US20030216111A1 - Non-foamed polishing pad and polishing method therewith - Google Patents

Non-foamed polishing pad and polishing method therewith Download PDF

Info

Publication number
US20030216111A1
US20030216111A1 US10/151,783 US15178302A US2003216111A1 US 20030216111 A1 US20030216111 A1 US 20030216111A1 US 15178302 A US15178302 A US 15178302A US 2003216111 A1 US2003216111 A1 US 2003216111A1
Authority
US
United States
Prior art keywords
polishing
less
polishing pad
resin material
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/151,783
Inventor
Hisatomo Ohno
Jun Watanabe
Toshihiro Izumi
Yasushi Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Micro Coating Co Ltd
Original Assignee
Nihon Micro Coating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micro Coating Co Ltd filed Critical Nihon Micro Coating Co Ltd
Priority to US10/151,783 priority Critical patent/US20030216111A1/en
Assigned to NIHON MICROCOATING CO., LTD. reassignment NIHON MICROCOATING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHIZAWA, YASUSHI, IZUMI, TOSHIHIRO, WATANABE, JUN, OHNO, HISATOMO
Priority to TW092108037A priority patent/TWI272158B/en
Priority to PCT/JP2003/005007 priority patent/WO2003097298A1/en
Assigned to NIHON MICROCOATING CO., LTD. reassignment NIHON MICROCOATING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IZUMI, TOSHIHIRO, KODAKA, ICHIRO, MILLER, CLAUGHTON, OHNO, HISATOMO, WATANABE, JUN, YOSHIZAWA, YASUSHI
Publication of US20030216111A1 publication Critical patent/US20030216111A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials

Definitions

  • This invention relates to a polishing pad comprised of a non-foamed resin material, as well as a polishing method by using such a pad.
  • Pads made of different materials with different physical characteristics have been used for the so-called planarization polishing of the surface of electronic devices such as semiconductor substrates and magnetic disk substrates.
  • Foamed urethane pads have been commonly used for the chemical mechanical polishing (CMP) of semiconductor devices because foamed pads with air bubbles inside have certain advantages such as their ability to take in particles scraped off from the polished surface inside such internally formed bubbles.
  • Pads made of a foamed material such as foamed urethane however, have certain disadvantages such as the difficulty in controlling the thickness and providing a uniform abrading surface and the inability to carry out a very fine polishing work.
  • a polishing pad embodying this invention may be characterized as substantially comprising a non-foamed resin material such as non-foamed acrylic resin, urethane and polyesters and having surface roughness Ra in the range of 0.1-10 ⁇ m, or preferably 0.5-1.5 ⁇ m and variations in thickness less than 30 ⁇ m, or preferably less than 10 ⁇ m.
  • a pad made of a foamed material such as prior art foamed urethane pads.
  • Polishing pads according to a preferred embodiment of this invention may be further characterized as having Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30% as measured by specified methods.
  • the polishing surface of the pad may be grooved, such grooves being formed over 30%-70%, or preferably 40%-60% of the total area of the polishing surface.
  • the polishing pad of this invention thus characterized may be used in a conventional way, being pressed against a target surface to be polished and caused to move relative to the target surface, say, by means of a polishing machine of a known kind.
  • a so-called dressing process of a known kind may be carried out to restore the initial condition of the polishing surface.
  • the dressing process carried out in a method embodying this invention is characterized in that the surface roughness Ra of the polishing surface after the dressing process is again in the range of 0.1-10 ⁇ m, or preferably 0.5-1.5 ⁇ m.
  • Polishing pads according to this invention which may be used for fine polishing of semiconductor devices such as semiconductor substrates and magnetic disk substrates, are characterized firstly as being made of a non-foamed resin material such as non-foamed acrylic resin, urethane and polyesters and secondly as having a polishing surface with surface roughness Ra in the range of 0.1-10 ⁇ m or preferably 0.5-1.5 ⁇ m and variations in thickness less than 30 ⁇ m or preferably less than 10 ⁇ m.
  • a non-foamed resin material such as non-foamed acrylic resin, urethane and polyesters
  • Ra polishing surface with surface roughness Ra in the range of 0.1-10 ⁇ m or preferably 0.5-1.5 ⁇ m and variations in thickness less than 30 ⁇ m or preferably less than 10 ⁇ m.
  • Pads with surface roughness in such ranges can be prepared by using a rotary belt for a buffing process, by a facing process or by using a diamond grinder. Pads with such uniformity in thickness can be produced by a grinding process.
  • Such pads are advantageous because their use can be started without initially subjecting them to a so-called dressing process, which is a process for conditioning the polishing surface of a polishing pad, say, by removing particles clogging the polishing surface. This process is usually time-consuming.
  • polishing pads made of a foamed material With a polishing pad made of a foamed material, the size and positions of air bubbles are not uniform, and some air bubbles are at the polishing surface, opening to the exterior. Thus, the surface roughness is usually much greater, and it is much more difficult to control its uniformity. In other words, polishing pads made of a non-foamed material according to this invention are better suited for fine polishing of device surfaces requiring a higher degree of precision.
  • non-foamed materials generally have a better thermal conductivity than foamed materials because foamed materials have air bubbles inside and air is a poor thermal conductor.
  • Heat is generated as a polishing pad is used for polishing a target surface, and although the rate of chemical mechanical polishing may be improved by raising temperature, a strict temperature control is necessary for reducing variations in the rate of polishing.
  • Table 1 shows a result of an experiment for comparing the thermal conductivity of foamed and non-foamed pads of a same material and a same thickness of 1.0 cm. In this experiment, these pads were placed on a plate maintained at 55° C. and the changes in the temperatures at their top surfaces were measured at intervals of 5 minutes.
  • Table 1 clearly shows that a pad made of a non-formed material has a much higher heat conductivity and hence is better suited for the temperature control in chemical physical polishing.
  • TABLE 1 Heating time Surface temperature of a Surface temperature of (minute) non-foamed pad (° C.) a formed pad (° C.) 0 23.8 23.8 5 28.9 27.5 10 31.5 29.2 15 31.7 29.5 20 33.7 30.2 25 34.7 30.4 30 37.9 29.2 35 42.5 36.5 40 43.2 37.0 45 43.9 37.3
  • Polishing pads made of a foamed material have air bubbles opening on the polishing surface and hence abraded particles can be stored in them. This cannot be done with a pad made of a non-foamed material. Thus, the polishing process with a non-foamed pad can proceed quickly if the target surface being polished is uneven, having protrusions and indentations, but the process slows down after the target surface becomes flat. In the chemical mechanical polishing of an oxide layer formed on a circuit wiring, the process is stopped when the oxide layer is planarized but it is a common practice to continue the polishing until the entire surface is planarized.
  • the Shore D hardness of the pad be greater than 60 degrees, and more preferably greater than 68%.
  • a non-foamed pad of this invention may be characterized as having compressibility less than 3%, or preferably less than 1%, and elasticity greater than 30%, or preferably greater than 50%.
  • the compressibility and elasticity are the values obtained from a sample piece of a suitable size by measuring its thickness T 0 while compressing it with an initial load of 80 g, further adding an extra load of 800 g for 5 minutes and measuring its thickness T 1 afterward, removing this total load of 880 g and thereafter subjecting it to the initial load of 80 g for 30 seconds to measure its thickness T 0 ′ again.
  • the compressibility is calculated as 100(T 0 ⁇ T 1 )/T 0 and the compressive elasticity is calculated as 100(T 0 ′ ⁇ T 1 )/(T 0 ⁇ T 1 ).
  • the polishing surface may be provided with grooves not only for collecting polished off particles but also for stabilizing the slurry flow and distribution pressure uniformly. If the ratio of the portion of the polishing surface where grooves are formed is too large, however, the contact area with the target surface to be polished may become insufficient and efficiency of the polishing is adversely affected. This ratio is preferably 30%-70%, and more preferably 40-60%.
  • a polishing pad as described above may be used in combination with a polishing machine of a known kind such that its polishing surface is compressed against the target surface to be polished and is caused to move relative to the target surface.
  • a polishing machine of a known kind such that its polishing surface is compressed against the target surface to be polished and is caused to move relative to the target surface.
  • it has been known to rejuvenate the pad for example, by removing the particles that are clogging the polishing surface.
  • the process of bringing back the initial condition of the polishing surface say, by using a diamond conditioner for polishing, is variously called a dressing process, a conditioning process or a seasoning process. Such a process may also be included as a part of a method according to the invention.
  • the dressing process in a method embodying this invention is characterized in that the polishing surface of a pad made of a non-foamed material, after being subjected to such a dressing process, has surface roughness Ra in the range of 0.1-10 ⁇ m, or preferably 0.5-1.5 ⁇ m.

Abstract

A polishing pad made of a non-foamed resin material has surface roughness Ra in the range of 0.1-10 μm, or preferably 0.5-1.5 μm and variations in thickness less than 50 μm, or preferably less than 30 μm. Its Shore D hardness is greater than 60 degrees, or preferably 68 degrees. Its compressibility is less than 3%, or preferably less than 1% and its elasticity is greater than 30%, or preferably 50%, as measured by specified methods. Grooves may be formed over 30%-70%, or preferably 40%-60% of the total area of the polishing surface. When the polishing surface is subjected to a dressing process, its surface roughness Ra is restored to 0.1-10 μm, or preferably 0.5-1.5 μm.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to a polishing pad comprised of a non-foamed resin material, as well as a polishing method by using such a pad. [0001]
  • Pads made of different materials with different physical characteristics have been used for the so-called planarization polishing of the surface of electronic devices such as semiconductor substrates and magnetic disk substrates. Foamed urethane pads have been commonly used for the chemical mechanical polishing (CMP) of semiconductor devices because foamed pads with air bubbles inside have certain advantages such as their ability to take in particles scraped off from the polished surface inside such internally formed bubbles. Pads made of a foamed material such as foamed urethane, however, have certain disadvantages such as the difficulty in controlling the thickness and providing a uniform abrading surface and the inability to carry out a very fine polishing work. [0002]
  • SUMMARY OF THE INVENTION
  • It is therefore a general object of this invention to provide a polishing pad without such disadvantages which are common to pads made of a foamed material and hence better suited for the fine polishing. [0003]
  • It is another object of this invention to provide a method of using such a polishing pad to perform an improved polishing work. [0004]
  • This invention is based on the discovery by the present inventors that polishing pads made of a non-foamed material and having certain physical characteristics can accomplish the above and other objects. In particular, a polishing pad embodying this invention may be characterized as substantially comprising a non-foamed resin material such as non-foamed acrylic resin, urethane and polyesters and having surface roughness Ra in the range of 0.1-10 μm, or preferably 0.5-1.5 μm and variations in thickness less than 30 μm, or preferably less than 10 μm. Such conditions are normally not satisfied by a pad made of a foamed material such as prior art foamed urethane pads. Polishing pads according to a preferred embodiment of this invention may be further characterized as having Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30% as measured by specified methods. [0005]
  • The polishing surface of the pad may be grooved, such grooves being formed over 30%-70%, or preferably 40%-60% of the total area of the polishing surface. [0006]
  • The polishing pad of this invention thus characterized may be used in a conventional way, being pressed against a target surface to be polished and caused to move relative to the target surface, say, by means of a polishing machine of a known kind. A so-called dressing process of a known kind may be carried out to restore the initial condition of the polishing surface. The dressing process carried out in a method embodying this invention is characterized in that the surface roughness Ra of the polishing surface after the dressing process is again in the range of 0.1-10 μm, or preferably 0.5-1.5 μm.[0007]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Polishing pads according to this invention, which may be used for fine polishing of semiconductor devices such as semiconductor substrates and magnetic disk substrates, are characterized firstly as being made of a non-foamed resin material such as non-foamed acrylic resin, urethane and polyesters and secondly as having a polishing surface with surface roughness Ra in the range of 0.1-10 μm or preferably 0.5-1.5 μm and variations in thickness less than 30 μm or preferably less than 10 μm. [0008]
  • Pads with surface roughness in such ranges can be prepared by using a rotary belt for a buffing process, by a facing process or by using a diamond grinder. Pads with such uniformity in thickness can be produced by a grinding process. Such pads are advantageous because their use can be started without initially subjecting them to a so-called dressing process, which is a process for conditioning the polishing surface of a polishing pad, say, by removing particles clogging the polishing surface. This process is usually time-consuming. [0009]
  • With a polishing pad made of a foamed material, the size and positions of air bubbles are not uniform, and some air bubbles are at the polishing surface, opening to the exterior. Thus, the surface roughness is usually much greater, and it is much more difficult to control its uniformity. In other words, polishing pads made of a non-foamed material according to this invention are better suited for fine polishing of device surfaces requiring a higher degree of precision. [0010]
  • Another advantage of using a non-foamed material is that non-foamed materials generally have a better thermal conductivity than foamed materials because foamed materials have air bubbles inside and air is a poor thermal conductor. Heat is generated as a polishing pad is used for polishing a target surface, and although the rate of chemical mechanical polishing may be improved by raising temperature, a strict temperature control is necessary for reducing variations in the rate of polishing. Table 1 shows a result of an experiment for comparing the thermal conductivity of foamed and non-foamed pads of a same material and a same thickness of 1.0 cm. In this experiment, these pads were placed on a plate maintained at 55° C. and the changes in the temperatures at their top surfaces were measured at intervals of 5 minutes. Table 1 clearly shows that a pad made of a non-formed material has a much higher heat conductivity and hence is better suited for the temperature control in chemical physical polishing. [0011]
    TABLE 1
    Heating
    time Surface temperature of a Surface temperature of
    (minute) non-foamed pad (° C.) a formed pad (° C.)
    0 23.8 23.8
    5 28.9 27.5
    10 31.5 29.2
    15 31.7 29.5
    20 33.7 30.2
    25 34.7 30.4
    30 37.9 29.2
    35 42.5 36.5
    40 43.2 37.0
    45 43.9 37.3
  • Polishing pads made of a foamed material have air bubbles opening on the polishing surface and hence abraded particles can be stored in them. This cannot be done with a pad made of a non-foamed material. Thus, the polishing process with a non-foamed pad can proceed quickly if the target surface being polished is uneven, having protrusions and indentations, but the process slows down after the target surface becomes flat. In the chemical mechanical polishing of an oxide layer formed on a circuit wiring, the process is stopped when the oxide layer is planarized but it is a common practice to continue the polishing until the entire surface is planarized. Since the polishing with a non-foamed pad becomes slower at planarized parts, the thickness of the oxide layer is reduced so as to reduce the burden on the chemical mechanical polishing. If the pad is too soft, the processing becomes too dependent on the wiring pattern. In order to overcome this problem, it is preferable that the Shore D hardness of the pad be greater than 60 degrees, and more preferably greater than 68%. [0012]
  • In terms of compressibility and elasticity, a non-foamed pad of this invention may be characterized as having compressibility less than 3%, or preferably less than 1%, and elasticity greater than 30%, or preferably greater than 50%. The compressibility and elasticity are the values obtained from a sample piece of a suitable size by measuring its thickness T[0013] 0 while compressing it with an initial load of 80 g, further adding an extra load of 800 g for 5 minutes and measuring its thickness T1 afterward, removing this total load of 880 g and thereafter subjecting it to the initial load of 80 g for 30 seconds to measure its thickness T0′ again. The compressibility is calculated as 100(T0−T1)/T0 and the compressive elasticity is calculated as 100(T0′−T1)/(T0−T1).
  • The polishing surface may be provided with grooves not only for collecting polished off particles but also for stabilizing the slurry flow and distribution pressure uniformly. If the ratio of the portion of the polishing surface where grooves are formed is too large, however, the contact area with the target surface to be polished may become insufficient and efficiency of the polishing is adversely affected. This ratio is preferably 30%-70%, and more preferably 40-60%. [0014]
  • A polishing pad as described above may be used in combination with a polishing machine of a known kind such that its polishing surface is compressed against the target surface to be polished and is caused to move relative to the target surface. After the condition of the polishing surface of a polishing pad has been sufficiently deteriorated by use, it has been known to rejuvenate the pad, for example, by removing the particles that are clogging the polishing surface. The process of bringing back the initial condition of the polishing surface, say, by using a diamond conditioner for polishing, is variously called a dressing process, a conditioning process or a seasoning process. Such a process may also be included as a part of a method according to the invention. The dressing process in a method embodying this invention is characterized in that the polishing surface of a pad made of a non-foamed material, after being subjected to such a dressing process, has surface roughness Ra in the range of 0.1-10 μm, or preferably 0.5-1.5 μm. [0015]

Claims (20)

What is claimed is:
1. A polishing pad consisting substantially of a non-foamed resin material having a polishing surface with surface roughness Ra in the range of 0.1-10 μm and variations in thickness less than 50 μm.
2. The polishing pad of claim 1 having surface roughness Ra in the range of 0.5-1.5 μm and variations in thickness less than 30 μm.
3. The polishing pad of claim 1 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
4. The polishing pad of claim 2 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
5. The polishing pad of claim 3 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
6. The polishing pad of claim 4 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
7. The polishing pad of claim 4 wherein said polishing surface has grooves formed thereon over 30%-70% of the area of said polishing surface.
8. The polishing pad of claim 7 wherein said polishing surface has grooves formed thereon over 40%-60% of the area of said polishing surface.
9. A method of polishing a target surface of an object, said method comprising the steps of:
preparing a polishing pad consisting substantially of a non-foamed resin material having a polishing surface with surface roughness Ra in the range of 0.1-1.10 μm and variations in thickness less than 30 μm; and
pressing said polishing surface of said polishing pad against said target surface and causing a relative motion between said polishing pad and said target surface.
10. The method of claim 9 wherein said polishing surface has surface roughness Ra in the range of 0.5-1.5 μm and variations in thickness of said polishing pad is less than 10 μm.
11. The method of claim 9 further comprising the step of subjecting said polishing surface of said polishing pad to a dressing process such that the surface roughness Ra of said polishing surface returns to the range of 0.1-10 μm and variations in thickness of said polishing pad return to less than 30 μm.
12. The method of claim 10 further comprising the step of subjecting said polishing surface of said polishing pad to a dressing process such that the surface roughness Ra of said polishing surface returns to the range of 0.5-1.5 μm and variations in thickness of said polishing pad return to less than 10 μm.
13. The method of claim 9 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
14. The method of claim 10 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
15. The method of claim 11 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
16. The method of claim 12 wherein said resin material has Shore D hardness greater than 60 degrees, compressibility less than 3% and elasticity greater than 30%.
17. The method of claim 13 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
18. The method of claim 14 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
19. The method of claim 15 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
20. The method of claim 16 wherein said resin material has Shore D hardness greater than 68 degrees, compressibility less than 1% and elasticity greater than 50%.
US10/151,783 2002-05-20 2002-05-20 Non-foamed polishing pad and polishing method therewith Abandoned US20030216111A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/151,783 US20030216111A1 (en) 2002-05-20 2002-05-20 Non-foamed polishing pad and polishing method therewith
TW092108037A TWI272158B (en) 2002-05-20 2003-04-08 Non-foamed polishing pad and polishing method therewith
PCT/JP2003/005007 WO2003097298A1 (en) 2002-05-20 2003-04-18 Non-foamed polishing pad and polishing method therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/151,783 US20030216111A1 (en) 2002-05-20 2002-05-20 Non-foamed polishing pad and polishing method therewith

Publications (1)

Publication Number Publication Date
US20030216111A1 true US20030216111A1 (en) 2003-11-20

Family

ID=29419516

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/151,783 Abandoned US20030216111A1 (en) 2002-05-20 2002-05-20 Non-foamed polishing pad and polishing method therewith

Country Status (3)

Country Link
US (1) US20030216111A1 (en)
TW (1) TWI272158B (en)
WO (1) WO2003097298A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020188A1 (en) * 2003-06-19 2005-01-27 Mitsuru Saito Polishing pad, method of producing same, and polishing method
US20050239380A1 (en) * 2004-04-21 2005-10-27 Jsr Corporation Chemical mechanical polishing pad, manufacturing process thereof and chemical mechanical polishing method
US7241206B1 (en) * 2006-02-17 2007-07-10 Chien-Min Sung Tools for polishing and associated methods
US20070161720A1 (en) * 2005-11-30 2007-07-12 Applied Materials, Inc. Polishing Pad with Surface Roughness
US20070289223A1 (en) * 2006-02-17 2007-12-20 Chien-Min Sung Tools for polishing and associated methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103978420A (en) * 2014-05-29 2014-08-13 上海新跃仪表厂 Correcting device for over-error of indication of micrometer and correcting method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128972A (en) * 1975-04-14 1978-12-12 The Osborn Manufacturing Corporation Flexible polishing wheel and method for producing same
US4504283A (en) * 1982-07-22 1985-03-12 Superior Finishers, Incorporated Cushioned abrasive articles, and method of manufacture
US6090475A (en) * 1996-05-24 2000-07-18 Micron Technology Inc. Polishing pad, methods of manufacturing and use
US6099390A (en) * 1997-10-06 2000-08-08 Matsushita Electronics Corporation Polishing pad for semiconductor wafer and method for polishing semiconductor wafer
US6126532A (en) * 1997-04-18 2000-10-03 Cabot Corporation Polishing pads for a semiconductor substrate
US6179950B1 (en) * 1999-02-18 2001-01-30 Memc Electronic Materials, Inc. Polishing pad and process for forming same
US6328634B1 (en) * 1999-05-11 2001-12-11 Rodel Holdings Inc. Method of polishing
US6454634B1 (en) * 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
US20030181155A1 (en) * 2002-03-25 2003-09-25 West Thomas E. Smooth pads for CMP and polishing substrates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711469B2 (en) * 1989-03-21 1998-02-10 ロデール・ニッタ株式会社 Abrasive cloth and its curing method
JPH09277162A (en) * 1996-04-12 1997-10-28 Nikon Corp Semiconductor polishing device
JP2001148116A (en) * 1999-11-19 2001-05-29 Mitsubishi Alum Co Ltd Method for manufacturing substrate for magnetic disk
JP2001170858A (en) * 1999-12-15 2001-06-26 Sumitomo Osaka Cement Co Ltd Mirror polishing method for grinding silicon wafer
JP2001179608A (en) * 1999-12-22 2001-07-03 Toray Ind Inc Polishing pad, and polishing device and polishing method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128972A (en) * 1975-04-14 1978-12-12 The Osborn Manufacturing Corporation Flexible polishing wheel and method for producing same
US4504283A (en) * 1982-07-22 1985-03-12 Superior Finishers, Incorporated Cushioned abrasive articles, and method of manufacture
US6090475A (en) * 1996-05-24 2000-07-18 Micron Technology Inc. Polishing pad, methods of manufacturing and use
US6126532A (en) * 1997-04-18 2000-10-03 Cabot Corporation Polishing pads for a semiconductor substrate
US6099390A (en) * 1997-10-06 2000-08-08 Matsushita Electronics Corporation Polishing pad for semiconductor wafer and method for polishing semiconductor wafer
US6179950B1 (en) * 1999-02-18 2001-01-30 Memc Electronic Materials, Inc. Polishing pad and process for forming same
US6328634B1 (en) * 1999-05-11 2001-12-11 Rodel Holdings Inc. Method of polishing
US6454634B1 (en) * 2000-05-27 2002-09-24 Rodel Holdings Inc. Polishing pads for chemical mechanical planarization
US6582283B2 (en) * 2000-05-27 2003-06-24 Rodel Holdings, Inc. Polishing pads for chemical mechanical planarization
US20030181155A1 (en) * 2002-03-25 2003-09-25 West Thomas E. Smooth pads for CMP and polishing substrates

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020188A1 (en) * 2003-06-19 2005-01-27 Mitsuru Saito Polishing pad, method of producing same, and polishing method
US20050239380A1 (en) * 2004-04-21 2005-10-27 Jsr Corporation Chemical mechanical polishing pad, manufacturing process thereof and chemical mechanical polishing method
US20070161720A1 (en) * 2005-11-30 2007-07-12 Applied Materials, Inc. Polishing Pad with Surface Roughness
US7241206B1 (en) * 2006-02-17 2007-07-10 Chien-Min Sung Tools for polishing and associated methods
US20070289223A1 (en) * 2006-02-17 2007-12-20 Chien-Min Sung Tools for polishing and associated methods
US20080014846A1 (en) * 2006-02-17 2008-01-17 Chien-Min Sung Tools for polishing and associated methods
US20080209816A1 (en) * 2006-02-17 2008-09-04 Chien-Min Sung Tools for polishing and associated methods
US7494404B2 (en) 2006-02-17 2009-02-24 Chien-Min Sung Tools for polishing and associated methods
US7544117B2 (en) 2006-02-17 2009-06-09 Chien-Min Sung Tools for polishing and associated methods

Also Published As

Publication number Publication date
WO2003097298A1 (en) 2003-11-27
TWI272158B (en) 2007-02-01
TW200404642A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
KR101391029B1 (en) Polishing pad
TWI444247B (en) Improved chemical mechanical polishing pad and methods of making and using same
EP1800800A1 (en) Abrasive pad
JP4898172B2 (en) Polishing pad, method for producing the same, and polishing method
US20020197946A1 (en) Multi-phase polishing pad
WO1995006544A1 (en) Backing pad for machining operations
JP4456691B2 (en) Conditioner manufacturing method
KR20140071896A (en) Method for polishing a semiconductor wafer
US6659846B2 (en) Pad for chemical mechanical polishing
JPH0413568A (en) Backing pad, precise flattening method thereof and polishing method thereof for semiconductor wafer
US7695347B2 (en) Method and pad for polishing wafer
JPH10180618A (en) Grinding pad adjusting method for cmp device
US6394886B1 (en) Conformal disk holder for CMP pad conditioner
US20030216111A1 (en) Non-foamed polishing pad and polishing method therewith
JP3975047B2 (en) Polishing method
JP2006210657A (en) Polishing pad, polishing device, and method of manufacturing semiconductor device
JP4695236B2 (en) Manufacturing method of CMP conditioner
JP2002355763A (en) Synthetic grinding wheel
JP2002192455A (en) Abrasive pad
JPH02232173A (en) Polishing pad
KR100847121B1 (en) Conditioner for grinding pad and chemical and mechanical polishing apparatus the same
JP2005005315A (en) Method for polishing wafer
US6719874B1 (en) Active retaining ring support
JP2001252871A (en) Dresser for polishing cloth, and method of manufacturing the same
JP2002292556A (en) Slurry, grindstone, pad and abrasive fluid for mirror polishing of silicon wafer, and mirror polishing method using these materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIHON MICROCOATING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHNO, HISATOMO;WATANABE, JUN;IZUMI, TOSHIHIRO;AND OTHERS;REEL/FRAME:012926/0422;SIGNING DATES FROM 20020501 TO 20020509

AS Assignment

Owner name: NIHON MICROCOATING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHNO, HISATOMO;WATANABE, JUN;IZUMI, TOSHIHIRO;AND OTHERS;REEL/FRAME:014593/0200

Effective date: 20030910

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION