar to one skilled in the art such as on beads, plastic tubes or microtitre plates (preferably polystyrene or copolymers of polystyrene). This is preferably carried out by adsorbing the peptide antigens unspecifically onto the surface or covalently binding the peptide antigen to functionalized or activated surfaces.
  • the unspecific adsorption can be improved by linking the peptide antigen to a protein to form a conjugate and using this conjugate for the adsorption (cf. e.g. EP-A 0 269 092).
  • the binding can also be carried out via an immobilized antibody.
  • the peptide antigen should be modified in such a way that the epitope is not blocked by the antibody binding e.g. by formation of a peptide-protein conjugate.
  • the conjugation of the peptide antigen to the binding partner is preferably carried out via a spacer.
  • This spacer appropriately contains 10-50, preferably 10-30 atoms and is also preferably an essentially linear molecule. Examples for this are spacers made of alkyl chains, polyether chains or polyamide chains.
  • a peptide antigen with a length of 4-9 amino acids is bound to the carrier via a linear spacer of 10-30 atoms. If a spacer made of amino acids is to be used, it is appropriate that it consists of amino acids which do not correspond to the sequence in the direct vicinity of the peptide antigen in the HCV gene.
  • the peptide antigen according to the present invention is covalently bound to biotin whereby the immobilization is carried out by means of an avidin/streptavidin solid phase.
  • Methods of determination are also suitable in which the detection is not via a labelled antibody but via a labelled additional peptide antigen sequences 1-13 or partial sequences thereof.
  • the peptide antigens according to the present invention can be produced according to methods for peptide synthesis familiar to one skilled in the art.
  • the invention therefore also concerns a process for the production of the peptide antigen according to the present invention which comprises binding the amino acid forming the C-terminal end to a carrier, assembling stepwise the peptide antigen starting at the C-terminal end and subsequently cleaving it from the carrier.
  • an amino acid is linked, for example via its carboxyl group, to an insoluble polymer which can be easily filtered and then the peptide chain is assembled stepwise starting at the C-terminal end.
  • a N-protected amino acid is reacted with a reactive group of the artificial resin.
  • the Na-protective group is removed from the amino acid which is covalently anchored to the carrier particle and the resulting amino acyl polymer is reacted with the next N-protected amino acid.
  • the Na-protective group is removed from the dipeptide covalently bound to the carrier resin and the resulting amino acyl polymer is reacted with the next N-protected amino acid.
  • the peptide antigens according to the present invention can for example be prepared according to Merrifield, JACS 85 (1964) 2146. If a biotinylation is necessary this can for example be carried out according to PNAS USA 80 (1983) 4045.
  • a preferred biotinylation agent for this is biotinyl-aminocaproic acid-N-hydroxysuccinimide ester.
  • a preferred process for the production of biotinylated peptide antigens is to introduce the biotin residue at the N-terminus during a solid phase synthesis of the peptide antigen. This process is preferably used in cases in which the peptide antigen contains several ⁇ -lysine amino groups which are not intended to be biotinylated.
  • N- ⁇ -Fmoc-N- ⁇ -biotinyl-aminocaproyllysine N- ⁇ -Fmoc-N- ⁇ -biotinyllysine is used or when for the biotinylation of the N-terminal amino acids biotin, biotinyl-aminocaproic acid or dimethoxytritylbiotin is used with an activating reagent, such as for example dicyclohexylcarbodiimide, or as an active ester.
  • a detection antibody which is for example directed against the Fc part of human IgG is immobilized.
  • a monoclonal antibody is preferably used for this.
  • the peptide antigen is then present in solution.
  • the antibody (analyte) to be detected and also all other antibodies in the sample liquid are then bound by the immobilized antibody.
  • the bound antibody can then bind the analyte which can be detected with a suitable detection system e.g. competitively with a peptide antigen-enzyme conjugate.
  • the invention therefore also concerns a process for the production of antibodies which is characterized in that a mammal is immunized with a peptide according to the present invention which, if desired, is bound to a carrier and the antibodies are obtained, for example from the serum or the spleen, according to known methods.
  • B lymphocytes of the immunized animals are fused with a suitable cell line in the presence of transforming agents, the cell line which produces the desired antibodies is cloned and cultured and the monoclonal antibodies are isolated from the cells or from the culture supernatant.
  • the invention therefore also concerns a process for the determination of HCV viruses which is characterized in that the sample is incubated with an antibody according to the present invention under conditions which allow the formation of an antigen-antibody complex and the amount of antibody-antigen complex formed is determined.
  • the invention in addition concerns a process for the production of vaccines using the peptide antigens according to the present invention and a vaccine for treating HCV infections containing a peptide antigen of the sequences 1-8, 10-13 which is carrier-bound if desired or partial sequences thereof or at least two peptide antigens of the sequences 1-13 or partial sequences thereof as an immunogen in a pharmacologically effective dose and in a pharmaceutically acceptible formulation.
  • the production of these vaccines can be carried out according to known methods.
  • the peptide antigens are preferably first lyophilized and subsequently suspended, if desired with addition of auxiliary substances.
  • Vaccination with these vaccines or combinations of vaccines according to the present invention can be carried out according to methods familiar to one skilled in the art for example intradermally, intramuscularly, intraperitoneally, intravenously, subcutaneously or intranasally.
  • the vaccine can for example be suspended in physiological saline.
  • the vaccine can for example be used in the form of a spray or an aqueous solution.
  • Such a temporary protection can for example be achieved by encapsulating the immunogens. This encapsulation can for example be carried out by coating with a protective agent (microencapsulation) or by embedding a multitude of immunogens according to the present invention in a protective carrier (macroencapsulation).
  • the encapsulation material can be semipermeable or become semipermeable when introduced into the human or animal body.
  • a biological degradable substance is usually used as a carrier for the encapsulation.
  • sequence protocols denote the following: Sequence SEQ ID NO 1 1 2 2 2 a 3 2 b 4 2 c 5 2 d 6 2 e 7 2 f 8 2 g 9 2 h 10 3 11 4 12 4 a 13 4 b 14 5 15 6 16 6 a 17 6 b 18 6 c 19 6 d 20 6 e 21 7 22 8 23 8 a 24 9 25 9 a 26 9 b 27 9 c 28 10 29 11 30 12 31 13 32
  • the peptide was produced by means of Fmoc(fluorenyloxycarbonyl) solid-phase synthesis.
  • the reactions were carried out on a Labortec (Switzerland) SP 640 peptide synthesizer.
  • the coupling reactions with regard to the Fmoc amino acid derivative were carried out with 2.4 equivalents of dicyclohecylcarbodiimide and 2.2 equivalents of N-hydroxybenzotriazole for 90 minutes.
  • Dimethylformamide was used as the reaction medium.
  • the Fmoc group was cleaved by means of 20% piperidine in DMF in 10 and 20 minutes.
  • the peptide was synthesized on 5 g Wang resin (polystyrene/1% divinylbenzol) loaded with 0.50 mMol/g (JACS, 95 (1973) 1328). After the synthesis the degree of loading was still 0.39 mMol/g.
  • the peptide was released with 200 ml trifluoroacetic acid, 200 ml dichloromethane, 10 ml ethanedithiol, 10 ml m-cresol, 5 ml ethylmethylsulfide and 5 ml water in 30 minutes at room temperature.
  • the cleavage solution was evaporated several times with toluol and then the peptide was precipitated with diethyl ether.
  • reaction mixture was stirred for 2 hours at room temperature under argon while continuously monitoring by means of analytical RP-HPLC.
  • ⁇ 5% educt was present the reaction preparation was applied directly to a preparative RP-HPLC column and the product material was purified by means of a 0.1% trifluoroacetic acid/water to 0.1% trifluoroacetic acid/acetonitrile gradient (gradient: 0% to 100% in 90 minutes).
  • the product material was obtained by evaporating and lyophilizing the product fractions. The yields were between 40% and 90%.
  • HCV antibodies are determined in a 2-step sandwich immunoassay. Reagents with the following composition are used for the test:
  • Serum 1 was negative in the test in the Ortho-HCV antibody ELISA test system of ORTHO DIAGNOSTIC SYSTEMS INC. but positive on the basis of the clinical findings.
  • the sera 2-5 were identified as positive by the test of Ortho Laboratories, the sera 6 and 7 were identified as positive with the ABBOTT HCV EIA, catalogue No. 3 A53-24, ABBOTT LABORATORIES INC.
  • the peptide antigens 1-6 were biotinylated with dimethoxytrityl-biotin on a solid phase at the e-amino group of an additional lysine introduced at the N-terminus.
  • the peptide antigen mixtures 1+4 and 3+6 were used at a molar mixing ratio of 1:1.
  • Serum (diluted 1:10 in 50 ⁇ l incubation buffer) and 100 ⁇ l reagent 1 are added to each well of a microtitre plate coated with streptavidin. It is incubated for one hour at room temperature and subsequently washed five times with 200 ⁇ l washing solution each time.
  • 150 ⁇ l reagent 2 is added, incubated for one hour at room temperature and washed three times with 200 ⁇ l washing solution each time.
  • 150 ⁇ l colour reagent is added, incubated for one hour at room temperature and the absorbance is measured photometrically at 420 nm.

Abstract

Novel HCV peptide antigens are described representing partial sequences of the C-100-3 and env/core with C-regions. These peptide antigens are suitable for the determination of HCV antibodies as immunogens for the production of antibodies against HCV and as vaccines for the production of vaccines against HCV.

Description

  • The invention concerns new HCV peptide antigens, a process for the production of these peptide antigens as well as a method for the determination of HCV using the peptide antigens. [0001]
  • The occurrence of viral hepatitis in the absence of serologic markers of previously known hepatotropic agents (e.g. hepatitis A virus, hepatitis B virus, hepatitis Δ virus, cytomegalovirus and Epstein-Barr virus) is termed non-A, non-B hepatitis (NANB hepatitis). NANB hepatitis is in turn subdivided into parenterally and sporadically transmitted non-a, non-B hepatitis and non-A, non-B hepatitis transmitted by the intestinal route. The causative agent for the parenterally and sporadically transmitted NANB hepatitis, the hepatitis C virus (HCV), has recently been isolated (Choo Q. -L. et al., Science 244 (1989) 359-362 and Kuo, G. et al., Science 244 (1989) 362-364). [0002]
  • HCV is worldwide an important cause of NANB hepatitis and is transmitted by contaminated blood or blood products, by blood transfusions or close personal contact. [0003]
  • The amino acid sequence of the HCV viral proteins is known from EP-A 0 318 216, EP-A 0 363 025, EPA 388 232 and EP-A 0 396 748. The genome of the HCV has a length of 10862 nucleotides. The proteins arising from translation have a total length of ca. 3000 amino acids. The proteins can be divided into structural proteins (envelope and core proteins) and non-structural proteins (NS1-NS5). [0004]
  • It is expedient to carry out the determination of HCV by detecting antibodies against HCV in body fluids using immunological tests. Therefore binding partners for anti-HCV antibodies are necessary for such immunological tests. [0005]
  • Thus it is known that for example the non-structural C 100-3-HCV protein can be used as a binding partner in immunological tests (tests from ABBOTT LABORATORIES, USA and ORTHO DIAGNOSTIC SYSTEMS INC., USA; Science 244 (1989) 359-364; Van der Poel C. L. et al. Lancet 337 (1991) 317; Alter H. J. J. Gastroent. Hepatol. (suppl.) 1990, 78). [0006]
  • A disadvantage of these tests is that a recombinant protein is used as antigen. Proteins are difficult to handle in diagnostic tests because of their susceptibility to denaturation and consequent reduced solubility and function. As a result of the low epitope density on a protein the magnitude of the measurement signal is also less than in a test in which a short-chained peptide antigen is used as the binding partner of the antibody. In addition, when proteins or long-chained peptides are used as antigens in an immunological test there can be an increase in cross-reactivities and unspecific bindings of antibodies. Moreover, reactions with proteins are often diffusion controlled which is an impediment to achieving the desired short times for immunological tests. In addition the production of protein which can be used for diagnostics in sufficient quantity and quality is time-consuming and expensive. Peptides are easily accessible by synthesis and are defined molecules. [0007]
  • Accordingly it is advantageous in an immunological test for anti-HCV antibodies to use peptide antigens which are as short-chained as possible and only represent sections of the total proteins. Such an immunological method is described by Okamoto (Japan J. Exp. Met. 60 (1990) 223-234). However, it has been shown that the short-chained peptide antigen (sequence 9) described in this publication which is derived from the core region is not sufficiently sensitive to HCV. [0008]
  • The object of the present invention is therefore to provide peptide antigens which are specific for anti-HCV antibodies and are suitable for immunological tests for anti-HCV antibodies. [0009]
  • This object is achieved by the peptide antigens of the sequences [0010]
     1: SerGlyLysProAlaIleIleProAspArgGluValLeuTyrArg-
    GluPheAsp
     2: GluCysSerGlnHisLeuProTyrIleGluGlnGlyMetMetLeu-
    AlaGluGlnPheLysGlnLysAlaLeuGlyLeuLeuGlnThrAla-
    SerArgGln
     3: AlaValGlnThrAsnTrpGlnLysLeuGluThrPheTrpAlaLys-
    HisMetTrpAsn
     4: AsnProLysProGlnLysLysAsnLysArgAsThrAsnArgArg
     5: AsnProLysProGlnArgLysThrLysArgAsnThrAsnArgArg
     6: ProGlnAspValLysPheProGlyGlyGlyGlnIleValGlyGly-
    Val
     7: ProArgGlySerArgProSerTrpGlyProThrAspProArgArg
     8: GlnLeuPheThrPheSerProArgArgHisTrpThrThrGlnGly-
    CysAsnCysSerIleTyrProGlyHisIleThrGlyHisArgMet-
    AlaTrpAspMetMetMetAsnTrpSerProThrThrAlaLeuVal-
    MetAla
    10: GlnLysLysAlaAlaArgAsnThrAsnArgArg
    11: HisTrpThrThrGlnGlySerAsnSerSerIleTyrProGlyHis
    12: SerSerIleTyrProGlyHisIleThrGlyHisArgMetAlsTrp-
    ThrMetMet
    13: ProGluGlyArgThrTrpAlaGlnlProGlyTyrProTrpProLeu-
    Tyr
  • or peptide antigens which represent partial sequences of these peptide antigens with a length of at least four, preferably of at least seven amino acids. [0011]
  • Suitable partial sequences are shown in the sequence protocols and are indicated by letters/number combinations (e.g. 6 a, 2 b). [0012]
  • Particularly preferred partial sequences are: [0013]
    from sequence 2:
    GluCysSerGlnHisLeuProTyrIleGluGlnGly- (sequence 2a)
    MetMetLeu
    MetMetLeuAlaGluGlnPheLysGlnLysAlaLeu- (sequence 2b)
    GlyLeuLeuGlnThrAla
    MetMetLeuAlaGluGlnPheLysGlnLysAlaLeu- (sequence 2c)
    GlyLeuLeuGlnThrAlaSerArgGln
    HisLeuProTyrIleGlu (sequence 2d)
    Ser Gln His Leu Pro Tyr Ile Glu Gln (sequence 2e)
    Lys Ala Leu Gly Leu Leu Gln (sequence 2f)
    Gln Lys Ala Leu Gly Leu Leu Gln Thr (sequence 2q)
    from sequence 4:
    Lys Asn Lys Arg Asn Thr Asn Arg Arg (sequence 4a)
    from sequence 6:
    ProGlnAspValLysPheProGlyGlyGlyGlnIle (sequence 6a)
    Lys Phe Pro Gly Gly Gly Gln Ile Phe (sequence 6b)
    Lys Phe Pro Gly Gly Gly Gln Ile Val (sequence 6d)
    Gln Asp Val Lys Phe Pro Gly Gly Gly (sequence 6e)
    d
  • Partial sequences are particularly preferred which have a maximum length of 9 amino acids. These are in particular the sequences 6b, 6d, 6e, 2e, 2f, 2d, 2g, 4a. [0014]
  • The peptide antigens with the sequences 1-3 are contained in the C 100-3 region of the HCV proteins and the peptide antigens with the sequences 4-8, 10-13 are contained in the env/core region of the HCV proteins. The peptide antigens with the sequences 1-8, 10-13 according to the present invention and the peptide antigen 9 of sequence (ArgGlyProArgLeuGlyValArgAlaThrArgLysThrSerGluArgSerGlnProArgGlyArgArgGlnProIleProLysAlaArgArgProGluGlyArgThrTrpAlaGlnProGlyTyrProTrpPro, Okamoto loc. cit) are specified in the sequence protocols SEQ ID NO: 1-32. [0015]
  • An anti-HCV antibody test is carried out according to methods known to one skilled in the art. The invention therefore also concerns a method for the determination of HCV antibodies which is characterized in that the sample is incubated with a combination of at least two peptide antigens from the group of sequences 1-13 or peptide antigens which represent partial sequences of these peptide antigens which have a length of at least 4, preferably of at least 7 amino acids and the amount of anti-HCV antibodies bound to the peptide antigen is determined under conditions which allow the formation of an antibody-antigen complex. [0016]
  • According to the present invention a combination of at least two of the peptide antigens or partial sequences thereof according to the present invention are used. It is particularly preferred that the peptide antigens of sequences 1-3 or partial sequences thereof be combined with at least one peptide antigen from the group of the sequences 4-13 or partial sequences thereof. Suitable partial sequences of sequence 9 are: [0017]
    (sequence 9a)
    ArgGlyProArgLeuGlyValArgAlaThrArgLysThrSerGlnArg-
    SerGlnProArgGly
  • SerGlnProArgGlyArgArgGlnProIleProLysAlaArgArgproGluGly ArgThr (sequence 9b). [0018]
  • Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr (sequence 9c) [0019]
  • The combination of the antigens can for example be carried out by using several individual peptide antigens or in that peptide antigens are covalently bound to one another, appropriately by means of an amino acid bridge which differs from the amino acid sequences that naturally occur in HCV proteins or by means of a peptide linker. [0020]
  • The following combinations of antigens are particularly preferred: [0021]
  • Sequence 2b, 4 and 6 [0022]
  • Sequence 2b, 2c, 4 and 6 [0023]
  • Sequence 2a, 2b, 2c, 4 and 6 [0024]
  • Sequence 2a, 2b, 2c, 4, 6, 9a and 9b [0025]
  • Sequence 2a, 2b, 4, 6, 9a and 3 [0026]
  • Sequence 2a, 2b, 4, 6 and 9a [0027]
  • Sequence 2e, 2g, 4a, 6d, 6e [0028]
  • Sequence 2d, 2f, 4a, 6c, 9c [0029]
  • Sequence 11, 12, 8a [0030]
  • The antigens in the combinations are preferably used in approximately equimolar amounts. [0031]
  • The combination of the antigens of sequences 11, 12, 8a is particularly suitable for detecting patient sera in which a HCV infection has been cured (convalescent sera). [0032]
  • The antigens are preferably used separately without being covalently bound to one another or bound together using a peptide linker. [0033]
  • Since a high sensitivity is necessary for the infection parameter HCV, heterogeneous immunoassays are preferably used for the detection. These heterogeneous tests allow washing steps which considerably reduce the background measurement signal resulting in an increase in sensitivity. [0034]
  • The determination can for example be carried out by means of a radioimmunoassay, enzyme immunoassay or by immunofluorescence. For this the peptide antigen is usually immobilized. The sample which is to be examined for anti-HCV antibodies is added and the antibodies bound to the antigen are determined by means of a labelled anti-human immunoglobulin antibody. The immobilization of the peptide antigen according to the present invention can be carried out adsorptively, covalently or by means of a biological binding pair such as biotin/streptavidin, antibody/antigen or sugar/lectin. In this process the peptide antigen is covalently bound to this partner. [0035]
  • The peptide antigens according to the present invention can preferably be immobilized according to methods familiar to one skilled in the art such as on beads, plastic tubes or microtitre plates (preferably polystyrene or copolymers of polystyrene). This is preferably carried out by adsorbing the peptide antigens unspecifically onto the surface or covalently binding the peptide antigen to functionalized or activated surfaces. The unspecific adsorption can be improved by linking the peptide antigen to a protein to form a conjugate and using this conjugate for the adsorption (cf. e.g. EP-A 0 269 092). The binding can also be carried out via an immobilized antibody. For this the peptide antigen should be modified in such a way that the epitope is not blocked by the antibody binding e.g. by formation of a peptide-protein conjugate. [0036]
  • The conjugation of the peptide antigen to the binding partner is preferably carried out via a spacer. This spacer appropriately contains 10-50, preferably 10-30 atoms and is also preferably an essentially linear molecule. Examples for this are spacers made of alkyl chains, polyether chains or polyamide chains. In a particularly preferred embodiment a peptide antigen with a length of 4-9 amino acids is bound to the carrier via a linear spacer of 10-30 atoms. If a spacer made of amino acids is to be used, it is appropriate that it consists of amino acids which do not correspond to the sequence in the direct vicinity of the peptide antigen in the HCV gene. [0037]
  • In a preferred embodiment the peptide antigen according to the present invention is covalently bound to biotin whereby the immobilization is carried out by means of an avidin/streptavidin solid phase. [0038]
  • Methods of determination are also suitable in which the detection is not via a labelled antibody but via a labelled additional peptide antigen sequences 1-13 or partial sequences thereof. [0039]
  • The peptide antigens according to the present invention can be produced according to methods for peptide synthesis familiar to one skilled in the art. The invention therefore also concerns a process for the production of the peptide antigen according to the present invention which comprises binding the amino acid forming the C-terminal end to a carrier, assembling stepwise the peptide antigen starting at the C-terminal end and subsequently cleaving it from the carrier. [0040]
  • The details of this process are that an amino acid is linked, for example via its carboxyl group, to an insoluble polymer which can be easily filtered and then the peptide chain is assembled stepwise starting at the C-terminal end. For this purpose a N-protected amino acid is reacted with a reactive group of the artificial resin. The Na-protective group is removed from the amino acid which is covalently anchored to the carrier particle and the resulting amino acyl polymer is reacted with the next N-protected amino acid. The Na-protective group is removed from the dipeptide covalently bound to the carrier resin and the resulting amino acyl polymer is reacted with the next N-protected amino acid. All excess reagents and by-products are removed by simple filtration. As soon as the desired peptide sequence has been prepared in this way, the covalent binding between the C-terminal amino acid and the anchor group of the polymeric carrier is cleaved. The insoluble carrier is removed from the peptide which is now in solution by simple filtration. The peptide is purified by chromatographic methods. [0041]
  • The peptide antigens according to the present invention can for example be prepared according to Merrifield, JACS 85 (1964) 2146. If a biotinylation is necessary this can for example be carried out according to PNAS USA 80 (1983) 4045. A preferred biotinylation agent for this is biotinyl-aminocaproic acid-N-hydroxysuccinimide ester. [0042]
  • A preferred process for the production of biotinylated peptide antigens is to introduce the biotin residue at the N-terminus during a solid phase synthesis of the peptide antigen. This process is preferably used in cases in which the peptide antigen contains several ε-lysine amino groups which are not intended to be biotinylated. This is for example the case when N-α-Fmoc-N-ε-biotinyl-aminocaproyllysine, N-α-Fmoc-N-ε-biotinyllysine is used or when for the biotinylation of the N-terminal amino acids biotin, biotinyl-aminocaproic acid or dimethoxytritylbiotin is used with an activating reagent, such as for example dicyclohexylcarbodiimide, or as an active ester. [0043]
  • In a further preferred embodiment a detection antibody which is for example directed against the Fc part of human IgG is immobilized. A monoclonal antibody is preferably used for this. The peptide antigen is then present in solution. The antibody (analyte) to be detected and also all other antibodies in the sample liquid are then bound by the immobilized antibody. The bound antibody can then bind the analyte which can be detected with a suitable detection system e.g. competitively with a peptide antigen-enzyme conjugate. [0044]
  • It is also possible using the peptide antigens according to the present invention to obtain antibodies by immunization methods familiar to one skilled in the art with which the virus itself can be detected in an immunological test. [0045]
  • The invention therefore also concerns a process for the production of antibodies which is characterized in that a mammal is immunized with a peptide according to the present invention which, if desired, is bound to a carrier and the antibodies are obtained, for example from the serum or the spleen, according to known methods. [0046]
  • In a preferred embodiment B lymphocytes of the immunized animals are fused with a suitable cell line in the presence of transforming agents, the cell line which produces the desired antibodies is cloned and cultured and the monoclonal antibodies are isolated from the cells or from the culture supernatant. [0047]
  • Using this antibody it is possible to directly determined HCV viruses. The invention therefore also concerns a process for the determination of HCV viruses which is characterized in that the sample is incubated with an antibody according to the present invention under conditions which allow the formation of an antigen-antibody complex and the amount of antibody-antigen complex formed is determined. [0048]
  • The invention in addition concerns a process for the production of vaccines using the peptide antigens according to the present invention and a vaccine for treating HCV infections containing a peptide antigen of the sequences 1-8, 10-13 which is carrier-bound if desired or partial sequences thereof or at least two peptide antigens of the sequences 1-13 or partial sequences thereof as an immunogen in a pharmacologically effective dose and in a pharmaceutically acceptible formulation. [0049]
  • The production of these vaccines can be carried out according to known methods. However, the peptide antigens are preferably first lyophilized and subsequently suspended, if desired with addition of auxiliary substances. [0050]
  • Vaccination with these vaccines or combinations of vaccines according to the present invention can be carried out according to methods familiar to one skilled in the art for example intradermally, intramuscularly, intraperitoneally, intravenously, subcutaneously or intranasally. [0051]
  • For the intramuscular or subcutaneous administration, the vaccine can for example be suspended in physiological saline. For an intranasal or intraoccular application, the vaccine can for example be used in the form of a spray or an aqueous solution. For a local, for example an oral administration, it is often necessary to temporarily protect the immunogens against inactivation, for example against proteolytic enzymes in the cavity of the mouth or in the stomach. Such a temporary protection can for example be achieved by encapsulating the immunogens. This encapsulation can for example be carried out by coating with a protective agent (microencapsulation) or by embedding a multitude of immunogens according to the present invention in a protective carrier (macroencapsulation). [0052]
  • The encapsulation material can be semipermeable or become semipermeable when introduced into the human or animal body. A biological degradable substance is usually used as a carrier for the encapsulation. [0053]
  • The invention is further elucidated by the following examples and sequence protocols. [0054]
  • The sequence protocols denote the following: [0055]
    Sequence SEQ ID NO
    1 1
    2 2
    2 a 3
    2 b 4
    2 c 5
    2 d 6
    2 e 7
    2 f 8
    2 g 9
    2 h 10
    3 11
    4 12
    4 a 13
    4 b 14
    5 15
    6 16
    6 a 17
    6 b 18
    6 c 19
    6 d 20
    6 e 21
    7 22
    8 23
    8 a 24
    9 25
    9 a 26
    9 b 27
    9 c 28
    10 29
    11 30
    12 31
    13 32
  • EXAMPLE 1
  • Synthesis of H-ProArgGlySerArgProSerTrpGlyProThrAspProArgArg-OH [0056]
  • The peptide was produced by means of Fmoc(fluorenyloxycarbonyl) solid-phase synthesis. The reactions were carried out on a Labortec (Switzerland) SP 640 peptide synthesizer. The coupling reactions with regard to the Fmoc amino acid derivative were carried out with 2.4 equivalents of dicyclohecylcarbodiimide and 2.2 equivalents of N-hydroxybenzotriazole for 90 minutes. Dimethylformamide was used as the reaction medium. The Fmoc group was cleaved by means of 20% piperidine in DMF in 10 and 20 minutes. 2.0 equivalents of the following amino acid derivatives were used: Pro, Arg(with PMC(pentamethylchroman) protective group), Gly, Ser(with tert.-butyl protective group), Trp, Thr(with tert.-butyl protective group), Asp(with tert.-butyl ester protective group). The coupling reactions were repeated with half the reagents. The coupling result was checked by means of the Kaiser test (Anal. Biochemistry 34 (1970) 595), the loading of the resin was determined by means of the UV absorbance of the released fulvene group after each piperidine cleavage. The peptide was synthesized on 5 g Wang resin (polystyrene/1% divinylbenzol) loaded with 0.50 mMol/g (JACS, 95 (1973) 1328). After the synthesis the degree of loading was still 0.39 mMol/g. [0057]
  • The peptide was released with 200 ml trifluoroacetic acid, 200 ml dichloromethane, 10 ml ethanedithiol, 10 ml m-cresol, 5 ml ethylmethylsulfide and 5 ml water in 30 minutes at room temperature. The cleavage solution was evaporated several times with toluol and then the peptide was precipitated with diethyl ether. [0058]
  • In order to remove the scavenger and other small molecules, the crude material was purified on a Sephadex G10 column. After lyophilization, 3.2 g material was obtained with a purity of 42% (RP-HPLC). In order to bring the material to a final purity of >95%, 400 mg peptide was purified on a preparative RP-HPLC column (400 mm×250 mm) filled with C18 material (5 micrometre, 300 Angström) and employing a water/trifluoroacetic acid, acetonitrile/trifluoroacetic acid gradient. After lyophilization 118 mg 96.5% (HPLC) white material was obtained. The identity of the material was checked by means of FAB-MS. [0059]
  • EXAMPLE 2
  • In order to biotinylate the peptide antigen from Example 1, a mole equivalent was dissolved as concentrated as possible (the solubility depends on the amino acid sequence) in an argon-saturated potassium phosphate buffer (0.1 mol/, pH 8.0) and 3 equivalents D-biotinyl-c-aminocaproic acid-N-hydroxysuccinimide ester dissolved in argon-saturated dimethylformamide (solution of 1 μmol reagent in 5 μl DMF) is added. [0060]
  • The reaction mixture was stirred for 2 hours at room temperature under argon while continuously monitoring by means of analytical RP-HPLC. When <5% educt was present the reaction preparation was applied directly to a preparative RP-HPLC column and the product material was purified by means of a 0.1% trifluoroacetic acid/water to 0.1% trifluoroacetic acid/acetonitrile gradient (gradient: 0% to 100% in 90 minutes). The product material was obtained by evaporating and lyophilizing the product fractions. The yields were between 40% and 90%. The purity was analysed by means of HPLC, HPCE and TLC, the identity was determined with FAB-MS (mole peak) and TLC with specific staining reagents (p-dimethyl-aminocinnamic aldehyde on biotin) and the amount was assayed by microanalysis (nitrogen). [0061]
  • EXAMPLE 3
  • HCV antibodies are determined in a 2-step sandwich immunoassay. Reagents with the following composition are used for the test: [0062]
  • Reagent 1: [0063]
  • 0.10 μg/ml (peptide antigens 1, 3, 4, 5, 6) or [0064]
  • 0.25 μg/ml (peptide antigens 2, 4, 7) biotinylated peptide antigen or a 1:1 mixture of such peptide antigens. [0065]
  • 40 mmol/l phosphate buffer pH 7.0 [0066]
  • 0.9% by weight NaCl [0067]
  • 10% by volume bovine serum [0068]
  • Reagent 2: [0069]
  • 20 mU/ml of a conjugate of polyclonal antibody against human immunoglobulin (sheep) and peroxidase [0070]
  • 40 mmol/l phosphate buffer pH 7.0 [0071]
  • [0072] 0.05% by weight Tween® 20
  • 0.2% bovine serum albumin [0073]
  • 0.2% bovine IgG [0074]
  • 1 ml reagent 1 and 10 μl sample are incubated for one hour at room temperature in a streptavidin-coated polystyrene tube (produced according to Example 1 of EP-A 0 344 578). Subsequently it is washed three times with tap water and incubated for one hour at room temperature with 1 ml reagent 2. It is subsequently washed three times with tap water. 1 ml ABTS® (2,2′-azino-di[3-ethyl-benzthiazoline sulfate(6)]diammonium salt, 1.9 mmol/l, in 100 mmol/l phosphate-citrate buffer pH 4.4 containing 3.2 mmol/l sodium perborate) is added for the detection reaction. The absorbance at 420 nm is measured photometrically after 60 minutes. The results are shown in Table 1. [0075]
    TABLE 1
    Peptide antigens (sequence No)
    Serum 9 1 2 3 4 5 6 7 8 1 + 4 3 + 6
    1 + + + + + + + + +
    2 + + + + +
    3 + + + +
    4 + + + + + + + + +
    5 + + + + +
    6 + + + + + + + + +
    7 + + + + + + + + +
  • Serum 1 was negative in the test in the Ortho-HCV antibody ELISA test system of ORTHO DIAGNOSTIC SYSTEMS INC. but positive on the basis of the clinical findings. [0076]
  • The sera 2-5 were identified as positive by the test of Ortho Laboratories, the sera 6 and 7 were identified as positive with the ABBOTT HCV EIA, catalogue No. 3 A53-24, ABBOTT LABORATORIES INC. [0077]
  • The peptide antigens 1-6 were biotinylated with dimethoxytrityl-biotin on a solid phase at the e-amino group of an additional lysine introduced at the N-terminus. [0078]
  • The peptide antigen mixtures 1+4 and 3+6 were used at a molar mixing ratio of 1:1. [0079]
  • EXAMPLE 4
  • Further sera were checked with peptides and peptide mixtures in a two-step sandwich immunoassay on microtitre plates coated with streptavidin. [0080]
  • The determination was largely carried out in an analogous way to Example 3. The following reagents were used for this: [0081]
  • Reagent 1: [0082]
  • 50 ng peptide (or the amounts stated in the explanatory notes for the table) in 100 μl incubation buffer (40 mmol/l phosphate buffer, pH 7.0, 0.9% by weight NaCl, 10% by volume bovine serum). [0083]
  • Reagent 2: [0084]
  • Conjugate of polyclonal antibody against human immunoglobulin (sheep) and peroxidase (peroxidase activity 20 mU/ml), 40 mmol/1 phosphate buffer pH 7.0, 0.05% by weight Tween® 20, 0.2% bovine serum albumin, 0.2% bovine IgG. [0085]
  • Washing Solution [0086]
  • 40 mmol/l phosphate buffer pH 7.0, 0.9% by weight sodium chloride, 0.05% by weight Tween® 20. [0087]
  • Colour Reagent [0088]
  • 10 mg ABTS®, 80 μl 0.4% H[0089] 2O2 in 10 ml citrate phosphate buffer (pH 4.4, 100 mmol/l).
  • Serum (diluted 1:10 in 50 μl incubation buffer) and 100 μl reagent 1 are added to each well of a microtitre plate coated with streptavidin. It is incubated for one hour at room temperature and subsequently washed five times with 200 μl washing solution each time. 150 μl reagent 2 is added, incubated for one hour at room temperature and washed three times with 200 μl washing solution each time. 150 μl colour reagent is added, incubated for one hour at room temperature and the absorbance is measured photometrically at 420 nm. [0090]
  • The results are shown in Tables II, III, IV, V, VI and VII. [0091]
  • The denotation in the tables is as follows: [0092]
    TABLE II
    Ortho: relative size of the measurement signal in the
    Ortho test (cf. Example 3).
    blank space: measured value is smaller than twice the
    blank value or is identical to the blank
    value (determined with biotinylated
    peptide which is not reactive with HCV
    antibodies (nonsense sequence)).
    filled circle: measured value is three times the blank
    value or more with 50 ng peptide per
    well.
    empty circle: measured value is twice the blank value
    at 50 ng peptide per well
    filled square: measured value is three times the blank
    value or more at 250 ng peptide per
    well
    empty square: measured value is twice the blank value
    or more at 250 ng peptide per well.
    *: negative controls
  • [0093]
    TABLE III
    blank space: as in Table II
    filled circle: measured value is four times the blank
    value or more at 50 ng peptide per well
    empty circle: measured value is three times the blank
    value or more at 50 ng peptide per well
    n.t.: measurement was not carried out
    2a, 2b, 3, 4, Instead of a single peptide antigen,
    6: a mixture of 10 ng each of the stated
    peptides was used in reagent 1.
    *: negative controls
  • [0094]
    TABLE IV
    The meaning of the symbols corresponds to the details
    for Table II.
    The peptide mixtures each contained 50 ng of the
    individual peptides.
  • EXAMPLE 5
  • [0095]
    TABLES V, VI and VII
    The results of immunoassays analogous to Example 3
    whereby the following peptide concentrations were used
    in reagent 1:
    When several antigens were used in a combination the
    amounts used were reduced according to the number of
    different antigens.
    Sequence 2a  50 μg/ml
    Sequence 2b  50 μg/ml
    Sequence 2d 100 μg/ml
    Sequence 2f 100 μg/ml
    Sequence 2h 100 μg/ml
    Sequence 4 400 μg/ml
    Sequence 4a 350 μg/ml
    Sequence 4b 250 μg/ml
    Sequence 4c 300 μg/ml
    Sequence 6 350 μg/ml
    Sequence 6a 350 μg/ml
    Sequence 6b 350 μg/ml
    Sequence 6c 250 μg/ml
    Sequence 6d 300 μg/ml
    Sequence 8a 900 μg/ml
    Sequence 9a 350 μg/ml
    Sequence 9c 350 μg/ml
    Sequence 11 300 μg/ml
    Sequence 12 550 μg/ml
  • [0096]
    TABLE II
    Peptide
    C100-3 Region core env-Region
    Or- Or-
    Seren tho 1 2a 2c 2b 3 4 6 9a 9b 7 8 tho
    S1
    S2 2
    S3 1
    S4 (*)
    S5 +/−
    S6 1
    S7 (*)
    S8 +/−
    S9
    S10 +/−
    S11 +/−
    S12 2
    S13 4
    S14 +/−
    S15 +/−
    S16 4
    S17 4
    S18 2
    S19 (*) +/−
    S20 1
    S21 +/−
    S22
    S23 3
    S24 4
    S25 1
    D-01
    #1-421533
    56-138481
    19071
    19075
    19575
    20004
    20069
    RS (*)
    HO (*)
    AB (*)
  • [0097]
    TABLE III
    Peptide antigens
    2a, 2b,
    Serum 2a 2b 3 4 6 9a 3, 4, 6
    LL485561*
    LL488301
    LL491001*
    LL493411*
    LL496131*
    LL504111*
    FF194591*
    FF206011*
    FF200311
    FF211511*
    FF210051
    FF804511*
    B1 nt
    B3 nt
    B4 nt
    B5 nt
    B6 nt
    B7 nt
    B8 nt
    B9 nt
    B10 nt
    B11
    B12
    B13
    B14 nt
    B15
    B16
    B17
    B18 nt
    B19 nt
    B20
    01-423533
    S23
  • [0098]
    TABLE IV
    Peptide antigens
    2a, 2b, 2c, 2a, 2b, 2c, 4, 6,
    Serum 2b, 4, 6 2b, 2c, 4, 6 4, 6 9a, 9b,
    S1
    S2
    S3
    S4 (*)
    S5
    S6
    S7 (*)
    S8
    S9
    S10
    S11
    S12
    S13
    S14
    S15
    S16
    S17
    S18
    S19 (*)
    S20
    S21
    S22
    S23
    S24
  • [0099]
    TABLE V
    Peptide
    2a, 2b, 2d, 2f,
    4, 6, 4a, 6c, 8a, 11
    Serum 9a 9c 12
    1 + +
    2
    3 + + +
    4 + + +
    5 +
    6
    7 + + +
    8
    9 + +
    10 + +
    11 + +
    12 + + +
    13 + +
    14 + +
    15 + +
    16 + +
    17
    18 +
    19 + + +
    20 + +
    21 + +
    22 + + +
    23 + + +
    24 + + +
    25 + +
    26 + + +
    27 + +
    28 + +
    29
    30
    31
    32 + +
    33
    34 + + +
    35 + + +
  • [0100]
    TABLE VI
    Peptide
    Serum 2d 2f 4a 6b 6c, 6d 9c 11
     1′ + + + +
     2′ + +
     3′ + + +
     4′ + + + +
     5′ + + + +
     6′
     7′
     8′
     9′ + + + + + + +
    10′
    11′ + + + + +
    12′ + + + +
  • [0101]
    TABLE VII
    Peptide
    Serum 2h 4b 4c 6a
    1′ + +
    2′ +
    3′ + +
  • [0102]
  • 1 32 1 18 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 1 Ser Gly Lys Pro Ala Ile Ile Pro Asp Arg Glu Val Leu Tyr Arg Glu 1 5 10 15 Phe Asp 2 33 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 2 Glu Cys Ser Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu Ala 1 5 10 15 Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala Ser Arg 20 25 30 Gln 3 15 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 3 Glu Cys Ser Gln His Leu Pro Tyr Ile Glu Gln Gly Met Met Leu 1 5 10 15 4 18 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 4 Met Met Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln 1 5 10 15 Thr Ala 5 21 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 5 Met Met Leu Ala Glu Gln Phe Lys Gln Lys Ala Leu Gly Leu Leu Gln 1 5 10 15 Thr Ala Ser Arg Gln 20 6 6 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 6 His Leu Pro Tyr Ile Glu 1 5 7 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 7 Ser Gln His Leu Pro Tyr Ile Glu Gln 1 5 8 7 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 8 Lys Ala Leu Gly Leu Leu Gln 1 5 9 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 9 Gln Lys Ala Leu Gly Leu Leu Gln Thr 1 5 10 10 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID N0. 2 for anti-HCV antibodies 10 Gln Lys Ala Leu Gly Leu Leu Gln Thr Ala 1 5 10 11 19 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 11 Ala Val Gln Thr Asn Trp Gln Lys Leu Glu Thr Phe Trp Ala Lys His 1 5 10 15 Met Trp Asn 12 15 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 12 Asn Pro Lys Pro Gln Lys Lys Asn Lys Arg Asn Thr Asn Arg Arg 1 5 10 15 13 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 12 for anti-HCV antibodies 13 Lys Asn Lys Arg Asn Thr Asn Arg Arg 1 5 14 10 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 12 for anti HCV antibodies 14 Gln Lys Lys Asn Lys Arg Asn Thr Asn Arg 1 5 10 15 15 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 15 Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg 1 5 10 15 16 16 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 16 Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val 1 5 10 15 17 12 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 16 for anti HCV antibodies 17 Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile 1 5 10 18 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 16 for anti HCV antibodies 18 Lys Phe Pro Gly Gly Gly Gln Ile Phe 1 5 19 12 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 16 for anti HCV antibodies 19 Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val 1 5 10 20 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 16 for anti HCV antibodies 20 Lys Phe Pro Gly Gly Gly Gln Ile Val 1 5 21 9 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 16 for anti HCV antibodies 21 Gln Asp Val Lys Phe Pro Gly Gly Gly 1 5 22 15 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 22 Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro Arg Arg 1 5 10 15 23 47 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 23 Gln Leu Phe Thr Phe Ser Pro Arg Arg His Trp Thr Thr Gln Gly Cys 1 5 10 15 Asn Cys Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp 20 25 30 Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val Met Ala 35 40 45 24 18 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 23 for anti HCV antibodies 24 Met Ala Trp Asp Met Met Met Asn Trp Ser Pro Thr Thr Ala Leu Val 1 5 10 15 Met Ala 25 45 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 25 Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg 1 5 10 15 Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Arg Pro 20 25 30 Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr Pro Trp Pro 35 40 45 26 21 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No. 25 for anti HCV antibodies 26 Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Thr Ser Glu Arg 1 5 10 15 Ser Gln Pro Arg Gly 20 27 20 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No 25. for anti HCV antibodies 27 Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Ala Arg Arg Pro 1 5 10 15 Glu Gly Arg Thr 20 28 15 PRT Artificial Sequence partial sequence of peptide antigen SEQ ID No 25. for anti HCV antibodies 28 Lys Ala Arg Arg Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr 1 5 10 15 29 11 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 29 Gln Lys Lys Ala Ala Arg Asn Thr Asn Arg Arg 1 5 10 30 15 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 30 His Trp Thr Thr Gln Gly Ser Asn Ser Ser Ile Tyr Pro Gly His 1 5 10 15 31 18 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 31 Ser Ser Ile Tyr Pro Gly His Ile Thr Gly His Arg Met Ala Trp Asp 1 5 10 15 Met Met 32 16 PRT Artificial Sequence peptide antigen for anti-HCV antibodies 32 Pro Glu Gly Arg Thr Trp Ala Gln Pro Gly Tyr Pro Trp Pro Leu Tyr 1 5 10 15

Claims (16)

1. HCV peptide antigens with the amino acid sequences SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 29-32 or with partial sequences thereof having a length of at least 4 amino acids.
2. HCV peptide antigens as claimed in claim 1 with partial sequences having a maximum lenth of 9 amino acids.
3. HCV peptide antigens as claimed in claim 2 with the partial sequences.
4. HCV peptide antigens as claimed in claim 1 with the partial sequences SEQ ID NO: 3, 4, 5, 10, 14, 17, 19, 24.
5. Combination of HCV peptide antigens composed of
SEQ ID NO: 4, 12, 16
SEQ ID NO: 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12, 16, 26 and 27
SEQ ID NO: 3, 4, 11, 12, 16 and 26
SEQ ID NO: 3, 4, 12, 16 and 26
SEQ ID NO: 7, 9, 13, 20, 21
SEQ ID NO: 6, 8, 13, 19, 28 or
SEQ ID NO: 25, 30, 31
6. Process for the production of peptide antigens as claimed in claims 1 to 4, wherein the amino acid forming the C-terminal end is bound to a carrier, the peptide antigen is synthesized stepwise starting from the C-terminal end and is subsequently cleaved from the carrier.
7. Method for the determination of HCV antibodies, wherein the sample is incubated with a combination of at least two peptide antigens from the group SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 25, 29-32 or peptide antigens representing partial sequences of these peptide antigens having a length of at least 4 amino acids and the amount of the HCV antibodies bound to the peptide antigen is determined under conditions which enable the formation of an antibody-antigen complex.
8. Method as claimed in claim 7, wherein the combination contains at least one peptide antigen with a length of 4-9 amino acids which represents a partial sequence of SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 25, 29-32.
9. Method as claimed in claim 7, wherein a combination of at least two HCV antigens from the group SEQ ID NO: 1-32 is used.
10. Method as claimed in claim 9, wherein
SEQ ID NO: 4, 12, 16
SEQ ID NO: 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12, 16, 26 and 27
SEQ ID NO: 3, 4, 11, 12, 16 and 26
SEQ ID NO: 3, 4, 12, 16 and 26
SEQ ID NO: 7, 9, 13, 20, 21
SEQ ID NO: 6, 8, 13, 19, 28 or
SEQ ID NO: 24, 30, 31
are used as combinations.
11. Process for the production of antibodies against HCV antigens, wherein a mammal is immunized with a peptide antigen SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 29-32 or a partial sequence thereof which is carrier-bound if desired, polyclonal antibodies are obtained or cells of these animals which produce antibodies are immortalized to form cell lines and monoclonal antibodies are isolated from these cell lines.
12. Process as claimed in claim 11, wherein SEQ ID NO: 1-32 are used as peptide antigens which represent partial sequences.
13. Method for the determination of HCV viruses, wherein the sample is incubated with an antibody as claimed in claim 11 or 12 under conditions which enable the formation of an antigen-antibody complex and the amount of the antibody-antigen complex formed is determined.
14. Vaccine for the treatment of HCV infections containing a peptide antigen SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 29-32 which is carrier-bound if desired or at least two peptide antigens SEQ ID NO: 1-32 or peptide antigens which represent partial sequences of these peptide antigens having a length of at least 4 amino acids as the immunogen, in a pharmacologically effective dose and in a pharmaceutically acceptable formulation.
15. Vaccine as claimed in claim 14, wherein the partial sequences
SEQ ID NO: 4, 12, 16
SEQ ID NO: 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12 and 16
SEQ ID NO: 3, 4, 5, 12, 16, 26 and 27
SEQ ID NO: 3, 4, 11, 12, 16 and 26
SEQ ID NO: 3, 4, 12, 16 and 26
SEQ ID NO: 7, 9, 13, 20, 21
SEQ ID NO: 6, 8, 13, 19, 28 or
SEQ ID NO: 24, 30, 31
are used as the peptide antigens.
16. Process for the production of vaccines using the peptide antigens SEQ ID NO: 1, 2, 11, 12, 15, 16, 22, 23, 29-32 or at least two peptide antigens SEQ ID NO: 1-32 or peptide antigens representing partial sequences of these peptide antigens having a length of at least 4 amino acids as immunogens.
US10/371,540 1991-07-04 2003-02-21 HCV peptide antigens and methods for the determination of HCV Abandoned US20030198644A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/371,540 US20030198644A1 (en) 1991-07-04 2003-02-21 HCV peptide antigens and methods for the determination of HCV

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
DE4122160 1991-07-04
DEP4122160.5 1991-07-04
DEP4141304.0 1991-12-14
DE4141304 1991-12-14
DE4209215A DE4209215A1 (en) 1991-07-04 1992-03-21 HCV PEPTIDE ANTIGEN AND METHOD FOR DETERMINING HCV
DEP4209215.9 1992-03-21
WOPCT/EP92/01468 1992-06-30
PCT/EP1992/001468 WO1993001210A2 (en) 1991-07-04 1992-06-30 Hcv peptide-antigens and a method of testing for the hepatitis c virus (hcv)
US97739893A 1993-03-11 1993-03-11
US08/604,365 US6183949B1 (en) 1991-07-04 1996-02-21 HCV peptide antigens and methods for the determination of HCV
US09/689,678 US6592871B1 (en) 1991-07-04 2000-10-13 HCV peptide antigens and methods for the determination of HCV
US10/371,540 US20030198644A1 (en) 1991-07-04 2003-02-21 HCV peptide antigens and methods for the determination of HCV

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/689,678 Division US6592871B1 (en) 1991-07-04 2000-10-13 HCV peptide antigens and methods for the determination of HCV

Publications (1)

Publication Number Publication Date
US20030198644A1 true US20030198644A1 (en) 2003-10-23

Family

ID=27202683

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/604,365 Expired - Fee Related US6183949B1 (en) 1991-07-04 1996-02-21 HCV peptide antigens and methods for the determination of HCV
US09/689,678 Expired - Fee Related US6592871B1 (en) 1991-07-04 2000-10-13 HCV peptide antigens and methods for the determination of HCV
US10/371,540 Abandoned US20030198644A1 (en) 1991-07-04 2003-02-21 HCV peptide antigens and methods for the determination of HCV

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/604,365 Expired - Fee Related US6183949B1 (en) 1991-07-04 1996-02-21 HCV peptide antigens and methods for the determination of HCV
US09/689,678 Expired - Fee Related US6592871B1 (en) 1991-07-04 2000-10-13 HCV peptide antigens and methods for the determination of HCV

Country Status (10)

Country Link
US (3) US6183949B1 (en)
EP (2) EP0551460B2 (en)
JP (1) JP2774872B2 (en)
KR (1) KR970010925B1 (en)
AT (1) ATE171710T1 (en)
AU (1) AU652851B2 (en)
CA (1) CA2089576A1 (en)
DE (2) DE4209215A1 (en)
ES (1) ES2123558T5 (en)
WO (1) WO1993001210A2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2049679C (en) * 1990-08-24 2005-06-21 Sushil G. Devare Hepatitis c assay utilizing recombinant antigens
DE4209215A1 (en) 1991-07-04 1993-01-07 Boehringer Mannheim Gmbh HCV PEPTIDE ANTIGEN AND METHOD FOR DETERMINING HCV
EP0586065B1 (en) * 1992-07-16 2010-03-24 Advanced Life Science Institute, Inc Antigenic peptides for grouping hepatitis C virus, kit comprising the same and methods for its grouping using the same
DE4240980A1 (en) * 1992-08-07 1994-02-10 Boehringer Mannheim Gmbh HCV peptide antigens and method for the determination of HCV
JP3751315B2 (en) 1993-05-05 2006-03-01 コモン サーヴィシス エージェンシー Hepatitis C virus type 4, 5 and 6
DK0725824T3 (en) * 1993-11-04 2003-08-11 Innogenetics Nv Immunodominant human T cell epitopes of hepatitis C virus
AU697171B2 (en) * 1994-04-08 1998-10-01 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Hepatitis C virus core peptide for stimulation of cytotoxic T lymphocytes and diagnosis of HCV exposure
JP3217600B2 (en) * 1994-07-12 2001-10-09 株式会社先端生命科学研究所 Immunoassay for non-A non-B hepatitis virus-related antigen, monoclonal antibody used therein, and hybridoma producing this antibody
US6150134A (en) 1994-07-29 2000-11-21 Innogenetics, N.V. Purified hepatitis C virus envelope proteins for diagnostic and therapeutic use
KR19990008122A (en) * 1995-04-28 1999-01-25 곤도도시유키 Antigen Peptide Compounds and Immunological Assays
EP0947525A1 (en) * 1998-03-27 1999-10-06 Innogenetics N.V. Epitopes in viral envelope proteins and specific antibodies directed against these epitopes: use for detection of HCV viral antigen in host tissue
ATE412904T1 (en) * 1998-07-30 2008-11-15 Advanced Life Science Inst Inc METHOD FOR DETERMINING HEPATITIS C VIRUSES
WO2001023550A2 (en) * 1999-09-29 2001-04-05 Diagnocure Inc. Pca3 messenger rna species in benign and malignant prostate tissues
US7049060B2 (en) * 2001-11-05 2006-05-23 Ortho-Clinical Diagnostics, Inc. HCV anti-core monoclonal antibodies
EP1357127A1 (en) * 2002-04-10 2003-10-29 Immusystems GmbH Hepatitis c virus epitopes specific for cd4+ t-cell lymphocytes
US20060115860A1 (en) * 2004-11-26 2006-06-01 Cabrera Robert M Immunologic assay for detection of autoantibodies to folate binding protein
US8865398B2 (en) * 2006-09-01 2014-10-21 Abbott Laboratories Combination hepatitis C virus antigen and antibody detection method
US20100286070A1 (en) * 2007-09-14 2010-11-11 Gert Verheyden Affinity tag
CA2735724C (en) 2008-06-19 2018-07-24 Variation Biotechnologies Inc. Compositions and methods for treating influenza
US20100104555A1 (en) * 2008-10-24 2010-04-29 The Scripps Research Institute HCV neutralizing epitopes
CN103282375B (en) 2010-12-02 2017-01-11 比奥诺尔免疫有限公司 peptide scaffold design
WO2013072768A2 (en) 2011-11-18 2013-05-23 Variation Biotechnologies, Inc. Synthetic derivatives of mpl and uses thereof
FR2984328B1 (en) 2011-12-20 2016-12-30 Bio-Rad Innovations METHOD FOR DETECTING HEPATITIS C VIRUS INFECTION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106727A (en) * 1989-04-27 1992-04-21 Life Technologies, Inc. Amplification of nucleic acid sequences using oligonucleotides of random sequences as primers
US6172189B1 (en) * 1990-08-24 2001-01-09 Abbott Laboratories Hepatitis C assay utilizing recombinant antigens
US6596476B1 (en) * 1989-12-22 2003-07-22 Abbott Laboratories Hepatitis C assay

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3640412A1 (en) 1986-11-26 1988-06-09 Boehringer Mannheim Gmbh METHOD FOR DETERMINING A SPECIFICALLY BINDABLE SUBSTANCE
US5306620A (en) * 1987-07-08 1994-04-26 The Scripps Research Institute Antibodies that bind to a ligand-induced binding site on integrin and induce integrin activation
CN1074422C (en) 1987-11-18 2001-11-07 希龙股份有限公司 Nanbv diagnostics and vaccines
US5350671A (en) * 1987-11-18 1994-09-27 Chiron Corporation HCV immunoassays employing C domain antigens
US5191064A (en) 1988-09-30 1993-03-02 The Research Foundation For Microbial Diseases (Osaka University) Non-a, non-b hepatitis virus antigen peptide
KR940000755B1 (en) * 1990-02-16 1994-01-29 유나이티드 바이오메디칼 인코오포레이티드 Synthetic peptides specific for the detection of antibodies to hcv
US5747239A (en) * 1990-02-16 1998-05-05 United Biomedical, Inc. Synthetic peptides specific for the detection of antibodies to HCV, diagnosis of HCV infection and preventions thereof as vaccines
US5106726A (en) * 1990-02-16 1992-04-21 United Biomedical, Inc. Synthetic peptides specific for the detection of antibodies to HCV
EP0445801A3 (en) * 1990-03-08 1992-07-01 Kuraray Co., Ltd. Peptide and its use
EP1018558A3 (en) * 1990-04-06 2002-06-05 Genelabs Technologies, Inc. Hepatitis C Virus Epitopes
AU635124B2 (en) * 1990-04-16 1993-03-11 United Biomedical Inc. Synthetic peptides specific for the detection of antibodies to HCV, diagnosis of HCV infection and prevention thereof as vaccines
EP0464287A1 (en) * 1990-06-25 1992-01-08 The Research Foundation for Microbial Diseases of Osaka University Non-A, non-B hepatitis virus genomic cDNA and antigen polypeptide
CA2047792C (en) * 1990-07-26 2002-07-02 Chang Y. Wang Synthetic peptides specific for the detection of antibodies to hcv, diagnosis of hcv infection and prevention thereof as vaccines
DE59109221D1 (en) * 1990-11-03 2001-11-15 Dade Behring Marburg Gmbh HCV-specific peptides, agents therefor and their use
DE69029092T2 (en) * 1990-12-14 1997-04-17 Innogenetics Nv Synthetic antigens for the detection of antibodies against the hepatitis C virus
WO1992012992A2 (en) * 1991-01-14 1992-08-06 James N. Gamble Institute Of Medical Research Basic structural immunogenic polypeptides having epitopes for hcv, antibodies, polynucleotide sequences, vaccines and methods
US5574132A (en) * 1991-04-05 1996-11-12 Biochem Immunosystems Inc. Peptides and mixtures thereof for detecting antibodies to hepatitis C virus (HCV)
DE4209215A1 (en) 1991-07-04 1993-01-07 Boehringer Mannheim Gmbh HCV PEPTIDE ANTIGEN AND METHOD FOR DETERMINING HCV
IL124567A (en) * 1998-05-20 2008-08-07 Abic Biolog Lab Ltd Hemorrhagic enteritis virus dna sequences, proteins encoded thereby and various uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106727A (en) * 1989-04-27 1992-04-21 Life Technologies, Inc. Amplification of nucleic acid sequences using oligonucleotides of random sequences as primers
US6596476B1 (en) * 1989-12-22 2003-07-22 Abbott Laboratories Hepatitis C assay
US6172189B1 (en) * 1990-08-24 2001-01-09 Abbott Laboratories Hepatitis C assay utilizing recombinant antigens
US6593083B1 (en) * 1990-08-24 2003-07-15 Sushil G. Devare Hepatitis C assay utilizing recombinant antigens

Also Published As

Publication number Publication date
WO1993001210A3 (en) 1993-04-15
AU652851B2 (en) 1994-09-08
EP0881231A2 (en) 1998-12-02
WO1993001210A2 (en) 1993-01-21
EP0881231A3 (en) 2004-02-04
AU2197392A (en) 1993-02-11
ATE171710T1 (en) 1998-10-15
EP0551460B2 (en) 2003-10-08
ES2123558T3 (en) 1999-01-16
KR970010925B1 (en) 1997-07-02
ES2123558T5 (en) 2004-06-01
DE4209215A1 (en) 1993-01-07
CA2089576A1 (en) 1993-01-05
EP0551460A1 (en) 1993-07-21
KR930702387A (en) 1993-09-08
EP0551460B1 (en) 1998-09-30
JP2774872B2 (en) 1998-07-09
JPH05506462A (en) 1993-09-22
DE59209512D1 (en) 1998-11-05
US6592871B1 (en) 2003-07-15
US6183949B1 (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US6592871B1 (en) HCV peptide antigens and methods for the determination of HCV
US6312889B1 (en) Combinations of hepatitis c virus (HCV) antigens for use in immunoassays for anti-HCV antibodies
RU2130969C1 (en) Composition for diagnosis of human hepatitis c (variants), method and set for detection of antibodies to human hepatitis c virus
EP0489968B1 (en) Synthetic antigens for the detection of antibodies to hepatitis C virus
CZ237793A3 (en) Hcv genom sequences for diagnosis and therapy
JPH10503642A (en) Hepatitis G virus and its molecular cloning
US5674676A (en) HCV peptide antigens and method of determining HCV
US5582968A (en) Branched hybrid and cluster peptides effective in diagnosing and detecting non-A, non-B hepatitis
EP0747482A2 (en) Hepatitis GB virus recombinant proteins and uses thereof
CA2072092A1 (en) Non-a non-b sequences
EP0525910A1 (en) Non-A, non-B peptide
EP0501557B1 (en) Peptides immunochemically reactive with antibodies directed against hepatitis Non-A, Non-B virus
JPH05320192A (en) Peptide exhibiting immunochemical reactivity to antibody for non-a and non-b type hepatitis virus
AU639560C (en) Combinations of hepatitis C virus (HCV) antigens for use in immunoassays for anti-HCV antibodies
WO1993011158A2 (en) Non-a, non-b peptides
CA2079439A1 (en) Non-a, non-b peptides
MXPA97009271A (en) Diagnosis of, and vaccination against, in positive thread rna virus using an isolated polypeptide, do not process

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION