US20040011314A1 - Camshaft lubrication system - Google Patents

Camshaft lubrication system Download PDF

Info

Publication number
US20040011314A1
US20040011314A1 US10/343,562 US34356203A US2004011314A1 US 20040011314 A1 US20040011314 A1 US 20040011314A1 US 34356203 A US34356203 A US 34356203A US 2004011314 A1 US2004011314 A1 US 2004011314A1
Authority
US
United States
Prior art keywords
camshaft
lubrication supply
supply duct
cam
cam surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/343,562
Inventor
Mark Seader
Thomas Ehresman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIREWALL FORWARD TECHNOLOGIES LLC
Original Assignee
FIREWALL FORWARD TECHNOLOGIES LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIREWALL FORWARD TECHNOLOGIES LLC filed Critical FIREWALL FORWARD TECHNOLOGIES LLC
Priority to US10/343,562 priority Critical patent/US20040011314A1/en
Priority claimed from PCT/US2001/023977 external-priority patent/WO2002010559A1/en
Assigned to FIREWALL FORWARD TECHNOLOGIES, LLC reassignment FIREWALL FORWARD TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EHRESMAN, THOMAS E., SEADER, MARK E.
Publication of US20040011314A1 publication Critical patent/US20040011314A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/062Accommodating movement or position of machines or engines, e.g. dry sumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/06Means for keeping lubricant level constant or for accommodating movement or position of machines or engines
    • F01M11/062Accommodating movement or position of machines or engines, e.g. dry sumps
    • F01M11/065Position
    • F01M11/067Position inverted, e.g. for inverted flight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • F01M2001/064Camshaft with passageways

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

A hollow camshaft (19) lubrication system for aircraft engines that supplies lubricant (14) to cam lobe surfaces (25) from the interior surface (22) of the hollow camshaft (19) even during periods when aircraft operation moves the rotation axis of the hollow camshaft (19) from horizontal.

Description

  • This application claims the benefit of U.S. Provisional Patent Application No. 60/222,277 filed on Jul. 31, 2000, hereby incorporated by reference herein.[0001]
  • I. TECHNICAL FIELD
  • A camshaft lubrication system for hollow camshafts rotationally journalled in a plurality of bearings. Specifically, a camshaft lubrication system for engines configured in or operated in a manner that locates the rotation axis of the hollow camshaft from the horizontal. [0002]
  • II. BACKGROUND
  • Camshafts in engines are difficult to lubricate. Conventional engine technology utilizes valve systems that are operationally responsive to rotating cam surfaces on a camshaft rotationally journalled in a plurality of bearings. The complicated movements of the camshaft and valve systems make the journalled surfaces and the cam surfaces of the camshaft subject to wear during engine operation. Especially, contact between the cam lobe and the mating tappet, rocker arm, push rod, or the like, can be subject to extremely high load. This large load between the contact surfaces makes fluid lubrication of the sliding surfaces essential to prevent premature failure or wear. [0003]
  • As such, conventional camshaft lubrication technology may be insufficient to prevent frictional power loss or to prevent damage to the cam surfaces, such as pitting, spalling, scuffing, or the like, or to prevent damage to the surfaces slidingly engaged to the camshaft surfaces. The subsequent failure of the camshaft systems in engines can be due to a lack of lubrication at critical times in the camshaft operating cycle. See also, [0004] Firewall Forward Technologies Technical Report No. 1, Firewall Forward Technologies 5212 Cessna Drive, Loveland, Colo. 80538, hereby incorporated by reference herein.
  • Because there is a large commercial demand for enhanced lubrication systems to resolve the problem of insufficient lubrication of camshaft components during such critical times in the camshaft operating cycle, various types of conventional engine and camshaft lubrication systems have been developed. However, even in light of existing commercial demand and the variety of conventional lubrication technologies that have been developed over the years, significant problems remain unresolved in providing camshaft lubrication technology that provides sufficient lubrication to camshaft components during operation of engines. [0005]
  • As shown by U.S. Pat. No. 4,991,549, hereby incorporated by reference herein, a conventional method of lubricating camshaft surfaces may be by configuring the cylinder head of the engine to provide “wells” or catch areas in which the lubricant can collect. A significant problem with well type technology may be that the lubricant collected in the wells or catch areas is unfiltered lubricant. As such, the wells or catch areas may accumulate particulate or debris from the unfiltered lubricant. The particulate or debris may then be transferred to the cam lobe surfaces resulting in wear or damage to these surfaces. Another significant problem with well or catch area technology may be that the lubricant migrates in response to the orientation of the engine or the acceleration of the aircraft. As such, the amount of lubricant collected in a particular location may vary significantly depending on the engine orientation (pitch, roll, or yaw) or the acceleration of the vehicle in which the engine is located. As the lubricant migrates in response to orientation of the engine or acceleration the amount of lubricant available for transfer to the cam lobes, the amount of lubricant actually transferred to the surface of the cam lobes, or the placement of the lubricant with respect to the cam lobe surface may vary during the operation of the engine. An additional problem with well or catch area technology may be that the oil collected in the wells may be hot. As lubricant circulates through an engine during operation the temperature of the lubricant rises. By the time it is collected in a well or catch area, the lubricant may be sufficiently hot that the lubrication properties of the oil are diminished. A further problem with well or catch area lubrication technology may be that the lubricant may not collect or transfer properly to the cam lobe surfaces when the lubricant is cold. Because cold lubricants may exhibit high flow resistance, a cold lubricant may not collect readily into wells or catch areas. As such, there may be little lubricant or a reduced amount of lubricant for transfer to the cam lobe surfaces and little or no lubricant may actually be transferred to the cam lobe surfaces when the engine is started cold. [0006]
  • Similarly, as shown by U.S. Pat. Nos. 4,329, 949 and 4,343,270, each hereby incorporated by reference herein, a conventional method of lubricating camshaft surfaces may be to configure the cylinder head, the cylinder head cover, or other engine component to collect excess lubricant so that it may drip onto the cam lobe surfaces. As above, the lubricant may be unfiltered and transfer particulate or other debris to the cam lobe surfaces resulting in wear to such surfaces, the amount of lubricant available for transfer to the cam lobe surfaces or the amount actually transferred to the cam lobe surfaces may vary depending on the migration of the lubrication in response to orientation of the engine or the acceleration of the aircraft, the lubricant may have been preheated to a high temperature prior to being dripped onto the cam lobe surfaces, or the lubricant may fail to collect or drip onto the cam lobe surfaces properly when cold. [0007]
  • Another conventional method of lubricating camshaft surfaces may be to spray lubricant onto the camshaft surfaces as disclosed by U.S. Pat. Nos. 6,173,689; 3,628,513; 3,958,541; and 4,343,270, each hereby incorporated by reference herein. In addition to the significant problems discussed above, a further significant problem with spraying lubricant onto camshaft surfaces can be that it results in high oil consumption. As lubricant is sprayed, a portion of the lubricant can remain in suspension or mist for a sufficiently long duration and in amounts that may overwhelm the lubricant separator system. The lubricant may then be driven from the engine through the crankcase breather system. Another significant problem with spraying lubricant may be low lubricant pressure or the necessity of increasing the capacity of the lubricant pump. In aircraft, size and weight restrictions may make additional or larger components impractical or impossible to incorporate. Moreover, aircraft engine design and safety specifications are regulated by the federal law which may prohibit the use of spray type technology in aircraft. For example, the usable oil tank capacity may not be less than the product of the endurance of the airplane under critical operation conditions and the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate circulation and cooling. 14 C.F.R. '23.1011(c), hereby incorporated by reference herein. [0008]
  • Another conventional method of lubricating camshaft surfaces may be to supply lubricant to the hollow interior of the camshaft and then subsequently deliver the lubricant to the exterior surface of the camshaft as disclosed by U.S. Pat. Nos. 5,450,665; 4,615,310; and Japanese Abstract No. 5503755A, each hereby incorporated by reference herein. A significant problem with utilizing the interior of hollow camshafts to deliver lubricant to the cam lobe surfaces may be that lubricant supplied to the interior of the hollow camshaft is not uniformly distributed over the interior surface of the hollow camshaft. As disclosed by Japanese Abstract No. 5503755A, a single feed hole at the drive end of a camshaft (or a single feed hole to the camshaft interior from the drive end bearing) supplies the lubricant to the interior of the camshaft to be distributed to all the cam lobe surfaces and all the camshaft bearings. When lubricant is supplied to the interior of a hollow camshaft through a single feed hole it can take a duration of time for a layer of lubricant to form over the entire interior surface of the camshaft (or may not form at all as to some surface area) after the engine is started. As a result, lubricant supply ducts distal from the single feed may not deliver lubricant to the cam surfaces during engine operation. To ameliorate this problem, various attempts have been made to reduce the interior volume of hollow camshafts. For example, the filler elements disclosed by U.S. Pat. No. 4,615,310; and Japanese Abstract No. 55-132417, each hereby incorporated by reference. The failure to deliver sufficient lubricant to the interior of the camshaft or the failure to deliver sufficient lubricant to the exterior surfaces of the camshaft during operation may be exacerbated when the rotation axis of the camshaft is not horizontal. For example, when conventional hollow camshaft technology is operated at twenty degrees attitude, lubricant may only be delivered to the portion of the hollow interior of the camshaft proximate to the lubricant feed hole. Because aircraft routinely operate at attitudes (pitch, roll, yaw) which require the camshaft to operate for a duration of time out of the horizontal position (takeoff, landing, ascent, descent, turns, or so forth) conventional camshaft lubrication technology may not provide sufficient lubricant to all the cam lobe surfaces. [0009]
  • Another significant problem with conventional hollow camshaft lubrication technology may be that the feed holes supplying lubricant to the interior of the hollow camshaft and the lubricant delivery ducts to the cam lobe exterior surface do not have the proper angular displacement. The stream of lubricant supplied to the interior of a camshaft under pressure can disturb the lubricant layer or flow of lubricant on the interior surface of the hollow camshaft as shown by FIG. 5. When the lubricant feed hole is located approximately opposite the lubricant delivery hole to the cam lobe surfaces the lubricant entering the interior of the camshaft may disturb the lubricant pooled on the opposite side of the interior surface of the camshaft and prevent or impede lubricant from entering the lubricant delivery hole to the cam lobe surfaces. As such, the cam surface may not be supplied with a sufficient amount of lubricant to prevent damage. [0010]
  • Another significant problem with conventional hollow camshaft lubrication technology may be that lubricant layer or lubricant stream may be insufficient to supply lubricant to multiple lubricant delivery holes. A first lubricant delivery hole may utilize the entire amount of lubricant that flows over it. As such, a second lubricant delivery hole positioned to take advantage of the same portion of the lubricant stream or lubricant flow as the first lubricant delivery hole may not receive an adequate supply of lubricant. [0011]
  • Another significant problem with conventional hollow camshaft lubrication technology may be that modifications to increase the amount of lubricant to the cam lobe surfaces, such as increasing the aperture size, can overtax standard lubricant pressurization pumps. The subsequent reduction in lubricant pressure may result in insufficient delivery of lubricant to the exterior surfaces of the modified camshaft. See, [0012] Firewall Forward Technologies Technical Report No. 2, hereby incorporated by reference herein.
  • Another significant problem with conventional hollow camshaft lubrication technology may be that there is not a vent hole in the hollow camshaft. The absence of a vent hole can prevent or impede moisture or lubricant vapor, gases, or the like, from being transferred from the interior volume of the camshaft. As such, increased pressure in the interior of the hollow camshaft must be transferred from the lubrication supply ducts to the exterior surfaces of the cam lobes. Relieving pressure through these supply ducts may interrupt the continuous flow of lubricant from the lubricant supply duct to the cam lobe surfaces. [0013]
  • With respect to each of the above-described problems with conventional camshaft lubrication technology, and specifically with respect to the problems with the use of conventional camshaft lubrication technology in the context of aircraft engines, the present invention discloses camshaft lubrication systems that address each in a practical fashion. The invention also satisfies the long felt but unresolved need for a reliable camshaft lubrication system for aircraft engines. Moreover, while the instant description provides numerous examples of the invention in the context of aircraft and aircraft engines, it is understood that the inventions disclosed may be used in a wide variety of applications, including but not limited to, automobile engines, marine engines, motorcycle engines, high performance engines, or the like. [0014]
  • III. DISCLOSURE OF THE INVENTION
  • Accordingly, a broad object of embodiments of the invention is to provide a camshaft lubrication system that provides both camshaft apparatuses and camshaft lubrication methods that may be used in aircraft engines, or used in other types of engines such as automobiles, boats, motorcycles, or the like. [0015]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and methods of lubricating camshafts that can be used in a wide variety of valve mechanism applications, such as, valve mechanisms that are responsive to lifters, tappets, rocker arms, or the like; camshafts located overhead (overhead cam) or camshafts that employ push rods or are used in conjunction with hydraulic lash adjusters, or the like. [0016]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and methods of lubricating camshafts for engines that operate the camshaft at various amounts of pitch, roll, or yaw, such as a pitch of 5 degrees, 10 degrees, 15 degrees, 20 degrees, or more from horizontal. [0017]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and camshaft lubrication methods that can replace factory specification camshafts approved for use in airplane engines such as Continental or Lycoming aircraft engines, for example. [0018]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and camshaft lubrication methods that provide a sufficient lubrication layer to form on the interior surface of a hollow camshaft to provide sufficient lubricant to each cam surface lubrication supply duct. [0019]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and camshaft lubrication methods that provide proper angular displacement of the camshaft lubrication supply ducts and the cam surface lubrication supply ducts so that lubricant entering the interior of the camshaft does not disrupt the delivery of lubricant to proximate lubrication supply ducts. [0020]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and camshaft lubrication methods that provide proper angular displacement of multiple cam surface lubrication supply ducts so that lubricant flow over the first duct does not disrupt or impede the flow of lubricant to the remaining ducts. [0021]
  • Another broad object of embodiments of the invention can be to provide camshaft apparatuses and camshaft lubrication methods that provide proper ventilation of the interior volume of a hollow camshaft. [0022]
  • Another object of embodiments of the invention can be to provide a reduced wear camshaft apparatus. [0023]
  • Naturally further objects of the invention are disclosed throughout other areas of the specification and claims.[0024]
  • V. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an embodiment of the camshaft lubrication invention in a generic reciprocating piston engine. [0025]
  • FIG. 2 shows a cross section of an embodiment of the camshaft lubrication invention rotatably journalled in a plurality of bearings. [0026]
  • FIG. 3 illustrates a pressure dam resulting from the pressurized stream of lubricant delivered into the hollow interior of a camshaft. [0027]
  • FIG. 4 shows an embodiment of the camshaft lubrication invention having the smaller angular displacement between two cam surface lubrication supply ducts proximate to the journalled surface approximately bisected by the location of the camshaft lubrication supply duct. [0028]
  • FIG. 5 shows an embodiment of the camshaft lubrication invention having multiple staggered cam surface lubrication supply ducts utilizing two different portions of the lubricant fluid stream. [0029]
  • FIG. 6 shows an embodiment of the camshaft lubrication invention having multiple staggered cam surface lubrication supply ducts.[0030]
  • VI. MODE(S) FOR CARRYING OUT THE INVENTION
  • A camshaft lubrication system invention, including but not limited to, camshaft apparatuses and methods of lubricating a camshaft as disclosed by the description below and by reference to the accompanying figures. [0031]
  • Now referring primarily to FIG. 1, embodiments of the camshaft lubrication invention can be utilized in an overhead cam engine or utilized with other valve mechanism configurations, such as conventional push rod—rocker arm valve operated valve mechanisms. As such, the figure is not intended to limit the invention to use in overhead cam engines but rather to provide sufficient disclosure to allow an individual to make and use the invention in the context of a wide variety of engine applications (automotive, marine, or the like), and specifically aircraft engines. [0032]
  • An embodiment of the invention can comprise an airplane (not shown) having an aircraft engine comprising a block ([0033] 1) with at least one cylinder (2). A reciprocal means (3), such as a piston, can be slidingly engaged to the surface of the cylinder (2). A reciprocal movement to rotational movement conversion element (4), such as a crankshaft, can be rotatably coupled to the reciprocal means (3) and rotationally journalled to the block (1). A cylinder head (5) can be coupled to the block to enclose the volume of the cylinder (2) and make the reciprocal means (3) responsive to changes in pressure within the cylinder (2). At least two conduits (7)(8) can traverse the cylinder head (5) to fluidicly couple the volume of the cylinder (2) to a fuel source (not shown) and to the atmosphere respectively. At least one valve (9)(10) is coupled to each of the two conduits (7)(8) to regulate the flow of fuel into and fuel combustion products out of the cylinder (2). Each valve can be made operationally responsive to the rotation of a camshaft lobe (11) coupled to a hollow shaft (12) rotatably journalled to a plurality of bearing means (13). The shape, orientation, and rotation speed of the cam lobe(s) (11) can be adjusted to open and close the intake valve (9) and the exhaust valve (10) to correspond to the reciprocal movement of the reciprocal means (3). The cam lobe can be adjusted to allow the intake valve (9) to open during the down stroke of the reciprocal means (3) in the cylinder (2). Fuel can be drawn from a fuel system (not shown) into the cylinder (2) through a first conduit (7). The cam lobe (11) continues to rotate allowing the intake valve (9) to close. The fuel drawn into the cylinder (2) is compressed by the upstroke of the reciprocal means (3) and is ignited by an ignition element (13) and the expanding gases from the combustion of the fuel propel the reciprocal means (3) into the next down stroke. On the subsequent upstroke of the reciprocal means (3) in the cylinder (2) the cam lobe (11) corresponding to the exhaust valve (10) opens the valve to allow the combustion products of the fuel or exhaust to exit through second conduit (8) to atmosphere. The reciprocal movement to rotational movement conversion element (4) can be made to power vehicles such as automobiles, boats, motorcycles, aircraft, or the like.
  • While this sequence of events describes the power generation cycle in a generic four stroke engine, the invention can generally be used in two stroke power generation cycles as well. Naturally, the camshaft configuration and rotation speed will vary depending on the number, size, and stroke length of the reciprocal means ([0034] 3); the location of the camshaft within the engine; the configuration and type of valve mechanism utilized; the number of strokes in the power generation cycle; or the like. The camshaft lubrication invention described can be utilized in the numerous permutations and combinations of these components.
  • To reduce the friction between slidingly engaged surfaces, lubricant ([0035] 14) can be supplied to a lubricant reservoir (15). While some of the lubricant is delivered to some of the slidingly engaged surfaces by random splash, lubrication of slidingly engaged surfaces can be enhanced by drawing lubricant (14) from the lubricant reservoir (15) with a lubricant pressurization element (16) and delivering the lubricant (14) through lubrication conduits (17) to the various slidingly engaged surfaces, including but not limited to, the camshaft journals and the camshaft lobes (11).
  • Now referring primarily to FIG. 2, the camshaft lubrication system invention can comprise a plurality of bearing means ([0036] 13) each of the bearing means (13) having a lubrication supply conduit (18). Lubricant (14) can be supplied to each of the lubrication supply conduits (18) from the lubricant reservoir (15) by pressurizing the lubricant with the lubricant pressurization element (16). A hollow camshaft (19) can be rotatably journalled to each of the plurality of bearing means (13) and a camshaft lubrication supply duct (20) can traverse each journal surface (21) and the interior surface (22) of the hollow camshaft (19). Each camshaft lubrication supply duct (20) can be rotatably aligned with a corresponding lubrication supply conduit (18). During the period that the lubrication supply conduit (18) and the camshaft lubrication supply duct (20) are fluidicly coupled lubricant can be transferred to the interior volume (23) of the hollow camshaft (19). The lubricant (14) can than migrate along the interior surface (22) of the hollow camshaft (19). Each cam lobe (11) can have a cam surface lubrication supply duct (24) that traverses the cam surface (25) and the interior surface (22) of the hollow camshaft (19). The lubricant (14) migrating along the interior surface (22) of the hollow camshaft (19) can enter each cam surface lubrication supply duct (24) and can be delivered to the corresponding cam surface (25).
  • By providing a camshaft lubrication supply duct ([0037] 18) at each journalled surface (21) lubricant can be delivered to each cam surface lubrication supply duct (24) even when the hollow camshaft (19) is operated out of horizontal. As such, utilizing the invention, lubricant (14) can be delivered to each of the cam surfaces (25) even when an aircraft (or other vehicle) has a pitch of 5 degrees, 10 degrees, 15 degrees, 20 degrees, or even greater pitch. As can be understood, the diameter of the lubrication supply conduit (18) and the diameter of the camshaft lubrication supply ducts (20) traversing each journal to the interior surface (22) of the hollow camshaft (19) can be varied depending on the application. In some applications, a plurality of camshaft lubrication supply ducts (20) can traverse each journal surface (21) and the interior surface (22) of the hollow camshaft (19).
  • For example, specifically when modifying a Lycoming engine camshaft (Part No. 535661), the camshaft lubrication supply ducts ([0038] 20) and the cam surface lubrication supply ducts (24) can be about one-sixteenth of an inch. See, Firewall Forward Technologies Technical Report No. 4, hereby incorporated by reference herein. In aircraft engine applications, where the amount of lubricant (14) available and the size of the lubricant pressurization element (16) may be limited it may be necessary to consider the amount of lubricant that can be delivered to the interior volume of the hollow camshaft (19) while maintaining normal oil pressure. See, Firewall Forward Technologies Technical Report No. 2, hereby incorporated by reference herein. While this particular embodiment of the invention illustrates the use of the invention in Lycoming aircraft engines, the invention can also be used in other types of aircraft engines, as well as, automobile engines, marine engines, motorcycle engines, or the like.
  • Now referring primarily to FIGS. 3 and 4, a particular embodiment of the invention provides the proper angular displacement between the camshaft lubrication supply duct(s) ([0039] 20) and the cam surface lubrication supply duct(s) (24). As can be understood from FIG. 5, when a lubrication supply conduit (18) and a camshaft lubrication supply duct or aligned lubricant can be propelled from the camshaft lubrication supply duct aperture (26) with sufficient force to create an lubricant pressure gradient (27) on the interior surface (22) of the hollow shaft (19) opposite the camshaft lubrication supply duct aperture (26). The lubricant pressure gradient (27) can be sufficient to prevent or impede the migration of oil over a portion of the interior surface (22) of the hollow camshaft (19). If a cam surface lubrication supply duct (24) has an aperture (28) on the interior surface (22) of the hollow camshaft (19) within this area of high pressure, lubricant may not flow to the cam surface lubrication supply duct aperture (28).
  • As shown primarily by FIG. 3, particular embodiments of the invention may comprise a plurality of bearing means ([0040] 13) in to which a hollow camshaft (19) is journalled. A single cam lobe (11) can have a position adjacent to a journal surface (21) on the hollow camshaft (19). In the case of a single cam lobe (11) adjacent or proximate to a journal surface (21), where the camshaft lubrication supply duct aperture (26) has a location on the interior surface (22) of the hollow camshaft (19) and the cam surface lubrication supply duct aperture (28) has a location on the interior surface (22) of the hollow camshaft (19), the angular displacement of the camshaft lubrication supply duct aperture (26) and the cam surface lubrication supply duct aperture can be between about zero degrees and thirty degrees. In this manner, the pressure dam created by the lubricant pressure gradient (27) can have little if no effect on the flow of lubricant (14) to the cam surface lubrication supply duct aperture (28).
  • Now referring primarily to FIG. 4, particular embodiments of the invention can comprise a plurality of bearing means ([0041] 13) in which a hollow camshaft (19) can be journalled. A first cam lobe (11) can have a position adjacent to a camshaft journal surface (21) of a hollow camshaft (19) and have a cam surface lubrication supply duct (24) with an aperture (28) having a first location on the interior surface (22) of the hollow camshaft (19). A second cam lobe (29) can have a position on the opposite side of the same camshaft journal (21) and have a second cam surface lubrication supply duct (30) having an aperture (31) having a second location on the interior surface (22) of the hollow camshaft (19). In this case, the camshaft lubrication supply duct (20) can have an angular displacement that approximately bisects the smaller angle of displacement about the rotation axis of the camshaft (19) defined by the location of the first cam surface lubrication supply duct aperture (30) and the second cam surface lubrication supply duct aperture (28). See FIG. 4, cross section A-A′, for an example of a particular embodiment of the invention.
  • In certain applications there may be additional cam lobes adjacent to either the first cam lobe ([0042] 11) or the second cam lobe (11), or both. In most applications, the location of the cam surface lubrication supply duct apertures corresponding to these additional lobes need not be considered as the pressure dam resulting from the lubricant pressure gradient (27) does not effect the migration of the lubricant (14) on the interior surface (22) of the hollow camshaft (19) beyond the distance of the first cam lobe on either side of the corresponding journal surface (21).
  • Now referring primarily to FIGS. 5 and 6, certain embodiments of the invention provide at least two (or multiple) cam surface lubrication supply ducts ([0043] 24). As can be understood from FIG. 5, lubricant (14) migrates to the cam surface lubricant supply duct aperture (28) located on the interior surface (22) of a hollow camshaft (19) enters the cam surface supply duct aperture (28) and travels to the cam surface (25). Migration of lubricant (14) can be reduced or there may be no migration of lubricant (14) down stream of each lubrication supply duct aperture. As such, a second cam surface lubrication supply duct aperture (28) located to take advantage of the same lubricant stream as the first cam surface supply duct aperture (i.e. having a location directly downstream of the first cam surface supply duct aperture) may receive a reduced amount or may not receive any amount of lubricant (14) to transfer to the cam surface (11).
  • Now referring primarily to FIG. 6, certain embodiments of the invention can comprise a plurality of bearing means ([0044] 13) in to which a hollow camshaft (19) can be rotationally journalled. A cam lobe (11) can have a position on the hollow camshaft (19). The cam lobe (11) can further comprise a first cam surface lubrication supply duct (24) with an aperture (28) having a first location on the interior surface (22) of the hollow camshaft (19). The cam lobe (11) can further comprise a second cam surface lubrication supply duct (32) with an aperture (33) having a second location on the interior surface (22) of the hollow camshaft (19).
  • With respect to some embodiments of the invention, the location of the first cam surface lubrication supply duct aperture ([0045] 28) on the interior surface (22) of the hollow camshaft (19) and the second cam surface lubrication supply duct aperture (33) on the interior surface (22) of the hollow camshaft (19) can have an angular displacement. With respect to particular embodiments of the invention for aircraft engines, two cam surface lubrication supply ducts can have an angular displacement defined by a distance between the circumferences of the respective apertures equivalent to about one diameter of the cam surface lubrication supply duct aperture (28).
  • Now referring primarily to FIGS. 4 and 6, it can be understood that certain embodiments of the invention can provide cam surface supply ducts ([0046] 24)(30)(32) that are differentially configured to supply differential amounts of lubricant to each of a plurality of cam surfaces (25)(34) to substantially equalize the amount of wear to such plurality of cam surfaces. With respect to certain camshafts, the failure rate of one or more of the cam lobes (11) within a plurality of cam lobes (11) of a hollow camshaft (19) can have a statistically higher failure rate than the other cam lobes within the plurality. By enlarging the diameter of the cam surface supply ducts corresponding to those cam lobes having statistically higher failure rates the wear to these cam lobes can be made substantially equal to the failure rates of the other cam lobes.
  • Again referring to FIG. 3, certain embodiments of the invention can further comprise an hollow camshaft end seal ([0047] 35). The hollow camshaft end seal (35) can comprise a freeze plug or other suitable seal device that can be pressed into both ends of the hollow camshaft (19) to prevent lubricant from migrating from either hollow camshaft end. The hollow camshaft end seal (35) can have a vent hole (36) (for many applications about one-sixteenth inch diameter) that traverses from the exterior surface to the interior surface of the hollow camshaft end seal (35). The vent hole (36) can have a location at the rotation axis of the hollow camshaft (19). The vent hole (36) can allow excess oil, gases, vapor, or particulate, if any, to escape thereby minimizing condensation or pressure buildup inside the hollow camshaft (19). By allowing the gases and vapor to escape, disruption or impediments to lubricant (14) flow through the cam surface supply ducts (24)(30)(32) can be reduced.
  • Importantly, with respect to embodiments of the invention that use hardened camshafts, it may be preferred to drill the camshaft lubrication supply ducts ([0048] 20) and the cam surface lubrication supply ducts (24)(30)(32) using electrical discharge machining technology. Alternately, a slow feed rate carbide drill bit may be used as disclosed by Firewall Forward Technologies Technical Report No. 6 and 7, hereby incorporated by reference herein.
  • The discussion included in this Patent Cooperation Treaty Patent Application is intended to serve as a basic description. The reader should be aware that the description may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. [0049]
  • Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “lubricant” should be understood to encompass disclosure of the act of “lubricating”—whether explicitly discussed or not—and, conversely, were there only disclosure of the act of “lubricating”, such a disclosure should be understood to encompass disclosure of a “lubricant” and even a means for “lubricating”. Such changes and alternative terms are to be understood to be explicitly included in the description. [0050]
  • Additionally, the various combinations and permutations of all elements or applications can be created and presented. All can be done to optimize the design or performance in a specific application. [0051]
  • Any acts of law, statutes, regulations, or rules mentioned in this application for patent; or any patents, publications, or other references mentioned in this application for patent are each hereby incorporated by reference, including but not limited to, the patents, patent applications, publications, or other reference included in the table below. [0052]
  • Patent Documents [0053]
    DOCUMENT FILING
    NO. DATE NAME CLASS SUBCLASS DATE
    U.S. 3,628,513 Dec. 21. 1971 Grosseau 123 90.34 Jun. 19, 1970
    U.S. 3,958,541 May 25, 1976 Lachnit 123 90.34 Oct. 29, 1974
    U.S. 4,991,549 Feb. 12, 1991 Sugiura 123 90.27 Dec. 08, 1989
    U.S. 4,615,310 Oct. 07, 1986 Umeha et al. 123 90.34 Mar. 23, 1984
    U.S. 4,329,949 May 18, 1982 Abts et al. 123 90.34 Jun. 30, 1980
    U.S. 4,537,166 Aug. 27, 1985 Kimura et al. 123 90.36 Sep. 27, 1983
    U.S. 4,343,270 Aug. 10 1982 Kawabe 123 196 Apr. 25, 1980
    U.S. 5,450,665 Sep. 19, 1995 Madono et al. 29 888.1 Dec. 17, 1993
    U.S. 5,309,878 May 10, 1994 Kandler et al. 123 196 M Mar. 22, 1993
    U.S. 6,173,689 Jan. 16, 2001 Tanaka 123 90.34 Oct. 12, 1999
    JP 55-037552 15.03.80 Masahiro
    Abstract
    JP 55-132417 15.10.80 Toshihiko et
    Abstract al.
  • Other Documents [0054]
    AAVCO Lycoming 0-360-A Series Parts Catalog@, AVCO, FIG. 3, pp.
    1.6 (1999)
    ACamshaft Group@, Teledyne Continental Motors, Aircraft Parts
    Division, FIG. 05.01, pp. 0501 and viii (1995)
  • In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. However, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s). [0055]
  • In addition, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible in countries such as Australia and the like. [0056]
  • Thus, the applicant(s) should be understood to claim at least: i) each of the camshaft systems or lubrication systems described herein, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, and the x) the various combinations and permutations of each of the elements disclosed [0057]
  • The claims set forth in this specification are hereby incorporated by reference herein as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon. [0058]

Claims (148)

We claim:
1. A camshaft, comprising:
a. a plurality of bearing means, wherein each of said bearing means has a corresponding lubrication supply conduit;
b. a hollow camshaft having a single internal lubrication passage rotatably journaled in said plurality of bearing means; and
c. a plurality of camshaft lubrication supply ducts, wherein each said camshaft lubrication supply duct traverses between a journal surface of said hollow camshaft and said single internal lubrication passage, and wherein each said camshaft lubrication supply duct rotatably aligns with said corresponding lubrication supply conduit, whereby lubricant transfers from said corresponding lubrication supply conduit to said single internal lubrication passage of said hollow camshaft.
2. A camshaft as described in claim 1, further comprising a first cam lobe having a cam surface, wherein said first cam lobe has a location on said hollow camshaft adjacent to said journal surface on said hollow camshaft.
3. A camshaft as described in claim 2, further comprising a first cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft.
4. A camshaft as described in claim 3, wherein said first cam surface lubrication supply duct has an aperture located on said cam surface of said first cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal surface of said hollow camshaft, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said journal surface of said hollow camshaft have an angular displacement about the rotation axis of said hollow camshaft of between zero degrees and about thirty degrees.
5. A camshaft as described in claim 4, further comprising a second cam lobe having a cam surface, wherein said second cam lobe has a location on said hollow camshaft adjacent to said journal surface on said hollow camshaft.
6. A camshaft as described in claim 5, further comprising a first cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
7. A camshaft as described in claim 6, wherein said first cam surface lubrication supply duct traversing said first cam lobe has an aperture located on said cam surface of said first cam lobe, and wherein said first cam surface lubrication supply duct traversing said second cam lobe has an aperture located on said cam surface of said second cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal of said hollow camshaft, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said cam surface of said second cam lobe have an angular displacement about the rotation axis of said hollow camshaft approximately bisected by said aperture located on said journal of said hollow camshaft.
8. A camshaft as described in claim 7, further comprising:
a. a second cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft; and
b. a second cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
9. A camshaft as described in claim 8, wherein said first cam surface lubrication supply duct has a first aperture location on said cam surface, and wherein said second cam surface lubrication supply duct has a second aperture location on said cam surface, and wherein the circumference of said aperture having said first aperture location and the circumference of said aperture having said second aperture location are separated by a distance of not less than about one aperture diameter.
10. A camshaft as described in claim 9, further comprising a plurality of said camshaft lubrication supply ducts on at least one of said journal surface.
11. A camshaft as described in claim 10, wherein each said cam surface lubrication supply duct is differentially configured to supply an amount of lubricant to substantially equalize wear of a plurality of cam surfaces.
12. A camshaft as described in claim 11, further comprising a seal element coupled to an end of said hollow camshaft, wherein said seal element has a vent hole communicating between the interior surface and the exterior surface of said seal element.
13. A camshaft as described in claim 12, wherein said vent hole has a location along the longitudinal axis of said hollow camshaft.
14. A camshaft as described in claim 13, further comprising a lubrication pressurization element coupled to said lubrication supply conduit.
15. A camshaft as described in claim 14, further comprising a lubricant responsive to said lubrication pressurization element.
16. A camshaft as described in claims 1, 3, 4, 7, 8, 9 or 10, further comprising:
a. a block having a least one cylinder;
b. a reciprocal means slidingly engaged to the surface of said cylinder;
c. a reciprocal movement to rotational movement conversion element rotatably responsive to said reciprocal means and rotatably journal led in bearings;
d. a cylinder head coupled to said block;
e. at least two conduits communicating with each of said at least one cylinder; and
f. at least one valve coupled to each of said at least two conduits, wherein said at least one valve is operationally responsive to said cam surface of said cam lobe of said hollow camshaft.
17. A camshaft as described in claim 16, wherein said engine comprises an automobile engine.
18. A camshaft as described in claim 16, wherein said engine comprises an aircraft engine.
19. A camshaft as described in claim 18, wherein said engine operates at a pitch.
20. A camshaft as described in claim 18, wherein said engine operates at a yaw.
21. A camshaft as described in claim 18, wherein said engine operates at a roll.
22. A camshaft as described in claim 17, wherein said hollow camshaft comprises an overhead camshaft.
23. A method of lubricating a camshaft, comprising the steps of:
a. supplying lubricant to a plurality of bearing means each having a corresponding lubrication supply conduit;
b. rotating a hollow camshaft having single internal lubrication passage journaled to said bearing means to align at least one camshaft lubrication supply duct with each said lubrication supply conduit, wherein said at least one camshaft lubrication supply duct traverses between a journal surface and an interior surface of said hollow camshaft; and
c. supplying lubricant to said single internal lubrication passage of said hollow camshaft through each of said at least one lubrication supply duct.
24. A method of lubricating a camshaft as described in claim 23, further comprising the step of rotationally displacing said camshaft lubrication supply duct and a cam surface lubrication supply duct between about zero degrees and thirty degrees about the rotation axis of said hollow camshaft, wherein said cam surface lubrication supply duct traverses a cam surface of a first cam lobe adjacent to said journalled surface of said hollow camshaft.
25. A method of lubricating a camshaft as described in claim 24, further comprising the step of approximately bisecting the rotational displacement of said cam surface lubrication supply duct on said first cam lobe adjacent to said journal led surface of said hollow camshaft and a cam surface lubrication supply duct on a second cam lobe adjacent to said journal led surface of said hollow camshaft with the location of said camshaft lubrication supply duct.
26. A method of lubricating a camshaft as described in claim 25, further comprising the steps of traversing said first cam lobe with a second cam surface lubrication supply duct.
27. A method of lubricating a camshaft as described in claim 26, further comprising the step of angularly displacing said cam surface lubrication supply duct and said second cam surface lubrication supply duct about the rotation axis of said camshaft an equal to about one aperture diameter of said cam surface lubrication supply duct.
28. A method of lubricating a camshaft as described in claim 27, further comprising the step of differentially configuring each said cam surface lubrication duct to supply an amount of lubricant sufficient to equalize wear of a plurality of cam surfaces.
29. A method of lubricating a camshaft as described in claim 28, further comprising the step of sealing each end of said hollow camshaft.
30. A method of lubricating a camshaft as described in claim 29, further comprising the step of ventilating said hollow camshaft, wherein ventilating said hollow camshaft comprises the step of traversing the exterior surface and said interior surface of a camshaft end seal with a hole.
31. A method of lubricating a camshaft as described in claims 23, 24, 25, 26, 27 or 28, further comprising the step of utilizing said hollow camshaft in an engine.
32. A method of lubricating a camshaft as described in claim 31, further comprising the step of operating said camshaft in said engine from horizontal.
33. A method of lubricating a camshaft as described in claim 32, wherein said step of operating said camshaft in said engine from horizontal comprises operating said camshaft at a pitch selected from the group consisting of 5 degrees, 10 degrees, 15, degrees, and 20 degrees.
34. A camshaft, comprising:
a. a bearing means having at least one lubrication supply conduit;
b. a hollow camshaft rotatably journalled to said bearing means;
c. at least one camshaft lubrication supply duct traversing a joumal surface and an interior surface of said hollow camshaft, wherein said at least one camshaft lubrication supply duct rotatably aligns with said at least one lubrication supply conduit;
d. a first cam lobe having a cam surface, wherein said first cam lobe has a location adjacent to said journal surface having said camshaft lubrication supply duct; and
e. a cam surface lubrication supply duct traversing said cam surface and said interior surface of said hollow camshaft, wherein said cam surface lubrication supply duct has an aperture located on said cam surface of said first cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal surface, and wherein said aperture located on said cam surface and said aperture located on said journal surface have an angular displacement about the rotation axis of said hollow camshaft of between zero degrees and about thirty degrees.
35. A camshaft as described in claim 34, further comprising a second cam lobe having a cam surface, wherein said second cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
36. A camshaft as described in claim 35, further comprising a cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
37. A camshaft as described in claim 36, wherein said first cam surface lubrication supply duct located on said cam surface of said second cam lobe has an aperture, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said cam surface of said second cam lobe have an angular displacement approximately bisected by the location of said camshaft lubrication supply duct located on said journal surface.
38. A camshaft as described in claim 37, further comprising:
a. a second cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft; and
b. a second cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
39. A camshaft as described in claim 38, wherein said first cam surface lubrication supply duct has an aperture on said cam surface having a first location, and wherein said second cam surface lubrication supply duct has an aperture on said cam surface having a second location, and wherein the circumference of said aperture having said first location and the circumference of said aperture having said second location are separated by a distance of not less than about one aperture diameter.
40. A camshaft as described in claim 39, wherein said at least one camshaft lubrication supply duct traversing a journal surface and an interior surface of said hollow camshaft comprises a camshaft lubrication supply duct traversing each journal surface and the interior surface of said hollow camshaft, wherein each said camshaft lubrication supply duct rotatably aligns with a corresponding said lubrication supply conduit.
41. A camshaft as described in claim 40, wherein each said cam surface lubrication supply duct is differentially configured to supply an amount of lubricant to substantially equalize wear of a plurality of cam surfaces.
42. A camshaft as described in claim 41, further comprising an seal element coupled to at least one end of said hollow camshaft, wherein seal element has a vent hole that communicates between the interior and exterior of said hollow camshaft.
43. A camshaft as described in claim 42, wherein said vent hole has a location on the longitudinal axis of said hollow camshaft.
44. A camshaft as described in claim 43, further comprising a lubrication pressurization element coupled to said lubrication supply conduit.
45. A camshaft as described in claim 44, further comprising a lubricant responsive to said lubrication pressurization element.
46. A camshaft as described in claims 34, 37, 38, 39 or 40, further comprising:
a. a block having a least one cylinder;
b. a reciprocal means slidingly engaged to the surface of said cylinder;
c. a reciprocal movement to rotational movement conversion element rotatably responsive to said reciprocal means and rotatably journalled in bearings;
d. a cylinder head coupled to said block;
e. at least two conduits communicating with each of said at least one cylinder; and
f. at least one valve coupled to each of said at least two conduits, wherein said at least one valve is operationally responsive to said cam surface of said cam lobe of said hollow camshaft.
47. A camshaft as described in claim 46, wherein said engine comprises an aircraft engine.
48. A camshaft as described in claim 46, wherein said engine comprises an automobile engine.
49. A camshaft as described in claim 47, wherein said engine operates at a pitch.
50. A camshaft as described in claim 47, wherein said engine operates at a yaw.
51. A camshaft as described in claim 47, wherein said engine operates at a roll.
52. A camshaft as described in claim 48, wherein said hollow camshaft comprises an overhead camshaft.
53. A method of lubricating a camshaft, comprising the steps of:
a. supplying lubricant to at least one of a plurality of bearing means through a corresponding lubrication supply conduit;
b. rotating a hollow camshaft joumaled to said bearing means to align at least one camshaft lubrication supply duct with said corresponding camshaft lubrication supply conduit, wherein said at least one said lubrication supply duct traverses a journal surface and an interior surface of said hollow camshaft;
c. supplying lubricant to said interior surface of said hollow camshaft through said at least one lubrication supply duct; and
d. supplying lubricant to at least one cam surface through a corresponding each cam surface lubrication supply duct traversing said cam surface and said interior or said hollow camshaft, wherein said corresponding each cam surface lubrication supply duct has an angular displacement relative to said camshaft lubrication supply duct between zero degrees and about 30 degrees.
54. A method of lubricating a camshaft as described in claim 53, further comprising the steps of:
a. providing a first cam lobe adjacent to said journal surface;
b. providing a second cam lobe adjacent to said journal surface;
a. supplying lubricant to said first cam lobe surface and said second cam lobe surface through a corresponding each cam surface lubrication duct; and
b. approximately bisecting the rotational displacement of said corresponding each cam surface lubrication supply duct with the location of said camshaft lubrication supply duct.
55. A method of lubricating a camshaft as described in claim 54, further comprising the step of traversing said first cam lobe with a second cam surface lubrication supply duct.
56. A method of lubricating a camshaft as described in claim 55, further comprising the step of angularly displacing said cam surface lubrication supply duct and said second cam surface lubrication supply duct about the rotation axis of said camshaft an amount equal to about one aperture diameter of said cam surface lubrication supply duct.
57. A method of lubricating a camshaft as described in claim 56, further comprising the step of differentially configuring each said cam surface lubrication duct to supply an amount of lubricant sufficient to equalize wear of a plurality of cam surfaces.
58. A method of lubricating a camshaft as described in claim 57, further comprising the steps of:
a. supplying lubricant to a plurality of bearing means each having a corresponding lubrication supply conduit;
b. rotating said hollow camshaft journalled to said bearing means to align at least one camshaft lubrication supply duct with each said lubrication supply conduit, wherein said at least one camshaft lubrication supply duct traverses a journal surface and an interior surface of said hollow camshaft; and
c. supplying lubricant to said interior surface of said hollow camshaft through each of said at least one lubrication supply duct.
59. A method of lubricating a camshaft as described in claim 58, further comprising the step of sealing each end of said hollow camshaft.
60. A method of lubricating a camshaft as described in claim 59, further comprising the step of ventilating said hollow camshaft, wherein ventilating said hollow camshaft comprises the step of traversing the exterior surface and said interior surface of a camshaft end seal with a hole.
61. A method of lubricating a camshaft as described in claims 53, 54, 55, 56, 57, 58, 59 or 60, further comprising the step of utilizing said hollow camshaft in an engine.
62. A method of lubricating a camshaft as described in claim 61, further comprising the step of operating said camshaft in said engine from horizontal.
63. A method of lubricating a camshaft as described in claim 62, wherein said step of operating said camshaft in said engine from horizontal comprises operating said camshaft at a pitch selected from the group consisting of 5 degrees, 10 degrees, 15, degrees, and 20 degrees.
64. A camshaft, comprising:
a. a bearing means having a lubrication supply conduit;
b. a hollow camshaft rotatably journalled to said bearing means;
c. a camshaft lubrication supply duct traversing a journal surface and an interior surface of said hollow camshaft, wherein said camshaft lubrication supply duct rotatably aligns with said lubrication supply conduit;
d. a first cam surface lubrication supply duct traversing a cam surface and an interior surface of said hollow camshaft; and
e. a second cam surface lubrication supply duct traversing said cam surface and said interior surface of said hollow camshaft.
65. A camshaft as described in claim 64, wherein said first cam surface lubrication supply duct has an aperture on said cam surface having a first location, and wherein said second cam surface lubrication supply duct has an aperture on said cam surface having a second location, and wherein the circumference of said aperture having said first location and the circumference of said aperture having said second location are separated by a distance of not less than about one aperture diameter.
66. A camshaft as described in claim 65, further comprising a first cam lobe having a cam surface, wherein said first cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
67. A camshaft as described in claim 66, further comprising a first cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft
68. A camshaft as described in claim 67, wherein said first cam surface lubrication supply duct has an aperture located on said cam surface of said first cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal surface, and wherein said aperture located on said cam surface and said aperture located on said journal surface have an angular displacement of between zero degrees and about thirty degrees.
69. A camshaft as described in claim 68, further comprising a second cam lobe having a cam surface, wherein said second cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
70. A camshaft as described in claim 69, further comprising a first cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
71. A camshaft as described in claim 70, wherein said first cam surface lubrication supply duct located on said cam surface of said second cam lobe has an aperture, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said cam surface of said second cam lobe have an angular displacement approximately bisected by the location of said camshaft lubrication supply duct located on said journal surface.
72. A camshaft as described in claim 71, wherein said camshaft lubrication supply duct traversing said journal surface and said interior surface of said hollow camshaft, wherein said camshaft lubrication supply duct rotatably aligns with said lubrication supply conduit further comprises a camshaft lubrication supply duct traversing each journal surface and said interior surface of said hollow camshaft, wherein each said camshaft lubrication supply duct rotatably aligns with a corresponding one said lubrication supply conduit.
73. A camshaft as described in claim 72, wherein each said cam surface lubrication supply duct is differentially configured to supply an amount of lubricant to substantially equalize wear of a plurality of cam surfaces.
74. A camshaft as described in claim 73, further comprising an seal element coupled to at least one end of said hollow camshaft, wherein seal element has a vent hole that communicates between the interior and exterior of said hollow camshaft.
75. A camshaft as described in claim 74, wherein said vent hole has a location on the longitudinal axis of said hollow camshaft.
76. A camshaft as described in claim 75, further comprising a lubrication pressurization element coupled to said lubrication supply conduit.
77. A camshaft as described in claim 76, further comprising a lubricant responsive to said lubrication pressurization element.
78. A camshaft as described in claims 64, 65, 68, 71, 72 or 73, further comprising:
a. a block having a least one cylinder;
b. a reciprocal means slidingly engaged to the surface of said cylinder;
c. a reciprocal movement to rotational movement conversion element rotatably responsive to said reciprocal means and rotatably journal led in bearings;
d. a cylinder head coupled to said block;
e. at least two conduits communicating with each of said at least one cylinder; and
f. at least one valve coupled to each of said at least two conduits, wherein said at least one valve is operationally responsive to said cam surface of said cam lobe of said hollow camshaft.
79. A camshaft as described in claim 77, wherein said engine comprises an aircraft engine.
80. A camshaft as described in claim 77, wherein said engine comprises an automobile engine.
81. A camshaft as described in claim 79, wherein said engine operates at a pitch.
82. A camshaft as described in claim 79, wherein said engine operates at a yaw.
83. A camshaft as described in claim 79, wherein said engine operates at a roll.
84. A camshaft as described in claim 80, wherein said hollow camshaft comprises an overhead camshaft.
85. A method of lubricating a camshaft, comprising the steps of:
a. supplying lubricant to at least one of a plurality of bearing means through a corresponding lubrication supply conduit;
b. rotating a hollow camshaft journalled to said bearing means to align a camshaft lubrication supply duct with said corresponding camshaft lubrication supply conduit, wherein said at least one said lubrication supply duct traverses a journal surface and an interior surface of said hollow camshaft;
c. supplying lubricant to said interior surface of said hollow camshaft through said at least one lubrication supply duct;
d. supplying lubricant to a first cam surface lubrication supply duct traversing a cam surface and an interior surface of said hollow camshaft; and
e. supplying lubricant to a second cam surface lubrication supply duct traversing said cam surface and said interior surface of said hollow camshaft.
86. A method of lubricating a camshaft as described in claim 85, further comprising the step of differentially configuring each said cam surface lubrication duct to supply an amount of lubricant sufficient to equalize wear of a plurality of cam surfaces.
87. A method of lubricating a camshaft as described in claim 86, further comprising the step of angularly displacing said first cam surface lubrication supply duct and said second cam surface lubrication supply duct about the rotation axis of said camshaft an amount equal to about one aperture diameter of said first cam surface lubrication supply duct.
88. A method of lubricating a camshaft as described in claim 87, further comprising the step of angularly displacing said first cam surface lubrication duct and said camshaft lubrication duct between zero degrees and about 30 degrees.
89. A method of lubricating a camshaft as described in claim 88, further comprising the steps of:
a. providing a first cam lobe adjacent to said journal surface;
b. providing a second cam lobe adjacent to said journal surface;
a. supplying lubricant to said first cam lobe surface and said second cam lobe surface through a corresponding said first cam surface lubrication supply duct and said a second cam surface lubrication supply duct; and
b. approximately bisecting the rotational displacement of said corresponding each said first cam surface lubrication supply duct and said a second cam surface lubrication supply duct with the location of said camshaft lubrication supply duct.
90. A method of lubricating a camshaft as described in claim 89, further comprising the steps of:
b. aligning a corresponding camshaft lubrication supply duct with each said lubrication supply conduit, wherein each said corresponding camshaft lubrication supply duct traverses said journal surface and an interior surface of said hollow camshaft; and
c. supplying lubricant to said interior surface of said hollow camshaft through each of said lubrication supply duct.
91. A method of lubricating a camshaft as described in claim 90, further comprising the step of sealing each end of said hollow camshaft.
92. A method of lubricating a camshaft as described in claim 91, further comprising the step of ventilating said hollow camshaft, wherein ventilating said hollow camshaft comprises the step of traversing the exterior surface and said interior surface of a camshaft end seal with a hole.
93. A method of lubricating a camshaft as described in claims 85, 86, 87, 88, 89, 90, 91 or 92, further comprising the step of utilizing said hollow camshaft in an engine.7
94. A method of lubricating a camshaft as described in claim 93, further comprising the step of operating said camshaft in said engine from horizontal.
95. A method of lubricating a camshaft as described in claim 94, wherein said step of operating said camshaft in said engine from horizontal comprises operating said camshaft at a pitch selected from the group consisting of 5 degrees, 10 degrees, 15, degrees, and 20 degrees.
96. A camshaft, comprising:
a. a plurality of bearing means each having a lubrication supply conduit;
b. a hollow camshaft rotatably journalled to each of said plurality of bearing means;
c. at least one camshaft lubrication supply duct traversing a journal surface and an interior surface of said hollow camshaft, wherein said at least one camshaft lubrication supply duct rotatably aligns with a corresponding one said lubrication supply conduit; and
d. a plurality of cam surfaces each having a lubrication supply duct traversing a corresponding one each of said plurality of cam surfaces and said interior surface of said hollow camshaft, and wherein each said cam surface lubrication supply duct is differentially configured to supply an amount of lubricant to substantially equalize wear of said plurality of cam surfaces.
97. A camshaft as described in claim 96, further comprising a second cam surface lubrication supply duct traversing said cam surface and said interior surface of said hollow camshaft.
98. A camshaft as described in claim 97, wherein said first cam surface lubrication supply duct has an aperture on said cam surface having a first location, and wherein said second cam surface lubrication supply duct has an aperture on said cam surface having a second location, and wherein the circumference of said aperture having said first location and the circumference of said aperture having said second location are separated by a distance of not less than about one aperture diameter.
99. A camshaft as described in claim 98, a camshaft lubrication supply duct traversing each journal surface and the interior surface of said hollow camshaft, wherein said camshaft lubrication supply duct rotatably aligns with a corresponding said lubrication supply conduit, whereby lubricant transfers from said lubrication supply conduit to the interior of said hollow camshaft.
100. A camshaft as described in claim 99, further comprising a first cam lobe having a cam surface, wherein said first cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
101. A camshaft as described in claim 100, further comprising a first cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft
102. A camshaft as described in claim 101, wherein said first cam surface lubrication supply duct has an aperture located on said cam surface of said first cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal surface, and wherein said aperture located on said cam surface and said aperture located on said journal surface have an angular displacement of between zero degrees and about thirty degrees.
103. A camshaft as described in claim 102, further comprising a second cam lobe having a cam surface, wherein said second cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
104. A camshaft as described in claim 103, further comprising a first cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
105. A camshaft as described in claim 104, wherein said first cam surface lubrication supply duct located on said cam surface of said second cam lobe has an aperture, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said cam surface of said second cam lobe have an angular displacement approximately bisected by the location of said camshaft lubrication supply duct located on said journal surface.
106. A camshaft as described in claim 105, further comprising an seal element coupled to at least one end of said hollow camshaft, wherein seal element has a vent hole that communicates between the interior and exterior of said hollow camshaft.
107. A camshaft as described in claim 106, wherein said vent hole has a location on the longitudinal axis of said hollow camshaft.
108. A camshaft as described in claim 107, further comprising a lubrication pressurization element coupled to said lubrication supply conduit.
109. A camshaft as described in claim 108, further comprising a lubricant responsive to said lubrication pressurization element.
110. A camshaft as described in claims 96, 97, 98, 99, 102 or 105, further comprising:
a. a block having a least one cylinder;
b. a reciprocal means slidingly engaged to the surface of said cylinder;
c. a reciprocal movement to rotational movement conversion element rotatably responsive to said reciprocal means and rotatably journal led in bearings;
d. a cylinder head coupled to said block;
e. at least two conduits communicating with each of said at least one cylinder; and
f. at least one valve coupled to each of said at least two conduits, wherein said at least one valve is operationally responsive to said cam surface of said cam lobe of said hollow camshaft.
111. A camshaft as described in claim 110, wherein said engine comprises an aircraft engine.
112. A camshaft as described in claim 110, wherein said engine comprises an automobile engine.
113. A camshaft as described in claim 111, wherein said engine operates at a pitch.
114. A camshaft as described in claim 111, wherein said engine operates at a yaw.
115. A camshaft as described in claim 111, wherein said engine operates at a roll.
116. A camshaft as described in claim 112, wherein said hollow camshaft comprises an overhead camshaft.
117. A method of lubricating a camshaft, comprising the steps of:
a. supplying lubricant to at least one of a plurality of bearing means through a corresponding lubrication supply conduit;
b. rotating a hollow camshaft journalled to said bearing means to align at least one camshaft lubrication supply duct with said corresponding camshaft lubrication supply conduit, wherein said at least one said lubrication supply duct traverses a journal surface and an interior surface of said hollow camshaft;
c. supplying lubricant to said interior surface of said hollow camshaft through said at least one cam shaft lubrication supply duct; and
d. supplying a differential amount of lubricant to each of a plurality of camshaft surfaces through differentially configured lubrication supply ducts one each traversing a corresponding one cam surface and said interior surface of said hollow camshaft, whereby wear to said plurality of camshaft surfaces is substantially equalized.
118. A method of lubricating a camshaft as described in claim 117, wherein said step of supplying lubricant to said interior surface of said hollow camshaft through said at least one cam shaft lubrication supply duct comprises supplying lubricant to said interior surface of said hollow camshaft through a camshaft lubrication supply duct corresponding to each of said journal surfaces.
119. A method of lubricating a camshaft as described in claim 118, further comprising the step of rotationally displacing said camshaft lubrication supply duct and a cam surface lubrication supply duct between about zero degrees and thirty degrees about the rotation axis of said hollow camshaft, wherein said cam surface lubrication supply duct traverses a cam surface of a first cam lobe adjacent to said journal led surface of said hollow camshaft.
120. A method of lubricating a camshaft as described in claim 119, further comprising the step of approximately bisecting the rotational displacement of said cam surface lubrication supply duct on said first cam lobe adjacent to said journal led surface of said hollow camshaft and a cam surface lubrication supply duct on a second cam lobe adjacent to said journal led surface of said hollow camshaft with the location of said camshaft lubrication supply duct.
121. A method of lubricating a camshaft as described in claim 120, further comprising the steps of traversing said first cam lobe with a second cam surface lubrication supply duct.
122. A method of lubricating a camshaft as described in claim 121, further comprising the step of angularly displacing said cam surface lubrication supply duct and said second cam surface lubrication supply duct about the rotation axis of said camshaft an amount equal to about one aperture diameter of said cam surface lubrication supply duct.
123. A method of lubricating a camshaft as described in claim 122, further comprising the step of differentially configuring each said cam surface lubrication duct to supply an amount of lubricant sufficient to equalize wear of a plurality of cam surfaces.
124. A method of lubricating a camshaft as described in claim 123, further comprising the step of sealing each end of said hollow camshaft.
125. A method of lubricating a camshaft as described in claim 124, further comprising the step of ventilating said hollow camshaft, wherein ventilating said hollow camshaft comprises the step of traversing the exterior surface and said interior surface of a camshaft end seal with a hole.
126. A method of lubricating a camshaft as described in claims 117, 118, 119, 120, 121, 123, 124 or 125, further comprising the step of utilizing said hollow camshaft in an engine.
127. A method of lubricating a camshaft as described in claim 126, further comprising the step of operating said camshaft in said engine from horizontal.
128. A method of lubricating a camshaft as described in claim 127, wherein said step of operating said camshaft in said engine from horizontal comprises operating said camshaft at a pitch selected from the group consisting of 5 degrees, 10 degrees, 15, degrees, and 20 degrees.
129. An internal combustion engine, comprising:
a. a block having a least one cylinder;
b. a reciprocal means slidingly engaged to the surface of said cylinder;
c. a reciprocal movement to rotational movement conversion element rotatably coupled to said reciprocal means and rotationally journal led to said block;
d. a cylinder head coupled to said block;
e. at least two conduits coupled to said cylinder;
f. at least one valve coupled to each of said at least two conduits;
g. a hollow camshaft responsive to said at least one valve coupled to each of said at least two conduits, wherein said camshaft is rotatably journal led to a plurality of bearing means each having a lubrication supply conduit, and wherein a camshaft lubrication supply ducts traverses each journal surface and the interior surface of said hollow camshaft, and wherein said camshaft lubrication supply duct rotatably aligns with a corresponding said lubrication supply conduit.
130. A camshaft as described in claim 129, further comprising a first cam lobe having a cam surface, wherein said first cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
131. A camshaft as described in claim 130, further comprising a first cam surface lubrication supply duct traversing said cam surface of said first cam lobe and said interior surface of said hollow camshaft
132. A camshaft as described in claim 131, wherein said first cam surface lubrication supply duct has an aperture located on said cam surface of said first cam lobe, and wherein said camshaft lubrication supply duct has an aperture located on said journal surface, and wherein said aperture located on said cam surface and said aperture located on said journal surface have an angular displacement of between zero degrees and about thirty degrees.
133. A camshaft as described in claim 132, further comprising a second cam lobe having a cam surface, wherein said second cam lobe has a location on said hollow camshaft adjacent to said journal surface having said camshaft lubrication supply duct.
134. A camshaft as described in claim 133, further comprising a first cam surface lubrication supply duct traversing said cam surface of said second cam lobe and said interior surface of said hollow camshaft.
135. A camshaft as described in claim 134, wherein said first cam surface lubrication supply duct located on said cam surface of said second cam lobe has an aperture, and wherein said aperture located on said cam surface of said first cam lobe and said aperture located on said cam surface of said second cam lobe have an angular displacement approximately bisected by the location of said camshaft lubrication supply duct located on said journal surface.
136. A camshaft as described in claim 135, further comprising a second cam surface lubrication supply duct traversing said cam surface and said interior surface of said hollow camshaft.
137. A camshaft as described in claim 136, wherein said first cam surface lubrication supply duct has an aperture on said cam surface having a first location, and wherein said second cam surface lubrication supply duct has an aperture on said cam surface having a second location, and wherein the circumference of said aperture having said first location and the circumference of said aperture having said second location are separated by a distance of not less than about one aperture diameter
138. A camshaft as described in claim 137, wherein each said cam surface lubrication supply duct is differentially configured to supply an amount of lubricant to substantially equalize wear of a plurality of cam surfaces.
139. A camshaft as described in claim 138, further comprising an seal element coupled to at least one end of said hollow camshaft, wherein seal element has a vent hole that communicates between the interior and exterior of said hollow camshaft.
140. A camshaft as described in claim 139, wherein said vent hole has a location on the longitudinal axis of said hollow camshaft.
141. A camshaft as described in claim 140, further comprising a lubrication pressurization element coupled to said lubrication supply conduit.
142. A camshaft as described in claim 141, further comprising a lubricant responsive to said lubrication pressurization element.
143. A camshaft as described in claim 129, wherein said engine comprises an aircraft engine.
144. A camshaft as described in claim 129, wherein said engine comprises an automobile engine.
145. A camshaft as described in claim 143, wherein said engine operates at a pitch.
146. A camshaft as described in claim 143, wherein said engine operates at a yaw.
147. A camshaft as described in claim 143, wherein said engine operates at a roll.
148. A camshaft as described in claim 144, wherein said hollow camshaft comprises an overhead camshaft.
US10/343,562 2001-07-31 2001-07-31 Camshaft lubrication system Abandoned US20040011314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/343,562 US20040011314A1 (en) 2001-07-31 2001-07-31 Camshaft lubrication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/343,562 US20040011314A1 (en) 2001-07-31 2001-07-31 Camshaft lubrication system
PCT/US2001/023977 WO2002010559A1 (en) 2000-07-31 2001-07-31 Camshaft lubrication system

Publications (1)

Publication Number Publication Date
US20040011314A1 true US20040011314A1 (en) 2004-01-22

Family

ID=30444029

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/343,562 Abandoned US20040011314A1 (en) 2001-07-31 2001-07-31 Camshaft lubrication system

Country Status (1)

Country Link
US (1) US20040011314A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126460A1 (en) * 2008-11-25 2010-05-27 Hyundai Motor Company Lubrication apparatus of fuel pump driven by fuel pump drive cam
US20110079192A1 (en) * 2009-10-05 2011-04-07 Naoki Hiramatsu Vehicle engine
US20130301963A1 (en) * 2012-05-11 2013-11-14 GM Global Technology Operations LLC Automotive powertrain component and bearing with micropores, and method thereof
US20140034018A1 (en) * 2012-07-31 2014-02-06 Caterpillar, Inc. Drain for Fuel Pump
US20170184051A1 (en) * 2015-12-28 2017-06-29 Kubota Corporation Cylinder head cooling structure
US9944373B1 (en) * 2016-09-01 2018-04-17 Brunswick Corporation Arrangements for lubricating outboard marine engines

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1175720A (en) * 1912-12-09 1916-03-14 Delaunay Belleville Sa Lubricating system for internal-combustion engines.
US1469063A (en) * 1920-11-12 1923-09-25 Wills Childe Harold Oil-feeding means
US1497503A (en) * 1922-05-22 1924-06-10 Charles R Greuter Lubricator
US3033314A (en) * 1960-05-16 1962-05-08 Gen Motors Corp Internal combustion engine lubricating system
US3628513A (en) * 1969-06-26 1971-12-21 Citroen Sa Internal combustion engine valve gear lubrication
US3958541A (en) * 1973-10-26 1976-05-25 Maschinenfabrik Augsburg-Nurnberg Ag Device for lubricating the cams of camshafts
US4329949A (en) * 1980-06-30 1982-05-18 Ford Motor Company Cylinder head for an internal-combustion engine
US4343270A (en) * 1979-09-03 1982-08-10 Yanmar Diesel Engine Co., Ltd. Internal combustion engine
US4463566A (en) * 1981-04-29 1984-08-07 Laerte Guidoboni Internal combustion engine
US4537166A (en) * 1982-09-27 1985-08-27 Honda Giken Kogyo Kabushiki Kaisha Lubricating arrangement in valve mechanism of an overhead camshaft engine
US4615310A (en) * 1983-09-28 1986-10-07 Nippon Piston Ring Co., Ltd. Camshaft with lubricating oil supplying function
US4840146A (en) * 1987-05-11 1989-06-20 Hitachi, Ltd. Multiple throttle mechanism for internal combustion engines
US4957079A (en) * 1988-12-03 1990-09-18 Mazda Motor Corporation Camshaft structure for double overhead camshaft engine
US4991549A (en) * 1989-12-08 1991-02-12 Yamaha Hatsudoki Kabushiki Kaisha Camshaft lubricating system for engine
US5027762A (en) * 1989-07-29 1991-07-02 Mazda Motor Corporation Lubrication system for multi-cylinder engine
US5161495A (en) * 1989-07-14 1992-11-10 Yamaha Hatsudoki Kabushiki Kaisha Lubrication arrangement for engine
US5186129A (en) * 1992-03-30 1993-02-16 Ford Motor Company Intermittent oiling system for an internal combustion engine camshaft and valve train
US5309878A (en) * 1993-03-22 1994-05-10 Tecumseh Products Company Pulsed pressure lubrication system for an overhead valve engine
US5404845A (en) * 1993-04-01 1995-04-11 Audi Ag Valve mechanism for an internal-combustion engine
US5450665A (en) * 1992-12-18 1995-09-19 Riken-Chuzo Corporation Method for manufacturing a hollow camshaft having oil-feeding holes on its chilled face
US5501121A (en) * 1993-03-15 1996-03-26 Volkswagen Ag Camshaft arrangement having a cam mounted for limited angular motion
US5778841A (en) * 1997-02-26 1998-07-14 Cummins Engine Company, Inc. Camshaft for internal combustion engines
US6035817A (en) * 1997-11-19 2000-03-14 Yamaha Hatsudoki Kabushiki Kaisha Variable valve timing mechanism for engine
US6173689B1 (en) * 1998-10-12 2001-01-16 Yamaha Hatsudoki Kabushiki Kaisha Lubrication arrangement for engine valve actuation
US6227155B1 (en) * 1998-10-05 2001-05-08 Honda Giken Kogyo Kabushiki Kaisha Structure for lubricating cam shaft in multi-cylinder engine
US6263844B1 (en) * 1998-12-29 2001-07-24 Suzuki Motor Corporation Oil passage for internal combustion engine
US6302071B1 (en) * 1999-09-03 2001-10-16 Honda Giken Kogyo Kabushiki Kaisha Oil passage system of valve moving apparatus for internal combustion engine
US6631701B2 (en) * 2000-07-31 2003-10-14 Mark E. Seader Camshaft lubrication system

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1175720A (en) * 1912-12-09 1916-03-14 Delaunay Belleville Sa Lubricating system for internal-combustion engines.
US1469063A (en) * 1920-11-12 1923-09-25 Wills Childe Harold Oil-feeding means
US1497503A (en) * 1922-05-22 1924-06-10 Charles R Greuter Lubricator
US3033314A (en) * 1960-05-16 1962-05-08 Gen Motors Corp Internal combustion engine lubricating system
US3628513A (en) * 1969-06-26 1971-12-21 Citroen Sa Internal combustion engine valve gear lubrication
US3958541A (en) * 1973-10-26 1976-05-25 Maschinenfabrik Augsburg-Nurnberg Ag Device for lubricating the cams of camshafts
US4343270A (en) * 1979-09-03 1982-08-10 Yanmar Diesel Engine Co., Ltd. Internal combustion engine
US4329949A (en) * 1980-06-30 1982-05-18 Ford Motor Company Cylinder head for an internal-combustion engine
US4463566A (en) * 1981-04-29 1984-08-07 Laerte Guidoboni Internal combustion engine
US4537166A (en) * 1982-09-27 1985-08-27 Honda Giken Kogyo Kabushiki Kaisha Lubricating arrangement in valve mechanism of an overhead camshaft engine
US4615310A (en) * 1983-09-28 1986-10-07 Nippon Piston Ring Co., Ltd. Camshaft with lubricating oil supplying function
US4840146A (en) * 1987-05-11 1989-06-20 Hitachi, Ltd. Multiple throttle mechanism for internal combustion engines
US4957079A (en) * 1988-12-03 1990-09-18 Mazda Motor Corporation Camshaft structure for double overhead camshaft engine
US5161495A (en) * 1989-07-14 1992-11-10 Yamaha Hatsudoki Kabushiki Kaisha Lubrication arrangement for engine
US5027762A (en) * 1989-07-29 1991-07-02 Mazda Motor Corporation Lubrication system for multi-cylinder engine
US4991549A (en) * 1989-12-08 1991-02-12 Yamaha Hatsudoki Kabushiki Kaisha Camshaft lubricating system for engine
US5186129A (en) * 1992-03-30 1993-02-16 Ford Motor Company Intermittent oiling system for an internal combustion engine camshaft and valve train
US5450665A (en) * 1992-12-18 1995-09-19 Riken-Chuzo Corporation Method for manufacturing a hollow camshaft having oil-feeding holes on its chilled face
US5501121A (en) * 1993-03-15 1996-03-26 Volkswagen Ag Camshaft arrangement having a cam mounted for limited angular motion
US5309878A (en) * 1993-03-22 1994-05-10 Tecumseh Products Company Pulsed pressure lubrication system for an overhead valve engine
US5404845A (en) * 1993-04-01 1995-04-11 Audi Ag Valve mechanism for an internal-combustion engine
US5778841A (en) * 1997-02-26 1998-07-14 Cummins Engine Company, Inc. Camshaft for internal combustion engines
US6035817A (en) * 1997-11-19 2000-03-14 Yamaha Hatsudoki Kabushiki Kaisha Variable valve timing mechanism for engine
US6227155B1 (en) * 1998-10-05 2001-05-08 Honda Giken Kogyo Kabushiki Kaisha Structure for lubricating cam shaft in multi-cylinder engine
US6173689B1 (en) * 1998-10-12 2001-01-16 Yamaha Hatsudoki Kabushiki Kaisha Lubrication arrangement for engine valve actuation
US6263844B1 (en) * 1998-12-29 2001-07-24 Suzuki Motor Corporation Oil passage for internal combustion engine
US6302071B1 (en) * 1999-09-03 2001-10-16 Honda Giken Kogyo Kabushiki Kaisha Oil passage system of valve moving apparatus for internal combustion engine
US6631701B2 (en) * 2000-07-31 2003-10-14 Mark E. Seader Camshaft lubrication system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126460A1 (en) * 2008-11-25 2010-05-27 Hyundai Motor Company Lubrication apparatus of fuel pump driven by fuel pump drive cam
US8069843B2 (en) * 2008-11-25 2011-12-06 Hyundai Motor Company Lubrication apparatus of fuel pump driven by fuel pump drive cam
US20110079192A1 (en) * 2009-10-05 2011-04-07 Naoki Hiramatsu Vehicle engine
US8567362B2 (en) * 2009-10-05 2013-10-29 Otics Corporation Vehicle engine
US20130301963A1 (en) * 2012-05-11 2013-11-14 GM Global Technology Operations LLC Automotive powertrain component and bearing with micropores, and method thereof
US20140034018A1 (en) * 2012-07-31 2014-02-06 Caterpillar, Inc. Drain for Fuel Pump
US8960159B2 (en) * 2012-07-31 2015-02-24 Caterpillar Inc. Drain for fuel pump
US20170184051A1 (en) * 2015-12-28 2017-06-29 Kubota Corporation Cylinder head cooling structure
US10598122B2 (en) * 2015-12-28 2020-03-24 Kubota Corporation Cylinder head cooling structure
US9944373B1 (en) * 2016-09-01 2018-04-17 Brunswick Corporation Arrangements for lubricating outboard marine engines

Similar Documents

Publication Publication Date Title
US6631701B2 (en) Camshaft lubrication system
US6357407B2 (en) Anti-rotation valve lifter guide apparatus
US4497307A (en) Integral rocker arm hydraulic lifter and bearing assembly
US11572812B2 (en) Device for lubricating an internal combustion engine
DE19944293B4 (en) Engine lubrication system
US20040011314A1 (en) Camshaft lubrication system
US2956642A (en) Camshaft and bearing lubricating means
EP0408081B1 (en) Cylinder head lubricating system of an internal combustion engine
EP0688939A2 (en) Cylinder head assembly for a multi-value internal combustion engine of an overhead camshaft type
US4991549A (en) Camshaft lubricating system for engine
US3033314A (en) Internal combustion engine lubricating system
CN1085289C (en) Air distribution mechanism with distribution valve for IC engine
EP0377829B1 (en) Camshaft lubrication system for an internal-combustion engine
US5325826A (en) Journal bearing oil diverter
CA1158179A (en) Engine camshaft and piston lubrication
US20020117020A1 (en) Camshaft lubrication system and method of construction thereof
US20030073359A1 (en) Lubrication system for outboard motor shaft coupling
Ball et al. Cam and follower design
DE19944292B4 (en) Engine oil lubrication
US10458326B2 (en) Vee engine dual inboard camshaft system
JPH0218255Y2 (en)
JP3235159B2 (en) Lubrication system for V-type OHV engine
JPS6021452Y2 (en) Forced lubrication device for intake and exhaust cam tappets of internal combustion engines
JPH05306603A (en) Lubricating device of valve gear for four cycle engine
DE102020006338A1 (en) Internal combustion engine for a motor vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIREWALL FORWARD TECHNOLOGIES, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEADER, MARK E.;EHRESMAN, THOMAS E.;REEL/FRAME:012092/0502

Effective date: 20010731

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION