US20040027186A1 - System and method for implementing soft power up - Google Patents

System and method for implementing soft power up Download PDF

Info

Publication number
US20040027186A1
US20040027186A1 US10/215,422 US21542202A US2004027186A1 US 20040027186 A1 US20040027186 A1 US 20040027186A1 US 21542202 A US21542202 A US 21542202A US 2004027186 A1 US2004027186 A1 US 2004027186A1
Authority
US
United States
Prior art keywords
transistor
node
voltage
base
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/215,422
Other versions
US6693478B1 (en
Inventor
Patrick Teterud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US10/215,422 priority Critical patent/US6693478B1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TETERUD, PATRICK MICHAEL
Publication of US20040027186A1 publication Critical patent/US20040027186A1/en
Application granted granted Critical
Publication of US6693478B1 publication Critical patent/US6693478B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/001Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure
    • G11B2005/0013Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation
    • G11B2005/0016Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers
    • G11B2005/0018Controlling recording characteristics of record carriers or transducing characteristics of transducers by means not being part of their structure of transducers, e.g. linearisation, equalisation of magnetoresistive transducers by current biasing control or regulation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/40Protective measures on heads, e.g. against excessive temperature 

Definitions

  • the present invention relates generally to electrical circuits and, more particularly, to a system and methodology that mitigates overshoot during power up of an electrical circuit.
  • ICs integrated circuits
  • ICs can be configured to achieve desired functions, such as, controlling associated devices and elements.
  • ICs can be utilized to bias magneto resistive (MR) elements for reading and writing data to associated magnetic surface utilized in hard disc drives.
  • MR magneto resistive
  • a current mirror is fed by a current source, which can be a constant- or variable-current source.
  • the current mirror provides an output current to associated parts of the IC based on the input current.
  • overshoot tends to occur at a base node of the current mirror, which overshoot can be propagated through current mirrors to various parts of the IC.
  • a current mirror often exposes sensitive associated circuitry to the risks of overshoot.
  • overshooting and undershooting conditions can have deleterious effects on the associated circuitry.
  • the overshooting and undershooting tend to become more problematic with sensitive devices or components.
  • sensitive devices including MR elements, can experience adverse coupling and/or recovery times if exposed to overshoot conditions, such as tend to occur at power up or fast recovery modes when biasing signals are applied initially.
  • the present invention relates generally to a system and method to mitigate overshoot in an IC, such as can occur at power up or activation of associated circuitry.
  • a protection system coupled to a node operates in a protection mode to facilitate a voltage at the node to rise to a desired level and then switches to a normal mode with little or no overshoot.
  • a desired fixed voltage can be supplied to the node, for example.
  • a particular aspect of the present invention provides a transistor having a base coupled to the node.
  • the transistor's base and collector are connected (e.g., diode connecting the transistor) for a period of time so as to mitigate overshoot at the node during start up (power up).
  • the diode connection can be implemented for a predetermined time period or for a time period based on the voltage at the node. The diode connection is then removed and a desired voltage can be safely supplied to the node for normal operation of the associated IC.
  • Another aspect of the present invention provides a method for protecting a node of associated circuitry from fluctuations; such as tend to occur at power up.
  • the method includes enabling protection of the node, such as in response to application of power to an associated IC.
  • the protection can be implemented, for example, by diode connecting a transistor having its base coupled to the node where protection is desired. After the node reaches the approximate desired ending voltage, the protection is disabled (e.g., removing the diode connection from the transistor) and the node can be connected to the desired ending voltage, such as provided by an associated power supply.
  • FIG. 1 is a block diagram illustrating a soft power up system according to an aspect of the present invention.
  • FIG. 2 illustrates an example of part of an integrated circuit (IC) including a soft power up system in accordance with an aspect of the present invention.
  • FIG. 3 illustrates an example of part of an IC including a soft power up system implemented according to an aspect of the present invention.
  • FIG. 4 illustrates an example of part of an IC including a soft power up system and associated delay circuitry in accordance with an aspect of the present invention.
  • FIG. 5 illustrates an example of soft power up circuitry associated with a current mirror in accordance with an aspect of the present invention.
  • FIG. 6 is a graph in which voltage is plotted versus time, illustrating signal response of a conventional approach relative to an approach according to an aspect of the present invention.
  • FIG. 7 is a flow diagram illustrating a basic methodology for implementing a soft power up according to an aspect of the present invention.
  • FIG. 8 is a flow diagram illustrating another methodology for implementing a soft power up according to an aspect of the present invention.
  • the present invention relates generally to a system and method to help protect a node of associated circuitry from sharp fluctuations that tend to be associated with power up or other transitional modes.
  • the protection is implemented by diode connecting a transistor, which has its base electrically coupled to the node during the transitional mode. Either after a predetermined time period or after the voltage at the node has reached a desired level, the diode connection can be removed and normal operation can begin.
  • FIG. 1 depicts a block diagram of a soft power up system 10 in accordance with an aspect of the present invention.
  • the soft power up system 10 is electrically associated with other circuitry 12 having a node 14 .
  • the node 14 corresponds to a juncture within the circuitry 12 that is sensitive to sharp fluctuations in current and/or voltage, such as may occur at power up.
  • a biasing system 16 such as a current source or other source of electrical energy, is connected to bias the other circuitry 12 with a desired bias (e.g., current or voltage) through the node 14 .
  • the soft power up system 10 is connected between the circuitry 12 and the biasing system 16 to mitigate overshoot at the node 14 , such as at power up or fast recovery modes, according to an aspect of the present invention.
  • the desired bias can be provided to the associated circuitry 12 in a substantially safe and effective manner with little or no overshoot.
  • the power up system 10 and other circuitry 12 receive an enable signal (ENA) that activates such systems.
  • ENA enable signal
  • the other circuitry 12 can include a current mirror such as operative to supply a desired amount of current to one or more parts other associated circuitry based on the bias from the biasing system 16 .
  • the current mirror may be utilized to bias a magneto resistive (MR) head, such as may form part of a hard disk drive.
  • MR magneto resistive
  • the MR head is sensitive to overshooting that tends to occur during power up of the respective current mirror.
  • the soft power up system 10 operates to mitigate current and voltage at the node 14 from overshooting or undershooting.
  • the soft power up system 10 includes a control block 18 that receives the enable signal (ENA), such as can indicate if power is being supplied.
  • ENA enable signal
  • the control block 18 is coupled to protection circuitry 20 , which is operative to mitigate undesired overshoot at the node 14 based on the control provided by the control block 18 . That is, during power up the control block 18 controls the protection circuitry 20 to operate in a protection mode to mitigate overshoot at the node 14 .
  • the protection circuitry 20 is connected to the node 14 and to a transistor having a base electrically coupled to the node 14 .
  • the control block 18 operates to diode connect such transistor (e.g., by shorting its base and collector) in response to the enable signal indicating a power up condition. Because the transistor is diode connected during power up, for example, overshoot that tends to occur at the node 14 due to the biasing from the biasing system 16 during power up can be substantially prevented. Additionally, once a desired a voltage has been reached at the node 14 , the control block 18 can cause the protection circuitry 20 to operate in a normal mode in which the diode connection can be removed.
  • the protection circuitry 20 can electrically connect the node to a voltage source to provide a desired voltage at the node.
  • the connection of the node 14 to the desired voltage can occur concurrently with the removal of the diode connection.
  • FIG. 2 illustrates an example implementation of an example of a soft power up system 100 in accordance with an aspect of the present invention.
  • the system 100 is coupled to a biasing system that includes a transistor 102 having a base coupled to a node 104 .
  • the transistor 102 also is coupled between the current source 106 and a negative voltage supply indicated at the V ⁇ (e.g., its collector is coupled to the current source 106 ).
  • the transistor 102 is illustrated as an NPN transistor having its base coupled to the node 104 and its emitter coupled to V ⁇ through a resistor 108 . Its collector receives a bias current from a current source 106 .
  • the current source 106 is configured to electrically bias other circuitry 110 through the node 104 .
  • the node 104 corresponds to an electrical juncture of the associated circuitry 110 that supplies voltage or current (directly or indirectly) to an associated device (not shown) based on the bias current from the current source 106 .
  • the device for example, corresponds to an important component or system that is sensitive to large fluctuations, which can occur at power up or during fast recovery modes.
  • the system 100 also includes a control/delay block 112 that receives an enable signal (ENA) 114 , which, for example, indicates when a power up or other transitional mode begins.
  • ENA enable signal
  • the control/delay block 112 is operative to control a switch 116 coupled between the collector and base of the transistor 102 .
  • Another switch 118 is electrically coupled between the node 104 and a positive voltage indicated at V+.
  • the control/delay block 112 also is operative to control the switch 118 .
  • the control/delay block 112 closes the switch 116 in response to receiving the enable signal 114 , such as indicating a power up condition (or fast recovery) has begun.
  • the transistor 102 becomes diode connected and provides an overshoot protection mode according to an aspect of the present invention.
  • the transistor 102 diode connected With the transistor 102 diode connected, at least a portion of the current supplied by the current source 106 is provided through the switch 116 and a resistor 120 coupled between the node 104 at the base of the transistor 102 and ground.
  • the resistor 120 has a resistance that is about equal to or greater than 25 K ⁇ , although other resistances could be used. Accordingly, during this initial operating mode the voltage at the base of the transistor 102 (at node 104 ) rises nicely and does not overshoot, in contrast to conventional systems. In particular, as the voltage at node 104 increases, more current is conducted through the transistor 102 and, due to the diode connection of such transistor, the base of the transistor 102 does not overshoot. At some time delay later, the control/delay block 112 turns the switch 116 off and turns the switch 118 on (e.g., the control/delay block controls the switches 116 and 118 to operate generally mutually exclusively) to enter a normal operating mode.
  • the control/delay block 112 turns the switch 116 off and turns the switch 118 on (e.g., the control/delay block controls the switches 116 and 118 to operate generally mutually exclusively) to enter a normal operating mode.
  • the control/delay block 112 can coordinate the transition from the protection mode to the normal mode to coincide with the voltage at the node 104 reaching a desired voltage level, such as V+.
  • a desired voltage level such as V+.
  • FIG. 3 illustrates another example of a soft start system 150 that could be implemented in accordance with an aspect of the present invention.
  • the soft start system 150 is coupled to a node 152 associated with a current mirror system 154 that is biased based on a bias current provided from a bias system 156 .
  • the soft start system 150 could be utilized in connection with other types of systems having one or more nodes associated with components or devices that are sensitive to large fluctuations that tend to occur at such node during power up or other transitional conditions (e.g., switching conditions, surge conditions, and so forth).
  • the biasing system 156 includes an NPN transistor 158 having a base coupled to the node 152 .
  • a current source 160 provides bias current to the collector of the transistor 158 .
  • the emitter of the transistor 158 is coupled to a negative potential, indicated at V ⁇ , through a resistor 162 .
  • the bias current is utilized to bias the current mirror system 154 .
  • the biasing system 156 also includes another NPN transistor 168 that is coupled between a positive voltage supply, indicated at V+, and the node 152 .
  • the transistor 168 is used for base current cancellation in a normal operating mode of the system 150 .
  • the soft start system 150 includes overshoot control system 164 that implements overshoot control, such as based on an enable signal, indicated at ENA.
  • the enable signal ENA is provided to a gate of a field effect transistor (FET) 166 , which activates the FET to an on condition.
  • FET field effect transistor
  • the FET 166 is coupled between the collector of the transistor 152 and a base the transistor 168 .
  • the overshoot control 164 also includes a delay block 170 that also receives the enable signal ENA.
  • the delay block 170 provides a control signal 172 to a gate of another FET 174 .
  • the FET 174 is coupled between the node 152 and the base of the transistor 168 .
  • the FETs 166 and 174 thus are connected in series between the base and collector of the transistor 158 .
  • the delay block 170 provides the control signal 172 to turn on the FET 174 . Accordingly, at power up (e.g., during a power up mode) both FETs 166 and 174 are initially on, thereby diode connecting the transistor 158 . Because the transistor 158 is diode connected for a period of time (e.g., as controlled by the delay block) the voltage at node 152 can rise in a desired manner without overshoot.
  • the delay block 170 provides the control signal 172 to turn off the FET 174 .
  • the delay block 170 may implement this control, for example, based on an elapsed predetermined time period or based on the voltage at the node 152 .
  • the delay block 170 can sense the voltage at the node 152 , as indicated by dotted line 178 .
  • the FET 172 is turned off, the transistor 158 is no longer diode connected and the transistor 168 turns on.
  • the base emitter voltage V BE for the transistor 168 will generally be provided across the collector and base of the transistor 158 .
  • the transistor 168 With the transistor 168 turned on, it supplies current to the node 152 according to activation of the transistor 168 . It will be appreciated that the mode change from turning off the FET 174 to turning on the transistor 168 can provide a smooth transition at the node 152 without overshoot.
  • the delay block 170 can operate to turn off the FET 174 at any time after the voltage of the node 152 reaches a desired level.
  • the transistor 168 turns on. This transition occurs because the voltage at the collector of the transistor 158 is provided at the base of the transistor 168 through the FET 166 .
  • the transistor 168 operates as a base current cancellation device (or a bipolar device) for the node 152 , such that the base emitter voltage across the transistor 168 corresponds to the voltage across the collector and base of the transistor 158 .
  • FIG. 4 illustrates an example of another circuit 200 that can be utilized to implement a soft power up at a node 202 in accordance with an aspect of the present invention.
  • the node 202 defines a juncture of an associated circuit 204 that is biased by a biasing system 206 .
  • the associated circuit 204 is coupled to bias an associated device or component that is sensitive to large fluctuations based on the bias from the biasing system 206 .
  • the biasing system 206 includes a transistor 208 (e.g., an NPN transistor) having a base coupled to the node 202 .
  • the transistor 208 is connected between a current source 210 that provides a bias current and a resistor 212 .
  • the resistor 212 is coupled between the emitter of the transistor 208 and a voltage potential indicated at V ⁇ .
  • a pair of switches 214 and 216 is connected in series between the collector and base of the transistor 208 .
  • a juncture between these switches 214 and 216 is connected to a base of a transistor 218 , which also forms part of the biasing system 206 .
  • the transistor 218 is connected between a positive voltage indicated at V+ and the node 202 .
  • a resistor 220 also is connected between the node 202 and ground.
  • An enable signal such as from associated circuitry to indicate a power on condition, is provided to control the switch 214 . Thus, when the enable signal is provided, the switch 214 is closed.
  • An overshoot control system 222 provides a signal to control the switch 216 in accordance with an aspect of the present invention.
  • the overshoot control system 222 includes a transistor 224 connected in series with a pair of resistors 226 and 228 between a positive voltage V+ and the negative voltage V ⁇ .
  • the control signal for the switch 216 corresponds to a voltage at a node 230 between the resistor 226 and the transistor 224 . It is to be understood and appreciated that, in this arrangement, the voltage potential V+ and V ⁇ are simply relative voltages in which the voltage V+ is greater than V ⁇ .
  • the control voltage provided at the node 230 initially is at about V+ because the transistor 224 is off.
  • the switch 214 closes in response to receiving the enable signal ENA.
  • the transistor 208 becomes diode connected, which corresponds to an overshoot protection mode.
  • the voltage at the node 202 can rise in a desired manner (e.g., with little or no overshoot).
  • the transistor 224 will eventually be biased on so that current conducts across the resistor 226 .
  • This current causes a voltage drop across the resistor 226 and, in turn, a corresponding decrease in the control signal at the node 230 that biases the switch 216 .
  • the decrease in voltage at 230 eventually causes the switch 216 to turn off.
  • the transistor 218 is biased to an on condition, such as due to its base-emitter voltage exceeding an associated threshold. That is, the base-emitter voltage of the transistor 218 corresponds to the collector-base voltage of the transistor 208 .
  • the node 202 When the transistor 218 turns on, the node 202 is coupled to the desired voltage potential, with the transistor 218 supplying current to the node based on the collector-base voltage of the transistor 208 .
  • the voltage at the node 202 rises in a desired manner (e.g., without overshoot) providing a smooth transition to the desired voltage at power up.
  • FIG. 5 depicts an example of soft power up circuitry 250 implemented in accordance with an aspect of the present invention.
  • the circuitry 250 is similar to that shown and described above with respect to FIG. 4. Briefly stated, the circuitry 250 is coupled to mitigate overshoot at a base node 252 of an associated current mirror system 254 that is biased by a biasing system 256 .
  • the biasing system 256 includes a transistor 258 having a base coupled to the node 252 .
  • the transistor 258 also is connected between a current source 260 that provides a predetermined bias current and a resistor 262 .
  • a pair of FETs 264 and 266 are connected in series between the collector and base of the transistor 258 .
  • NPN transistor 268 (also part of the biasing system 256 ) is connected to a juncture between the FETs 264 and 266 .
  • the transistor 268 is connected to provide a desired voltage V+ at the node 252 when the transistor is activated.
  • a resistor 270 also is connected between the node 252 and ground.
  • a control system 272 is coupled to control operation of the FET 266 during power up in accordance with an aspect of the present invention.
  • the system 272 includes a transistor 274 having a base coupled to the node 252 and a collector coupled to the gate of the FET 266 .
  • the collector of the transistor 274 is coupled to V+ through a resistor 276 and to V ⁇ through another resistor 278 .
  • the transistor 274 thus operates based on the voltage at the node 252 .
  • the control voltage provided to the gate of the FET 266 also varies based on the voltage at the node 252 .
  • the transistor 274 is biased to an on condition as the voltage at the node 252 increases, which condition causes a corresponding decrease in the voltage at the gate of the FET 266 .
  • an enable signal ENA activates the circuitry 250 , so that the FET 264 is turned on.
  • the other FET 266 also is activated at power up because the transistor 274 is off due to the initial low voltage at the node 252 .
  • the voltage at the node 252 rises in a desired manner and, in turn, biases the transistor 274 on, which results in the gate voltage of the FET 266 decreasing and eventually turning the FET off.
  • the transistor 268 turns on so as to couple V+ to the node so that normal operation of the associated circuitry can begin, with the base node 252 of the current mirror being biased by the transistor 268 based on the current from the current source 260 .
  • this arrangement provides a smooth transition to the desired voltage V+ at the node 252 without overshoot so that sensitive circuitry coupled to (or at least responsive to the voltage at) the node will not be adversely affected.
  • FIG. 6 illustrates a graph of voltage verses time, such as for a sensitive node of an associated circuit.
  • the graph includes an example plot 300 of a voltage response at power up for a conventional system and an example plot 302 of a voltage response at power up for a system implementing a soft power up to protect the node from overshooting or undershooting according to an aspect of the present invention.
  • the plot 300 includes significant overshoot prior to stabilizing at a desired voltage, indicated at 304 . It is to be understood and appreciated that overshoot, such as occurs in most conventional systems, can cause deleterious effects in sensitive circuitry. In contrast, by having the sensitive node associated with a soft power up system implemented according to an aspect of the present invention, such overshoot is mitigated during power up as indicated at 302 .
  • FIG. 7 illustrates a flow diagram for implementing a soft power up methodology in accordance with an aspect of the present invention.
  • the methodology begins at 400 , such as in conjunction with powering up associated circuitry in an IC.
  • the associated circuitry is enabled, such as by providing an enable signal to activate desired circuit components in the IC.
  • the soft power up protection is activated at 420 so as to mitigate overshoot that might occur during power up.
  • the overshoot protection can be implemented relative to a node that is connected to receive a bias (e.g., voltage or current), such as is used to bias associated circuitry that is sensitive to large fluctuations that tend to occur at power up.
  • a bias e.g., voltage or current
  • the bias can be used to bias a current mirror, for example.
  • the base node could be coupled to a base of an NPN transistor, which is diode connected to provide desired overshoot protection during a soft power up mode.
  • the overshoot protection is deactivated and a normal operating mode can begin. Normal operation can include coupling the node to a desired voltage, which can be fixed or variable depending on its application. From 440 , the methodology ends at 450 .
  • FIG. 8 is a flow diagram illustrating another methodology for mitigating overshoot (or undershoot) in accordance with an aspect of the present invention.
  • the methodology begins at 500 , such as in conjunction with providing power to an IC implementing functional circuitry as well as protection circuitry according to an aspect of the present invention.
  • the functional circuitry includes a current mirror network that is biased from a bias system with current through a base node, which is also coupled to the protection circuitry.
  • the current system includes an NPN transistor having its base coupled to the base node of the current mirror.
  • the protection circuitry is enabled, such as based on an enable signal from a control system.
  • the transistor of bias system which is coupled to the sensitive node of the functional circuitry, is diode connected. By diode connecting the transistor, overshoot is mitigated at the node so that the voltage at the node ramps (e.g., ramps up or down) to a desired voltage level at 530 .
  • the determination at 540 can be implemented by employing a delay system having a delay transistor with its base also coupled to the node. As the voltage at the base rises, the delay transistor turns on and conducts current through a resistor. The voltage drop across the resistor can be electrically coupled to control the diode connection ( 520 ), such as coupled to a gate of an associated FET or other transistor or switch device that forms part of the diode connection path.
  • the methodology returns to 530 in which the voltage at the node continues to ramp to the desired voltage. If the determination at 530 is positive, indicating that the desired voltage has been reached at the node, the methodology proceeds to 550 .
  • the diode connection is removed.
  • the node is connected to a desired bias, such as provided by a transistor coupled to a fixed supply and controlled based on the bias current. It is to be appreciated that the removal of the diode connection ( 550 ) and the connection to the desired bias ( 560 ) can occur substantially concurrently. It further will be appreciated that the transition from the starting voltage to the ending desired voltage at the node occurs smoothly and without overshoot.
  • the components and devices that are associated with (e.g., biased or powered) by the other circuitry that includes the node are not adversely affected by overshoot that otherwise tends to occur in conventional systems.

Abstract

A system and method are disclosed to help protect a node of associated circuitry from overshooting or undershooting, such as can be associated with power up or other transitional modes. The protection is implemented by diode connecting a transistor, which has its base electrically coupled to the node during the transitional mode. Either after a predetermined time period or after the voltage at the node has reached a desired level, the diode connection can be removed to permit normal operation to begin in which a bias can be provided to the node.

Description

    TECHNICAL FIELD
  • The present invention relates generally to electrical circuits and, more particularly, to a system and methodology that mitigates overshoot during power up of an electrical circuit. [0001]
  • BACKGROUND OF THE INVENTION
  • Numerous types of electronic devices for a myriad of applications employ electrical circuits implemented as one or more integrated circuits (ICs). For example, ICs can be configured to achieve desired functions, such as, controlling associated devices and elements. For instance, ICs can be utilized to bias magneto resistive (MR) elements for reading and writing data to associated magnetic surface utilized in hard disc drives. However, it is often the case that at power up or during switching, currents or voltages supplied by ICs overshoot or spike above intended values. [0002]
  • By way of further illustration, various types of electronic circuitry, such as current mirrors, are commonly utilized in conjunction with ICs in biasing associated devices or performing current steering functions. A current mirror is fed by a current source, which can be a constant- or variable-current source. The current mirror provides an output current to associated parts of the IC based on the input current. In operation, overshoot tends to occur at a base node of the current mirror, which overshoot can be propagated through current mirrors to various parts of the IC. As a result, a current mirror often exposes sensitive associated circuitry to the risks of overshoot. [0003]
  • These unintended overshooting and undershooting conditions can have deleterious effects on the associated circuitry. The overshooting and undershooting tend to become more problematic with sensitive devices or components. For example, sensitive devices, including MR elements, can experience adverse coupling and/or recovery times if exposed to overshoot conditions, such as tend to occur at power up or fast recovery modes when biasing signals are applied initially. [0004]
  • SUMMARY OF THE INVENTION
  • The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. [0005]
  • The present invention relates generally to a system and method to mitigate overshoot in an IC, such as can occur at power up or activation of associated circuitry. When enabled, such as in response to application power (e.g., at power up), a protection system coupled to a node operates in a protection mode to facilitate a voltage at the node to rise to a desired level and then switches to a normal mode with little or no overshoot. In the normal mode a desired fixed voltage can be supplied to the node, for example. Because overshoot is substantially eliminated, such an approach provides for fast and safe recovery and is generally self-protecting. [0006]
  • A particular aspect of the present invention provides a transistor having a base coupled to the node. The transistor's base and collector are connected (e.g., diode connecting the transistor) for a period of time so as to mitigate overshoot at the node during start up (power up). The diode connection can be implemented for a predetermined time period or for a time period based on the voltage at the node. The diode connection is then removed and a desired voltage can be safely supplied to the node for normal operation of the associated IC. [0007]
  • Another aspect of the present invention provides a method for protecting a node of associated circuitry from fluctuations; such as tend to occur at power up. The method includes enabling protection of the node, such as in response to application of power to an associated IC. The protection can be implemented, for example, by diode connecting a transistor having its base coupled to the node where protection is desired. After the node reaches the approximate desired ending voltage, the protection is disabled (e.g., removing the diode connection from the transistor) and the node can be connected to the desired ending voltage, such as provided by an associated power supply. [0008]
  • The following description and the annexed drawings set forth certain illustrative aspects of the invention. These aspects are indicative, however, of a few ways in which the principles of the invention may be employed. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating a soft power up system according to an aspect of the present invention. [0010]
  • FIG. 2 illustrates an example of part of an integrated circuit (IC) including a soft power up system in accordance with an aspect of the present invention. [0011]
  • FIG. 3 illustrates an example of part of an IC including a soft power up system implemented according to an aspect of the present invention. [0012]
  • FIG. 4 illustrates an example of part of an IC including a soft power up system and associated delay circuitry in accordance with an aspect of the present invention. [0013]
  • FIG. 5 illustrates an example of soft power up circuitry associated with a current mirror in accordance with an aspect of the present invention. [0014]
  • FIG. 6 is a graph in which voltage is plotted versus time, illustrating signal response of a conventional approach relative to an approach according to an aspect of the present invention. [0015]
  • FIG. 7 is a flow diagram illustrating a basic methodology for implementing a soft power up according to an aspect of the present invention. [0016]
  • FIG. 8 is a flow diagram illustrating another methodology for implementing a soft power up according to an aspect of the present invention.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates generally to a system and method to help protect a node of associated circuitry from sharp fluctuations that tend to be associated with power up or other transitional modes. The protection is implemented by diode connecting a transistor, which has its base electrically coupled to the node during the transitional mode. Either after a predetermined time period or after the voltage at the node has reached a desired level, the diode connection can be removed and normal operation can begin. [0018]
  • FIG. 1 depicts a block diagram of a soft power up [0019] system 10 in accordance with an aspect of the present invention. The soft power up system 10 is electrically associated with other circuitry 12 having a node 14. For example, the node 14 corresponds to a juncture within the circuitry 12 that is sensitive to sharp fluctuations in current and/or voltage, such as may occur at power up. A biasing system 16, such as a current source or other source of electrical energy, is connected to bias the other circuitry 12 with a desired bias (e.g., current or voltage) through the node 14. The soft power up system 10 is connected between the circuitry 12 and the biasing system 16 to mitigate overshoot at the node 14, such as at power up or fast recovery modes, according to an aspect of the present invention. In this way, the desired bias can be provided to the associated circuitry 12 in a substantially safe and effective manner with little or no overshoot. For example, the power up system 10 and other circuitry 12 receive an enable signal (ENA) that activates such systems.
  • For example, the [0020] other circuitry 12 can include a current mirror such as operative to supply a desired amount of current to one or more parts other associated circuitry based on the bias from the biasing system 16. In one particular example, the current mirror may be utilized to bias a magneto resistive (MR) head, such as may form part of a hard disk drive. The MR head is sensitive to overshooting that tends to occur during power up of the respective current mirror. Advantageously, the soft power up system 10 operates to mitigate current and voltage at the node 14 from overshooting or undershooting.
  • The soft power up [0021] system 10 includes a control block 18 that receives the enable signal (ENA), such as can indicate if power is being supplied. The control block 18 is coupled to protection circuitry 20, which is operative to mitigate undesired overshoot at the node 14 based on the control provided by the control block 18. That is, during power up the control block 18 controls the protection circuitry 20 to operate in a protection mode to mitigate overshoot at the node 14.
  • By way of further example, the protection circuitry [0022] 20is connected to the node 14 and to a transistor having a base electrically coupled to the node 14. The control block 18 operates to diode connect such transistor (e.g., by shorting its base and collector) in response to the enable signal indicating a power up condition. Because the transistor is diode connected during power up, for example, overshoot that tends to occur at the node 14 due to the biasing from the biasing system 16 during power up can be substantially prevented. Additionally, once a desired a voltage has been reached at the node 14, the control block 18 can cause the protection circuitry 20 to operate in a normal mode in which the diode connection can be removed. Additionally, as the voltage at the node 14 reaches its desired level, the protection circuitry 20 can electrically connect the node to a voltage source to provide a desired voltage at the node. The connection of the node 14 to the desired voltage can occur concurrently with the removal of the diode connection.
  • FIG. 2 illustrates an example implementation of an example of a soft power up [0023] system 100 in accordance with an aspect of the present invention. The system 100 is coupled to a biasing system that includes a transistor 102 having a base coupled to a node 104. The transistor 102 also is coupled between the current source 106 and a negative voltage supply indicated at the V− (e.g., its collector is coupled to the current source 106). In the example of FIG. 2, the transistor 102 is illustrated as an NPN transistor having its base coupled to the node 104 and its emitter coupled to V− through a resistor 108. Its collector receives a bias current from a current source 106. The current source 106 is configured to electrically bias other circuitry 110 through the node 104.
  • The [0024] node 104, for example, corresponds to an electrical juncture of the associated circuitry 110 that supplies voltage or current (directly or indirectly) to an associated device (not shown) based on the bias current from the current source 106. The device, for example, corresponds to an important component or system that is sensitive to large fluctuations, which can occur at power up or during fast recovery modes.
  • The [0025] system 100 also includes a control/delay block 112 that receives an enable signal (ENA) 114, which, for example, indicates when a power up or other transitional mode begins. The control/delay block 112 is operative to control a switch 116 coupled between the collector and base of the transistor 102. Another switch 118 is electrically coupled between the node 104 and a positive voltage indicated at V+. The control/delay block 112 also is operative to control the switch 118.
  • By way of illustration, the control/[0026] delay block 112 closes the switch 116 in response to receiving the enable signal 114, such as indicating a power up condition (or fast recovery) has begun. By closing the switch 116, the transistor 102 becomes diode connected and provides an overshoot protection mode according to an aspect of the present invention. With the transistor 102 diode connected, at least a portion of the current supplied by the current source 106 is provided through the switch 116 and a resistor 120 coupled between the node 104 at the base of the transistor 102 and ground.
  • For example, the [0027] resistor 120 has a resistance that is about equal to or greater than 25 KΩ, although other resistances could be used. Accordingly, during this initial operating mode the voltage at the base of the transistor 102 (at node 104) rises nicely and does not overshoot, in contrast to conventional systems. In particular, as the voltage at node 104 increases, more current is conducted through the transistor 102 and, due to the diode connection of such transistor, the base of the transistor 102 does not overshoot. At some time delay later, the control/delay block 112 turns the switch 116 off and turns the switch 118 on (e.g., the control/delay block controls the switches 116 and 118 to operate generally mutually exclusively) to enter a normal operating mode. The control/delay block 112 can coordinate the transition from the protection mode to the normal mode to coincide with the voltage at the node 104 reaching a desired voltage level, such as V+. Thus, by directly connecting the node 104 to the desired voltage potential V+ after bringing up the voltage at the node during the protection mode, a smooth transition can be provided at power up which mitigates potential overshoot that might otherwise occur at the node 104.
  • FIG. 3 illustrates another example of a [0028] soft start system 150 that could be implemented in accordance with an aspect of the present invention. In this example, the soft start system 150 is coupled to a node 152 associated with a current mirror system 154 that is biased based on a bias current provided from a bias system 156. It is to be understood and appreciated, however, that the soft start system 150 could be utilized in connection with other types of systems having one or more nodes associated with components or devices that are sensitive to large fluctuations that tend to occur at such node during power up or other transitional conditions (e.g., switching conditions, surge conditions, and so forth).
  • The [0029] biasing system 156 includes an NPN transistor 158 having a base coupled to the node 152. A current source 160 provides bias current to the collector of the transistor 158. The emitter of the transistor 158 is coupled to a negative potential, indicated at V−, through a resistor 162. The bias current is utilized to bias the current mirror system 154. The biasing system 156 also includes another NPN transistor 168 that is coupled between a positive voltage supply, indicated at V+, and the node 152. The transistor 168 is used for base current cancellation in a normal operating mode of the system 150. Those skilled in the art will understand and appreciate other arrangements and configurations that could be employed to bias the current mirror.
  • The [0030] soft start system 150 includes overshoot control system 164 that implements overshoot control, such as based on an enable signal, indicated at ENA. In particular, the enable signal ENA is provided to a gate of a field effect transistor (FET) 166, which activates the FET to an on condition. The FET 166 is coupled between the collector of the transistor 152 and a base the transistor 168.
  • The [0031] overshoot control 164 also includes a delay block 170 that also receives the enable signal ENA. The delay block 170 provides a control signal 172 to a gate of another FET 174. The FET 174 is coupled between the node 152 and the base of the transistor 168. The FETs 166 and 174 thus are connected in series between the base and collector of the transistor 158. At power up, the delay block 170 provides the control signal 172 to turn on the FET 174. Accordingly, at power up (e.g., during a power up mode) both FETs 166 and 174 are initially on, thereby diode connecting the transistor 158. Because the transistor 158 is diode connected for a period of time (e.g., as controlled by the delay block) the voltage at node 152 can rise in a desired manner without overshoot.
  • For example, current flows through a [0032] resistor 176 coupled between the node 152 and ground. Subsequently, the delay block 170 provides the control signal 172 to turn off the FET 174. The delay block 170 may implement this control, for example, based on an elapsed predetermined time period or based on the voltage at the node 152. For example, the delay block 170 can sense the voltage at the node 152, as indicated by dotted line 178. When the FET 172 is turned off, the transistor 158 is no longer diode connected and the transistor 168 turns on. When the transistor 168 turns on, the base emitter voltage VBE for the transistor 168 will generally be provided across the collector and base of the transistor 158. In addition, with the transistor 168 turned on, it supplies current to the node 152 according to activation of the transistor 168. It will be appreciated that the mode change from turning off the FET 174 to turning on the transistor 168 can provide a smooth transition at the node 152 without overshoot.
  • Additionally, or alternatively, the [0033] delay block 170 can operate to turn off the FET 174 at any time after the voltage of the node 152 reaches a desired level. When the delay block 160 turns off the FET 174, the transistor 168 turns on. This transition occurs because the voltage at the collector of the transistor 158 is provided at the base of the transistor 168 through the FET 166. It is to be appreciated that the transistor 168 operates as a base current cancellation device (or a bipolar device) for the node 152, such that the base emitter voltage across the transistor 168 corresponds to the voltage across the collector and base of the transistor 158.
  • FIG. 4 illustrates an example of another [0034] circuit 200 that can be utilized to implement a soft power up at a node 202 in accordance with an aspect of the present invention. The node 202 defines a juncture of an associated circuit 204 that is biased by a biasing system 206. The associated circuit 204 is coupled to bias an associated device or component that is sensitive to large fluctuations based on the bias from the biasing system 206.
  • The [0035] biasing system 206 includes a transistor 208 (e.g., an NPN transistor) having a base coupled to the node 202. The transistor 208 is connected between a current source 210 that provides a bias current and a resistor 212. The resistor 212 is coupled between the emitter of the transistor 208 and a voltage potential indicated at V−. A pair of switches 214 and 216 is connected in series between the collector and base of the transistor 208. A juncture between these switches 214 and 216 is connected to a base of a transistor 218, which also forms part of the biasing system 206. The transistor 218 is connected between a positive voltage indicated at V+ and the node 202. A resistor 220 also is connected between the node 202 and ground. An enable signal, such as from associated circuitry to indicate a power on condition, is provided to control the switch 214. Thus, when the enable signal is provided, the switch 214 is closed.
  • An [0036] overshoot control system 222 provides a signal to control the switch 216 in accordance with an aspect of the present invention. In this particular example, the overshoot control system 222 includes a transistor 224 connected in series with a pair of resistors 226 and 228 between a positive voltage V+ and the negative voltage V−. The control signal for the switch 216 corresponds to a voltage at a node 230 between the resistor 226 and the transistor 224. It is to be understood and appreciated that, in this arrangement, the voltage potential V+ and V− are simply relative voltages in which the voltage V+ is greater than V−.
  • By way of illustration, when the circuit is activated, the control voltage provided at the [0037] node 230 initially is at about V+ because the transistor 224 is off. Additionally, as mentioned above, when the circuit 200 is enabled, the switch 214 closes in response to receiving the enable signal ENA. By closing the switches 214 and 216 during power up, the transistor 208 becomes diode connected, which corresponds to an overshoot protection mode. With the transistor 208 diode connected, the voltage at the node 202 can rise in a desired manner (e.g., with little or no overshoot).
  • As the voltage at the [0038] node 202 changes to its desired level, the transistor 224 will eventually be biased on so that current conducts across the resistor 226. This current causes a voltage drop across the resistor 226 and, in turn, a corresponding decrease in the control signal at the node 230 that biases the switch 216. The decrease in voltage at 230 eventually causes the switch 216 to turn off. When the switch 216 turns off, the transistor 218 is biased to an on condition, such as due to its base-emitter voltage exceeding an associated threshold. That is, the base-emitter voltage of the transistor 218 corresponds to the collector-base voltage of the transistor 208. When the transistor 218 turns on, the node 202 is coupled to the desired voltage potential, with the transistor 218 supplying current to the node based on the collector-base voltage of the transistor 208. Thus, it will be appreciated that the voltage at the node 202 rises in a desired manner (e.g., without overshoot) providing a smooth transition to the desired voltage at power up.
  • FIG. 5 depicts an example of soft power up [0039] circuitry 250 implemented in accordance with an aspect of the present invention. The circuitry 250 is similar to that shown and described above with respect to FIG. 4. Briefly stated, the circuitry 250 is coupled to mitigate overshoot at a base node 252 of an associated current mirror system 254 that is biased by a biasing system 256. The biasing system 256 includes a transistor 258 having a base coupled to the node 252. The transistor 258 also is connected between a current source 260 that provides a predetermined bias current and a resistor 262. A pair of FETs 264 and 266 are connected in series between the collector and base of the transistor 258. The base of another NPN transistor 268 (also part of the biasing system 256) is connected to a juncture between the FETs 264 and 266. The transistor 268 is connected to provide a desired voltage V+ at the node 252 when the transistor is activated. A resistor 270 also is connected between the node 252 and ground.
  • A [0040] control system 272 is coupled to control operation of the FET 266 during power up in accordance with an aspect of the present invention. In particular, the system 272 includes a transistor 274 having a base coupled to the node 252 and a collector coupled to the gate of the FET 266. The collector of the transistor 274 is coupled to V+ through a resistor 276 and to V− through another resistor 278. The transistor 274 thus operates based on the voltage at the node 252. The control voltage provided to the gate of the FET 266 also varies based on the voltage at the node 252. For example, the transistor 274 is biased to an on condition as the voltage at the node 252 increases, which condition causes a corresponding decrease in the voltage at the gate of the FET 266.
  • For example, at power up, an enable signal ENA activates the [0041] circuitry 250, so that the FET 264 is turned on. The other FET 266 also is activated at power up because the transistor 274 is off due to the initial low voltage at the node 252. The voltage at the node 252 rises in a desired manner and, in turn, biases the transistor 274 on, which results in the gate voltage of the FET 266 decreasing and eventually turning the FET off. When the FET 266 turns off, the transistor 268 turns on so as to couple V+ to the node so that normal operation of the associated circuitry can begin, with the base node 252 of the current mirror being biased by the transistor 268 based on the current from the current source 260. Advantageously, this arrangement provides a smooth transition to the desired voltage V+ at the node 252 without overshoot so that sensitive circuitry coupled to (or at least responsive to the voltage at) the node will not be adversely affected.
  • FIG. 6 illustrates a graph of voltage verses time, such as for a sensitive node of an associated circuit. In particular, the graph includes an [0042] example plot 300 of a voltage response at power up for a conventional system and an example plot 302 of a voltage response at power up for a system implementing a soft power up to protect the node from overshooting or undershooting according to an aspect of the present invention. The plot 300 includes significant overshoot prior to stabilizing at a desired voltage, indicated at 304. It is to be understood and appreciated that overshoot, such as occurs in most conventional systems, can cause deleterious effects in sensitive circuitry. In contrast, by having the sensitive node associated with a soft power up system implemented according to an aspect of the present invention, such overshoot is mitigated during power up as indicated at 302.
  • In view of the circuitry and functional examples shown and described above, methodologies that may be implemented in accordance with the present invention will be better appreciated with reference to the flow charts of FIGS. 7 and 8. While, for purposes of simplicity of explanation, the methodologies are shown and described as a executing serially, it is to be understood and appreciated that the present invention is not limited by the order shown, as some aspects may, in accordance with the present invention, occur in different orders and/or concurrently from that shown and described herein. Moreover, not all features may be required to implement a methodology in accordance with the present invention. It is further to be appreciated that the methodologies or one or more aspects thereof could be implemented as hardware, software, or as a combination of hardware and software. [0043]
  • FIG. 7 illustrates a flow diagram for implementing a soft power up methodology in accordance with an aspect of the present invention. The methodology begins at [0044] 400, such as in conjunction with powering up associated circuitry in an IC. At 410, the associated circuitry is enabled, such as by providing an enable signal to activate desired circuit components in the IC. In response to the enable signal, the soft power up protection is activated at 420 so as to mitigate overshoot that might occur during power up. For example, the overshoot protection can be implemented relative to a node that is connected to receive a bias (e.g., voltage or current), such as is used to bias associated circuitry that is sensitive to large fluctuations that tend to occur at power up. The bias can be used to bias a current mirror, for example. In a particular aspect of the present invention, the base node could be coupled to a base of an NPN transistor, which is diode connected to provide desired overshoot protection during a soft power up mode.
  • At [0045] 430, a determination is made as to whether the desired steady state level has been reached. If the steady state level has not been reached or a sufficient delay has not been implemented, the methodology returns to 420 in which the soft power up protection (e.g. diode connecting the transistor) is maintained. Once a sufficient steady state level at the node has been achieved, the methodology proceeds to 440. It will be appreciated that as an alternative, the determination at 430 can be implemented as a delay for predetermined time period sufficient to allow the voltage at the node to rise to its desired level.
  • At [0046] 440, the overshoot protection is deactivated and a normal operating mode can begin. Normal operation can include coupling the node to a desired voltage, which can be fixed or variable depending on its application. From 440, the methodology ends at 450.
  • FIG. 8 is a flow diagram illustrating another methodology for mitigating overshoot (or undershoot) in accordance with an aspect of the present invention. The methodology begins at [0047] 500, such as in conjunction with providing power to an IC implementing functional circuitry as well as protection circuitry according to an aspect of the present invention. The functional circuitry, for example, includes a current mirror network that is biased from a bias system with current through a base node, which is also coupled to the protection circuitry. In one aspect, the current system includes an NPN transistor having its base coupled to the base node of the current mirror.
  • During an initial part of the power up process, at [0048] 510, the protection circuitry is enabled, such as based on an enable signal from a control system. Then at 520, the transistor of bias system, which is coupled to the sensitive node of the functional circuitry, is diode connected. By diode connecting the transistor, overshoot is mitigated at the node so that the voltage at the node ramps (e.g., ramps up or down) to a desired voltage level at 530.
  • At [0049] 540, a determination is made as to whether the node has reached the desired voltage. The determination at 540, for example, can be implemented by employing a delay system having a delay transistor with its base also coupled to the node. As the voltage at the base rises, the delay transistor turns on and conducts current through a resistor. The voltage drop across the resistor can be electrically coupled to control the diode connection (520), such as coupled to a gate of an associated FET or other transistor or switch device that forms part of the diode connection path.
  • If the determination is negative, the methodology returns to [0050] 530 in which the voltage at the node continues to ramp to the desired voltage. If the determination at 530 is positive, indicating that the desired voltage has been reached at the node, the methodology proceeds to 550. At 550, the diode connection is removed. Next, at 560, the node is connected to a desired bias, such as provided by a transistor coupled to a fixed supply and controlled based on the bias current. It is to be appreciated that the removal of the diode connection (550) and the connection to the desired bias (560) can occur substantially concurrently. It further will be appreciated that the transition from the starting voltage to the ending desired voltage at the node occurs smoothly and without overshoot. As a result, the components and devices that are associated with (e.g., biased or powered) by the other circuitry that includes the node are not adversely affected by overshoot that otherwise tends to occur in conventional systems. From 560, the methodology ends at 570 and normal operation of the circuitry can begin.
  • What has been described above includes examples and implementations of the present invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the present invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the present invention are possible. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. [0051]

Claims (21)

What is claimed is:
1. A system for mitigating overshoot at a node of an associated circuit, the associated circuit receiving a bias at the node via a transistor having a base coupled to the node, the system comprising:
at least one switch coupled between the base and a collector of the transistor, the at least one switch being controlled to connect the base and the collector for a time period so as to mitigate overshoot at the node as a voltage at the node changes from a starting voltage to a desired voltage.
2. The system of claim 1, further comprising a switch device coupled between the node and a desired bias, the switch device associated with the at least one switch such that the switch device is activated in response to deactivation of the at least one switch.
3. The system of claim 2, the transistor defining a first transistor, the switch device further comprising a second transistor having a base coupled to a juncture between the at least one switch and the collector of the first transistor.
4. The system of claim 3, further comprising a control system operative to control operation of the at least one switch during power up of the associated circuit.
5. The system of claim 4, the control system further comprising a third transistor having a base coupled to the node and operating based on the voltage at the node, such that, as the voltage at the node increases, the third transistor activates to cause a decrease in a control voltage that is applied to control the at least one switch, the decrease in the control voltage causing the at least one switch to disconnect the collector and the base of the first transistor.
6. The system of claim 1, further comprising a delay element operative to cause the at least one switch to connect the collector and the base of the transistor for the time period.
7. The system of claim 6, the time period being a fixed time period during power up of the associated circuit.
8. The system of claim 6, the time period varying as a function of the voltage at the node during power up of the associated circuit.
9. The system of claim 1, the transistor defining a first transistor, the system further comprises a second transistor having a base coupled to the node and operating based on the voltage at the node, such that, as the voltage at the node increases, the second transistor activates to cause a decrease in a control voltage that is applied to control the at least one switch, the decrease in the control voltage causing the at least one switch to disconnect the collector and the base of the first transistor.
10. The system of claim 9, the at least one switch further comprising a third transistor that operates in an active region to selectively connect the collector and the base of the first transistor based on the voltage at the node during power up so as to mitigate overshoot at the node.
11. The system of claim 9, the second transistor being coupled to provide a control signal to control the third transistor, such that, as the voltage at the node increases, the second transistor turns on to cause a voltage drop across an associated resistor, which causes a corresponding change in the control signal and, in turn, operates the third transistor to disconnect the collector and base of the first transistor.
12. A system to mitigate fluctuations at a node of an associated circuit, the system comprising:
a first transistor having a base coupled to the node and a collector operative to receive a bias current from an a current source;
at least a second transistor coupled between the base and a collector of the first transistor, the second transistor being controlled to connect the base and the collector of the first transistor so as to mitigate overshoot at the node as a voltage at the node changes to from a starting voltage to a desired ending voltage; and
a third transistor coupled between the node and a voltage supply, the third transistor being activated to provide a desired bias to the node in conjunction with the second transistor disconnecting the base and the collector of the first transistor.
13 The system of claim 12, further comprising a control system coupled to control the second transistor.
14. The system of claim 13, the control system further comprising a fourth transistor having a base coupled to the node and operating based on the voltage at the node, such that, as the voltage at the node increases, the fourth transistor activates to cause a decrease in a control voltage that is applied to control the second transistor, the decrease in the control voltage causing the second transistor to disconnect the collector and the base of the first transistor.
15. The system of claim 14, the control system further comprising a resistor coupled between a voltage supply and a collector of the fourth transistor, a juncture between the resistor and the fourth transistor being coupled to control the second transistor as a function of the voltage at the node.
16. A system to mitigate overshooting or undershooting at a node of an associated circuit during power up, the system comprising:
means coupled to the node for diode connecting a transistor during power up as the voltage at the node changes from a starting voltage to a desired ending voltage, the transistor having a base connected to the node;
means for removing the diode connection based on the node reaching about the desired voltage; and
means for biasing the node based on the removal of the diode connection, whereby overshoot is mitigated at the node during power up.
17. The system of claim 16, further comprising means for controlling the means for removing based on the voltage at the node.
18. A method to mitigate overshooting or undershooting voltage at a node of an associated circuit during power up, the method comprising:
diode connecting a transistor for a period of time as the voltage at the node changes from a starting voltage to an ending voltage, the transistor having a base connected to the node and a collector that receives a bias for the associated circuit; and
removing the diode connection after the period of time to enable normal operation of the associated circuit.
19. The method of claim 18, further comprising controlling the removal of the diode connection based on the voltage at the node.
20. The method of claim 18, further comprising enabling a protection mode based on power being provided to the associated circuit.
21. The method of claim 18, further comprising biasing the node at a desired bias level based on the removal of the diode connection.
US10/215,422 2002-08-09 2002-08-09 System and method for implementing soft power up Expired - Lifetime US6693478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/215,422 US6693478B1 (en) 2002-08-09 2002-08-09 System and method for implementing soft power up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/215,422 US6693478B1 (en) 2002-08-09 2002-08-09 System and method for implementing soft power up

Publications (2)

Publication Number Publication Date
US20040027186A1 true US20040027186A1 (en) 2004-02-12
US6693478B1 US6693478B1 (en) 2004-02-17

Family

ID=31187898

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/215,422 Expired - Lifetime US6693478B1 (en) 2002-08-09 2002-08-09 System and method for implementing soft power up

Country Status (1)

Country Link
US (1) US6693478B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096679A1 (en) * 2005-11-03 2007-05-03 Soo-Yong Kim Step motor control circuit and method of generating step motor control signal
US20070230008A1 (en) * 2006-03-30 2007-10-04 Hitachi, Ltd. Reproducing circuit and a magnetic disk apparatus using same
US7466573B2 (en) 2006-05-16 2008-12-16 Honeywell International, Inc. Method and apparatus for integrated active-diode-ORing and soft power switching

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542399A (en) * 1983-02-22 1985-09-17 National Semiconductor Corporation Feed forward Darlington circuit
DE3824694A1 (en) * 1988-07-20 1990-02-01 Fraunhofer Ges Forschung SEMICONDUCTOR CIRCUIT FOR FAST SWITCHING PROCESSES
US4922129A (en) * 1989-01-26 1990-05-01 National Semiconductor Corporation Feed forward darlington circuit with reduced NPN reverse beta sensitivity
US4952863A (en) * 1989-12-20 1990-08-28 International Business Machines Corporation Voltage regulator with power boost system
US5182462A (en) 1992-03-03 1993-01-26 National Semiconductor Corp. Current source whose output increases as control voltages are balanced
EP0702813B1 (en) * 1993-06-08 2001-08-22 National Semiconductor Corporation Programmable cmos bus and transmission line driver
US5585712A (en) 1994-02-03 1996-12-17 Harris Corporation Current source with supply current minimizing
JP3129077B2 (en) * 1994-03-07 2001-01-29 株式会社日立製作所 Semiconductor test equipment
US5461343A (en) 1994-07-13 1995-10-24 Analog Devices Inc. Current mirror circuit
US5627738A (en) 1995-05-19 1997-05-06 Eni, A Division Of Astec America, Inc. Low cost, high reliability soft start arrangement
US6215607B1 (en) 1996-06-13 2001-04-10 Lucent Technologies Inc. Write driver using continuous damping network to reduce overshoot, undershoot and settling time for magnetic inductive recording head
US6246533B1 (en) 1998-07-13 2001-06-12 Agilent Technologies, Inc. Programmable write driver circuit for writing information to a magnetic storage media
US6297921B1 (en) 1998-10-08 2001-10-02 John J. Price, Jr. Write driver circuit having programmable overshoot and undershoot
US6271978B1 (en) 1999-05-07 2001-08-07 Texas Instruments Incorporated Power efficient overshoot control for magnetic recording write driver
US6252450B1 (en) 1999-09-09 2001-06-26 Stmicroelectronics, Inc. Circuit and method for writing to a memory disk
IT1313719B1 (en) * 1999-09-24 2002-09-17 St Microelectronics Srl Output stage for high speed comparator of integrated drive circuit, has dynamic drivers for pull-up and pull-down and static drive which are connected to bipolar/MOS pull-up and pull-down transistors
US6285223B1 (en) 2000-05-16 2001-09-04 Agere Systems Guardian Corp. Power-up circuit for analog circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096679A1 (en) * 2005-11-03 2007-05-03 Soo-Yong Kim Step motor control circuit and method of generating step motor control signal
US7541768B2 (en) * 2005-11-03 2009-06-02 Samsung Electronics Co., Ltd. Step motor control circuit and method of generating step motor control signal
US20070230008A1 (en) * 2006-03-30 2007-10-04 Hitachi, Ltd. Reproducing circuit and a magnetic disk apparatus using same
US7466573B2 (en) 2006-05-16 2008-12-16 Honeywell International, Inc. Method and apparatus for integrated active-diode-ORing and soft power switching

Also Published As

Publication number Publication date
US6693478B1 (en) 2004-02-17

Similar Documents

Publication Publication Date Title
JP5135214B2 (en) Inrush current control system and method with soft start circuit
US6297921B1 (en) Write driver circuit having programmable overshoot and undershoot
US6807039B2 (en) Inrush limiter circuit
US6798271B2 (en) Clamping circuit and method for DMOS drivers
JPH05115123A (en) Adaptive type voltage regulator
EP0846858A1 (en) Automotive ignition control system
US20040027763A1 (en) Quiet fan speed control
JP2711224B2 (en) Power control circuit for circuit card connection
KR100813486B1 (en) A voltage supply circuit
US6728084B2 (en) System and method for overvoltage protection of an integrated circuit
US6693478B1 (en) System and method for implementing soft power up
US5847911A (en) Self-protecting switch apparatus for controlling a heat element of a vehicle seat and a method for providing the apparatus
US6876180B2 (en) Power supply circuit having a start up circuit
JP4913376B2 (en) Semiconductor integrated circuit device
JP3558938B2 (en) DC stabilized power supply
US7936216B2 (en) True current limiting
US7159583B2 (en) Technique for drive current stabilization of an automotive ignition system
JP2682699B2 (en) Drive circuit
JP4124082B2 (en) Constant voltage power circuit
JP3860089B2 (en) DC stabilized power supply circuit
JPH07146721A (en) Improved power on system
JPH06335158A (en) Protective circuit against overvoltage for integrated circuit
US20070146016A1 (en) Signal output circuit and power source voltage monitoring device using the same
KR100641784B1 (en) Camera Protecting Circuit
JP2713342B2 (en) Optical semiconductor device drive circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TETERUD, PATRICK MICHAEL;REEL/FRAME:013208/0310

Effective date: 20020808

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12