US20040043601A1 - Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer - Google Patents

Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer Download PDF

Info

Publication number
US20040043601A1
US20040043601A1 US10/615,362 US61536203A US2004043601A1 US 20040043601 A1 US20040043601 A1 US 20040043601A1 US 61536203 A US61536203 A US 61536203A US 2004043601 A1 US2004043601 A1 US 2004043601A1
Authority
US
United States
Prior art keywords
layer
forming
cobalt
titanium
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/615,362
Inventor
Hee-sook Park
Gil-heyun Choi
Sang-bum Kang
Seong-Geon Park
Kwang-jin Moon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, GIL-HEYUN, KANG, SANG-BURN, MOON, KWANG-JIN, PARK, HEE-SOOK, PARK, SEONG-GEON
Publication of US20040043601A1 publication Critical patent/US20040043601A1/en
Priority to US11/112,356 priority Critical patent/US7223689B2/en
Priority to US11/787,468 priority patent/US20070197015A1/en
Priority to US11/754,639 priority patent/US20070269974A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements

Definitions

  • the present invention relates to methods of manufacturing semiconductor devices, and, more particularly, to methods of forming metal contacts in semiconductor devices.
  • FIGS. 1A and 1B are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device.
  • an insulating layer 15 having a contact hole 13 is formed on a silicon substrate 11 .
  • a titanium layer 17 and a titanium nitride layer 19 are sequentially formed in the contact hole 13 and on the insulating layer 15 to form a barrier metal layer 21 .
  • the titanium layer 17 operates as an ohmic layer and the titanium nitride layer 19 operates as a diffusion barrier layer for preventing the diffusion of a tungsten layer 25 (refer to FIG. 1B), which will be formed in a subsequent process, into the silicon substrate 11 .
  • the titanium nitride layer 19 may also improve the surface adhesion of the tungsten, which will be formed in a subsequent process.
  • a thermal process such as a rapid thermal processing (RTP) or a rapid thermal annealing (RTA), is performed on the silicon substrate 11 having the barrier metal layer 21 so that a titanium suicide 23 layer is formed.
  • RTP rapid thermal processing
  • RTA rapid thermal annealing
  • a tungsten layer 25 is formed on the barrier metal layer 21 in order to fill the contact hole 13 .
  • the tungsten layer 25 may be formed by chemical vapor deposition (CVD), which has generally effective gap filling characteristics. Because the tungsten layer 25 is formed using CVD, the contact hole 13 is generally efficiently filled with the tungsten layer 25 .
  • CVD chemical vapor deposition
  • the titanium silicide 23 layer of FIGS. 1A and 1B has a relatively high level of contact resistance in a highly integrated semiconductor device, however, another material may be substituted for the titanium silicide layer 23 . Accordingly, a method for forming a metal contact in a semiconductor device using cobalt silicide will now be discussed.
  • FIGS. 2A through 2F are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device using cobalt silicide.
  • an insulating layer 33 having a contact hole 32 is formed on a silicon substrate 31 .
  • a cobalt layer 35 is formed in the contact hole 32 and on the insulating layer 33 by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • a titanium nitride layer 37 is formed on the cobalt layer 35 .
  • a first thermal process such as RTP or RTA, is performed on the silicon substrate 31 on which the cobalt layer 35 and the titanium nitride layer 37 are formed to silicidate the silicon substrate 31 and to form a CoSi x layer 39 on the bottom of the contact hole 32 .
  • the silicon substrate 31 on which the CoSi x layer 39 is formed, is dipped in a sulfuric acid solution to strip the cobalt layer 35 and the titanium nitride layer 37 from the contact hole 32 and the insulating layer 33 .
  • the CoSi x layer 39 remains on the bottom of the contact hole 32 . Because the CoSi x layer 39 has a relatively high resistance, the CoSi x layer 39 may be transformed into a CoSi 2 type cobalt silicide layer by performing a subsequent thermal process.
  • a second thermal process such as RTP or RTA, is performed on the silicon substrate 31 on which the CoSi x layer 39 is formed to silicidate the silicon substrate 31 and to form a cobalt silicide 41 layer on the bottom of the contact hole 32 . Thereafter, the silicon substrate 31 having the cobalt silicide 41 layer formed thereon is cleaned.
  • a titanium layer 43 and a titanium nitride layer 45 are sequentially formed on the top surface of the silicon substrate 31 having the cobalt silicide 41 layer to form a barrier metal layer 47 .
  • a tungsten layer 49 for filling the contact hole 32 is formed on the barrier metal layer 47 .
  • the tungsten layer 49 is formed using CVD, which has generally effective gap filling characteristics. Because the tungsten layer 49 is formed using CVD, the contact hole 32 is generally efficiently filled with the tungsten layer 49 .
  • the cobalt silicide layer 41 has a generally lower reactivity to dopant than titanium silicide, the cobalt silicide layer 41 can attain a lower contact resistance.
  • forming a metal contact in accordance with the method of FIGS. 2A through 2F involves performing thermal processes twice and a strip process.
  • the cobalt layer 35 is formed using PVD according to the method described with respect to FIGS. 2A through 2F, which generally provides poorer step coverage. Accordingly, the thickness of the cobalt layer 35 is typically increased to obtain a cobalt silicide layer 41 having a proper thickness on the contact bottom.
  • a strip process for removing the cobalt layer 35 which remains after a silicidation process, may be necessary.
  • a reinforced cleaning process is typically performed after the strip processes.
  • a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate.
  • a cobalt layer is formed on a bottom and inner walls of the contact hole.
  • a cobalt silicide layer is formed at the bottom of the contact hole while forming a titanium layer on the cobalt layer.
  • a plug is formed on the titanium layer so as to fill the contact hole.
  • the plug comprises titanium nitride.
  • a titanium nitride layer is formed on the titanium layer and the plug is formed on the titanium nitride layer so as to fill the contact hole.
  • the titanium nitride layer has a thickness of about 50 to 500 ⁇ and is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
  • CVD chemical vapor deposition
  • the plug comprises at least one of tungsten, titanium nitride, aluminum, and tantalum nitride.
  • the cobalt layer, the titanium layer, and the titanium nitride layer are formed in situ without a vacuum break.
  • the cobalt layer has a thickness of about 5 to 200 ⁇ and is formed using one of physical vapor deposition (PVD) and chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the cobalt layer is formed using PVD at a temperature of about 25 to 500° C.
  • the titanium layer has a thickness of about 5 to 150 ⁇ and is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
  • CVD chemical vapor deposition
  • the substrate and insulating layer are cleaned after forming the insulating layer.
  • a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate.
  • a cobalt layer is formed on a bottom and inner walls of the contact hole.
  • a cobalt silicide layer is formed at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer.
  • a plug is formed on the titanium nitride layer so as to fill the contact hole.
  • a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate.
  • a cobalt layer is formed on a bottom and inner walls of the contact hole.
  • a cobalt silicide layer is formed at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer.
  • a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate.
  • a titanium layer is formed on a bottom and inner walls of the contact hole.
  • a cobalt layer is formed on the titanium layer.
  • a complex silicide layer is comprising titanium silicide and cobalt silicide is formed at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer.
  • a plug is formed on the titanium nitride layer so as to fill the contact hole.
  • a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate.
  • a titanium layer is formed on a bottom and inner walls of the contact hole.
  • a cobalt layer is formed on the titanium layer.
  • a complex silicide layer comprising titanium silicide and cobalt silicide is formed at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer.
  • FIGS. 1A and 1B are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device
  • FIGS. 2A through 2F are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device using cobalt silicide
  • FIGS. 3A through 3D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to some embodiments of the present invention.
  • FIG. 4 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention
  • FIGS. 5A through 5C are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • FIG. 6 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • FIGS. 7A through 7D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • FIG. 8 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • FIG. 9 is a schematic view illustrating manufacturing equipment used for forming a metal contact in a semiconductor device according to some embodiments of the present invention.
  • FIG. 10 is a graph that illustrates contact resistances when metal contacts are formed in semiconductor devices according to conventional methods and methods according to various embodiments of the present invention.
  • FIGS. 11A and 11B are graphs illustrating contact resistances of N + contacts and P + contacts versus contact size when a bit line contact is formed in prior art semiconductor devices and semiconductor devices according to embodiments of the present invention.
  • FIGS. 3A through 3D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to some embodiments of the present invention.
  • an insulating layer 105 having a contact hole 103 therein is formed on a silicon substrate 101 .
  • a cobalt layer 107 which may function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 103 and on the insulating layer 105 .
  • the cobalt layer 107 may be formed to a thickness of about 5 to 200 ⁇ .
  • the cobalt layer 107 may be formed using PVD or CVD (hereafter, CVD is referred to as including an atomic layer deposition (ALD) method).
  • ALD atomic layer deposition
  • the cobalt layer 107 is deposited at a temperature of about 25 to 500° C. In particular embodiments, the cobalt layer 107 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • a titanium layer 109 is formed on the cobalt layer 107 at a temperature of about 400 to 750° C. using CVD.
  • the titanium layer 109 may function as an ohmic layer.
  • the titanium layer 109 is formed on the cobalt layer 107 , which has been formed on the inner walls and the bottom of the contact hole 103 and on the insulating layer 105 .
  • the titanium layer 109 may be formed to a thickness of about 5 to 150 ⁇ . Because the titanium layer 109 is formed at a relatively high temperature, cobalt silicide 111 is formed on the bottom of the contact hole 103 when forming the titanium layer 109 .
  • a titanium nitride layer 113 is formed on the cobalt layer 107 and the titanium layer 109 at a temperature of about 400 to 750° C. using CVD.
  • the titanium nitride layer 113 may be formed to a thickness greater than 50 ⁇ , for example, about 50 to 500 ⁇ .
  • the titanium nitride layer 113 may function as a diffusion barrier layer for preventing the diffusion of a material, which will be formed as a plug, for example, tungsten.
  • the cobalt layer 107 , the titanium layer 109 , and the titanium nitride layer 113 may operate as a barrier metal layer 115 .
  • a plug 117 is formed on the barrier metal layer 115 to fill the contact hole 103 to provide a metal contact.
  • the plug 117 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 3A through 3D.
  • the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer.
  • the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced.
  • FIG. 4 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • a plug 119 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIGS. 3A and 3B. Thereafter, referring to FIG. 4, the plug 119 is formed on a titanium layer 109 to fill a contact hole 103 so that a metal contact is completed.
  • the plug 119 may comprise a titanium nitride layer having a thickness of about 20 to 3000 ⁇ .
  • FIGS. 5A through 5C are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • an insulating layer 205 having a contact hole 203 therein is formed on a silicon substrate 201 .
  • a cobalt layer 207 which my function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 203 and on the insulating layer 205 .
  • the cobalt layer 207 may be formed to a thickness of about 5 to 200 ⁇ .
  • the cobalt layer 207 may be formed using PVD or CVD including ALD.
  • the cobalt layer 207 may be deposited at a temperature of about 25 to 500° C. In particular embodiments, the cobalt layer 207 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • a titanium nitride layer 209 is formed on the cobalt layer 207 at a temperature of about 400 to 750° C. using CVD.
  • the titanium nitride layer 209 is formed on the cobalt layer 207 , which has been formed on the inner walls and the bottom of the contact hole 203 and on the insulating layer 205 .
  • the titanium nitride layer 209 may be formed to a thickness greater than 50 ⁇ , for example, about 50 to 150 ⁇ .
  • the titanium nitride layer 209 may function as a diffusion barrier layer for preventing a material, which will be formed as a plug, for example, tungsten, into a lower silicon layer.
  • cobalt silicide 211 is formed on the bottom of the contact hole 203 when forming the titanium nitride layer 209 . Accordingly, the cobalt layer 207 and the titanium nitride layer 209 may operate as a barrier metal layer.
  • a plug 213 is formed on the titanium nitride layer 209 as the barrier metal layer to fill the contact hole 203 to provide a metal contact.
  • the plug 213 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 5A through 5C.
  • the cobalt silicide is formed when the titanium layer is formed at a relatively high temperature. Accordingly, the thickness of the cobalt layer may be reduced.
  • FIG. 6 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • a plug 215 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIG.5A. Thereafter, referring now to FIG. 6, the plug 215 is formed on a cobalt layer 217 to fill a contact hole 203 .
  • the plug 215 may comprise a titanium nitride layer having a thickness of about 20 to 3000 ⁇ .
  • cobalt silicide 211 is formed on the bottom of the contact hole 203 .
  • FIGS. 7A through 7D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • an insulating layer 305 having a contact hole 303 therein is formed on a silicon substrate 301 .
  • a titanium layer 307 which may function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 303 and on the insulating layer 305 .
  • the titanium layer 307 may have a thickness of about 5 to 150 ⁇ .
  • the titanium layer 307 may be formed using PVD as shown in FIG. 7A. In other embodiments, the titanium layer 307 may be formed at a temperature of about 400 to 750° C. using CVD. When the titanium layer 307 is formed at a temperature using CVD, titanium silicide is formed on the bottom of the contact hole 303 , which is not shown in FIG. 7A.
  • a cobalt layer 309 which may function as an ohmic layer, is formed on the titanium layer 307 .
  • the cobalt layer 309 may have a thickness of about 5 to 200 ⁇ .
  • the cobalt layer 309 may be formed using PVD or CVD including ALD.
  • the cobalt layer 309 is deposited at a temperature of about 25 to 500° C.
  • the cobalt layer 309 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • a titanium nitride layer 311 is formed on the cobalt layer 309 at a temperature of about 400 to 750° C. using CVD.
  • the titanium nitride layer 311 is formed on the cobalt layer 309 , which has been formed on the inner walls and the bottom of the contact hole 303 and on the insulating layer 305 .
  • the titanium nitride layer 311 may have a thickness greater than 50 ⁇ , for example, about 50 to 500 ⁇ .
  • complex silicide 313 of titanium silicide and cobalt silicide is formed on the bottom of the contact hole 303 when forming the titanium nitride layer 311 .
  • the complex silicide 313 , the titanium layer 307 , and the cobalt layer 309 may function as an ohmic layer.
  • the titanium nitride layer 311 may function as a diffusion barrier layer for preventing the diffusion of a material, which will be formed as a plug, for example, tungsten.
  • the titanium layer 307 , the cobalt layer 309 , and the titanium nitride layer 311 may function as a barrier metal layer.
  • a plug 315 is formed on the titanium nitride layer 311 to fill the contact hole 303 so that a metal contact is completed.
  • the plug 315 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 7A through 7D.
  • the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer.
  • the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced.
  • FIG. 8 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention.
  • a plug 317 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIGS. 7A and 7B. Thereafter, referring now to FIG. 8, the plug 317 is formed on a cobalt layer 309 to fill a contact hole 303 .
  • the plug 317 may comprise a titanium nitride layer having a thickness of about 20 to 3000 ⁇ .
  • cobalt silicide 313 is formed on the bottom of the contact hole 303 .
  • FIG. 9 is a schematic view illustrating manufacturing equipment used for forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention. More specifically, the equipment according to embodiments of the present invention comprises a plurality of chambers installed on a body 401 and a transfer module 403 , which is located in the body 401 for transferring wafers to each chamber.
  • the chambers installed on the body 401 include a cobalt deposition chamber 405 , a titanium deposition chamber 407 , a titanium nitride deposition chamber 409 , a cooling chamber 411 , a load lock chamber 413 , and a cleaning chamber 415 .
  • a wafer loaded in the load lock chamber 413 having an insulating layer with a contact hole formed therein formed thereon is cleaned in the cleaning chamber 415 and layers are formed on the wafer as it passes through each of the chambers 405 , 407 , and 409 . Thereafter, the wafer including the layers is cooled in the cooling chamber 411 . The cooled wafer is then discharged to the outside via the load lock chamber 413 .
  • the depositions of the cobalt layer, the titanium layer, and the titanium nitride layer, the depositions of the cobalt layer and the titanium nitride layer, and/or the depositions of the titanium layer, the cobalt layer, and the titanium nitride layer can be performed on the wafer in situ after the wafer is cleaned without a vacuum break.
  • the cobalt layer is deposited in cobalt layer deposition equipment and a titanium layer and a titanium nitride layer are deposited in the other equipment after a vacuum break as in a conventional method
  • CoO x may be generated on the cobalt layer so that the generation of an ohmic layer is interrupted and a resistance is increased. Accordingly, a cleaning process may be required after the deposition of the cobalt layer.
  • the wafers are cleaned and the cobalt layer, the titanium layer, and the titanium nitride layer are deposited in situ without a vacuum break so that the number and the time of processes are reduced while attaining a relatively stable contact resistance.
  • FIG. 10 is a graph that illustrates contact resistances when metal contacts are formed in semiconductor devices according to conventional methods and methods according to various embodiments of the present invention.
  • the horizontal axis denotes experimental conditions and the vertical axis denotes the contact resistance distribution of 1000 contacts. More specifically, reference numerals a and a′ denote contact resistances when a cobalt layer is formed to a thickness of 100 ⁇ , a titanium layer is formed to a thickness of 75 ⁇ using CVD, and a titanium nitride layer is formed to a thickness of 250 ⁇ using CVD according to the embodiments of FIGS. 3A through 3D.
  • Reference numerals b and b′ denote contact resistances when the cobalt layer is formed to a thickness of 200 ⁇ , the titanium layer is formed to a thickness of 75 ⁇ using CVD, and the titanium nitride layer is formed to a thickness of 250 ⁇ using CVD according to the embodiments of FIGS. 3A through 3D.
  • Reference numerals c and c′ denote contact resistances when the cobalt layer is formed to a thickness of 100 ⁇ according to the embodiments of FIGS. 7A through 7D.
  • Reference numerals d and d′ denote contact resistances of conventionally formed cobalt silicide.
  • Reference numerals e, e′, f, and f′ denote contact resistances of conventionally formed titanium suicide.
  • reference numerals a, b, c, d, e, and f are the contact resistances when the layers are annealed at a temperature of 750° C. for 30 minutes.
  • reference numerals a′, b′, c′, d′, e′, and f′ are the contact resistances when the layers are annealed at a temperature of 750° C. for 30 minutes twice.
  • the contact resistance of a semiconductor device is generally less than the contact resistances of conventionally formed titanium silicide and cobalt silicide.
  • the contact resistance of the semiconductor device according to embodiments of the present invention is generally less than the contact resistances of conventionally formed titanium silicide and cobalt silicide.
  • FIGS. 11A and 11B are graphs illustrating contact resistances of N + contacts and P + contacts versus contact size when a bit line contact is formed in prior art semiconductor devices and semiconductor devices according to embodiments of the present invention. More specifically, in FIGS. 11A and 11B, Co 100 A, denoted by transparent rectangles, and Co 200 A, denoted by transparent circles, are formed by the conditions denoted by reference characters a and b of FIG. 10. In other words, Co 100 A and Co 200 A denote the cases where metal contacts are formed according to embodiments of the present invention. CiSi 2 , denoted by transparent diamonds, is formed by the conditions denoted by reference character d of FIG. 10.
  • CiSi 2 denotes the case where a contact is formed by conventional cobalt silicide.
  • TiSi 2 denoted by transparent inverse triangles, is formed by the conditions denoted by reference characters e or f of FIG. 10.
  • TiSi 2 denotes the case where a contact is formed using conventionally formed titanium silicide.
  • the contact resistance of the bit line contact which is formed according to embodiments of the present invention, is less than the contact resistance of the conventional bit line contact where cobalt silicide or titanium silicide is used.
  • the effect is more significant when the contact size is reduced.
  • the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention.
  • the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer.
  • the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced.

Abstract

A metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A cobalt layer is formed on a bottom and inner walls of the contact hole. A cobalt silicide layer is formed at the bottom of the contact hole while forming a titanium layer on the cobalt layer. A plug is formed on the titanium layer so as to fill the contact hole.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of and priority to Korean Patent Application No. 2002-50072, filed Aug. 23, 2002, the disclosure of which is hereby incorporated herein by reference. [0001]
  • FIELD OF THE INVENTION
  • The present invention relates to methods of manufacturing semiconductor devices, and, more particularly, to methods of forming metal contacts in semiconductor devices. [0002]
  • BACKGROUND OF THE INVENTION
  • As semiconductor devices have become more highly integrated, the design rules for semiconductor devices have been gradually reduced. Accordingly, the areas associated with a contact, which connects individual devices to circuit interconnect wiring in the semiconductor device, and a via contact, which connects an upper interconnect wiring to a lower interconnect wiring, have generally been reduced. In addition, contact depth is generally increasing due to a multi-layered semiconductor device structure. [0003]
  • Consequently, because the resistance of contacts is generally increasing, which may degrade semiconductor device characteristics, technology for reducing contact resistance may be desirable. With contact surface area decreasing and depth increasing, achieving adequate step coverage may be difficult. In other words, the depth of the contact is increased while reducing the area of the contact to increase an aspect ratio so that a process of filling metal in a contact hole without a void or disconnection may be difficult. [0004]
  • FIGS. 1A and 1B are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device. Referring to FIG. 1A, an [0005] insulating layer 15 having a contact hole 13 is formed on a silicon substrate 11. A titanium layer 17 and a titanium nitride layer 19 are sequentially formed in the contact hole 13 and on the insulating layer 15 to form a barrier metal layer 21. The titanium layer 17 operates as an ohmic layer and the titanium nitride layer 19 operates as a diffusion barrier layer for preventing the diffusion of a tungsten layer 25 (refer to FIG. 1B), which will be formed in a subsequent process, into the silicon substrate 11. The titanium nitride layer 19 may also improve the surface adhesion of the tungsten, which will be formed in a subsequent process. A thermal process, such as a rapid thermal processing (RTP) or a rapid thermal annealing (RTA), is performed on the silicon substrate 11 having the barrier metal layer 21 so that a titanium suicide 23 layer is formed.
  • Referring to FIG. 1B, a [0006] tungsten layer 25 is formed on the barrier metal layer 21 in order to fill the contact hole 13. The tungsten layer 25 may be formed by chemical vapor deposition (CVD), which has generally effective gap filling characteristics. Because the tungsten layer 25 is formed using CVD, the contact hole 13 is generally efficiently filled with the tungsten layer 25.
  • Because the [0007] titanium silicide 23 layer of FIGS. 1A and 1B has a relatively high level of contact resistance in a highly integrated semiconductor device, however, another material may be substituted for the titanium silicide layer 23. Accordingly, a method for forming a metal contact in a semiconductor device using cobalt silicide will now be discussed.
  • FIGS. 2A through 2F are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device using cobalt silicide. Referring to FIG. 2A, an [0008] insulating layer 33 having a contact hole 32 is formed on a silicon substrate 31. A cobalt layer 35 is formed in the contact hole 32 and on the insulating layer 33 by physical vapor deposition (PVD). In addition, a titanium nitride layer 37 is formed on the cobalt layer 35.
  • Referring now to FIG. 2B, a first thermal process, such as RTP or RTA, is performed on the [0009] silicon substrate 31 on which the cobalt layer 35 and the titanium nitride layer 37 are formed to silicidate the silicon substrate 31 and to form a CoSix layer 39 on the bottom of the contact hole 32.
  • Referring now to FIG. 2C, the [0010] silicon substrate 31, on which the CoSix layer 39 is formed, is dipped in a sulfuric acid solution to strip the cobalt layer 35 and the titanium nitride layer 37 from the contact hole 32 and the insulating layer 33. As a result, the CoSix layer 39 remains on the bottom of the contact hole 32. Because the CoSix layer 39 has a relatively high resistance, the CoSix layer 39 may be transformed into a CoSi2 type cobalt silicide layer by performing a subsequent thermal process.
  • Referring now to FIG. 2D, a second thermal process, such as RTP or RTA, is performed on the [0011] silicon substrate 31 on which the CoSix layer 39 is formed to silicidate the silicon substrate 31 and to form a cobalt silicide 41 layer on the bottom of the contact hole 32. Thereafter, the silicon substrate 31 having the cobalt silicide 41 layer formed thereon is cleaned. Referring now to FIG. 2E, a titanium layer 43 and a titanium nitride layer 45 are sequentially formed on the top surface of the silicon substrate 31 having the cobalt silicide 41 layer to form a barrier metal layer 47.
  • Referring now to FIG. 2F, a [0012] tungsten layer 49 for filling the contact hole 32 is formed on the barrier metal layer 47. The tungsten layer 49 is formed using CVD, which has generally effective gap filling characteristics. Because the tungsten layer 49 is formed using CVD, the contact hole 32 is generally efficiently filled with the tungsten layer 49.
  • According to the method described with respect to FIGS. 2A through 2F, because the [0013] cobalt silicide layer 41 has a generally lower reactivity to dopant than titanium silicide, the cobalt silicide layer 41 can attain a lower contact resistance. Unfortunately, forming a metal contact in accordance with the method of FIGS. 2A through 2F involves performing thermal processes twice and a strip process. In addition, the cobalt layer 35 is formed using PVD according to the method described with respect to FIGS. 2A through 2F, which generally provides poorer step coverage. Accordingly, the thickness of the cobalt layer 35 is typically increased to obtain a cobalt silicide layer 41 having a proper thickness on the contact bottom. When such a thick cobalt layer 35 is deposited, a strip process for removing the cobalt layer 35, which remains after a silicidation process, may be necessary. Furthermore, a reinforced cleaning process is typically performed after the strip processes.
  • SUMMARY OF THE INVENTION
  • According to some embodiments of the present invention, a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A cobalt layer is formed on a bottom and inner walls of the contact hole. A cobalt silicide layer is formed at the bottom of the contact hole while forming a titanium layer on the cobalt layer. A plug is formed on the titanium layer so as to fill the contact hole. [0014]
  • In other embodiments, the plug comprises titanium nitride. [0015]
  • In still other embodiments, a titanium nitride layer is formed on the titanium layer and the plug is formed on the titanium nitride layer so as to fill the contact hole. [0016]
  • In still other embodiments, the titanium nitride layer has a thickness of about 50 to 500 Å and is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C. [0017]
  • In still other embodiments, the plug comprises at least one of tungsten, titanium nitride, aluminum, and tantalum nitride. [0018]
  • In still other embodiments, the cobalt layer, the titanium layer, and the titanium nitride layer are formed in situ without a vacuum break. [0019]
  • In still other embodiments, the cobalt layer has a thickness of about 5 to 200 Å and is formed using one of physical vapor deposition (PVD) and chemical vapor deposition (CVD). [0020]
  • In still other embodiments, the cobalt layer is formed using PVD at a temperature of about 25 to 500° C. [0021]
  • In still other embodiments, the titanium layer has a thickness of about 5 to 150 Å and is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C. [0022]
  • In still other embodiments, the substrate and insulating layer are cleaned after forming the insulating layer. [0023]
  • In further embodiments of the present invention, a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A cobalt layer is formed on a bottom and inner walls of the contact hole. A cobalt silicide layer is formed at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer. A plug is formed on the titanium nitride layer so as to fill the contact hole. [0024]
  • In still further embodiments of the present invention, a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A cobalt layer is formed on a bottom and inner walls of the contact hole. A cobalt silicide layer is formed at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer. [0025]
  • In still further embodiments of the present invention, a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A titanium layer is formed on a bottom and inner walls of the contact hole. A cobalt layer is formed on the titanium layer. A complex silicide layer is comprising titanium silicide and cobalt silicide is formed at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer. A plug is formed on the titanium nitride layer so as to fill the contact hole. [0026]
  • In still further embodiments of the present invention, a metal contact in a semiconductor device is formed by forming an insulating layer having a contact hole therein on a silicon substrate. A titanium layer is formed on a bottom and inner walls of the contact hole. A cobalt layer is formed on the titanium layer. A complex silicide layer comprising titanium silicide and cobalt silicide is formed at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer.[0027]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features of the present invention will be more readily understood from the following detailed description of specific embodiments thereof when read in conjunction with the accompanying drawings, in which: [0028]
  • FIGS. 1A and 1B are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device; [0029]
  • FIGS. 2A through 2F are sectional views illustrating a conventional method for forming a metal contact in a semiconductor device using cobalt silicide; [0030]
  • FIGS. 3A through 3D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to some embodiments of the present invention; [0031]
  • FIG. 4 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention; [0032]
  • FIGS. 5A through 5C are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention; [0033]
  • FIG. 6 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention; [0034]
  • FIGS. 7A through 7D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention; [0035]
  • FIG. 8 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention; [0036]
  • FIG. 9 is a schematic view illustrating manufacturing equipment used for forming a metal contact in a semiconductor device according to some embodiments of the present invention; [0037]
  • FIG. 10 is a graph that illustrates contact resistances when metal contacts are formed in semiconductor devices according to conventional methods and methods according to various embodiments of the present invention; and [0038]
  • FIGS. 11A and 11B are graphs illustrating contact resistances of N[0039] + contacts and P+ contacts versus contact size when a bit line contact is formed in prior art semiconductor devices and semiconductor devices according to embodiments of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the claims. Like numbers refer to like elements throughout the description of the figures. In the figures, the dimensions of layers and regions are exaggerated for clarity. It will also be understood that when an element, such as a layer, region, or substrate, is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present. In contrast, when an element, such as a layer, region, or substrate, is referred to as being “directly on” another element, there are no intervening elements present. [0040]
  • FIGS. 3A through 3D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to some embodiments of the present invention. Referring now to FIG. 3A, an insulating [0041] layer 105 having a contact hole 103 therein is formed on a silicon substrate 101. A cobalt layer 107, which may function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 103 and on the insulating layer 105. The cobalt layer 107 may be formed to a thickness of about 5 to 200 Å. The cobalt layer 107 may be formed using PVD or CVD (hereafter, CVD is referred to as including an atomic layer deposition (ALD) method). When the cobalt layer 107 is formed using PVD, the cobalt layer 107 is deposited at a temperature of about 25 to 500° C. In particular embodiments, the cobalt layer 107 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • Referring now to FIG. 3B, a [0042] titanium layer 109 is formed on the cobalt layer 107 at a temperature of about 400 to 750° C. using CVD. The titanium layer 109 may function as an ohmic layer. The titanium layer 109 is formed on the cobalt layer 107, which has been formed on the inner walls and the bottom of the contact hole 103 and on the insulating layer 105. The titanium layer 109 may be formed to a thickness of about 5 to 150 Å. Because the titanium layer 109 is formed at a relatively high temperature, cobalt silicide 111 is formed on the bottom of the contact hole 103 when forming the titanium layer 109.
  • Referring now to FIG. 3C, a [0043] titanium nitride layer 113 is formed on the cobalt layer 107 and the titanium layer 109 at a temperature of about 400 to 750° C. using CVD. The titanium nitride layer 113 may be formed to a thickness greater than 50 Å, for example, about 50 to 500 Å. The titanium nitride layer 113 may function as a diffusion barrier layer for preventing the diffusion of a material, which will be formed as a plug, for example, tungsten. As a result, the cobalt layer 107, the titanium layer 109, and the titanium nitride layer 113 may operate as a barrier metal layer 115.
  • Referring now to FIG. 3D, a [0044] plug 117 is formed on the barrier metal layer 115 to fill the contact hole 103 to provide a metal contact. The plug 117 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • Unlike a conventional method in which two thermal processes and a strip process are performed, the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 3A through 3D. In addition, in accordance with some embodiments of the present invention described above with respect to FIGS. 3A through 3D, the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer. Furthermore, the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced. [0045]
  • FIG. 4 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention. The structure and operative effects of the FIG. 4 embodiments of the present invention are similar to those of the embodiments described with respect to FIGS. 3A through 3D. In FIG. 4, however, a [0046] plug 119 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIGS. 3A and 3B. Thereafter, referring to FIG. 4, the plug 119 is formed on a titanium layer 109 to fill a contact hole 103 so that a metal contact is completed. The plug 119 may comprise a titanium nitride layer having a thickness of about 20 to 3000 Å.
  • FIGS. 5A through 5C are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention. Referring to FIG. 5A, an insulating [0047] layer 205 having a contact hole 203 therein is formed on a silicon substrate 201. A cobalt layer 207, which my function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 203 and on the insulating layer 205. The cobalt layer 207 may be formed to a thickness of about 5 to 200 Å. The cobalt layer 207 may be formed using PVD or CVD including ALD. When the cobalt layer 207 is formed using PVD, the cobalt layer 207 may be deposited at a temperature of about 25 to 500° C. In particular embodiments, the cobalt layer 207 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • Referring now to FIG. 5B, a [0048] titanium nitride layer 209 is formed on the cobalt layer 207 at a temperature of about 400 to 750° C. using CVD. The titanium nitride layer 209 is formed on the cobalt layer 207, which has been formed on the inner walls and the bottom of the contact hole 203 and on the insulating layer 205. The titanium nitride layer 209 may be formed to a thickness greater than 50 Å, for example, about 50 to 150 Å. The titanium nitride layer 209 may function as a diffusion barrier layer for preventing a material, which will be formed as a plug, for example, tungsten, into a lower silicon layer. Because the titanium nitride layer 209 is formed at a relatively high temperature, cobalt silicide 211 is formed on the bottom of the contact hole 203 when forming the titanium nitride layer 209. Accordingly, the cobalt layer 207 and the titanium nitride layer 209 may operate as a barrier metal layer.
  • Referring now to FIG. 5C, a [0049] plug 213 is formed on the titanium nitride layer 209 as the barrier metal layer to fill the contact hole 203 to provide a metal contact. The plug 213 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • Unlike a conventional method in which two thermal processes and a strip process are performed, the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 5A through 5C. [0050]
  • In addition, in accordance with some embodiments of the present invention described above with respect to FIGS. 5A through 5C, the cobalt silicide is formed when the titanium layer is formed at a relatively high temperature. Accordingly, the thickness of the cobalt layer may be reduced. [0051]
  • FIG. 6 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention. The structure and operative effects of the FIG. 6 embodiments of the present invention are similar to those of the embodiments described with respect to FIGS. 5A through 5C. In FIG. 6, however, a [0052] plug 215 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIG.5A. Thereafter, referring now to FIG. 6, the plug 215 is formed on a cobalt layer 217 to fill a contact hole 203. The plug 215 may comprise a titanium nitride layer having a thickness of about 20 to 3000 Å. When forming the plug 215, cobalt silicide 211 is formed on the bottom of the contact hole 203.
  • FIGS. 7A through 7D are sectional views that illustrate methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention. Referring now to FIG. 7A, an insulating [0053] layer 305 having a contact hole 303 therein is formed on a silicon substrate 301. A titanium layer 307, which may function as an ohmic layer, is formed on the inner walls and the bottom of the contact hole 303 and on the insulating layer 305. The titanium layer 307 may have a thickness of about 5 to 150 Å. The titanium layer 307 may be formed using PVD as shown in FIG. 7A. In other embodiments, the titanium layer 307 may be formed at a temperature of about 400 to 750° C. using CVD. When the titanium layer 307 is formed at a temperature using CVD, titanium silicide is formed on the bottom of the contact hole 303, which is not shown in FIG. 7A.
  • Referring now to FIG. 7B, a [0054] cobalt layer 309, which may function as an ohmic layer, is formed on the titanium layer 307. The cobalt layer 309 may have a thickness of about 5 to 200 Å. The cobalt layer 309 may be formed using PVD or CVD including ALD. When the cobalt layer 309 is formed using PVD, the cobalt layer 309 is deposited at a temperature of about 25 to 500° C. In particular embodiments, the cobalt layer 309 is deposited at a temperature of about 400 to 500° C. when PVD is used to improve morphology.
  • Referring now to FIG. 7C, a [0055] titanium nitride layer 311 is formed on the cobalt layer 309 at a temperature of about 400 to 750° C. using CVD. The titanium nitride layer 311 is formed on the cobalt layer 309, which has been formed on the inner walls and the bottom of the contact hole 303 and on the insulating layer 305. The titanium nitride layer 311 may have a thickness greater than 50 Å, for example, about 50 to 500 Å. Because the titanium nitride layer 311 is formed at a relatively high temperature, complex silicide 313 of titanium silicide and cobalt silicide is formed on the bottom of the contact hole 303 when forming the titanium nitride layer 311. The complex silicide 313, the titanium layer 307, and the cobalt layer 309 may function as an ohmic layer. The titanium nitride layer 311 may function as a diffusion barrier layer for preventing the diffusion of a material, which will be formed as a plug, for example, tungsten. As a result, the titanium layer 307, the cobalt layer 309, and the titanium nitride layer 311 may function as a barrier metal layer.
  • Referring now to FIG. 7D, a [0056] plug 315 is formed on the titanium nitride layer 311 to fill the contact hole 303 so that a metal contact is completed. The plug 315 may comprise a tungsten layer, a titanium nitride layer, an aluminum layer, and/or a tantalum nitride layer.
  • Unlike a conventional method in which two thermal processes and a strip process are performed, the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention described above with respect to FIGS. 7A through 7D. In addition, in accordance with some embodiments of the present invention described above with respect to FIGS. 7A through 7D, the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer. Furthermore, the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced. [0057]
  • FIG. 8 is a sectional view that illustrates methods for forming a metal contact in a semiconductor device according to additional embodiments of the present invention. The structure and operative effects of the FIG. 8 embodiments of the present invention are similar to those of the embodiments described with respect to FIGS. 7A through 7D. In FIG. 8, however, a [0058] plug 317 comprises a titanium nitride layer, which is used as a barrier metal layer. More specifically, a metal contact in a semiconductor device is formed as described above with respect to FIGS. 7A and 7B. Thereafter, referring now to FIG. 8, the plug 317 is formed on a cobalt layer 309 to fill a contact hole 303. The plug 317 may comprise a titanium nitride layer having a thickness of about 20 to 3000 Å. When forming the plug 317, cobalt silicide 313 is formed on the bottom of the contact hole 303.
  • FIG. 9 is a schematic view illustrating manufacturing equipment used for forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention. More specifically, the equipment according to embodiments of the present invention comprises a plurality of chambers installed on a [0059] body 401 and a transfer module 403, which is located in the body 401 for transferring wafers to each chamber. The chambers installed on the body 401 include a cobalt deposition chamber 405, a titanium deposition chamber 407, a titanium nitride deposition chamber 409, a cooling chamber 411, a load lock chamber 413, and a cleaning chamber 415. A wafer loaded in the load lock chamber 413 having an insulating layer with a contact hole formed therein formed thereon is cleaned in the cleaning chamber 415 and layers are formed on the wafer as it passes through each of the chambers 405, 407, and 409. Thereafter, the wafer including the layers is cooled in the cooling chamber 411. The cooled wafer is then discharged to the outside via the load lock chamber 413.
  • According to some embodiments of the present invention, when a metal contact in a semiconductor device is formed using the above-described equipment, the depositions of the cobalt layer, the titanium layer, and the titanium nitride layer, the depositions of the cobalt layer and the titanium nitride layer, and/or the depositions of the titanium layer, the cobalt layer, and the titanium nitride layer can be performed on the wafer in situ after the wafer is cleaned without a vacuum break. [0060]
  • If the cobalt layer is deposited in cobalt layer deposition equipment and a titanium layer and a titanium nitride layer are deposited in the other equipment after a vacuum break as in a conventional method, CoO[0061] x may be generated on the cobalt layer so that the generation of an ohmic layer is interrupted and a resistance is increased. Accordingly, a cleaning process may be required after the deposition of the cobalt layer. When the equipment of FIG. 9 is used, however, the wafers are cleaned and the cobalt layer, the titanium layer, and the titanium nitride layer are deposited in situ without a vacuum break so that the number and the time of processes are reduced while attaining a relatively stable contact resistance.
  • FIG. 10 is a graph that illustrates contact resistances when metal contacts are formed in semiconductor devices according to conventional methods and methods according to various embodiments of the present invention. The horizontal axis denotes experimental conditions and the vertical axis denotes the contact resistance distribution of 1000 contacts. More specifically, reference numerals a and a′ denote contact resistances when a cobalt layer is formed to a thickness of 100 Å, a titanium layer is formed to a thickness of 75 Å using CVD, and a titanium nitride layer is formed to a thickness of 250 Å using CVD according to the embodiments of FIGS. 3A through 3D. Reference numerals b and b′ denote contact resistances when the cobalt layer is formed to a thickness of 200 Å, the titanium layer is formed to a thickness of 75 Å using CVD, and the titanium nitride layer is formed to a thickness of 250 Å using CVD according to the embodiments of FIGS. 3A through 3D. Reference numerals c and c′ denote contact resistances when the cobalt layer is formed to a thickness of 100 Å according to the embodiments of FIGS. 7A through 7D. Reference numerals d and d′ denote contact resistances of conventionally formed cobalt silicide. Reference numerals e, e′, f, and f′ denote contact resistances of conventionally formed titanium suicide. In addition, reference numerals a, b, c, d, e, and f are the contact resistances when the layers are annealed at a temperature of 750° C. for 30 minutes. Reference numerals a′, b′, c′, d′, e′, and f′ are the contact resistances when the layers are annealed at a temperature of 750° C. for 30 minutes twice. [0062]
  • As shown in FIG. 10, the contact resistance of a semiconductor device, according to embodiments of the present invention, is generally less than the contact resistances of conventionally formed titanium silicide and cobalt silicide. In addition, even when the thermal processes are performed twice, the contact resistance of the semiconductor device according to embodiments of the present invention is generally less than the contact resistances of conventionally formed titanium silicide and cobalt silicide. [0063]
  • FIGS. 11A and 11B are graphs illustrating contact resistances of N[0064] + contacts and P+ contacts versus contact size when a bit line contact is formed in prior art semiconductor devices and semiconductor devices according to embodiments of the present invention. More specifically, in FIGS. 11A and 11B, Co 100A, denoted by transparent rectangles, and Co 200A, denoted by transparent circles, are formed by the conditions denoted by reference characters a and b of FIG. 10. In other words, Co 100A and Co 200A denote the cases where metal contacts are formed according to embodiments of the present invention. CiSi2, denoted by transparent diamonds, is formed by the conditions denoted by reference character d of FIG. 10. In other words, CiSi2 denotes the case where a contact is formed by conventional cobalt silicide. TiSi2, denoted by transparent inverse triangles, is formed by the conditions denoted by reference characters e or f of FIG. 10. In other words, TiSi2 denotes the case where a contact is formed using conventionally formed titanium silicide.
  • As shown in FIGS. 11A and 11B, the contact resistance of the bit line contact, which is formed according to embodiments of the present invention, is less than the contact resistance of the conventional bit line contact where cobalt silicide or titanium silicide is used. In particular, the effect is more significant when the contact size is reduced. [0065]
  • Unlike a conventional method in which two thermal processes and a strip process are performed, the cobalt silicide may function as an ohmic layer by performing relatively simple processing while forming a metal contact in a semiconductor device in accordance with some embodiments of the present invention. In addition, in accordance with some embodiments of the present invention, the cobalt layer and the titanium layer formed on the bottom of the contact hole may function as an ohmic layer. Accordingly, the thickness of the cobalt layer may be reduced compared to that of conventional methods in which only the cobalt layer is used as an ohmic layer. Furthermore, the cobalt silicide is formed when forming the titanium layer at a relatively high temperature, which may allow the thickness of the cobalt layer to be reduced. [0066]
  • In concluding the detailed description, it should be noted that many variations and modifications can be made to the preferred embodiments without substantially departing from the principles of the present invention. All such variations and modifications are intended to be included herein within the scope of the present invention, as set forth in the following claims. [0067]

Claims (41)

That which is claimed:
1. A method of forming a metal contact in a semiconductor device, comprising:
forming an insulating layer having a contact hole therein on a silicon substrate;
forming a cobalt layer on a bottom and inner walls of the contact hole;
forming a cobalt silicide layer at the bottom of the contact hole while forming a titanium layer on the cobalt layer; and
forming a plug on the titanium layer so as to fill the contact hole.
2. The method of claim 1, wherein the plug comprises titanium nitride.
3. The method of claim 1, further comprising:
forming a titanium nitride layer on the titanium layer; and
wherein forming the plug comprises:
forming the plug on the titanium nitride layer so as to fill the contact hole.
4. The method of claim 3, wherein the titanium nitride layer has a thickness of about 50 to 500 Å.
5. The method of claim 4, wherein the titanium nitride layer is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
6. The method of claim 3, wherein the plug comprises at least one of tungsten, titanium nitride, aluminum, and tantalum nitride.
7. The method of claim 3, wherein the cobalt layer, the titanium layer, and the titanium nitride layer are formed in situ without a vacuum break.
8. The method of claim 1, wherein the cobalt layer has a thickness of about 5 to 200 Å.
9. The method of claim 1, wherein the cobalt layer is formed using one of physical vapor deposition (PVD) and chemical vapor deposition (CVD).
10. The method of claim 9, wherein the cobalt layer is formed using PVD at a temperature of about 25 to 500° C.
11. The method of claim 1, wherein the titanium layer has a thickness of about 5 to 150 Å.
12. The method of claim 1, wherein the titanium layer is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
13. The method of claim 1, wherein substrate and insulating layer are cleaned after forming the insulating layer.
14. A method of forming a metal contact in a semiconductor device, comprising:
forming an insulating layer having a contact hole therein on a silicon substrate;
forming a cobalt layer on a bottom and inner walls of the contact hole;
forming a cobalt silicide layer at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer; and
forming a plug on the titanium nitride layer so as to fill the contact hole.
15. The method of claim 14, wherein the titanium nitride layer has a thickness of about 50 to 150 Å.
16. The method of claim 14, wherein the titanium nitride layer is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
17. The method of claim 14, wherein the plug comprises at least one of tungsten, titanium nitride, aluminum, and tantalum nitride.
18. The method of claim 14, wherein the cobalt layer and the titanium nitride layer are formed in situ without a vacuum break.
19. The method of claim 14, wherein the cobalt layer has a thickness of about 5 to 200 Å.
20. The method of claim 14, wherein the cobalt layer is formed using one of physical vapor deposition (PVD) and chemical vapor deposition (CVD).
21. The method of claim 20, wherein the cobalt layer is formed using PVD at a temperature of about 25 to 500° C.
22. The method of claim 14 wherein substrate and insulating layer are cleaned after forming the insulating layer.
23. A method of forming a metal contact in a semiconductor device, comprising:
forming an insulating layer having a contact hole therein on a silicon substrate;
forming a cobalt layer on a bottom and inner walls of the contact hole; and
forming a cobalt silicide layer at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer.
24. The method of claim 23, wherein the plug comprises titanium nitride.
25. The method of claim 24, wherein the plug has a thickness of about 20 to 3000 Å.
26. The method of claim 23, wherein the cobalt layer and the plug are formed in situ without a vacuum break.
27. A method of forming a metal contact in a semiconductor device, comprising:
forming an insulating layer having a contact hole therein on a silicon substrate;
forming a titanium layer on a bottom and inner walls of the contact hole;
forming a cobalt layer on the titanium layer;
forming a complex silicide layer comprising titanium suicide and cobalt silicide at the bottom of the contact hole while forming a titanium nitride layer on the cobalt layer; and
forming a plug on the titanium nitride layer so as to fill the contact hole.
28. The method of claim 27, wherein the plug comprises at least one of tungsten, titanium nitride, aluminum, and tantalum nitride.
29. The method of claim 27, wherein the titanium nitride layer has a thickness of about 50 to 500 Å.
30. The method of claim 27, wherein the titanium nitride layer is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
31. The method of claim 27, wherein the titanium layer, the cobalt layer, and the titanium nitride layer are formed in situ without a vacuum break.
32. The method of claim 27, wherein the cobalt layer has a thickness of about 5 to 200 Å.
33. The method of claim 27, wherein the cobalt layer is formed using one of physical vapor deposition (PVD) and chemical vapor deposition (CVD).
34. The method of claim 33, wherein the cobalt layer is formed using PVD at a temperature of about 25 to 500° C.
35. The method of claim 27, wherein the titanium layer has a thickness of about 5 to 150 Å.
36. The method of claim 27, wherein the titanium layer is formed using chemical vapor deposition (CVD) at a temperature of about 400 to 750° C.
37. The method of claim 27, wherein substrate and insulating layer are cleaned after forming the insulating layer.
38. A method of forming a metal contact in a semiconductor device, comprising:
forming an insulating layer having a contact hole therein on a silicon substrate;
forming a titanium layer on a bottom and inner walls of the contact hole;
forming a cobalt layer on the titanium layer; and
forming a complex silicide layer comprising titanium silicide and cobalt silicide at the bottom of the contact hole while forming a plug that fills the contact hole on the cobalt layer.
39. The method of claim 38, wherein the plug comprises titanium nitride.
40. The method of claim 39, wherein the plug has a thickness of about 20 to 3000 Å.
41. The method of claim 38, wherein the titanium layer, the cobalt layer, and the plug are formed in situ without a vacuum break.
US10/615,362 2002-08-23 2003-07-08 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer Abandoned US20040043601A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/112,356 US7223689B2 (en) 2002-08-23 2005-04-22 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US11/787,468 US20070197015A1 (en) 2002-08-23 2007-04-17 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US11/754,639 US20070269974A1 (en) 2002-08-23 2007-05-29 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2002-50072 2002-08-23
KR10-2002-0050072A KR100459717B1 (en) 2002-08-23 2002-08-23 Method for forming metal contact in semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/112,356 Division US7223689B2 (en) 2002-08-23 2005-04-22 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer

Publications (1)

Publication Number Publication Date
US20040043601A1 true US20040043601A1 (en) 2004-03-04

Family

ID=31973529

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/615,362 Abandoned US20040043601A1 (en) 2002-08-23 2003-07-08 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US11/112,356 Expired - Lifetime US7223689B2 (en) 2002-08-23 2005-04-22 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US11/787,468 Abandoned US20070197015A1 (en) 2002-08-23 2007-04-17 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/112,356 Expired - Lifetime US7223689B2 (en) 2002-08-23 2005-04-22 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US11/787,468 Abandoned US20070197015A1 (en) 2002-08-23 2007-04-17 Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer

Country Status (2)

Country Link
US (3) US20040043601A1 (en)
KR (1) KR100459717B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106859A1 (en) * 2003-10-28 2005-05-19 Hyun-Su Kim Methods of forming silicide films with metal films in semiconductor devices and contacts including the same
US20060251800A1 (en) * 2005-03-18 2006-11-09 Weidman Timothy W Contact metallization scheme using a barrier layer over a silicide layer
US20090166866A1 (en) * 2007-12-31 2009-07-02 Michal Efrati Fastow Contact metallization for semiconductor devices
US20150325792A1 (en) * 2012-06-25 2015-11-12 The Regents Of The University Of Michigan Large area organic photovoltaics
US20160190068A1 (en) * 2013-11-27 2016-06-30 Taiwan Semiconductor Manufacturing Company Limited Contact structure and formation thereof
US11424132B2 (en) 2018-11-03 2022-08-23 Applied Materials, Inc. Methods and apparatus for controlling contact resistance in cobalt-titanium structures

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284316B1 (en) * 1998-02-25 2001-09-04 Micron Technology, Inc. Chemical vapor deposition of titanium
US20070269974A1 (en) * 2002-08-23 2007-11-22 Park Hee-Sook Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
KR100617048B1 (en) * 2004-12-21 2006-08-30 동부일렉트로닉스 주식회사 method for forming contact of semiconductor device
US7525197B2 (en) * 2006-07-31 2009-04-28 Intel Corporation Barrier process/structure for transistor trench contact applications
JP5503833B2 (en) * 2006-08-23 2014-05-28 ピーエスフォー ルクスコ エスエイアールエル MOS transistor, semiconductor device and manufacturing method thereof
US20080119044A1 (en) * 2006-11-22 2008-05-22 Macronix International Co., Ltd. Systems and methods for back end of line processing of semiconductor circuits
US9553016B2 (en) * 2010-07-09 2017-01-24 Infineon Technologies Ag Contacts for semiconductor devices and methods of forming thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700722A (en) * 1992-08-06 1997-12-23 Sony Corporation Process for forming silicide plugs in semiconductor devices
US5998873A (en) * 1998-12-16 1999-12-07 National Semiconductor Corporation Low contact resistance and low junction leakage metal interconnect contact structure
US6091148A (en) * 1997-09-10 2000-07-18 Micron Technology Inc Electrical connection for a semiconductor structure
US6271122B1 (en) * 1999-07-12 2001-08-07 Advanced Micro Devices, Inc. Method of compensating for material loss in a metal silicone layer in contacts of integrated circuit devices
US20010016413A1 (en) * 1998-03-16 2001-08-23 Kyung-Tae Lee Semiconductor device and method of manufacturing a semiconductor device with reduced contact failures
US6297555B1 (en) * 1997-07-09 2001-10-02 Lsi Logic Corporation Method to obtain a low resistivity and conformity chemical vapor deposition titanium film
US20020093097A1 (en) * 2001-01-17 2002-07-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US20030107133A1 (en) * 2001-12-10 2003-06-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047367A (en) * 1990-06-08 1991-09-10 Intel Corporation Process for formation of a self aligned titanium nitride/cobalt silicide bilayer
JPH07283219A (en) * 1994-04-13 1995-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
US6329681B1 (en) * 1997-12-18 2001-12-11 Yoshitaka Nakamura Semiconductor integrated circuit device and method of manufacturing the same
KR100443353B1 (en) * 1997-12-30 2004-09-18 주식회사 하이닉스반도체 Method for forming barrier metal layer of semiconductor device to embody thermal stability and prevent contact resistance from being increased by high temperature heat treatment
KR100270614B1 (en) * 1998-03-04 2000-12-01 김규현 Semiconductor device having silicide of low contact resistance and manufacturing method thereof
KR20000012966A (en) * 1998-08-03 2000-03-06 윤종용 Contact manufacturing method of semiconductor
KR20000066420A (en) * 1999-04-16 2000-11-15 윤종용 Method of forming a metal contact for semiconductor device
KR100310175B1 (en) * 1999-12-31 2001-09-28 황인길 Method for forming silicide by ion implantation
US6579783B2 (en) * 2000-07-07 2003-06-17 Applied Materials, Inc. Method for high temperature metal deposition for reducing lateral silicidation
JP4910231B2 (en) * 2000-10-25 2012-04-04 ソニー株式会社 Manufacturing method of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700722A (en) * 1992-08-06 1997-12-23 Sony Corporation Process for forming silicide plugs in semiconductor devices
US6297555B1 (en) * 1997-07-09 2001-10-02 Lsi Logic Corporation Method to obtain a low resistivity and conformity chemical vapor deposition titanium film
US6091148A (en) * 1997-09-10 2000-07-18 Micron Technology Inc Electrical connection for a semiconductor structure
US20010016413A1 (en) * 1998-03-16 2001-08-23 Kyung-Tae Lee Semiconductor device and method of manufacturing a semiconductor device with reduced contact failures
US5998873A (en) * 1998-12-16 1999-12-07 National Semiconductor Corporation Low contact resistance and low junction leakage metal interconnect contact structure
US6271122B1 (en) * 1999-07-12 2001-08-07 Advanced Micro Devices, Inc. Method of compensating for material loss in a metal silicone layer in contacts of integrated circuit devices
US20020093097A1 (en) * 2001-01-17 2002-07-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US20030107133A1 (en) * 2001-12-10 2003-06-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106859A1 (en) * 2003-10-28 2005-05-19 Hyun-Su Kim Methods of forming silicide films with metal films in semiconductor devices and contacts including the same
US7214620B2 (en) * 2003-10-28 2007-05-08 Samsung Electronics Co., Ltd. Methods of forming silicide films with metal films in semiconductor devices and contacts including the same
US20060251800A1 (en) * 2005-03-18 2006-11-09 Weidman Timothy W Contact metallization scheme using a barrier layer over a silicide layer
US7514353B2 (en) * 2005-03-18 2009-04-07 Applied Materials, Inc. Contact metallization scheme using a barrier layer over a silicide layer
US20090166866A1 (en) * 2007-12-31 2009-07-02 Michal Efrati Fastow Contact metallization for semiconductor devices
US20150325792A1 (en) * 2012-06-25 2015-11-12 The Regents Of The University Of Michigan Large area organic photovoltaics
US20160190068A1 (en) * 2013-11-27 2016-06-30 Taiwan Semiconductor Manufacturing Company Limited Contact structure and formation thereof
US9735107B2 (en) * 2013-11-27 2017-08-15 Taiwan Semiconductor Manufacturing Company Limited Contact structure and formation thereof
US20170345765A1 (en) * 2013-11-27 2017-11-30 Taiwan Semiconductor Manufacturing Company Limited Contact structure and formation thereof
US10510664B2 (en) * 2013-11-27 2019-12-17 Taiwan Semiconductor Manufacturing Company Limited Contact structure and formation thereof
US11444028B2 (en) * 2013-11-27 2022-09-13 Taiwan Semiconductor Manufacturing Company Ltd. Contact structure and formation thereof
US11424132B2 (en) 2018-11-03 2022-08-23 Applied Materials, Inc. Methods and apparatus for controlling contact resistance in cobalt-titanium structures

Also Published As

Publication number Publication date
US7223689B2 (en) 2007-05-29
US20070197015A1 (en) 2007-08-23
US20050186784A1 (en) 2005-08-25
KR20040017655A (en) 2004-02-27
KR100459717B1 (en) 2004-12-03

Similar Documents

Publication Publication Date Title
US7223689B2 (en) Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US5614437A (en) Method for fabricating reliable metallization with Ta-Si-N barrier for semiconductors
US6482735B1 (en) Method for improved metal fill by treatment of mobility layers
US5700716A (en) Method for forming low contact resistance contacts, vias, and plugs with diffusion barriers
US6177338B1 (en) Two step barrier process
US6303505B1 (en) Copper interconnect with improved electromigration resistance
US6420784B2 (en) Electrochemical cobalt silicide liner for metal contact fills and damascene processes
US6706626B2 (en) Method of fabricating contact plug
US20020019127A1 (en) Interconnect structure and method of making
US20070066060A1 (en) Semiconductor devices and fabrication methods thereof
JP2010109388A (en) Method of forming titanium nitride barrier layer and semiconductor device including titanium nitride barrier layer
US20040238963A1 (en) Semiconductor device having structure for connecting interconnect lines
JP2009026989A (en) Semiconductor device, manufacturing method of the semiconductor device
US6888252B2 (en) Method of forming a conductive contact
US20090098730A1 (en) Semiconductor device and method of fabricating the same
US7538024B2 (en) Method of fabricating a dual-damascene copper structure
US7078810B2 (en) Semiconductor device and fabrication method thereof
US6060389A (en) Semiconductor fabrication employing a conformal layer of CVD deposited TiN at the periphery of an interconnect
US6433434B1 (en) Apparatus having a titanium alloy layer
US7344974B2 (en) Metallization method of semiconductor device
KR100701673B1 (en) METHOD FOR FORMING Cu WIRING OF SENICONDUCTOR DEVICE
US20070269974A1 (en) Methods for forming a metal contact in a semiconductor device in which an ohmic layer is formed while forming a barrier metal layer
US7524749B2 (en) Metallization method of semiconductor device
US20050101120A1 (en) Method of forming local interconnect barrier layers
TWI323497B (en) Method of fabricating a dual-damascene copper structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, HEE-SOOK;CHOI, GIL-HEYUN;KANG, SANG-BURN;AND OTHERS;REEL/FRAME:014618/0983

Effective date: 20030617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION