US20040064195A1 - Variable-mechanical-impedance artificial legs - Google Patents

Variable-mechanical-impedance artificial legs Download PDF

Info

Publication number
US20040064195A1
US20040064195A1 US10/613,499 US61349903A US2004064195A1 US 20040064195 A1 US20040064195 A1 US 20040064195A1 US 61349903 A US61349903 A US 61349903A US 2004064195 A1 US2004064195 A1 US 2004064195A1
Authority
US
United States
Prior art keywords
spring
controllable
mechanical
variable
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/613,499
Inventor
Hugh Herr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POWERED HUMAN AUGMENTATION DEVICES Inc
iWalk Inc
Original Assignee
Hugh Herr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hugh Herr filed Critical Hugh Herr
Priority to US10/613,499 priority Critical patent/US20040064195A1/en
Publication of US20040064195A1 publication Critical patent/US20040064195A1/en
Assigned to POWERED HUMAN AUGMENTATION DEVICES, INC. reassignment POWERED HUMAN AUGMENTATION DEVICES, INC. NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: HERR, HUGH, DR.
Assigned to IWALK LLC reassignment IWALK LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POWERED HUMAN AUGMENTATION DEVICES, INC.
Assigned to IWALK, INC. reassignment IWALK, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IWALK LLC
Priority to US13/363,820 priority patent/US8551184B1/en
Priority to US14/090,556 priority patent/US9084689B2/en
Priority to US14/804,542 priority patent/US9687363B2/en
Assigned to VENTURE LENDING & LEASING IX, INC. reassignment VENTURE LENDING & LEASING IX, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AFERO INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2/6607Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/602Artificial legs or feet or parts thereof with air cushions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/74Operating or control means fluid, i.e. hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5007Prostheses not implantable in the body having elastic means different from springs, e.g. including an elastomeric insert
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/503Prostheses not implantable in the body adjustable for adjusting elasticity, flexibility, spring rate or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2002/5016Prostheses not implantable in the body adjustable
    • A61F2002/5033Prostheses not implantable in the body adjustable for adjusting damping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • A61F2002/6614Feet
    • A61F2002/6621Toes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2002/6845Clutches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F2005/0132Additional features of the articulation
    • A61F2005/0134Additional features of the articulation with two orthogonal pivots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F2005/0132Additional features of the articulation
    • A61F2005/0169Additional features of the articulation with damping means

Definitions

  • ankle power data are shown for ten normal subjects walking at four walking speeds from slow (1 ⁇ 2 m/sec) to fast (1.8 m/sec). As walking speed increases, both positive mechanical work and peak mechanical power output increase dramatically. Many ankle-foot systems, most notably the Flex-Foot, employ springs that store and release energy during each walking step. Although some power plantar-flexion is possible with these elastic systems, normal biological levels are not possible. In addition to power limitations, the flex-foot also does not change stiffness in response to disturbances. The human ankle-foot system has been observed to change stiffness in response to forward speed variation and ground irregularities. In FIG. 3, data are shown for a normal subject walking at three speeds, showing that as speed increases ankle stiffness during controlled plantar-flexion increases.
  • biological limbs can be modeled as a variable spring-rate spring in parallel with a variable damping-rate damper in parallel with a variable-power-output forcing function (as shown in FIG. 4 a ).
  • natural human limbs act mostly as spring-damper combinations.
  • One example of such an activity is a slow walk.
  • a person's lower legs foot and ankle system
  • the energy-per-step put out by the muscles in the lower leg increases. This is supported by the data in FIG. 2.
  • variable-stiffness embodiments There are two major classes of embodiments of the present invention.
  • the first major class provides for actively controlled passive mechanical parameters (actively controlled spring rate and damping rate). This major class of embodiments will be referred to as variable-stiffness embodiments. Three sub-classes of variable-stiffness embodiments are disclosed:
  • Catapult embodiments which store energy from a power source over one span of time and release it over another span of time to aid locomotion).
  • catapult embodiments of the present invention are described in which elastic strain energy is stored during a walking, running or jumping phase and later used to power joint movements.
  • catapult systems are described in which storage and release of stored elastic energy occurs without delay.
  • elastic strain energy is stored and held for some time period before release.
  • mechanism architecture, sensing and control systems are described for shoe and O&P leg devices. Although just a few devices are described herein, it is to be understood that the principles could be used for a wide variety of applications within the fields of human-machine systems or legged robots. Examples of these first and second catapult embodiments are shown in FIGS. 4 through 6.
  • variable-stiffness embodiments are described herein in which variable spring-rate structures are constructed by varying the length of a moment arm which attaches to a spring element about a pivot axis, thus providing a variable rotational spring rate about the pivot axis. Examples of such embodiments are depicted in FIGS. 9 through 11.
  • variations in the length of the moment arm are made under microprocessor control at times of zero load, to minimize power consumed in the active control system.
  • FIGS. 12 through 14 Variable-stiffness embodiments of the present invention employing multiple interlockable parallel spring elements are depicted in FIGS. 12 through 14.
  • FIGS. 12 a and 12 b multiple parallel elastic leaf spring elements undergo paired interlocking at pre-set joint flexures or under microprocessor control.
  • This embodiment makes possible arbitrary piecewise-linear approximations to non-linear spring functions (such as function 624 in FIG. 12 d ).
  • a pneumatic embodiment which can be configured to behave similarly to the leaf spring embodiments shown in FIGS. 12 a and 12 b is shown in FIG. 13.
  • valves are electronically closed to effectively increase the number of pneumatic springs in parallel.
  • FIGS. 12 a , 12 b , and FIG. 13 could equivalently be replaced by other types of spring elements, such as coil springs, torsion bars, elastomeric blocks, etc.
  • FIG. 1 Depiction of stages of a gait cycle, including controlled plantar-flexion, controlled dorsi-flexion, and powered plantar-flexion.
  • FIG. 2 Data from ten normal subjects are plotted showing mechanical power output versus percent gait cycle in walking. Both zero and one hundred percent gait cycle correspond to heel strike of the same foot
  • FIG. 3 Data for one subject, showing normal biological ankle function during the controlled plantar-flexion phase of walking.
  • FIG. 4 a Basic catapult embodiment of the present invention, represented in terms of a lumped-parameter model.
  • FIG. 4 b Force-displacement graph where darkened area represents extra stored energy (used in walking/running) put into catapult system by force actuator while prosthetic foot is off the ground.
  • FIG. 4 c Side view of simplified prosthetic mechanism designed to provide powered plantar-flexion.
  • FIG. 4 d Front view of simplified prosthetic mechanism designed to provide powered plantar-flexion.
  • FIG. 5 a Catapult foot prosthesis or shoe orthosis for walking, running, and jumping, shown in the equilibrium configuration.
  • FIG. 5 b Catapult foot prosthesis or shoe orthosis for walking, running, and jumping, shown in a compressed state.
  • FIG. 6 a Side view of catapult leg prosthesis for walking, running, and jumping, shown in the equilibrium state.
  • FIG. 6 b Side view of catapult leg prosthesis for walking, running, and jumping, shown in a compressed state.
  • FIG. 6 c Front view of catapult leg prosthesis for walking, running, and jumping.
  • FIG. 7 An external, bi-articular transfemoral prosthesis or orthosis is shown in a heel strike to toe-off walking sequence.
  • the system comprises springs and controllable clutches to transfer energy from hip muscular work to ankle powered plantar-flexion work.
  • FIG. 8 An external, bi-articular transfemoral prosthesis or orthosis is shown in a heel strike to toe-off walking sequence.
  • the system comprises pneumatic springs and controllable valves to transfer energy from hip muscular work to ankle powered plantar-flexion work.
  • FIG. 10 Mechanical diagram of a low-profile prosthetic foot where spring elements are actively controlled (positioned) to affect ankle joint stiffness.
  • FIG. 11 Variable-stiffness joint according to the present invention, utilizing variable mechanical advantage to produce variable spring rate and/or variable damping rate.
  • FIG. 12 a Multiply interlockable parallel leaf spring structure, shown in equilibrium position.
  • FIG. 12 b Multiply interlockable parallel leaf spring structure, shown in a stored-energy position.
  • FIG. 12 c End view of two dove-tailed slidably attached leaf spring terminations with controllable interlock actuator.
  • FIG. 12 e Nonlinear damping element coupling mechanism for coupling multiple spring elements.
  • FIG. 13 Multiple-pneumatic-chamber variable spring rate and energy transfer system.
  • FIG. 14 Prosthetic ankle/foot utilizing multiple interlockable parallel leaf springs for ankle spring.
  • FIG. 15 Example prosthetic ankle/foot known in the art.
  • FIG. 16 Variable-stiffness pneumatic spring.
  • FIG. 4 a is a lumped-element model of a powered-catapult prosthetic.
  • the mounted end 203 of the prosthesis attaches to the body, and the distal end 204 of the prosthesis interfaces to the environment (such as the ground for a leg prosthesis).
  • Mounted end 203 is coupled to distal end 204 through spring 202 , and through the series combination of force actuator 205 and force sensor 201 .
  • displacement sensor 206 may also be included in parallel with spring 202 . If the system is designed to operate in parallel with an existing limb, the muscles of the existing limb are modeled by muscle 200 .
  • a mechanical implementation of lumped-element diagram 4 a is shown in side view in FIG. 4 c and in front view in FIG. 4 d .
  • motor 205 turns spool 209 to wind on some of tension band 208 , storing energy in spring 202 .
  • Force sensor 201 and winding distance sensor 207 may be used in a control loop to control how much energy is stored in spring 202 , and how rapidly this energy is stored.
  • clutch 207 is actuated to keep tension band 208 from unwinding and spring 202 from relaxing until the control system decides to release the stored energy.
  • the energy stored in spring 202 during the swing phase of the gait cycle is represented by the dark area on the force vs. distance graph shown in FIG. 4 b.
  • the control system releases clutch 207 , allowing the stored energy in spring 202 to be released, imitating the powered plantar-flexion stage of a normal gait cycle.
  • This release of energy mimics the pulse of power put out by a biological ankle during the powered plantar-flexion stage of a walking or running gait cycle.
  • motor 205 may store energy in spring 202 at the same time as the natural leg stores impact energy during the gait cycle.
  • This embodiment can be used to effectively implement one spring rate during compression (such as the spring rate depicted by the line from the origin to point Kd in FIG. 4 b ) and another spring rate during release (such as the spring rate depicted by the line from the origin to point Ks in FIG. 4 b ).
  • FIG. 5 shows a prosthetic foot or shoe orthosis that stores both muscle energy and motor energy in spring mechanism 300 during the gait cycle, for release during the powered plantar-flexion stage of the walking gait cycle (toe-off propulsion).
  • a person When walking on this type of catapult prosthesis or foot orthosis, a person would experience a first (lower) spring rate (depicted by the line from the origin to point Kd in FIG. 4 b ), and a second (higher) spring rate (depicted by the line from the origin to point Ks in FIG. 4 b ) when releasing energy from spring 300 during the powered plantar-flexion phase of the gait cycle.
  • part of the energy released during powered plantar-flexion came from leg muscle action compressing springs 202 and 300 , and part came from an electromechanical actuator such as a motor.
  • an electromechanical actuator such as a motor.
  • the majority of power stored in spring mechanisms by electromechanical actuators occurs during the minimal-load portion of the walking/running gait cycle (swing phase), and the start of the energy-release phase (late stance phase) of the gait cycle may be time-delayed with respect to the swing phase when motor energy is stored.
  • FIG. 6 is another depiction of the catapult leg prosthesis of FIG. 4, also showing socket 400 , which attaches to the residual biological limb.
  • the leg prostheses shown in FIGS. 4 and 6 are below-the-knee prostheses, the invention could also be employed in above-knee prostheses.
  • FIGS. 7 and 8 Two bi-articular embodiments of the present invention are shown in FIGS. 7 and 8.
  • a prosthesis above or below knee
  • robotic leg or full leg orthosis is shown having above-knee segment (a), knee joint (b), ankle joint (c), posterior knee pivot (d), posterior clutch (e), posterior spring (f), posterior cord (g), knee-ankle transfer clutch (h), anterior pivot (i), anterior clutch (j), anterior spring (k), and anterior cord (l).
  • Anterior spring (k) stretches and stores energy during early stance knee flexion (from 1 to 3) and then releases that energy during early stance knee extension (from 3 to 5).
  • posterior clutch (e) retracts posterior cord (g) as the distance from posterior knee pivot (d) to posterior clutch (e) becomes smaller.
  • bi-articular knee-ankle invention of embodiment I could assume many variations as would be obvious to those of ordinary skill in the art.
  • the system described herein could act in parallel to additional ankle-foot springs and/or to an active or passive knee damper.
  • the perpendicular distance from the line of spring force (f) to the knee's axis of rotation could go to zero as the knee approaches full extension.
  • FIG. 8 In a second embodiment (FIG. 8), a prosthesis (above or below knee), robotic leg or full leg orthosis is shown having a similar energy transfer from hip muscle extensors to artificial leg to power ankle plantar-flexion, accept energies are stored within pneumatic springs about the knee and then transferred to the ankle via a fluid transfer system.
  • the transfer of energy occurs without a physical bi-articular spring such as posterior spring (f) in FIG. 7.
  • anterior pneumatic spring (j) compresses and stores energy during early stance knee flexion (from 1 to 3).
  • anterior knee valve (k) is closed or locked throughout early stance knee flexion and extension (from 1 to 5).
  • posterior knee valve (g) is open during early stance knee flexion so that posterior pneumatic spring (f) exerts little force. Knee valve (g) is then closed during knee extension so that energy is stored in the posterior pneumatic spring (f). When the ankle is maximally dorsi-flexed and the knee fully extended (leg configuration 5 ), posterior pneumatic spring (f) is maximally compressed.
  • knee-ankle transfer valve changes from a closed state to an open state
  • anterior ankle valve (n) changes to a closed state, allowing all the energy stored in spring (f) is be transferred through the ankle to power ankle plantar-flexion (from 6 to 7 ).
  • anterior and posterior valves are open to allow the knee to freely flex without compressing anterior spring (j).
  • bi-articular knee-ankle invention of embodiment II could assume many variations as would be obvious to those of ordinary skill in the art.
  • the system described herein could act in parallel to active or passive ankle-foot springs and/or to an active or passive knee damper.
  • the energy in posterior pneumatic spring (f) could be transferred to a temporary holding chamber to be later released to the ankle during powered plantar-flexion.
  • the mechanical system in FIG. 9 is a variable-mechanical-advantage embodiment of a variable-stiffness spring.
  • Motors 500 and motor-driven screws 505 serve to change the moment of compression of bow spring 503 about pivot point 504 .
  • This mechanism may be used to adjust spring stiffness with minimal power under no-load conditions. It may also be used as an alternative way of storing energy in a spring which is under load, and thus may be used as a component of an immediate-release catapult system such as depicted in FIG. 5.
  • FIG. 10 depicts a low-profile prosthetic foot-ankle with top plate 1 and bottom plate 2 , where spring elements are actively controlled (positioned) to affect ankle joint stiffness.
  • This embodiment of the present invention is a variable-stiffness embodiment of the “variable mechanical advantage” sub-class.
  • side-to-side spring rates of the prosthetic ankle and front-to-back spring rates of the prosthetic ankle are adjusted by varying the distance of spring elements 4 , 5 , 6 , and 7 from the central pivot point 15 of the ankle joint.
  • Spring top plates 13 and spring bottom plates 12 of spring elements 4 , 5 , 6 , and 7 slide in tracks 14 , driven by position-adjusting motors 8 , 9 , 10 , and 11 .
  • motors 8 , 9 , 10 , and 11 only change the positions of spring elements 4 , 5 , 6 , and 7 when the ankle joint is under zero load (for instance, during the part of the walking gait when the foot is not in contact with the ground). Adjustment of spring position under zero load allows position adjustments to be done with minimal energy.
  • This embodiment offers independent inversion/eversion stiffness control as well as independent plantar-flexion and dorsi-flexion control.
  • FIG. 11 A variable stiffness ankle-foot prosthesis embodiment according to the present invention is shown in FIG. 11.
  • Constant-rate spring or damping element 1700 fixedly attached at one end and movably attached at the other end. Attachment point 1701 may be moved in and out with respect to the effective pivot point of the ankle joint. If element 1700 is a damping element, this configuration provides a variable damping ankle joint. If element 1700 is a spring element, this configuration provides a variable spring rate ankle joint.
  • FIGS. 9, 10 and 11 demonstrate how a constant element can be transformed into a variable element according to the present invention, by varying mechanical advantage. In non-catapult preferred embodiments of the present invention, the variation in mechanical advantage takes place such that the motion used to vary the mechanical advantage takes place substantially perpendicular to the force the element being moved is under, thus minimizing the work needed to vary the mechanical advantage.
  • FIGS. 12 a and 12 b depict a multiple-parallel-leaf-spring embodiment of a variable mechanical impedance according to the present invention.
  • Leaf springs 600 are bound together and bound tightly to attaching bracket 602 at one end by bolt 601 .
  • leaf springs terminate in slidably interlocking blocks 603 , which may be locked together dynamically in pairs by interlocking plates 605 .
  • Each interlocking plate 605 is permanently bonded to one leaf spring terminator block 603 at surface interface 606 , and controllably bindable to a second leaf spring terminator block 604 at a second interface 607 , by binding actuator 608 .
  • Binding actuator 608 may bind surface interface 607 by any number of means such as mechanical clamp, pin-in-socket, magnetic clamp, etc. Adjacent leaf spring terminator blocks are slidably attached by dovetail slides or the like.
  • the structure shown in FIGS. 12 a - c can be used to implement a piecewise-linear spring function such as function 604 depicted in FIG. 12 d , by engaging successive interlocks 605 at pre-determined points in spring flexure, and disengaging at like points.
  • the slope discontinuities in function 604 may be “smoothed” by coupling successive leaf springs through coupling springs.
  • stop plate 619 is affixed to leaf spring termination 620
  • coupling spring 621 is mounted to leaf spring termination 618 through coupling spring mount 622 .
  • Leaf spring termination 620 is free to slide with respect to leaf spring termination 618 until coupling spring 621 and stop plate 619 come in contact.
  • Coupling spring 621 acts to smooth the transition from the uncoupled stiffness of two leaf springs to the coupled stiffness of two leaf springs, resulting in smoothed force-displacement function 625 in FIG. 12 d.
  • coupling spring 621 is itself a stiff, nonlinear spring.
  • coupling spring 621 may have actively controllable stiffness, and may be made according to any of variable-stiffness spring embodiments of the present invention.
  • FIG. 12 e depicts a non-linear dissipative coupling mechanism for coupling pairs of spring elements in a multiple-parallel-element spring.
  • Mechanical mounts 609 and 610 affix to a pair of spring elements to be coupled.
  • one of 609 and 610 is permanently affixed and the other of 609 and 610 is controllably affixed through a mechanism such as 608 described above.
  • Piston 611 is coupled to mount 609 through rod 612 which passes through seal 614 .
  • piston 611 may move back and forth in chamber 615 along the axis of rod 612 .
  • Chamber 615 is preferably filled with viscose or thixotropic substance 616 .
  • a viscose substance can be used in chamber 616 to provide a mechanical coupling force proportional to the square of the differential velocity between mounts 609 and 610 .
  • a thixotropic substance (such as a mixture of corn starch and water) can be used to provide an even more nonlinear relationship between coupling force and the differential velocity between coupling plates 609 and 610 .
  • an electronically controlled variable damping element may be used in series with force sensor 617 between mounts 609 and 610 , to provide an arbitrary non-linear dissipative coupling.
  • FIG. 13 depicts a multiple-couplable-parallel element pneumatic embodiment of the present invention.
  • Multiple parallel pneumatic chambers 900 couple mounting plates 908 and 909 .
  • Pneumatic hoses 902 connect chambers 900 to a common chamber 901 through individually actuatable valves 903 .
  • Spring stiffness between plates 908 and 909 is maximized when all valves 903 are closed, and minimized when all valves 903 are open.
  • Additional pneumatic element 905 may be added to transfer power from one prosthetic joint to another.
  • valves 904 and 906 may be timed to actuate in sequence with valves 903 to transfer power directly from chamber 905 to chambers 900 .
  • energy may be transferred from chamber 905 to chambers 900 or vice versa in a delayed manner, by chambers 900 or chamber 905 first pressurizing chamber 901 , then isolating chamber 901 by closing valves 903 and 904 for some period of time, then transferring the energy stored in chamber 901 to chambers 900 or 905 by opening the appropriate valves.
  • FIG. 15 a depicts a prosthetic ankle-foot system known in the art.
  • Ankle spring 1500 is affixed to foot-plate 1501 .
  • One variable-stiffness embodiment of the present invention shown in FIG. 15 uses a multiple-parallelly-interlockable-leaf-spring structure such as that shown in FIG. 12 in place of ankle spring 1500 .
  • Multiple-parallelly-interlockable-leaf-spring 1600 allows for different spring rates in forward and backward bending, allowing separately controllable rates of controlled plantar-flexion and controlled dorsi-flexion.
  • ankle spring 1500 is split into inner ankle spring 1500 a , and outer ankle spring 1500 b , and heel spring 1501 is split rearward of attachment point AP into inner heel spring 1501 a and outer heel spring 1501 b .
  • ankle springs 1500 a and 1500 b and heel springs 1501 a and 1501 b each comprise actively-variable multi-leaf springs such as ankle spring 1600 in FIG. 14. Having separate inner and outer variable-stiffness ankle springs allows for active control of side-to-side stiffness of the prosthetic ankle joint. Having separate inner and outer variable-stiffness heel springs allows for active control medio-lateral ankle stiffness.
  • FIG. 16 A pneumatic embodiment of a variable-stiffness spring for a prosthesis is shown in FIG. 16.
  • Male segment 702 comprises one end of the overall variable-stiffness spring, and female segment 701 comprises the other end.
  • Control electronics 710 are contained in the upper end of male segment 710 .
  • Intake valve 715 is actuatable to allow air to enter pressure chamber 708 through air intake channel 716 when pressure chamber 708 is below atmospheric pressure (or an external pump may be used to allow air to enter even when chamber 708 is above atmospheric pressure).
  • Air pressure sensor 709 senses the pressure in pressure chamber 708 .
  • Pressure chamber 708 is coupled to second pressure chamber 703 through valve 711 .
  • the air in pressure chamber 703 acts as a pneumatic spring in parallel with spring 704 .
  • Pressure in pressure chamber 703 may be lowered to a desired value by opening valve 703 for a controlled period of time, allowing air to escape through pressure release channel 714 .
  • valve 711 is open and pressure chambers 708 and 703 combine to form a single pressure chamber. In this mode, movement of piston 706 directly controls the overall pressure chamber volume, and thus the overall pneumatic spring rate. In another mode of operation, valve 711 is closed, and valve 706 may be opened and piston 706 may withdrawn to add air to the system.
  • variable-stiffness leg prosthesis in a preferred embodiment of a variable-stiffness leg prosthesis according to the present invention is implemented through the pneumatic system of FIG. 16, motion of piston 706 occurs under minimal load, such as during the phase of gait when the foot is off the ground, or when the user is standing still.
  • the pneumatic system shown in FIG. 16 may also be used to implement immediate-release or delayed-release catapult embodiments of the present invention.
  • An immediate-release catapult may be implemented by opening valve 711 , and using motor 705 to add power (for instance, during the powered plantar-flexion phase of gait) as the power is needed.
  • valves 715 and 711 are closed while motor 705 moves piston 706 to pressurize chamber 708 , and then energy stored in chamber 708 is rapidly released during a phase of gait to produce the same effect as powered plantar-flexion.

Abstract

In one aspect, the invention provides methods and apparatus facilitating an adjustable-stiffness prosthesis or orthosis (including approximations to arbitrarily definable non-linear spring functions). Spring rates may be varied under no-load conditions during a walking gate cycle to minimize power consumption. In another aspect, the invention provides methods and apparatus for outputting positive power from a prosthesis or orthosis, facilitating high-performance artificial limbs. In one embodiment of the invention, the positive power is transferred from a functioning muscle to the prosthesis or orthosis, which mimics or assists a non-functioning or impaired muscle. In another embodiment of the invention, the positive power comes from an on-board power source in the prosthesis or orthosis.

Description

  • This patent application claims priorety of Provisional Patent Application No. 60/395,938, filed Jul. 15, 2002. [0001]
  • The invention relates generally to the fields of legged robotics, orthotic leg devices and prosthetic leg joints, and more specifically to artificial limbs with time-variable mechanical parameters.[0002]
  • BACKGROUND
  • Prosthetic limbs have come a long way since the days of simple wooden “peg legs”. Today, amputee men running on a prosthetic leg can beat race times of the best unimpaired women runners. It is believed that new advances in prosthetic limbs (such as those embodied in the present invention) will soon lead to amputees being able to out-perform the best unimpaired athletes of the same sex in sports such as running. It is an object of the present invention to advance the state of prosthetic limbs to a new level, providing increased athletic performance, increased control, and reduced body strain. It is a further object of the present invention to provide essential elements needed for making prosthetic limbs that more accurately mimic the mechanical behavior of healthy human limbs. [0003]
  • Description of Normal, Level-ground Walking: [0004]
  • In order to establish terminology used in this document, the basic walking progression from heel strike to toe off is first explained. There are three distinct phases to a walking stance-period as depicted in FIG. 1 with heel-[0005] toe sequence 1 through 7.
  • Saggital Plane Knee Phases [0006]
  • 1. Beginning with heel strike, the stance knee begins to flex slightly (Sequence 1-3). This flexion allows for shock absorption upon impact as well as keeping the body's center of gravity at a more constant vertical level throughout stance. [0007]
  • 2. After maximum flexion is reached in the stance knee, the joint begins to extend again, until full extension is reached (Sequence 3-5). [0008]
  • 3. During late stance, the knee of the supporting leg begins to flex again in preparation for the swing phase (Sequence 5-7). This is referred to in the literature as “knee break”. At this time, the adjacent foot strikes the ground and the body is in “double support mode” (that is to say, both legs are supporting body weight). [0009]
  • Saggital Plane Ankle Phases [0010]
  • 1. Beginning with heel strike, the ankle undergoes a controlled plantar-flexion phase where the foot rotates towards the ground until the forefoot makes contact (Sequence 1-2). [0011]
  • 2. After controlled plantar-flexion, the ankle undergoes a controlled dorsi-flexion phase where the tibia rotates forwardly while the foot remains in contact with the ground (Sequence 2-5). [0012]
  • 3. During late stance, the ankle undergoes a powered plantar-flexion phase where the forefoot presses against the ground raising the heel from the ground (Sequence 5-7). This final phase of walking delivers a maximal level of mechanical power to the walking step to slow the fall of the body prior to heel strike of the adjacent, forwardly positioned leg. [0013]
  • The development of artificial leg systems that exhibit natural knee and ankle movements has been a long standing goal for designers of legged robots, prostheses and orthoses. In recent years, significant progress has been made in this area. The current state-of-the-art in prosthetic knee technology, the Otto Bock C-Leg, enables amputees to walk with early stance knee flexion and extension, and the state-of-the-art in ankle-foot systems (such as the Össur Flex-Foot) allow for ankle controlled plantar-flexion and dorsi-flexion. Although these systems restore a high level of functionality to leg amputees, they nonetheless fail to restore normal levels of ankle powered plantar-flexion, a movement considered important not only for biological realism but also for walking economy. In FIG. 2, ankle power data are shown for ten normal subjects walking at four walking speeds from slow (½ m/sec) to fast (1.8 m/sec). As walking speed increases, both positive mechanical work and peak mechanical power output increase dramatically. Many ankle-foot systems, most notably the Flex-Foot, employ springs that store and release energy during each walking step. Although some power plantar-flexion is possible with these elastic systems, normal biological levels are not possible. In addition to power limitations, the flex-foot also does not change stiffness in response to disturbances. The human ankle-foot system has been observed to change stiffness in response to forward speed variation and ground irregularities. In FIG. 3, data are shown for a normal subject walking at three speeds, showing that as speed increases ankle stiffness during controlled plantar-flexion increases. [0014]
  • Artificial legs with a mechanical impedance that can be modeled as a spring in parallel with a damper are known in the art. Some prostheses with non-linear spring rates or variable damping rates are also known in the art. Unfortunately, any simple linear or non-linear spring action cannot adequately mimic a natural limb that puts out positive power during part of the gait cycle. A simple non-linear spring function is monotonic, and the force vs. displacement function is the same while loading the spring as while unloading the spring. It is an object of the present invention to provide actively electronically controlled prosthetic limbs which improve significantly on the performance of artificial legs known in the art, and which require minimal power from batteries and the like. It is a further object of the present invention to provide advanced electronically-controlled artificial legs which still function reasonably well should the active control function fail (for instance due to power to the electronics of the limb being lost). Still further, it is an object of the present invention to provide artificial legs capable of delivering power at places in the gait cycle where a normal biological ankle delivers power. And finally, it is an object of the present invention to provide prosthetic legs with a controlled mechanical impedance and the ability to deliver power, while minimizing the inertial moment of the limb about the point where it attaches to the residual biological limb. [0015]
  • During use, biological limbs can be modeled as a variable spring-rate spring in parallel with a variable damping-rate damper in parallel with a variable-power-output forcing function (as shown in FIG. 4[0016] a). In some activities, natural human limbs act mostly as spring-damper combinations. One example of such an activity is a slow walk. When walking slowly, a person's lower legs (foot and ankle system) act mostly as a system of springs and dampers. As walking speed increases, the energy-per-step put out by the muscles in the lower leg increases. This is supported by the data in FIG. 2.
  • Muscle tissue can be controlled through nerve impulses to provide variable spring rate, variable damping rate, and variable forcing function. It is an objective of the present invention to better emulate the wide range of controllability of damping rate, spring rate, and forcing function provided by human muscles, and in some cases to provide combination of these functions which are outside the range of natural muscles. [0017]
  • SUMMARY OF THE INVENTION
  • There are two major classes of embodiments of the present invention. The first major class provides for actively controlled passive mechanical parameters (actively controlled spring rate and damping rate). This major class of embodiments will be referred to as variable-stiffness embodiments. Three sub-classes of variable-stiffness embodiments are disclosed: [0018]
  • 1) Multiple parallel interlockable springs. [0019]
  • 2) Variable mechanical advantage. [0020]
  • 3) Pressure-variable pneumatics. [0021]
  • The second major class of embodiments of the present invention allows for the controlled storage and release of mechanical energy within a gait cycle according to any arbitrary function, including functions not available through simple nonlinear springs. Within this second major class of embodiments, energy can be stored and released at rates which are variable under active control. Thus for a given joint, the force vs. displacement function is not constrained to be monotonic or single-valued. Within this class of embodiments, energy (from either muscle or a separate on-board power source) can be stored and released along arbitrarily defined functions of joint angular or linear displacement, force, etc. This major subclass of embodiments shall be referred to herein as energy transfer embodiments. Two sub-classes of energy transfer embodiments are disclosed: [0022]
  • 1) Bi-articular embodiments (which transfer energy from a proximal joint to a distal joint to mimic the presence of a missing joint). [0023]
  • 2) Catapult embodiments (which store energy from a power source over one span of time and release it over another span of time to aid locomotion). [0024]
  • The present invention makes possible prostheses that have mechanical impedance components (damping and spring rate) and power output components that are actively controllable as functions of joint position, angular velocity, and phase of gait. When used in a prosthetic leg, the present invention makes possible control of mechanical parameters as a function of how fast the user is walking or running, and as a function of where within a particular step the prosthetic leg is operating. [0025]
  • It is often necessary to apply positive mechanical power in running shoes or in orthotic and prosthetic (O&P) leg joints to increase locomotory speed, to jump higher, or to produce a more natural walking or running gait. For example, when walking at moderate to high speeds, the ankle generates mechanical power to propel the lower leg upwards and forwards during swing phase initiation. In FIG. 2, data are shown for ten normal subjects showing that the ankle delivers more energy during a single step than it absorbs, especially for moderate to fast walking speeds. [0026]
  • Two catapult embodiments of the present invention are described in which elastic strain energy is stored during a walking, running or jumping phase and later used to power joint movements. In a first embodiment, catapult systems are described in which storage and release of stored elastic energy occurs without delay. In a second embodiment, elastic strain energy is stored and held for some time period before release. In each Embodiment, mechanism architecture, sensing and control systems are described for shoe and O&P leg devices. Although just a few devices are described herein, it is to be understood that the principles could be used for a wide variety of applications within the fields of human-machine systems or legged robots. Examples of these first and second catapult embodiments are shown in FIGS. 4 through 6. [0027]
  • One bi-articular embodiment of the invention described herein comprises a system of knee-ankle springs and clutches that afford a transfer of energy from hip muscle extensor work to artificial ankle work to power late stance plantar-flexion. Since the energy for ankle plantar-flexion originates from muscle activity about the hip, a motor and power supply need not be placed at the ankle, lowering the total mass of the knee-ankle prosthesis and consequently the metabolic cost associated with accelerating the legs in walking. Examples of these embodiments are shown in FIGS. 7 and 8. [0028]
  • Several variable-stiffness embodiments are described herein in which variable spring-rate structures are constructed by varying the length of a moment arm which attaches to a spring element about a pivot axis, thus providing a variable rotational spring rate about the pivot axis. Examples of such embodiments are depicted in FIGS. 9 through 11. In a preferred embodiment, variations in the length of the moment arm are made under microprocessor control at times of zero load, to minimize power consumed in the active control system. [0029]
  • Variable-stiffness embodiments of the present invention employing multiple interlockable parallel spring elements are depicted in FIGS. 12 through 14. In FIGS. 12[0030] a and 12 b, multiple parallel elastic leaf spring elements undergo paired interlocking at pre-set joint flexures or under microprocessor control. This embodiment makes possible arbitrary piecewise-linear approximations to non-linear spring functions (such as function 624 in FIG. 12d). A pneumatic embodiment which can be configured to behave similarly to the leaf spring embodiments shown in FIGS. 12a and 12 b is shown in FIG. 13. In the pneumatic embodiment of FIG. 13, valves are electronically closed to effectively increase the number of pneumatic springs in parallel.
  • The multiple parallel spring elements in FIGS. 12[0031] a, 12 b, and FIG. 13 could equivalently be replaced by other types of spring elements, such as coil springs, torsion bars, elastomeric blocks, etc.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1: Depiction of stages of a gait cycle, including controlled plantar-flexion, controlled dorsi-flexion, and powered plantar-flexion. [0032]
  • FIG. 2: Data from ten normal subjects are plotted showing mechanical power output versus percent gait cycle in walking. Both zero and one hundred percent gait cycle correspond to heel strike of the same foot [0033]
  • FIG. 3: Data for one subject, showing normal biological ankle function during the controlled plantar-flexion phase of walking. [0034]
  • FIG. 4[0035] a: Basic catapult embodiment of the present invention, represented in terms of a lumped-parameter model.
  • FIG. 4[0036] b: Force-displacement graph where darkened area represents extra stored energy (used in walking/running) put into catapult system by force actuator while prosthetic foot is off the ground.
  • FIG. 4[0037] c: Side view of simplified prosthetic mechanism designed to provide powered plantar-flexion.
  • FIG. 4[0038] d: Front view of simplified prosthetic mechanism designed to provide powered plantar-flexion.
  • FIG. 5[0039] a: Catapult foot prosthesis or shoe orthosis for walking, running, and jumping, shown in the equilibrium configuration.
  • FIG. 5[0040] b: Catapult foot prosthesis or shoe orthosis for walking, running, and jumping, shown in a compressed state.
  • FIG. 6[0041] a: Side view of catapult leg prosthesis for walking, running, and jumping, shown in the equilibrium state.
  • FIG. 6[0042] b: Side view of catapult leg prosthesis for walking, running, and jumping, shown in a compressed state.
  • FIG. 6[0043] c: Front view of catapult leg prosthesis for walking, running, and jumping.
  • FIG. 7: An external, bi-articular transfemoral prosthesis or orthosis is shown in a heel strike to toe-off walking sequence. The system comprises springs and controllable clutches to transfer energy from hip muscular work to ankle powered plantar-flexion work. [0044]
  • FIG. 8: An external, bi-articular transfemoral prosthesis or orthosis is shown in a heel strike to toe-off walking sequence. The system comprises pneumatic springs and controllable valves to transfer energy from hip muscular work to ankle powered plantar-flexion work. [0045]
  • FIG. 9: Perpendicularly-variable-moment pivotal spring structure. [0046]
  • FIG. 10: Mechanical diagram of a low-profile prosthetic foot where spring elements are actively controlled (positioned) to affect ankle joint stiffness. [0047]
  • FIG. 11: Variable-stiffness joint according to the present invention, utilizing variable mechanical advantage to produce variable spring rate and/or variable damping rate. [0048]
  • FIG. 12[0049] a: Multiply interlockable parallel leaf spring structure, shown in equilibrium position.
  • FIG. 12[0050] b: Multiply interlockable parallel leaf spring structure, shown in a stored-energy position.
  • FIG. 12[0051] c: End view of two dove-tailed slidably attached leaf spring terminations with controllable interlock actuator.
  • FIG. 12[0052] d: Piecewise-linear approximation to nonlinear spring function achieved by interlocking successive parallel leaf springs at various angles, and smoothed nonlinear spring function achieved by interlocking successive parallel leaf springs through coupling springs.
  • FIG. 12[0053] e: Nonlinear damping element coupling mechanism for coupling multiple spring elements.
  • FIG. 13: Multiple-pneumatic-chamber variable spring rate and energy transfer system. [0054]
  • FIG. 14: Prosthetic ankle/foot utilizing multiple interlockable parallel leaf springs for ankle spring. [0055]
  • FIG. 15: Example prosthetic ankle/foot known in the art. [0056]
  • FIG. 16: Variable-stiffness pneumatic spring.[0057]
  • DETAILED DESCRIPTION
  • A powered-catapult embodiment of the present invention is shown in FIGS. 4[0058] a-4 d. FIG. 4a is a lumped-element model of a powered-catapult prosthetic. The mounted end 203 of the prosthesis attaches to the body, and the distal end 204 of the prosthesis interfaces to the environment (such as the ground for a leg prosthesis). Mounted end 203 is coupled to distal end 204 through spring 202, and through the series combination of force actuator 205 and force sensor 201. In some embodiments, displacement sensor 206 may also be included in parallel with spring 202. If the system is designed to operate in parallel with an existing limb, the muscles of the existing limb are modeled by muscle 200.
  • A mechanical implementation of lumped-element diagram [0059] 4 a is shown in side view in FIG. 4c and in front view in FIG. 4d. In a preferred embodiment, during the portion of a gait cycle when the foot is not in contact with the ground, motor 205 turns spool 209 to wind on some of tension band 208, storing energy in spring 202. Force sensor 201 and winding distance sensor 207 may be used in a control loop to control how much energy is stored in spring 202, and how rapidly this energy is stored. Once the desired energy has been stored, clutch 207 is actuated to keep tension band 208 from unwinding and spring 202 from relaxing until the control system decides to release the stored energy. The energy stored in spring 202 during the swing phase of the gait cycle is represented by the dark area on the force vs. distance graph shown in FIG. 4b.
  • During the powered plantar-flexion phase of the gait cycle, the control system releases clutch [0060] 207, allowing the stored energy in spring 202 to be released, imitating the powered plantar-flexion stage of a normal gait cycle. This release of energy mimics the pulse of power put out by a biological ankle during the powered plantar-flexion stage of a walking or running gait cycle.
  • In an alternate embodiment, [0061] motor 205 may store energy in spring 202 at the same time as the natural leg stores impact energy during the gait cycle. This embodiment can be used to effectively implement one spring rate during compression (such as the spring rate depicted by the line from the origin to point Kd in FIG. 4b) and another spring rate during release (such as the spring rate depicted by the line from the origin to point Ks in FIG. 4b).
  • In an alternate embodiment, FIG. 5 shows a prosthetic foot or shoe orthosis that stores both muscle energy and motor energy in [0062] spring mechanism 300 during the gait cycle, for release during the powered plantar-flexion stage of the walking gait cycle (toe-off propulsion). When walking on this type of catapult prosthesis or foot orthosis, a person would experience a first (lower) spring rate (depicted by the line from the origin to point Kd in FIG. 4b), and a second (higher) spring rate (depicted by the line from the origin to point Ks in FIG. 4b) when releasing energy from spring 300 during the powered plantar-flexion phase of the gait cycle.
  • For catapult embodiments depicted in both FIG. 4 and in FIG. 5, part of the energy released during powered plantar-flexion came from leg muscle [0063] action compressing springs 202 and 300, and part came from an electromechanical actuator such as a motor. In a preferred embodiment of the present invention as depicted in FIG. 4, the majority of power stored in spring mechanisms by electromechanical actuators occurs during the minimal-load portion of the walking/running gait cycle (swing phase), and the start of the energy-release phase (late stance phase) of the gait cycle may be time-delayed with respect to the swing phase when motor energy is stored.
  • FIG. 6 is another depiction of the catapult leg prosthesis of FIG. 4, also showing [0064] socket 400, which attaches to the residual biological limb. Although the leg prostheses shown in FIGS. 4 and 6 are below-the-knee prostheses, the invention could also be employed in above-knee prostheses.
  • Two bi-articular embodiments of the present invention are shown in FIGS. 7 and 8. In a first embodiment (FIG. 7), a prosthesis (above or below knee), robotic leg or full leg orthosis is shown having above-knee segment (a), knee joint (b), ankle joint (c), posterior knee pivot (d), posterior clutch (e), posterior spring (f), posterior cord (g), knee-ankle transfer clutch (h), anterior pivot (i), anterior clutch (j), anterior spring (k), and anterior cord (l). Anterior spring (k) stretches and stores energy during early stance knee flexion (from 1 to 3) and then releases that energy during early stance knee extension (from 3 to 5). Here spring (k) exerts zero force when the knee is fully extended, and anterior clutch (j) is engaged or locked throughout early stance knee flexion and extension (from 1 to 5). This stored energy, together with an applied extensor hip moment from either a robotic or biological hip, result in an extensor moment at the knee, forcing the knee to extend and stretching posterior spring (f) (from 3 to 5). The spring equilibrium length of posterior spring (f) is equal to the minimum distance from posterior knee pivot (d) to posterior clutch (e) ([0065] leg configuration 3 in FIG. 7). To achieve this spring equilibrium, posterior clutch (e) retracts posterior cord (g) as the distance from posterior knee pivot (d) to posterior clutch (e) becomes smaller. When this distance begins to increase in response to knee extension and ankle dorsi-flexion (from 4 to 5), posterior clutch (e) engages, causing posterior spring (f) to stretch. When the ankle is maximally dorsi-flexed and the knee fully extended (leg configuration 5), posterior spring (f) becomes maximally stretched. When the leg assumes this posture, knee-ankle transfer clutch changes from a disengaged state to an engaged state. Engaging the knee-ankle clutch mechanically grounds spring (f) below the knee rotational axis, and consequently, all the energy stored in spring (f) is transferred through the ankle to power ankle plantar-flexion (from 6 to 7). During late stance (from 5 to 6), the knee of the supporting leg begins to flex again in preparation for the swing phase. For this late stance knee flexion, anterior clutch (j) is disengaged to allow the knee to freely flex without stretching anterior spring (k).
  • It should be understood that the bi-articular knee-ankle invention of embodiment I (FIG. 7) could assume many variations as would be obvious to those of ordinary skill in the art. For example, the system described herein could act in parallel to additional ankle-foot springs and/or to an active or passive knee damper. Additionally, instead of mechanically grounding spring (f) distal to the knee axis to effectively transfer all the stored energy through the ankle, the perpendicular distance from the line of spring force (f) to the knee's axis of rotation could go to zero as the knee approaches full extension. [0066]
  • In a second embodiment (FIG. 8), a prosthesis (above or below knee), robotic leg or full leg orthosis is shown having a similar energy transfer from hip muscle extensors to artificial leg to power ankle plantar-flexion, accept energies are stored within pneumatic springs about the knee and then transferred to the ankle via a fluid transfer system. In this embodiment, the transfer of energy occurs without a physical bi-articular spring such as posterior spring (f) in FIG. 7. In this embodiment, anterior pneumatic spring (j) compresses and stores energy during early stance knee flexion (from 1 to 3). Here anterior knee valve (k) is closed or locked throughout early stance knee flexion and extension (from 1 to 5). This stored energy, together with an applied extensor hip moment from either a robotic or biological hip, result in an extensor moment at the knee, forcing the knee to extend and compress posterior pneumatic spring (f) (from 3 to 5). It is important to note that posterior knee valve (g) is open during early stance knee flexion so that posterior pneumatic spring (f) exerts little force. Knee valve (g) is then closed during knee extension so that energy is stored in the posterior pneumatic spring (f). When the ankle is maximally dorsi-flexed and the knee fully extended (leg configuration [0067] 5), posterior pneumatic spring (f) is maximally compressed. When the leg assumes this posture, knee-ankle transfer valve changes from a closed state to an open state, and anterior ankle valve (n) changes to a closed state, allowing all the energy stored in spring (f) is be transferred through the ankle to power ankle plantar-flexion (from 6 to 7). During late stance (from 5 to 6), the knee of the supporting leg begins to flex again in preparation for the swing phase. For this late stance knee flexion, anterior and posterior valves (g, k) are open to allow the knee to freely flex without compressing anterior spring (j).
  • It should be understood that the bi-articular knee-ankle invention of embodiment II (FIG. 8) could assume many variations as would be obvious to those of ordinary skill in the art. For example, the system described herein could act in parallel to active or passive ankle-foot springs and/or to an active or passive knee damper. Additionally, the energy in posterior pneumatic spring (f) could be transferred to a temporary holding chamber to be later released to the ankle during powered plantar-flexion. [0068]
  • The mechanical system in FIG. 9 is a variable-mechanical-advantage embodiment of a variable-stiffness spring. [0069] Motors 500 and motor-driven screws 505 serve to change the moment of compression of bow spring 503 about pivot point 504. This mechanism may be used to adjust spring stiffness with minimal power under no-load conditions. It may also be used as an alternative way of storing energy in a spring which is under load, and thus may be used as a component of an immediate-release catapult system such as depicted in FIG. 5.
  • FIG. 10 depicts a low-profile prosthetic foot-ankle with [0070] top plate 1 and bottom plate 2, where spring elements are actively controlled (positioned) to affect ankle joint stiffness. This embodiment of the present invention is a variable-stiffness embodiment of the “variable mechanical advantage” sub-class. In this low-profile prosthetic ankle joint embodiment, side-to-side spring rates of the prosthetic ankle and front-to-back spring rates of the prosthetic ankle are adjusted by varying the distance of spring elements 4, 5, 6, and 7 from the central pivot point 15 of the ankle joint. Spring top plates 13 and spring bottom plates 12 of spring elements 4, 5, 6, and 7 slide in tracks 14, driven by position-adjusting motors 8, 9, 10, and 11. In a preferred embodiment, motors 8, 9, 10, and 11 only change the positions of spring elements 4, 5, 6, and 7 when the ankle joint is under zero load (for instance, during the part of the walking gait when the foot is not in contact with the ground). Adjustment of spring position under zero load allows position adjustments to be done with minimal energy. This embodiment offers independent inversion/eversion stiffness control as well as independent plantar-flexion and dorsi-flexion control.
  • A variable stiffness ankle-foot prosthesis embodiment according to the present invention is shown in FIG. 11. Constant-rate spring or damping [0071] element 1700 fixedly attached at one end and movably attached at the other end. Attachment point 1701 may be moved in and out with respect to the effective pivot point of the ankle joint. If element 1700 is a damping element, this configuration provides a variable damping ankle joint. If element 1700 is a spring element, this configuration provides a variable spring rate ankle joint. FIGS. 9, 10 and 11 demonstrate how a constant element can be transformed into a variable element according to the present invention, by varying mechanical advantage. In non-catapult preferred embodiments of the present invention, the variation in mechanical advantage takes place such that the motion used to vary the mechanical advantage takes place substantially perpendicular to the force the element being moved is under, thus minimizing the work needed to vary the mechanical advantage.
  • FIGS. 12[0072] a and 12 b depict a multiple-parallel-leaf-spring embodiment of a variable mechanical impedance according to the present invention. Leaf springs 600 are bound together and bound tightly to attaching bracket 602 at one end by bolt 601. At the other end, leaf springs terminate in slidably interlocking blocks 603, which may be locked together dynamically in pairs by interlocking plates 605. Each interlocking plate 605 is permanently bonded to one leaf spring terminator block 603 at surface interface 606, and controllably bindable to a second leaf spring terminator block 604 at a second interface 607, by binding actuator 608. Binding actuator 608 may bind surface interface 607 by any number of means such as mechanical clamp, pin-in-socket, magnetic clamp, etc. Adjacent leaf spring terminator blocks are slidably attached by dovetail slides or the like. The structure shown in FIGS. 12a-c can be used to implement a piecewise-linear spring function such as function 604 depicted in FIG. 12d, by engaging successive interlocks 605 at pre-determined points in spring flexure, and disengaging at like points.
  • In a preferred embodiment, the slope discontinuities in [0073] function 604 may be “smoothed” by coupling successive leaf springs through coupling springs. In FIG. 12d, stop plate 619 is affixed to leaf spring termination 620, and coupling spring 621 is mounted to leaf spring termination 618 through coupling spring mount 622. Leaf spring termination 620 is free to slide with respect to leaf spring termination 618 until coupling spring 621 and stop plate 619 come in contact. Coupling spring 621 acts to smooth the transition from the uncoupled stiffness of two leaf springs to the coupled stiffness of two leaf springs, resulting in smoothed force-displacement function 625 in FIG. 12d.
  • In a preferred embodiment, [0074] coupling spring 621 is itself a stiff, nonlinear spring. In another preferred embodiment, coupling spring 621 may have actively controllable stiffness, and may be made according to any of variable-stiffness spring embodiments of the present invention.
  • FIG. 12[0075] e depicts a non-linear dissipative coupling mechanism for coupling pairs of spring elements in a multiple-parallel-element spring. Mechanical mounts 609 and 610 affix to a pair of spring elements to be coupled. In a preferred embodiment, one of 609 and 610 is permanently affixed and the other of 609 and 610 is controllably affixed through a mechanism such as 608 described above. Piston 611 is coupled to mount 609 through rod 612 which passes through seal 614. Thus piston 611 may move back and forth in chamber 615 along the axis of rod 612. Chamber 615 is preferably filled with viscose or thixotropic substance 616. A viscose substance can be used in chamber 616 to provide a mechanical coupling force proportional to the square of the differential velocity between mounts 609 and 610. A thixotropic substance (such as a mixture of corn starch and water) can be used to provide an even more nonlinear relationship between coupling force and the differential velocity between coupling plates 609 and 610. Alternately, an electronically controlled variable damping element may be used in series with force sensor 617 between mounts 609 and 610, to provide an arbitrary non-linear dissipative coupling.
  • Utilizing a nonlinear dissipative coupling between pairs of elements in a multiple-parallel-element spring allows joint spring rates in a prosthetic limb which are a function of velocity. Thus, a joint spring rate can automatically become stiffer when running than it is while walking. [0076]
  • In one preferred embodiment, [0077] chamber 615 is rigidly mounted to mount 610. In another preferred embodiment, chamber 615 is mounted to mount 610 through coupling spring 623. In a preferred embodiment, coupling spring 623 may be an actively-controlled variable stiffness spring according to the present invention.
  • FIG. 13 depicts a multiple-couplable-parallel element pneumatic embodiment of the present invention. Multiple parallel [0078] pneumatic chambers 900 couple mounting plates 908 and 909. Pneumatic hoses 902 connect chambers 900 to a common chamber 901 through individually actuatable valves 903. Spring stiffness between plates 908 and 909 is maximized when all valves 903 are closed, and minimized when all valves 903 are open. Additional pneumatic element 905 may be added to transfer power from one prosthetic joint to another.
  • In an immediate-energy-transfer embodiment of the present invention according to FIG. 13, [0079] valves 904 and 906 may be timed to actuate in sequence with valves 903 to transfer power directly from chamber 905 to chambers 900. In a delayed-energy-transfer embodiment of the present invention according to FIG. 13, energy may be transferred from chamber 905 to chambers 900 or vice versa in a delayed manner, by chambers 900 or chamber 905 first pressurizing chamber 901, then isolating chamber 901 by closing valves 903 and 904 for some period of time, then transferring the energy stored in chamber 901 to chambers 900 or 905 by opening the appropriate valves.
  • FIG. 15[0080] a depicts a prosthetic ankle-foot system known in the art. Ankle spring 1500 is affixed to foot-plate 1501. One variable-stiffness embodiment of the present invention shown in FIG. 15 uses a multiple-parallelly-interlockable-leaf-spring structure such as that shown in FIG. 12 in place of ankle spring 1500. Multiple-parallelly-interlockable-leaf-spring 1600 allows for different spring rates in forward and backward bending, allowing separately controllable rates of controlled plantar-flexion and controlled dorsi-flexion.
  • In one embodiment of the present invention (shown in FIG. 15[0081] b), ankle spring 1500 is split into inner ankle spring 1500 a, and outer ankle spring 1500 b, and heel spring 1501 is split rearward of attachment point AP into inner heel spring 1501 a and outer heel spring 1501 b. In a preferred embodiment, ankle springs 1500 a and 1500 b and heel springs 1501 a and 1501 b each comprise actively-variable multi-leaf springs such as ankle spring 1600 in FIG. 14. Having separate inner and outer variable-stiffness ankle springs allows for active control of side-to-side stiffness of the prosthetic ankle joint. Having separate inner and outer variable-stiffness heel springs allows for active control medio-lateral ankle stiffness.
  • A pneumatic embodiment of a variable-stiffness spring for a prosthesis is shown in FIG. 16. [0082] Male segment 702 comprises one end of the overall variable-stiffness spring, and female segment 701 comprises the other end. Control electronics 710 are contained in the upper end of male segment 710. Intake valve 715 is actuatable to allow air to enter pressure chamber 708 through air intake channel 716 when pressure chamber 708 is below atmospheric pressure (or an external pump may be used to allow air to enter even when chamber 708 is above atmospheric pressure). Air pressure sensor 709 senses the pressure in pressure chamber 708. Pressure chamber 708 is coupled to second pressure chamber 703 through valve 711. The air in pressure chamber 703 acts as a pneumatic spring in parallel with spring 704. Motor 705 turns ball screw 707 to move piston 706 back and forth to control the volume of pressure chamber 708. Pressure in pressure chamber 703 may be lowered to a desired value by opening valve 703 for a controlled period of time, allowing air to escape through pressure release channel 714.
  • In one mode of operation, [0083] valve 711 is open and pressure chambers 708 and 703 combine to form a single pressure chamber. In this mode, movement of piston 706 directly controls the overall pressure chamber volume, and thus the overall pneumatic spring rate. In another mode of operation, valve 711 is closed, and valve 706 may be opened and piston 706 may withdrawn to add air to the system.
  • In a preferred embodiment of a variable-stiffness leg prosthesis according to the present invention is implemented through the pneumatic system of FIG. 16, motion of [0084] piston 706 occurs under minimal load, such as during the phase of gait when the foot is off the ground, or when the user is standing still.
  • The pneumatic system shown in FIG. 16 may also be used to implement immediate-release or delayed-release catapult embodiments of the present invention. An immediate-release catapult may be implemented by opening [0085] valve 711, and using motor 705 to add power (for instance, during the powered plantar-flexion phase of gait) as the power is needed. In a delayed-release catapult embodiment of the present invention, valves 715 and 711 are closed while motor 705 moves piston 706 to pressurize chamber 708, and then energy stored in chamber 708 is rapidly released during a phase of gait to produce the same effect as powered plantar-flexion.
  • In a preferred embodiment of the present invention, a pneumatic prosthetic leg element according to FIG. 16 is combined with the multiple controllably-couplable parallel leaf spring prosthetic ankle-foot of FIG. 15 to provide a prosthetic limb which provides powered plantar-flexion, controllable compressional leg spring stiffness, and controllable ankle stiffness during controlled plantar-flexion and controlled dorsi-flexion. [0086]
  • The foregoing discussion should be understood as illustrative and should not be considered to be limiting in any sense. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the claims.[0087]

Claims (11)

Having described the invention, what is claimed is:
1. A variable impedance prosthesis or orthosis, comprising:
a. A proximal end for interfacing to a user;
b. a distal end for interfacing to the environment;
c. a stiffness controller;
d. a controllable-spring-rate spring element.
2. The apparatus of claim 1, wherein said controllable-stiffness spring element comprises multiple parallel interlockable spring elements.
3. The apparatus of claim 1, wherein said controllable-stiffness spring element comprises a spring element with a variable mechanical advantage.
4. The apparatus of claim 1, wherein said controllable-stiffness spring element comprises multiple parallel valved pneumatic spring elements.
5. The apparatus of claim 1, wherein said controllable-stiffness spring element comprises a spring element and a parallel powered mechanical force source.
6. The apparatus of claim 1, wherein said controllable-stiffness spring element comprises a spring element and a series powered mechanical displacement source.
7. The apparatus of claim 1, wherein said controllable-spring-rate spring element further comprises:
a. a first spring element disposed between said proximal end and said distal end;
b. a mechanical energy storage element;
c. a controllable power source configured to store energy in said energy storage element;
d. a controllable coupling between said energy storage element and said first spring element;
e. a controller configured to control timing and rate of power output of said controllable mechanical power source, and coupling of controllable coupling.
8. The apparatus of claim 7, wherein said controllable mechanical power source comprises a muscle and a controllable mechanical coupling between said muscle and said energy storage element
9. A method for providing variable mechanical impedance in a prosthetic or orthotic, comprising varying the spring rate a controllable-spring-rate spring automatically with a spring-rate controller as a function of a repeated cycle of use of said prosthetic or orthotic.
10. The method of claim 9, wherein said variable-spring-rate spring comprises multiple parallel interlockable spring elements, and said controller controls the interlocking of said elements.
11. The method of claim 9, wherein said variable-spring-rate spring further comprises a first spring and an energy storage element, and further comprising:
a. storing energy from a power source in said energy storage element during a first span of time;
b. releasing energy from said energy storage element in the form of mechanical work displacing a proximal end of a prosthesis from a distal end of said prosthesis or orthosis during a second span of time.
US10/613,499 2002-07-15 2003-07-03 Variable-mechanical-impedance artificial legs Abandoned US20040064195A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/613,499 US20040064195A1 (en) 2002-07-15 2003-07-03 Variable-mechanical-impedance artificial legs
US13/363,820 US8551184B1 (en) 2002-07-15 2012-02-01 Variable mechanical-impedance artificial legs
US14/090,556 US9084689B2 (en) 2002-07-15 2013-11-26 Variable-mechanical-impedance artificial legs
US14/804,542 US9687363B2 (en) 2002-07-15 2015-07-21 Variable-mechanical-impedance artificial legs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39593802P 2002-07-15 2002-07-15
US10/613,499 US20040064195A1 (en) 2002-07-15 2003-07-03 Variable-mechanical-impedance artificial legs

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/363,820 Continuation US8551184B1 (en) 2002-07-15 2012-02-01 Variable mechanical-impedance artificial legs
US14/090,556 Continuation US9084689B2 (en) 2002-07-15 2013-11-26 Variable-mechanical-impedance artificial legs

Publications (1)

Publication Number Publication Date
US20040064195A1 true US20040064195A1 (en) 2004-04-01

Family

ID=32033444

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/613,499 Abandoned US20040064195A1 (en) 2002-07-15 2003-07-03 Variable-mechanical-impedance artificial legs
US13/363,820 Expired - Lifetime US8551184B1 (en) 2002-07-15 2012-02-01 Variable mechanical-impedance artificial legs
US14/090,556 Expired - Lifetime US9084689B2 (en) 2002-07-15 2013-11-26 Variable-mechanical-impedance artificial legs
US14/804,542 Expired - Lifetime US9687363B2 (en) 2002-07-15 2015-07-21 Variable-mechanical-impedance artificial legs

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/363,820 Expired - Lifetime US8551184B1 (en) 2002-07-15 2012-02-01 Variable mechanical-impedance artificial legs
US14/090,556 Expired - Lifetime US9084689B2 (en) 2002-07-15 2013-11-26 Variable-mechanical-impedance artificial legs
US14/804,542 Expired - Lifetime US9687363B2 (en) 2002-07-15 2015-07-21 Variable-mechanical-impedance artificial legs

Country Status (1)

Country Link
US (4) US20040064195A1 (en)

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040111163A1 (en) * 2002-08-22 2004-06-10 Stephane Bedard Actuated leg prosthesis for above-knee amputees
US20040181289A1 (en) * 2002-08-22 2004-09-16 Stephane Bedard Actuated prosthesis for amputees
US20050038524A1 (en) * 2003-08-15 2005-02-17 Jonsson Orn Ingvi Low profile prosthetic foot
US20050107889A1 (en) * 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US20050143838A1 (en) * 2003-10-24 2005-06-30 Collier Milo S. Vacuum-assisted prosthetic device
US20050192677A1 (en) * 2004-02-12 2005-09-01 Ragnarsdottir Heidrun G. System and method for motion-controlled foot unit
US20050267603A1 (en) * 2004-05-28 2005-12-01 Lecomte Christophe G Foot prosthesis with resilient multi-axial ankle
US20050273178A1 (en) * 2004-02-06 2005-12-08 Boyan Barbara D Load bearing biocompatible device
DE102004020368A1 (en) * 2004-04-23 2005-12-15 Otto Bock Healthcare Gmbh Artificial jointless foot
US20050283257A1 (en) * 2004-03-10 2005-12-22 Bisbee Charles R Iii Control system and method for a prosthetic knee
US20060058893A1 (en) * 2004-05-28 2006-03-16 Clausen Arinbjorn V Method of measuring the performance of a prosthetic foot
US20060069448A1 (en) * 2002-08-30 2006-03-30 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method and control unit for controlling the joint device
US20060074493A1 (en) * 2003-05-02 2006-04-06 Bisbee Charles R Iii Systems and methods of loading fluid in a prosthetic knee
US20060135883A1 (en) * 2004-12-22 2006-06-22 Jonsson Helgi Systems and methods for processing limb motion
US20060136072A1 (en) * 2004-05-07 2006-06-22 Bisbee Charles R Iii Magnetorheologically actuated prosthetic knee
US20060173552A1 (en) * 2005-02-02 2006-08-03 Roy Kim D Prosthetic and orthotic systems usable for rehabilitation
US20060224247A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for actuating a prosthetic ankle based on a relaxed position
US20070040312A1 (en) * 2005-06-09 2007-02-22 Arizona Board Of Regents Adjustable stiffness leaf spring actuators
US20070050047A1 (en) * 2005-09-01 2007-03-01 Ragnarsdottlr Heidrun G System and method for determining terrain transitions
US20070050045A1 (en) * 2005-09-01 2007-03-01 Clausen Arinbjorn V Sensing system and method for motion-controlled foot unit
US20070123997A1 (en) * 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US20070156252A1 (en) * 2005-09-01 2007-07-05 Ossur Hf Actuator assebmly for prosthetic or orthotic joint
US20070257490A1 (en) * 2006-05-05 2007-11-08 Sri International Wave powered generation using electroactive polymers
US20070257491A1 (en) * 2006-05-05 2007-11-08 Sri International Wave powered generation
WO2008048658A2 (en) * 2006-10-17 2008-04-24 Northwestern University Equilibrium-point prosthetic and orthotic ankle-foot systems
US20080277943A1 (en) * 2005-08-10 2008-11-13 Donelan James M Method and apparatus for harvesting biomechanical energy
US7485152B2 (en) 2005-08-26 2009-02-03 The Ohio Willow Wood Company Prosthetic leg having electronically controlled prosthetic knee with regenerative braking feature
US20090171469A1 (en) * 2006-06-30 2009-07-02 Freygardur Thorsteinsson Intelligent orthosis
US20090287314A1 (en) * 2008-05-13 2009-11-19 Rifkin Jerome R Joints for prosthetic, orthotic and/or robotic devices
US20090299480A1 (en) * 2007-01-05 2009-12-03 Victhom Human Bionics Inc. Joint Actuation Mechanism for a Prosthetic and/or Orthotic Device Having a Compliant Transmission
US7682540B2 (en) 2004-02-06 2010-03-23 Georgia Tech Research Corporation Method of making hydrogel implants
US20100076346A1 (en) * 2005-06-30 2010-03-25 University Of Virginia Patent Foundation Method and System for Energy Returning Ankle Foot Orthosis (ERAFO)
US20100113980A1 (en) * 2008-09-04 2010-05-06 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US20100114329A1 (en) * 2005-03-31 2010-05-06 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100160844A1 (en) * 2007-01-05 2010-06-24 Benoit Gilbert High Torque Active Mechanism for Orthotic and/or Prosthetic Devices
US20100241242A1 (en) * 2005-03-31 2010-09-23 Massachusetts Institute Of Technology Artificial Joints Using Agonist-Antagonist Actuators
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US20100286796A1 (en) * 2009-05-05 2010-11-11 Ossur Hf Control systems and methods for prosthetic or orthotic devices
US20100324699A1 (en) * 2005-03-31 2010-12-23 Massachusetts Institute Of Technology Model-Based Neuromechanical Controller for a Robotic Leg
US20100324698A1 (en) * 2009-06-17 2010-12-23 Ossur Hf Feedback control systems and methods for prosthetic or orthotic devices
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US20110093091A1 (en) * 2004-03-16 2011-04-21 Tensegrity Prosthetics, Inc. Tensegrity Joints for Prosthetic, Orthotic, and Robotic Devices
US20110098606A1 (en) * 2005-02-02 2011-04-28 Ossur Hf Sensing systems and methods for monitoring gait dynamics
US20110208322A1 (en) * 2009-07-14 2011-08-25 Tensegrity Prosthetics Inc. Joints for Prosthetic, Orthotic and/or Robotic Devices
US20110213471A1 (en) * 2010-02-26 2011-09-01 össur hf Prosthetic foot with a curved split
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
WO2012099709A2 (en) * 2011-01-20 2012-07-26 Nothwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and methods of use
US20120203359A1 (en) * 2011-02-03 2012-08-09 Marquette University Passive Ankle Prosthesis with Energy Return Simulating That of a Natural Ankle
US8287477B1 (en) 2003-09-25 2012-10-16 Massachusetts Institute Of Technology Active ankle foot orthosis
CN102885660A (en) * 2012-10-24 2013-01-23 北京工道风行智能技术有限公司 Power below-knee prosthesis with discrete soft toe joints
US20130035623A1 (en) * 2008-08-28 2013-02-07 Nace Richard A Knee Brace with Improved Gait Swing Assist
US20130046218A1 (en) * 2011-08-15 2013-02-21 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
US20130110256A1 (en) * 2005-03-31 2013-05-02 Massachusetts Institute Of Technology Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components
US8480760B2 (en) 2010-04-12 2013-07-09 Northwestern University Passive ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and method of use
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US8551184B1 (en) 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US20130268090A1 (en) * 2012-03-14 2013-10-10 Vanderbilt University System and method for providing biomechanically suitable running gait in powered lower limb devices
US20130282141A1 (en) * 2012-03-19 2013-10-24 Massachusetts Institute Of Technology Variable Impedance Mechanical Interface
US8617254B2 (en) 2004-03-10 2013-12-31 Ossur Hf Control system and method for a prosthetic knee
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8736087B2 (en) 2011-09-01 2014-05-27 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
DE102012023023A1 (en) * 2012-11-26 2014-05-28 Otto Bock Healthcare Gmbh Orthopedic device
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US8814949B2 (en) 2005-04-19 2014-08-26 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US20140276304A1 (en) * 2013-03-14 2014-09-18 Yale University Friction-Based Orthotic Impedence Modulation Device
US20140303539A1 (en) * 2013-04-08 2014-10-09 Elwha Llc Apparatus, System, and Method for Controlling Movement of an Orthopedic Joint Prosthesis in a Mammalian Subject
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
US20150089455A1 (en) * 2013-09-26 2015-03-26 Fujitsu Limited Gesture input method
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US9028559B2 (en) 2011-09-26 2015-05-12 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US9044348B2 (en) 2012-04-30 2015-06-02 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US20150261140A1 (en) * 2014-03-12 2015-09-17 Ricoh Company, Ltd. Transfer device and image forming apparatus including same
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US20150305894A1 (en) * 2010-10-25 2015-10-29 Otto Bock Healthcare Gmbh Prosthetic foot
US9198780B2 (en) 2012-02-14 2015-12-01 Ossur Hf Vacuum assisted suspension system
US20150351938A1 (en) * 2006-12-14 2015-12-10 Blatchford Products Limited Prosthetic ankle and foot combination
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US9351900B2 (en) 2012-09-17 2016-05-31 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US20160158032A1 (en) * 2013-05-03 2016-06-09 Springactive, Inc. Quasi-Active Prosthetic Joint System
US9364348B2 (en) 2013-03-01 2016-06-14 Ossur Hf Vacuum suspension system
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
US9439797B2 (en) 2013-04-08 2016-09-13 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US9549827B2 (en) 2009-04-13 2017-01-24 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
WO2017068037A1 (en) * 2015-10-21 2017-04-27 Fondazione Istituto Italiano Di Tecnologia Humanoid robot foot comprising an active variable stiffness mechanism
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
US9757256B2 (en) 2014-07-01 2017-09-12 Ossur Hf Pump mechanism for vacuum suspension system
WO2017180970A1 (en) * 2016-04-14 2017-10-19 Marquette University Passive ankle prosthesis with energy return
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US9943421B2 (en) 2015-05-21 2018-04-17 Ossur Iceland Ehf Membrane pump system for use with a prosthetic system
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US20180116826A1 (en) * 2015-03-04 2018-05-03 Freedom Innovations, Llc Lower limb prosthesis
WO2018089513A1 (en) * 2016-11-09 2018-05-17 Djo, Llc Orthopedic walking boot having a mechanically adjustable ramp insert
US9994269B1 (en) * 2015-11-12 2018-06-12 Schaft Inc. Rotatable extension for robot foot
US9999526B2 (en) 2006-12-14 2018-06-19 Blatchford Products Limited Prosthetic ankle joint mechanism
US10016290B2 (en) 2012-09-17 2018-07-10 Vanderbilt University Walking controller for powered ankle prostheses
US10028845B2 (en) 2015-01-08 2018-07-24 Ossur Iceland Ehf Pump mechanism
DE102017112457A1 (en) 2017-06-06 2018-12-06 Ottobock Se & Co. Kgaa Orthopedic technical joint device
WO2018224552A1 (en) 2017-06-06 2018-12-13 Ottobock Se & Co. Kgaa Orthopedic joint device
DE102017115267A1 (en) 2017-07-07 2019-01-10 Ottobock Se & Co. Kgaa Orthopedic technical joint device
US10179055B2 (en) 2015-05-29 2019-01-15 Ossur Iceland Ehf Pump system for use with a prosthetic device
US20190021938A1 (en) * 2013-11-07 2019-01-24 Samsung Electronics Co., Ltd. Walking assistance robot and method of controlling the walking assistance robot
US10195099B2 (en) 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
US20190046336A1 (en) * 2012-07-23 2019-02-14 Blatchford Products Limited Lower limb prosthesis
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US10413429B2 (en) 2015-08-27 2019-09-17 Ossur Iceland Ehf Pump system
US10434030B2 (en) 2014-09-19 2019-10-08 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10449105B2 (en) * 2014-10-26 2019-10-22 Springactive, Inc. System and method of bidirectional compliant joint torque actuation
US10512554B2 (en) 2016-08-26 2019-12-24 Ossur Iceland Ehf Pump system
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
RU2712576C2 (en) * 2018-06-28 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" Device for facilitating walking using frame from high-carbon plastic
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10792170B2 (en) * 2015-02-12 2020-10-06 Board Of Regents, The University Of Texas Systems Systems and methods for prosthetic device control
US10821007B2 (en) 2016-12-01 2020-11-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
US10843332B2 (en) 2013-05-31 2020-11-24 President And Fellow Of Harvard College Soft exosuit for assistance with human motion
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
US10918558B2 (en) 2013-08-10 2021-02-16 Imobilities Incorporated Portable human exoskeleton system
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners
US10980648B1 (en) 2017-09-15 2021-04-20 Össur Iceland Ehf Variable stiffness mechanism and limb support device incorporating the same
US10988192B1 (en) * 2015-10-08 2021-04-27 Boston Dynamics, Inc. Three-piston ankle mechanism of a legged robot and associated control system
US11014804B2 (en) 2017-03-14 2021-05-25 President And Fellows Of Harvard College Systems and methods for fabricating 3D soft microstructures
WO2022056037A1 (en) * 2020-09-09 2022-03-17 Massachusetts Institute Of Technology Leaf spring with high resolution stiffness control
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US11324655B2 (en) 2013-12-09 2022-05-10 Trustees Of Boston University Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
US11446164B1 (en) 2017-09-15 2022-09-20 Össur Iceland Ehf Variable stiffness mechanisms
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
US11571316B2 (en) 2006-05-09 2023-02-07 Ottobock Se & Co. Kgaa Control of a passive prosthetic knee joint with adjustable damping
US11590046B2 (en) 2016-03-13 2023-02-28 President And Fellows Of Harvard College Flexible members for anchoring to the body
US11819437B2 (en) 2016-12-22 2023-11-21 Ottobock Se & Co. Kgaa Ankle foot orthosis

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9604368B2 (en) * 2011-11-11 2017-03-28 Springactive, Inc. Active compliant parallel mechanism
US9622884B2 (en) 2012-02-17 2017-04-18 Springactive, Inc. Control systems and methods for gait devices
US10307271B2 (en) 2012-02-17 2019-06-04 Össur Iceland Ehf Control system and method for non-gait ankle and foot motion in human assistance device
US10835407B2 (en) * 2013-03-15 2020-11-17 Michael T. McDonnell, JR. Orthotic device for assisting limb movement
WO2015073490A1 (en) 2013-11-12 2015-05-21 Ekso Bionics, Inc. Machine to human interfaces for communication from a lower extremity orthotic
WO2015187258A2 (en) 2014-05-02 2015-12-10 Ekso Bionics, Inc. Exoskeleton and method of increasing the flexibility of an exoskeleton joint
US10406676B2 (en) * 2014-05-06 2019-09-10 Sarcos Lc Energy recovering legged robotic device
US9517561B2 (en) * 2014-08-25 2016-12-13 Google Inc. Natural pitch and roll
US10034782B2 (en) 2014-09-19 2018-07-31 össur hf Variable stiffness prosthetic foot
US10502284B2 (en) 2014-09-29 2019-12-10 Delbert Tesar Spring augmented orthotic or prosthetic equipped with a compact parallel eccentric actuator
EP3229687B1 (en) 2014-12-08 2022-10-26 Rehabilitation Institute of Chicago Powered and passive assistive device and related methods
US10189519B2 (en) * 2015-05-29 2019-01-29 Oregon State University Leg configuration for spring-mass legged locomotion
WO2017007997A1 (en) * 2015-07-09 2017-01-12 Kinematic Ventures, Llc Orthotic device
US10188539B2 (en) 2015-10-05 2019-01-29 SpringLoaded Technology Incorporated Stabilizing system for a knee brace
US10898350B2 (en) 2015-11-24 2021-01-26 University Of South Carolina Dynamic linear adjustable prosthetic
WO2017151577A1 (en) * 2016-02-29 2017-09-08 Peak Performance Desige, Llc Prosthetic limb socket with variable hardness
US10632626B2 (en) * 2016-06-07 2020-04-28 Worcester Polytechnic Institute Biologically-inspired joints and systems and methods of use thereof
KR20180042652A (en) 2016-10-18 2018-04-26 삼성전자주식회사 Force transmitting frame and motion assist apparatus comprising thereof
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US11166864B2 (en) 2016-12-06 2021-11-09 Delbert Tesar Actuators for patient mobility devices, patient healthcare devices and human prosthetics
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
USD904617S1 (en) 2018-09-10 2020-12-08 Össur Iceland Ehf Prosthetic foot
KR102611914B1 (en) * 2018-10-12 2023-12-08 삼성전자주식회사 Walking assist apparatus
US11723581B2 (en) 2018-10-23 2023-08-15 Massachusetts Institute Of Technology Electromyography sensor
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
NL2027310B1 (en) * 2021-01-13 2022-07-25 Univ Delft Tech Transfemoral knee-ankle prosthesis
DE102021117836A1 (en) * 2021-07-09 2023-01-12 Otto Bock Healthcare Products Gmbh Orthopedic joint device
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
NL2032980B1 (en) * 2022-09-07 2024-03-21 Univ Groningen Variable stiffness prosthetic joint
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US45169A (en) * 1864-11-22 Improvement in artificial legs
US360446A (en) * 1885-11-21 1887-04-05 Heney m
US595634A (en) * 1897-12-14 Artificial limb
US3546712A (en) * 1968-07-09 1970-12-15 May C Tarte Artificial leg
US4442390A (en) * 1982-07-06 1984-04-10 Davis Kenneth W Feedback system for a linear actuator
US4518307A (en) * 1982-09-29 1985-05-21 The Boeing Company Compliant robot arm adapter assembly
US4569352A (en) * 1983-05-13 1986-02-11 Wright State University Feedback control system for walking
US4657470A (en) * 1984-11-15 1987-04-14 Westinghouse Electric Corp. Robotic end effector
US4909535A (en) * 1988-01-20 1990-03-20 Clark Daniel C Vehicle suspension system, and method of operating same
US4921393A (en) * 1988-03-09 1990-05-01 Sri International Articulatable structure with adjustable end-point compliance
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
US4923474A (en) * 1986-06-26 1990-05-08 Ossur Hf Sleeve-shaped article, particularly for amputation stumps
US4923475A (en) * 1989-02-21 1990-05-08 Gosthnian Barry M Inflatable limb prosthesis with preformed inner surface
US4989161A (en) * 1987-02-27 1991-01-29 Kabushiki Kaisha Toshiba Control unit for a multi-degree-of freedom manipulator
US5012591A (en) * 1983-11-30 1991-05-07 Fujitsu Limited Force controlling system
US5088478A (en) * 1988-05-10 1992-02-18 Royce Medical Company Gel and air cushion ankle brace
US5092902A (en) * 1990-08-16 1992-03-03 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5112296A (en) * 1991-04-30 1992-05-12 The Board Of Supervisors Of Louisiana State University Biofeedback activated orthosis for foot-drop rehabilitation
US5181933A (en) * 1991-02-28 1993-01-26 Phillips L Van Split foot prosthesis
US5294873A (en) * 1992-10-27 1994-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Kinematic functions for redundancy resolution using configuration control
US5383939A (en) * 1991-12-05 1995-01-24 James; Kelvin B. System for controlling artificial knee joint action in an above knee prosthesis
US5405409A (en) * 1992-12-21 1995-04-11 Knoth; Donald E. Hydraulic control unit for prosthetic leg
US5502363A (en) * 1994-01-04 1996-03-26 University Of Maryland-Baltimore County Apparatus for controlling angular positioning and stiffness modulations of joint of robotic manipulator
US5718925A (en) * 1995-11-15 1998-02-17 Ossur Hf. Apparatus for making a prosthesis socket
US5748845A (en) * 1995-07-31 1998-05-05 Motorola, Inc. FES method and system for controlling the movement of a limb
US5885809A (en) * 1996-02-09 1999-03-23 Degussa Aktiengesellschaft Method of producing (S)-cyanohydrins
US5888212A (en) * 1997-06-26 1999-03-30 Mauch, Inc. Computer controlled hydraulic resistance device for a prosthesis and other apparatus
US5898948A (en) * 1996-10-31 1999-05-04 Graham M. Kelly Support/sport sock
US6029374A (en) * 1991-07-08 2000-02-29 Herr; Hugh M. Shoe and foot prosthesis with bending beam spring structures
US6056712A (en) * 1995-10-31 2000-05-02 Grim; Tracy E. Multi-functional orthosis for the foot, heel, ankle and lower leg
US6067892A (en) * 1998-03-18 2000-05-30 Erickson; Joel R. Artificial muscle actuator assembly
US6202806B1 (en) * 1997-10-29 2001-03-20 Lord Corporation Controllable device having a matrix medium retaining structure
US20020052663A1 (en) * 2000-03-29 2002-05-02 Herr Hugh M. Speed-adaptive and patient-adaptive prosthetic knee
US6507757B1 (en) * 2000-06-20 2003-01-14 Ian Douglas Swain Apparatus for electrical stimulation of the body
US6511512B2 (en) * 1998-04-10 2003-01-28 Ossur Hf Active shock module prosthesis
US6517503B1 (en) * 1998-09-18 2003-02-11 Becker Orthopedic Appliance Company Orthosis knee joint
US6532400B1 (en) * 2000-03-24 2003-03-11 Intelligent Inference Systems Corporation Biologically-inspired multi-segmented robot
US20040049290A1 (en) * 2002-08-22 2004-03-11 Stephane Bedard Control system and method for controlling an actuated prosthesis
US6706364B2 (en) * 2000-03-14 2004-03-16 Ossur Hf Composite elastic material
US20040054423A1 (en) * 2002-04-12 2004-03-18 Martin James Jay Electronically controlled prosthetic system
US20050007834A1 (en) * 2003-07-08 2005-01-13 Renesas Technology Corp. Semiconductor memory device with current driver providing bi-directional current to data write line
US20050049652A1 (en) * 2003-08-25 2005-03-03 Kai-Yu Tong Functional electrical stimulation system
US20050059908A1 (en) * 2003-09-11 2005-03-17 The Cleveland Clinic Foundation Apparatus for assisting body movement
USD503480S1 (en) * 2004-04-22 2005-03-29 Ossur Hf Ankle-foot orthosis
USD503802S1 (en) * 2004-05-28 2005-04-05 Ossur Hf Prosthesis liner
US20050085948A1 (en) * 2002-12-31 2005-04-21 Hugh Herr Speed-adaptive control scheme for legged running robots
US20060004307A1 (en) * 2002-11-25 2006-01-05 Horst Robert W Active muscle assistance device and method
US7001563B2 (en) * 2000-03-15 2006-02-21 Ossur Hf Process for making prosthetic suspension sleeve
US20060069448A1 (en) * 2002-08-30 2006-03-30 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method and control unit for controlling the joint device
US7025793B2 (en) * 2002-12-20 2006-04-11 Ossur Hf Suspension liner with seal
US7161056B2 (en) * 2005-01-28 2007-01-09 Ossur Hf Wound dressing and method for manufacturing the same
US20070016329A1 (en) * 2005-03-31 2007-01-18 Massachusetts Institute Of Technology Biomimetic motion and balance controllers for use in prosthetics, orthotics and robotics
US7169189B2 (en) * 2004-05-28 2007-01-30 Ossur Hf Prosthetic or orthotic sleeve having external surface peripheral profiles
US7169188B2 (en) * 2001-08-30 2007-01-30 Ossur Hf Sealing sleeve for sealing residual limb in a prosthetic socket
US20070043449A1 (en) * 2005-03-31 2007-02-22 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US7198071B2 (en) * 2003-05-02 2007-04-03 Össur Engineering, Inc. Systems and methods of loading fluid in a prosthetic knee
US7198610B2 (en) * 2004-12-22 2007-04-03 Ossur Hf Knee brace and method for securing the same
USD558884S1 (en) * 2007-02-12 2008-01-01 Ossur Hf Knee brace
US7335233B2 (en) * 2003-05-02 2008-02-26 Ossur Hf Magnetorheological fluid compositions and prosthetic knees utilizing same
US7347877B2 (en) * 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
USD567072S1 (en) * 2007-02-12 2008-04-22 Ossur Hf Strap retainer
US20090030530A1 (en) * 2002-04-12 2009-01-29 Martin James J Electronically controlled prosthetic system
US7488864B2 (en) * 2002-12-31 2009-02-10 Ossur Hf Wound dressing
US7488349B2 (en) * 2006-03-24 2009-02-10 Ossur Hf Ventilated prosthesis system
USD588753S1 (en) * 2008-02-12 2009-03-17 Ossur Hf Patella protector assembly
US7503937B2 (en) * 2006-07-03 2009-03-17 Ossur Hf Prosthetic foot
US7513881B1 (en) * 2005-01-12 2009-04-07 Ossur Hf Knee immobilizer
US7513880B2 (en) * 2003-09-05 2009-04-07 Ossur Hf Ankle-foot orthosis having an orthotic footplate
US7650204B2 (en) * 2001-06-29 2010-01-19 Honda Motor Co., Ltd. Active control of an ankle-foot orthosis
US7662191B2 (en) * 2006-06-30 2010-02-16 össur hf Liner donning and doffing device
US7674212B2 (en) * 2002-05-06 2010-03-09 össur hf Drop foot device
USD611322S1 (en) * 2008-09-09 2010-03-09 össur hf Handle
US7691154B2 (en) * 2004-05-07 2010-04-06 össur hf Systems and methods of controlling pressure within a prosthetic knee
US7704218B2 (en) * 2005-10-12 2010-04-27 Ossur, Hf Knee brace
US7863797B2 (en) * 2007-05-09 2011-01-04 Motor Excellence, Llc Electrical devices using electromagnetic rotors
US7862620B2 (en) * 2005-02-02 2011-01-04 össur hf Sensing systems and methods for monitoring gait dynamics
US7867182B2 (en) * 1995-12-28 2011-01-11 Ossur Hf Molded orthopaedic devices
US7868511B2 (en) * 2007-05-09 2011-01-11 Motor Excellence, Llc Electrical devices using disk and non-disk shaped rotors
US7874223B2 (en) * 2003-04-24 2011-01-25 Thomas Sugar Adjustable compliant mechanism
US7879110B2 (en) * 1998-04-10 2011-02-01 Ossur Hf Foot prosthesis having cushioned ankle
US7891258B2 (en) * 2004-05-28 2011-02-22 össur hf Method of measuring the performance of a prosthetic foot
US7896927B2 (en) * 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
US7896826B2 (en) * 2002-07-23 2011-03-01 Ossur Hf Versatile orthopaedic leg mounted walker
US7896827B2 (en) * 2004-12-22 2011-03-01 Ossur Hf Knee brace and method for securing the same
USD634438S1 (en) * 2010-06-14 2011-03-15 Ossur Hf Orthopedic walker
USD634852S1 (en) * 2009-09-22 2011-03-22 Ossur Hf Sole for orthopedic device
US7909884B2 (en) * 2002-12-20 2011-03-22 Ossur Hf Suspension liner system with seal
US7914475B2 (en) * 2006-03-22 2011-03-29 Ossur Hf Orthopedic brace

Family Cites Families (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2478721A (en) * 1946-08-10 1949-08-09 John H F Stewart Artificial limb
US2568051A (en) * 1947-10-10 1951-09-18 John G Catranis Artificial leg
US2605474A (en) * 1947-11-22 1952-08-05 Adel Prec Products Corp Hydraulically controlled artificial leg
US2529968A (en) 1948-06-15 1950-11-14 Sartin Hansel Mechanism for artificial legs
US2489291A (en) 1948-07-09 1949-11-29 Ulrich K Henschke Leg prosthesis
US2568053A (en) * 1948-10-07 1951-09-18 John G Catranis Knee lock mechanism for artificial legs
US3098645A (en) 1961-01-11 1963-07-23 Walter J Owens Laminated torsion bar suspension
US3207497A (en) 1963-07-02 1965-09-21 Dura Corp Torsion spring assembly
US3844279A (en) 1973-05-14 1974-10-29 R Konvalin Adjustable leg brace
US4051558A (en) * 1976-06-30 1977-10-04 The United States Of America As Represented By The United States National Aeronautics And Space Administration Mechanical energy storage device for hip disarticulation
US4463291A (en) 1979-12-31 1984-07-31 Andale Company Automatic control system and valve actuator
IN161424B (en) 1983-05-12 1987-11-28 Westinghouse Brake & Signal
US4546296A (en) 1983-05-12 1985-10-08 Westinghouse Brake & Signal Electric actuators
US4546298A (en) 1983-05-12 1985-10-08 Westinghouse Brake & Signal Co. Electric actuators
IN161426B (en) 1983-05-12 1987-11-28 Westinghouse Brake & Signal
IN160902B (en) 1983-05-12 1987-08-15 Westinghouse Brake & Signal
US4600357A (en) 1984-02-21 1986-07-15 Heath Company Gripper force sensor/controller for robotic arm
US4697808A (en) 1985-05-16 1987-10-06 Wright State University Walking assistance system
CA1260986A (en) * 1985-12-11 1989-09-26 Frank R. Bubic Artificial musculoskeletal mechanism
JPS6471686A (en) 1987-09-09 1989-03-16 Komatsu Mfg Co Ltd Flexible arm robot
US4936295A (en) 1987-09-22 1990-06-26 Crane Larry A Lateral support for ankle
US4865376A (en) 1987-09-25 1989-09-12 Leaver Scott O Mechanical fingers for dexterity and grasping
US4843921A (en) 1988-04-18 1989-07-04 Kremer Stephen R Twisted cord actuator
USRE34661E (en) 1988-05-10 1994-07-12 Royce Medical Company Gel and air cushion ankle brace
US4964402A (en) 1988-08-17 1990-10-23 Royce Medical Company Orthopedic device having gel pad with phase change material
US5062673A (en) 1988-12-28 1991-11-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Articulated hand
US5252102A (en) 1989-01-24 1993-10-12 Electrobionics Corporation Electronic range of motion apparatus, for orthosis, prosthesis, and CPM machine
SE463600B (en) 1989-05-11 1990-12-17 Ken Petersen METHOD AND APPARATUS FOR LED CONTROLLED TRAINING OF VARIOUS MOTOR DEVICES
US5049797A (en) 1990-07-02 1991-09-17 Utah State University Foundation Device and method for control of flexible link robot manipulators
US6071313A (en) 1991-02-28 2000-06-06 Phillips; Van L. Split foot prosthesis
US5367790A (en) 1991-07-08 1994-11-29 Gamow; Rustem I. Shoe and foot prosthesis with a coupled spring system
US5282460A (en) 1992-01-06 1994-02-01 Joyce Ann Boldt Three axis mechanical joint for a power assist device
JPH05216504A (en) 1992-02-06 1993-08-27 Fanuc Ltd Adaptive sliding mode control system for control object including spring system
US5311109A (en) 1992-03-31 1994-05-10 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5327790A (en) 1992-06-19 1994-07-12 Massachusetts Institute Of Technology Reaction sensing torque actuator
GB9222732D0 (en) * 1992-10-29 1992-12-09 Andrews Brian Improvements in or relating to orthoses and prosthesis
US5358513A (en) 1992-12-09 1994-10-25 Medtronic, Inc. Parameter selection and electrode placement of neuromuscular electrical stimulation apparatus
US5443521A (en) 1992-12-21 1995-08-22 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5329705A (en) 1993-02-16 1994-07-19 Royce Medical Company Footgear with pressure relief zones
US5456341A (en) 1993-04-23 1995-10-10 Moog Inc. Method and apparatus for actively adjusting and controlling a resonant mass-spring system
EP0707467B1 (en) 1993-07-09 2005-06-01 Kinetecs, Inc. Exercise apparatus and technique
US5476441A (en) 1993-09-30 1995-12-19 Massachusetts Institute Of Technology Controlled-brake orthosis
US5458143A (en) 1994-06-09 1995-10-17 Herr; Hugh M. Crutch with elbow and shank springs
US6144385A (en) 1994-08-25 2000-11-07 Michael J. Girard Step-driven character animation derived from animation data without footstep information
US5662693A (en) 1995-06-05 1997-09-02 The United States Of America As Represented By The Secretary Of The Air Force Mobility assist for the paralyzed, amputeed and spastic person
US5650704A (en) 1995-06-29 1997-07-22 Massachusetts Institute Of Technology Elastic actuator for precise force control
US5643332A (en) 1995-09-20 1997-07-01 Neuromotion Inc. Assembly for functional electrical stimulation during movement
US6113642A (en) 1996-06-27 2000-09-05 Mauch, Inc. Computer controlled hydraulic resistance device for a prosthesis and other apparatus
US7288076B2 (en) 1996-08-29 2007-10-30 Ossur Hf Self-equalizing resilient orthopaedic support
US6064912A (en) 1997-03-28 2000-05-16 Kenney; John P. Orthotic/electrotherapy for treating contractures due to immobility
US6136039A (en) 1997-05-06 2000-10-24 Ossur Hf Dual durometer silicone liner for prosthesis
US5932230A (en) 1997-05-20 1999-08-03 Degrate; Frenchell Topical analgesic formulation containing fruits, oils and aspirin
US5888213A (en) 1997-06-06 1999-03-30 Motion Control, Inc. Method and apparatus for controlling an externally powered prosthesis
US5944760A (en) 1997-08-04 1999-08-31 Roland J. Christensen Family Limited Partnership Prosthetic foot with reinforcing member
DE19754690A1 (en) * 1997-12-10 1999-07-01 Biedermann Motech Gmbh Leg prosthesis with an artificial knee joint with a control device
WO1999047085A1 (en) 1998-03-17 1999-09-23 Kochamba Gary S Method and apparatus for stabilizing tissue
CA2321591C (en) 1998-04-10 2007-01-30 Van L. Phillips Coil spring shock module prosthesis
US6095991A (en) 1998-07-23 2000-08-01 Individual Monitoring Systems, Inc. Ambulatory body position monitor
US6267742B1 (en) 1998-09-29 2001-07-31 Brown Medical Industries Biplanar foot dorsiflexion collapsible posterior splint
WO2000028927A1 (en) 1998-11-13 2000-05-25 Hocoma Ag Device and method for automating treadmill therapy
JP2000145914A (en) 1998-11-17 2000-05-26 Tsubakimoto Chain Co Bearing linear actuator with backstop mechanism
EP1204390B1 (en) 1999-03-01 2004-08-11 Ossur HF Multiple section orthotic or prosthetic sleeve of varying elasticity
US6666796B1 (en) 1999-09-16 2003-12-23 Aerovironment, Inc. Walking assisting apparatus
FI110159B (en) 1999-12-17 2002-12-13 Respecta Oy Lower extremity prosthesis
DE60112403T2 (en) 2000-01-20 2006-06-01 Massachusetts Institute Of Technology, Cambridge ELECTRONICALLY CONTROLLED KNEE PROTECTION
US6500138B1 (en) 2000-04-07 2002-12-31 Mayo Foundation For Medical Education And Research Electromechanical joint control device with wrap spring clutch
US6585774B2 (en) 2000-04-25 2003-07-01 Simbex, Llc Dynamic variable geometry fitting system for use with a body appliance
US6811571B1 (en) 2000-05-02 2004-11-02 Van L. Phillips Universal prosthesis with cushioned ankle
US20030195439A1 (en) 2000-05-30 2003-10-16 Caselnova Ronald J. Thermal pad and boot designed for applying hot or cold treatment
US6923834B2 (en) 2000-10-04 2005-08-02 Ossur Hf Artificial limb socket containing volume control pad
CA2424407A1 (en) 2000-10-04 2002-04-11 Ossur Hf Prosthetic socket and socket component assembly
WO2002038087A2 (en) 2000-10-26 2002-05-16 Ossur Hf Foot prosthesis having cushioned ankle
US6702076B2 (en) 2001-01-16 2004-03-09 Michael T. Koleda Shaft vibration damping system
JP4384822B2 (en) 2001-01-26 2009-12-16 本田技研工業株式会社 Prosthetic limb drive
US6660042B1 (en) 2001-02-02 2003-12-09 Rutgers, The State University Of New Jersey Methods of biomimetic finger control by filtering of distributed forelimib pressures
US6443993B1 (en) 2001-03-23 2002-09-03 Wayne Koniuk Self-adjusting prosthetic ankle apparatus
US7153242B2 (en) 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
US6676707B2 (en) * 2001-05-24 2004-01-13 Tachung C. Yih Prosthetic devices for upper and lower limbs
JP3760186B2 (en) 2001-06-07 2006-03-29 独立行政法人科学技術振興機構 Biped walking type moving device, walking control device thereof, and walking control method
US6752774B2 (en) 2001-06-08 2004-06-22 Townsend Design Tension assisted ankle joint and orthotic limb braces incorporating same
US7390309B2 (en) 2002-09-23 2008-06-24 Honda Motor Co., Ltd. Human assist system using gravity compensation control system and method using multiple feasibility parameters
EP1408892A2 (en) 2001-07-26 2004-04-21 Van L. Phillips Socket insert having a bladder system
DE10142491B4 (en) 2001-08-30 2004-10-07 össur h.f. Sealing arrangement with lips for a prosthetic socket
JP3674778B2 (en) 2001-09-27 2005-07-20 本田技研工業株式会社 Leg joint assist device for legged mobile robot
US7260436B2 (en) 2001-10-16 2007-08-21 Case Western Reserve University Implantable networked neural system
US6921376B2 (en) 2001-10-23 2005-07-26 The Jerome Group, Inc. Cervical brace
DE10164892B4 (en) 2001-11-05 2009-08-27 össur h.f. Stocking liner for use with a cup-shaped prosthesis stem
JP3665013B2 (en) 2001-11-09 2005-06-29 本田技研工業株式会社 Leg joint assist device for legged mobile robot
JP3811072B2 (en) 2002-01-18 2006-08-16 本田技研工業株式会社 Abnormality detection device for mobile robot
JP3790816B2 (en) 2002-02-12 2006-06-28 国立大学法人 東京大学 Motion generation method for humanoid link system
EP1484134B1 (en) 2002-02-15 2019-05-01 Sony Corporation Leg device for leg type movable robot, and method of controlling leg type movable robot
JP4182726B2 (en) 2002-02-20 2008-11-19 日本精工株式会社 Linear actuator
JP3976129B2 (en) 2002-02-28 2007-09-12 本田技研工業株式会社 Parallel link mechanism and artificial joint device using the same
WO2003090981A1 (en) 2002-04-26 2003-11-06 Honda Giken Kogyo Kabushiki Kaisha System for estimating attitude of leg type moving robot itself
AU2003251983A1 (en) 2002-07-08 2004-01-23 Ossur Engineering, Inc. Socket liner incorporating sensors to monitor amputee progress
US20040064195A1 (en) 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US7303538B2 (en) 2002-07-23 2007-12-04 Ossur Hf Versatile orthopaedic leg mounted walkers
US7094058B2 (en) 2002-08-16 2006-08-22 Ossur Hf Educational prosthesis device and method for using the same
US20050004472A1 (en) 2002-08-17 2005-01-06 Greg Pratt Medical socket contour scanning system
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
AU2002951193A0 (en) 2002-09-04 2002-09-19 Northern Sydney Area Health Service Movement faciliatation device
US7105122B2 (en) 2002-10-08 2006-09-12 Ossur Hf Prosthesis socket direct casting device having multiple compression chambers
US7094212B2 (en) 2002-10-11 2006-08-22 Ossur Hf Rigid dressing
US7981057B2 (en) 2002-10-11 2011-07-19 Northrop Grumman Guidance And Electronics Company, Inc. Joint motion sensing to make a determination of a positional change of an individual
US7037283B2 (en) 2002-10-18 2006-05-02 Ossur Hf Casting product and method for forming the same
KR20050083814A (en) 2002-10-24 2005-08-26 록히드 마틴 코포레이션 Systems and methods for treating movement disorders
CN100473369C (en) 2002-11-07 2009-04-01 奥苏尔公司 Ankle-foot orthosis
US8034120B2 (en) 2002-12-20 2011-10-11 Ossur Hf Suspension liner system with seal
AU2003212000A1 (en) 2003-02-14 2004-09-06 Honda Giken Kogyo Kabushiki Kaisha Abnormality detector of moving robot
US7465281B2 (en) 2003-04-18 2008-12-16 Ossur, Hf Versatile hardenable cast or support
WO2004096083A2 (en) 2003-04-24 2004-11-11 Arizona Board Of Regents Acting On Behalf Of Arizona State University Spring-over-muscle actuator
JP4315766B2 (en) 2003-05-21 2009-08-19 本田技研工業株式会社 Walking assist device
JP2005000500A (en) 2003-06-13 2005-01-06 Yaskawa Electric Corp Foot joint electric device
CN1838928B (en) 2003-06-20 2011-05-18 奥苏尔公司 Prosthetic socket with self-contained vacuum reservoir
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
EP1662974A4 (en) 2003-08-21 2009-06-03 Ischem Corp Automated methods and systems for vascular plaque detection and analysis
JP4178186B2 (en) 2003-08-21 2008-11-12 国立大学法人 筑波大学 Wearable motion assist device, control method for wearable motion assist device, and control program
CA2539945C (en) 2003-09-17 2015-04-21 Ossur Hf Wound dressing and method for manufacturing the same
US7531711B2 (en) 2003-09-17 2009-05-12 Ossur Hf Wound dressing and method for manufacturing the same
US8075633B2 (en) 2003-09-25 2011-12-13 Massachusetts Institute Of Technology Active ankle foot orthosis
US7534220B2 (en) 2003-09-29 2009-05-19 Ossur Hf Adjustable ergonomic brace
US6969408B2 (en) 2003-09-30 2005-11-29 Ossur Engineering, Inc. Low profile active shock module prosthesis
US6942629B2 (en) 2003-10-02 2005-09-13 Dynasplint Systems, Inc. Adjustable splint device for relieving contractures
SE526430C2 (en) 2003-10-17 2005-09-13 Oessur Hf Artificial multi-axis knee joint
US7628766B1 (en) 2003-10-29 2009-12-08 The Regents Of The University Of California Lower extremity enhancer
US20070282480A1 (en) 2003-11-10 2007-12-06 Pannese Patrick D Methods and systems for controlling a semiconductor fabrication process
US7107180B2 (en) 2003-11-14 2006-09-12 Ossur Hf Method and system for determining an activity level in an individual
US20050107889A1 (en) 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
CA2556041C (en) 2004-02-12 2015-04-21 Ossur Hf System and method for motion-controlled foot unit
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
JP4503311B2 (en) 2004-02-25 2010-07-14 本田技研工業株式会社 Method for controlling generated torque of leg exercise assistive device
JP4200492B2 (en) 2004-03-11 2008-12-24 国立大学法人 筑波大学 Wearable motion assist device
WO2005092185A2 (en) 2004-03-22 2005-10-06 California Institute Of Technology Cognitive control signals for neural prosthetics
US7217060B2 (en) 2004-04-30 2007-05-15 Ossur Hf Prosthesis locking assembly
JP4549758B2 (en) 2004-06-30 2010-09-22 本田技研工業株式会社 Exercise measurement method, exercise measurement device, and exercise measurement program
US7770842B2 (en) 2004-08-24 2010-08-10 Honeywell International Inc. Aircraft flight control surface actuation system communication architecture
US7429253B2 (en) 2004-09-21 2008-09-30 Honda Motor Co., Ltd. Walking assistance system
US7992849B2 (en) 2004-09-21 2011-08-09 Thomas Sugar Adjustable stiffness jack spring actuator
WO2006052954A2 (en) 2004-11-09 2006-05-18 Northeastern University Electro-rheological fluid brake and actuator devices and orthotic devices using the same
US7762973B2 (en) 2004-12-22 2010-07-27 Ossur Hf Spacer element for prosthetic and orthotic devices
US7794418B2 (en) 2004-12-22 2010-09-14 Ossur Hf Knee brace and method for securing the same
CN101128167B (en) 2004-12-22 2011-05-18 奥瑟Hf公司 Systems and methods for processing limb motion
US7713225B2 (en) 2004-12-22 2010-05-11 Ossur Hf Knee brace and method for securing the same
US7597675B2 (en) 2004-12-22 2009-10-06 össur hf Knee brace and method for securing the same
US7465283B2 (en) 2005-01-12 2008-12-16 Ossur, Hf Cast assembly with breathable double knit type padding
JP4178187B2 (en) 2005-01-26 2008-11-12 国立大学法人 筑波大学 Wearable motion assist device and control program
EP1843823B1 (en) 2005-02-02 2016-10-26 Össur hf Prosthetic and orthotic systems usable for rehabilitation
US20060249315A1 (en) 2005-03-31 2006-11-09 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US10080672B2 (en) 2005-03-31 2018-09-25 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US20070162152A1 (en) 2005-03-31 2007-07-12 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US7240876B2 (en) 2005-04-21 2007-07-10 Ossur, Hf Dispenser box
NL1029086C2 (en) 2005-05-20 2006-11-27 Somas Groep B V Hip portese, method for preventing hip dislocation and use of a hip portese.
USD523149S1 (en) 2005-05-24 2006-06-13 Ossur Hf Prosthetic or orthotic sleeve
JP4332136B2 (en) 2005-06-03 2009-09-16 本田技研工業株式会社 Limb body assist device and limb body assist program
US7527253B2 (en) 2005-06-09 2009-05-05 Arizona Board Of Regents Adjustable stiffness leaf spring actuators
WO2007008803A2 (en) 2005-07-11 2007-01-18 Ossur Hf Energy returing prosthetic joint
US7485152B2 (en) 2005-08-26 2009-02-03 The Ohio Willow Wood Company Prosthetic leg having electronically controlled prosthetic knee with regenerative braking feature
US8048172B2 (en) 2005-09-01 2011-11-01 össur hf Actuator assembly for prosthetic or orthotic joint
US7531006B2 (en) 2005-09-01 2009-05-12 össur hf Sensing system and method for motion-controlled foot unit
US7431708B2 (en) 2005-09-19 2008-10-07 Ossur Hf Knee brace having lateral/medial width adjustment
US7959589B2 (en) 2005-09-19 2011-06-14 Ossur Hf Adjustable orthotic device
US7449005B2 (en) 2005-11-07 2008-11-11 Ossur Hf. Traction collar and method of use
USD527825S1 (en) 2005-12-21 2006-09-05 Ossur Hf Knee brace
JP4818716B2 (en) 2005-12-27 2011-11-16 富士通株式会社 Robot controller
US7190141B1 (en) 2006-01-27 2007-03-13 Villanova University Exoskeletal device for rehabilitation
USD529180S1 (en) 2006-03-01 2006-09-26 Ossur Hf Knee brace
CA2645319C (en) 2006-03-09 2015-09-15 The Regents Of The University Of California Power generating leg
USD533280S1 (en) 2006-03-22 2006-12-05 Ossur Hf Wrist brace
US7438843B2 (en) 2006-06-30 2008-10-21 Ossur Hf Method and kit for making prosthetic socket
US7578799B2 (en) 2006-06-30 2009-08-25 Ossur Hf Intelligent orthosis
US7632315B2 (en) 2006-10-10 2009-12-15 össur hf Vacuum chamber socket system
US7842848B2 (en) 2006-11-13 2010-11-30 Ossur Hf Absorbent structure in an absorbent article
DE102006059206B4 (en) 2006-12-13 2010-12-30 Otto Bock Healthcare Gmbh Orthopedic device
US7985265B2 (en) 2006-12-14 2011-07-26 Chas. A. Blatchford & Sons Limited Prosthetic ankle and foot combination
IL180833A (en) 2007-01-21 2012-10-31 Israel Aerospace Ind Ltd Pedestrian navigation system and method
CN101605514B (en) 2007-02-12 2012-05-23 奥索集团公司 Orthopedic brace and component for use therewith
US8021317B2 (en) 2007-04-26 2011-09-20 Ossur Hf Orthopedic device providing access to wound site
US20080294083A1 (en) 2007-05-21 2008-11-27 Julia Chang Orthopedic device
USD576781S1 (en) 2007-07-03 2008-09-16 Ossur Hf Orthotic device
US8025632B2 (en) 2007-07-20 2011-09-27 össur hf. Wearable device having feedback characteristics
CN101790357B (en) 2007-08-23 2013-05-15 奥索集团公司 Orthopedic or prosthetic support device
WO2009035686A1 (en) 2007-09-13 2009-03-19 Ossur Hf Wearable device
CN101827568A (en) 2007-10-15 2010-09-08 奥索集团公司 Orthopedic device having a patient compliance system
WO2009067240A1 (en) 2007-11-23 2009-05-28 Orthocare Innovations Llc Passive electro-magnetically damped joint
USD583956S1 (en) 2007-12-11 2008-12-30 Ossur, Hf Orthotic device
USD596301S1 (en) 2008-04-25 2009-07-14 Ossur Hf Orthopedic device
CN102026592B (en) 2008-05-15 2013-05-01 奥苏尔公司 Circumferential walker
AU2009273927B2 (en) 2008-07-23 2014-09-18 Ekso Bionics, Inc. An exoskeleton and method of reducing the energy consumption of a person in motion coupled to an exoskeleton device
WO2010014115A2 (en) 2008-07-31 2010-02-04 F3 & I2, Llc Modular panels for enclosures
WO2010025403A1 (en) 2008-08-28 2010-03-04 Raytheon Sarcos, Llc Control logic for biomimetic joint actuators
US8181520B2 (en) 2008-08-29 2012-05-22 Oki Electric Industry Co., Ltd. Muscle training device with muscular force measurement function for controlling the axial torque of a joint axle
US20110082566A1 (en) 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
JP2012501739A (en) 2008-09-04 2012-01-26 アイウォーク・インコーポレーテッド Hybrid terrain adaptive lower limb system
USD627079S1 (en) 2008-09-09 2010-11-09 Ossur Hf Container
US8096965B2 (en) 2008-10-13 2012-01-17 Argo Medical Technologies Ltd. Locomotion assisting device and method
EP2364133B1 (en) 2008-12-03 2013-05-08 Ossur HF Cervical collar having height and circumferential adjustment
WO2011005482A2 (en) 2009-06-22 2011-01-13 University Of Washington Controllable transverse rotation adaptor
USD628696S1 (en) 2009-08-28 2010-12-07 Ossur Hf Handle
USD629115S1 (en) 2009-08-28 2010-12-14 Ossur Hf Back brace
USD618359S1 (en) 2009-09-14 2010-06-22 Ossur Hf Expansion part for orthopedic device
USD616996S1 (en) 2009-09-14 2010-06-01 Ossur Hf Orthopedic device
USD620124S1 (en) 2009-09-14 2010-07-20 Ossur Hf Orthopedic device
USD616997S1 (en) 2009-09-14 2010-06-01 Ossur Hf Orthopedic device
USD616555S1 (en) 2009-09-14 2010-05-25 Ossur Hf Orthopedic device
USD616556S1 (en) 2009-09-22 2010-05-25 Ossur Hf Orthopedic device
USD643537S1 (en) 2009-09-22 2011-08-16 Ossur Hf Pump for an orthopedic device
USD646394S1 (en) 2009-11-13 2011-10-04 Ossur Hf Rehabilitative vest component
USD640380S1 (en) 2009-11-13 2011-06-21 Ossur Hf Rehabilitative vest component
USD640381S1 (en) 2009-11-13 2011-06-21 Ossur Hf Rehabilitative vest component
KR20130096631A (en) 2010-04-05 2013-08-30 아이워크, 아이엔씨. Controlling torque in a prosthesis or orthosis
US8716877B2 (en) 2010-05-14 2014-05-06 Thomas Sugar Method and apparatus for harvesting energy from ankle motion
USD641483S1 (en) 2010-05-25 2011-07-12 Ossur Hf Orthosis component
USD641482S1 (en) 2010-05-25 2011-07-12 Ossur Hf Orthosis component
USD647624S1 (en) 2010-08-06 2011-10-25 Ossur Hf Cervical collar
USD647623S1 (en) 2010-08-06 2011-10-25 Ossur Hf Height adjustment mechanism for cervical collar
USD637942S1 (en) 2010-08-20 2011-05-17 Ossur Hf Strap retainer
USD647622S1 (en) 2010-08-20 2011-10-25 Ossur Hf Orthopedic device
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
WO2012097156A2 (en) 2011-01-12 2012-07-19 Iwalk, Inc. Controlling powered human augmentation devices
WO2012100250A1 (en) 2011-01-21 2012-07-26 Iwalk, Inc. Terrain adaptive powered joint orthosis
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US8876743B2 (en) 2011-04-20 2014-11-04 Vivonics, Inc. Conformable material for an orthotic device and method of making same

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US595634A (en) * 1897-12-14 Artificial limb
US45169A (en) * 1864-11-22 Improvement in artificial legs
US360446A (en) * 1885-11-21 1887-04-05 Heney m
US3546712A (en) * 1968-07-09 1970-12-15 May C Tarte Artificial leg
US4921293A (en) * 1982-04-02 1990-05-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-fingered robotic hand
US4442390A (en) * 1982-07-06 1984-04-10 Davis Kenneth W Feedback system for a linear actuator
US4518307A (en) * 1982-09-29 1985-05-21 The Boeing Company Compliant robot arm adapter assembly
US4569352A (en) * 1983-05-13 1986-02-11 Wright State University Feedback control system for walking
US5012591A (en) * 1983-11-30 1991-05-07 Fujitsu Limited Force controlling system
US4657470A (en) * 1984-11-15 1987-04-14 Westinghouse Electric Corp. Robotic end effector
US4923474A (en) * 1986-06-26 1990-05-08 Ossur Hf Sleeve-shaped article, particularly for amputation stumps
US4989161A (en) * 1987-02-27 1991-01-29 Kabushiki Kaisha Toshiba Control unit for a multi-degree-of freedom manipulator
US4909535A (en) * 1988-01-20 1990-03-20 Clark Daniel C Vehicle suspension system, and method of operating same
US4921393A (en) * 1988-03-09 1990-05-01 Sri International Articulatable structure with adjustable end-point compliance
US5088478A (en) * 1988-05-10 1992-02-18 Royce Medical Company Gel and air cushion ankle brace
US4923475A (en) * 1989-02-21 1990-05-08 Gosthnian Barry M Inflatable limb prosthesis with preformed inner surface
US5092902A (en) * 1990-08-16 1992-03-03 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5181933A (en) * 1991-02-28 1993-01-26 Phillips L Van Split foot prosthesis
US5514185A (en) * 1991-02-28 1996-05-07 Phillips; Van L. Split foot prosthesis
US5112296A (en) * 1991-04-30 1992-05-12 The Board Of Supervisors Of Louisiana State University Biofeedback activated orthosis for foot-drop rehabilitation
US6029374A (en) * 1991-07-08 2000-02-29 Herr; Hugh M. Shoe and foot prosthesis with bending beam spring structures
US5383939A (en) * 1991-12-05 1995-01-24 James; Kelvin B. System for controlling artificial knee joint action in an above knee prosthesis
US5294873A (en) * 1992-10-27 1994-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Kinematic functions for redundancy resolution using configuration control
US5405409A (en) * 1992-12-21 1995-04-11 Knoth; Donald E. Hydraulic control unit for prosthetic leg
US5502363A (en) * 1994-01-04 1996-03-26 University Of Maryland-Baltimore County Apparatus for controlling angular positioning and stiffness modulations of joint of robotic manipulator
US5748845A (en) * 1995-07-31 1998-05-05 Motorola, Inc. FES method and system for controlling the movement of a limb
US6056712A (en) * 1995-10-31 2000-05-02 Grim; Tracy E. Multi-functional orthosis for the foot, heel, ankle and lower leg
US5718925A (en) * 1995-11-15 1998-02-17 Ossur Hf. Apparatus for making a prosthesis socket
US7867182B2 (en) * 1995-12-28 2011-01-11 Ossur Hf Molded orthopaedic devices
US5885809A (en) * 1996-02-09 1999-03-23 Degussa Aktiengesellschaft Method of producing (S)-cyanohydrins
US5898948A (en) * 1996-10-31 1999-05-04 Graham M. Kelly Support/sport sock
US5888212A (en) * 1997-06-26 1999-03-30 Mauch, Inc. Computer controlled hydraulic resistance device for a prosthesis and other apparatus
US6202806B1 (en) * 1997-10-29 2001-03-20 Lord Corporation Controllable device having a matrix medium retaining structure
US6067892A (en) * 1998-03-18 2000-05-30 Erickson; Joel R. Artificial muscle actuator assembly
US6223648B1 (en) * 1998-03-18 2001-05-01 Joel R. Erickson Artificial muscle actuator assembly
US7879110B2 (en) * 1998-04-10 2011-02-01 Ossur Hf Foot prosthesis having cushioned ankle
US7169190B2 (en) * 1998-04-10 2007-01-30 Van L. Phillips Active shock module prosthesis
US6511512B2 (en) * 1998-04-10 2003-01-28 Ossur Hf Active shock module prosthesis
US6517503B1 (en) * 1998-09-18 2003-02-11 Becker Orthopedic Appliance Company Orthosis knee joint
US6706364B2 (en) * 2000-03-14 2004-03-16 Ossur Hf Composite elastic material
US7001563B2 (en) * 2000-03-15 2006-02-21 Ossur Hf Process for making prosthetic suspension sleeve
US6532400B1 (en) * 2000-03-24 2003-03-11 Intelligent Inference Systems Corporation Biologically-inspired multi-segmented robot
US20040039454A1 (en) * 2000-03-29 2004-02-26 Herr Hugh M. Speed-adaptive and patient-adaptive prosthetic knee
US20020052663A1 (en) * 2000-03-29 2002-05-02 Herr Hugh M. Speed-adaptive and patient-adaptive prosthetic knee
US6507757B1 (en) * 2000-06-20 2003-01-14 Ian Douglas Swain Apparatus for electrical stimulation of the body
US7650204B2 (en) * 2001-06-29 2010-01-19 Honda Motor Co., Ltd. Active control of an ankle-foot orthosis
US7169188B2 (en) * 2001-08-30 2007-01-30 Ossur Hf Sealing sleeve for sealing residual limb in a prosthetic socket
US20040054423A1 (en) * 2002-04-12 2004-03-18 Martin James Jay Electronically controlled prosthetic system
US20090030530A1 (en) * 2002-04-12 2009-01-29 Martin James J Electronically controlled prosthetic system
US7029500B2 (en) * 2002-04-12 2006-04-18 James Jay Martin Electronically controlled prosthetic system
US7674212B2 (en) * 2002-05-06 2010-03-09 össur hf Drop foot device
US7918765B2 (en) * 2002-05-06 2011-04-05 Ossur Europe B.V. Drop foot device
US7896826B2 (en) * 2002-07-23 2011-03-01 Ossur Hf Versatile orthopaedic leg mounted walker
US20040049290A1 (en) * 2002-08-22 2004-03-11 Stephane Bedard Control system and method for controlling an actuated prosthesis
US7867284B2 (en) * 2002-08-22 2011-01-11 Victhom Human Bionics Inc. Control device and system for controlling an actuated prosthesis
US7641700B2 (en) * 2002-08-30 2010-01-05 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method of controlling the joint device, and control unit
US20060069448A1 (en) * 2002-08-30 2006-03-30 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method and control unit for controlling the joint device
US20060004307A1 (en) * 2002-11-25 2006-01-05 Horst Robert W Active muscle assistance device and method
US7025793B2 (en) * 2002-12-20 2006-04-11 Ossur Hf Suspension liner with seal
US7909884B2 (en) * 2002-12-20 2011-03-22 Ossur Hf Suspension liner system with seal
US7910793B2 (en) * 2002-12-31 2011-03-22 Ossur Hf Wound dressing
US20050085948A1 (en) * 2002-12-31 2005-04-21 Hugh Herr Speed-adaptive control scheme for legged running robots
US7488864B2 (en) * 2002-12-31 2009-02-10 Ossur Hf Wound dressing
US7696400B2 (en) * 2002-12-31 2010-04-13 Ossur Hf Wound dressing
US7874223B2 (en) * 2003-04-24 2011-01-25 Thomas Sugar Adjustable compliant mechanism
US7335233B2 (en) * 2003-05-02 2008-02-26 Ossur Hf Magnetorheological fluid compositions and prosthetic knees utilizing same
US7198071B2 (en) * 2003-05-02 2007-04-03 Össur Engineering, Inc. Systems and methods of loading fluid in a prosthetic knee
US20050007834A1 (en) * 2003-07-08 2005-01-13 Renesas Technology Corp. Semiconductor memory device with current driver providing bi-directional current to data write line
US20050049652A1 (en) * 2003-08-25 2005-03-03 Kai-Yu Tong Functional electrical stimulation system
US7513880B2 (en) * 2003-09-05 2009-04-07 Ossur Hf Ankle-foot orthosis having an orthotic footplate
US20050059908A1 (en) * 2003-09-11 2005-03-17 The Cleveland Clinic Foundation Apparatus for assisting body movement
US7896927B2 (en) * 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
USD503480S1 (en) * 2004-04-22 2005-03-29 Ossur Hf Ankle-foot orthosis
US7691154B2 (en) * 2004-05-07 2010-04-06 össur hf Systems and methods of controlling pressure within a prosthetic knee
US7347877B2 (en) * 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
USD503802S1 (en) * 2004-05-28 2005-04-05 Ossur Hf Prosthesis liner
US7891258B2 (en) * 2004-05-28 2011-02-22 össur hf Method of measuring the performance of a prosthetic foot
US7169189B2 (en) * 2004-05-28 2007-01-30 Ossur Hf Prosthetic or orthotic sleeve having external surface peripheral profiles
US7896827B2 (en) * 2004-12-22 2011-03-01 Ossur Hf Knee brace and method for securing the same
US7198610B2 (en) * 2004-12-22 2007-04-03 Ossur Hf Knee brace and method for securing the same
US7892195B2 (en) * 2005-01-12 2011-02-22 Ossur Hf Knee immobilizer
US7513881B1 (en) * 2005-01-12 2009-04-07 Ossur Hf Knee immobilizer
US7161056B2 (en) * 2005-01-28 2007-01-09 Ossur Hf Wound dressing and method for manufacturing the same
US7862620B2 (en) * 2005-02-02 2011-01-04 össur hf Sensing systems and methods for monitoring gait dynamics
US7867285B2 (en) * 2005-02-02 2011-01-11 össur hf Sensing systems and methods for monitoring gait dynamics
US20070016329A1 (en) * 2005-03-31 2007-01-18 Massachusetts Institute Of Technology Biomimetic motion and balance controllers for use in prosthetics, orthotics and robotics
US20070043449A1 (en) * 2005-03-31 2007-02-22 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US7704218B2 (en) * 2005-10-12 2010-04-27 Ossur, Hf Knee brace
US7914475B2 (en) * 2006-03-22 2011-03-29 Ossur Hf Orthopedic brace
US7867286B2 (en) * 2006-03-24 2011-01-11 Ossur Hf Ventilated prosthesis system
US7488349B2 (en) * 2006-03-24 2009-02-10 Ossur Hf Ventilated prosthesis system
US7662191B2 (en) * 2006-06-30 2010-02-16 össur hf Liner donning and doffing device
US7503937B2 (en) * 2006-07-03 2009-03-17 Ossur Hf Prosthetic foot
USD558884S1 (en) * 2007-02-12 2008-01-01 Ossur Hf Knee brace
USD567072S1 (en) * 2007-02-12 2008-04-22 Ossur Hf Strap retainer
US7868511B2 (en) * 2007-05-09 2011-01-11 Motor Excellence, Llc Electrical devices using disk and non-disk shaped rotors
US7863797B2 (en) * 2007-05-09 2011-01-04 Motor Excellence, Llc Electrical devices using electromagnetic rotors
USD588753S1 (en) * 2008-02-12 2009-03-17 Ossur Hf Patella protector assembly
USD611322S1 (en) * 2008-09-09 2010-03-09 össur hf Handle
USD634852S1 (en) * 2009-09-22 2011-03-22 Ossur Hf Sole for orthopedic device
USD634438S1 (en) * 2010-06-14 2011-03-15 Ossur Hf Orthopedic walker

Cited By (373)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551184B1 (en) 2002-07-15 2013-10-08 Iwalk, Inc. Variable mechanical-impedance artificial legs
US9649206B2 (en) 2002-08-22 2017-05-16 Victhom Laboratory Inc. Control device and system for controlling an actuated prosthesis
US9358137B2 (en) 2002-08-22 2016-06-07 Victhom Laboratory Inc. Actuated prosthesis for amputees
US7867284B2 (en) 2002-08-22 2011-01-11 Victhom Human Bionics Inc. Control device and system for controlling an actuated prosthesis
US20040111163A1 (en) * 2002-08-22 2004-06-10 Stephane Bedard Actuated leg prosthesis for above-knee amputees
US20110137429A1 (en) * 2002-08-22 2011-06-09 Victhom Human Bionics, Inc. Control device and system for controlling an actuated prosthesis
US7314490B2 (en) * 2002-08-22 2008-01-01 Victhom Human Bionics Inc. Actuated leg prosthesis for above-knee amputees
US8231687B2 (en) 2002-08-22 2012-07-31 Victhom Human Bionics, Inc. Actuated leg prosthesis for above-knee amputees
US20040181289A1 (en) * 2002-08-22 2004-09-16 Stephane Bedard Actuated prosthesis for amputees
US7736394B2 (en) 2002-08-22 2010-06-15 Victhom Human Bionics Inc. Actuated prosthesis for amputees
US20060122711A1 (en) * 2002-08-22 2006-06-08 Stephane Bedard Actuated leg prosthesis for above-knee amputees
US20060122710A1 (en) * 2002-08-22 2006-06-08 Stephane Bedard Control device and system for controlling an actuated prosthesis
US7641700B2 (en) * 2002-08-30 2010-01-05 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method of controlling the joint device, and control unit
US20060069448A1 (en) * 2002-08-30 2006-03-30 Honda Giken Kogyo Kabushiki Kaisha Joint device for artificial leg, method and control unit for controlling the joint device
US20060074493A1 (en) * 2003-05-02 2006-04-06 Bisbee Charles R Iii Systems and methods of loading fluid in a prosthetic knee
US8858649B2 (en) 2003-08-15 2014-10-14 össur hf Low profile prosthetic foot
US8377146B2 (en) 2003-08-15 2013-02-19 Ossur Hf Low profile prosthetic foot
US8377144B2 (en) 2003-08-15 2013-02-19 Ossur Hf Low profile prosthetic foot
US20050038524A1 (en) * 2003-08-15 2005-02-17 Jonsson Orn Ingvi Low profile prosthetic foot
US9579220B2 (en) 2003-08-15 2017-02-28 össur hf Low profile prosthetic foot
US8007544B2 (en) 2003-08-15 2011-08-30 Ossur Hf Low profile prosthetic foot
US8287477B1 (en) 2003-09-25 2012-10-16 Massachusetts Institute Of Technology Active ankle foot orthosis
US8808214B2 (en) 2003-09-25 2014-08-19 Massachusetts Institute Of Technology Active ankle foot orthosis
US9668888B2 (en) 2003-09-25 2017-06-06 Massachusetts Institute Of Technology Active ankle foot orthosis
US8551029B1 (en) 2003-09-25 2013-10-08 Massachusetts Institute Of Technology Active ankle foot orthosis
US10695256B2 (en) 2003-09-25 2020-06-30 Massachusetts Institute Of Technology Motorized limb assistance device
US8376971B1 (en) 2003-09-25 2013-02-19 Massachusetts Institute Of Technology Active ankle foot orthosis
US20060212130A1 (en) * 2003-10-24 2006-09-21 Collier Milo S Vacuum-assisted prosthetic device
US7468079B2 (en) * 2003-10-24 2008-12-23 Collier Milo S Vacuum-assisted prosthetic device
US7025792B2 (en) * 2003-10-24 2006-04-11 Collier Milo S Vacuum-assisted prosthetic device
US20050143838A1 (en) * 2003-10-24 2005-06-30 Collier Milo S. Vacuum-assisted prosthetic device
US8986397B2 (en) 2003-11-18 2015-03-24 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US7815689B2 (en) 2003-11-18 2010-10-19 Victhom Human Bionics Inc. Instrumented prosthetic foot
US8323354B2 (en) 2003-11-18 2012-12-04 Victhom Human Bionics Inc. Instrumented prosthetic foot
US9526636B2 (en) 2003-11-18 2016-12-27 Victhom Laboratory Inc. Instrumented prosthetic foot
US20080046096A1 (en) * 2003-11-18 2008-02-21 Stephane Bedard Instrumented prosthetic foot
US20080058959A1 (en) * 2003-11-18 2008-03-06 Stephane Bedard Instrumented prosthetic foot
US20050107889A1 (en) * 2003-11-18 2005-05-19 Stephane Bedard Instrumented prosthetic foot
US20110130847A1 (en) * 2003-11-18 2011-06-02 Victhom Human Bionics Inc. Instrumented prosthetic foot
US7955398B2 (en) 2003-11-18 2011-06-07 Victhom Human Bionics, Inc. Instrumented prosthetic foot
US20110172771A1 (en) * 2004-02-06 2011-07-14 Georgia Tech Research Corporation Hydrogel implant with superficial pores
US8486436B2 (en) 2004-02-06 2013-07-16 Georgia Tech Research Corporation Articular joint implant
US8002830B2 (en) 2004-02-06 2011-08-23 Georgia Tech Research Corporation Surface directed cellular attachment
US8895073B2 (en) 2004-02-06 2014-11-25 Georgia Tech Research Corporation Hydrogel implant with superficial pores
US8142808B2 (en) 2004-02-06 2012-03-27 Georgia Tech Research Corporation Method of treating joints with hydrogel implants
US20050273178A1 (en) * 2004-02-06 2005-12-08 Boyan Barbara D Load bearing biocompatible device
US8318192B2 (en) 2004-02-06 2012-11-27 Georgia Tech Research Corporation Method of making load bearing hydrogel implants
US7910124B2 (en) 2004-02-06 2011-03-22 Georgia Tech Research Corporation Load bearing biocompatible device
US7682540B2 (en) 2004-02-06 2010-03-23 Georgia Tech Research Corporation Method of making hydrogel implants
US20050197717A1 (en) * 2004-02-12 2005-09-08 Ragnarsdottir Heidrun G. System and method for motion-controlled foot unit
US20050192677A1 (en) * 2004-02-12 2005-09-01 Ragnarsdottir Heidrun G. System and method for motion-controlled foot unit
US10195057B2 (en) 2004-02-12 2019-02-05 össur hf. Transfemoral prosthetic systems and methods for operating the same
US20060224247A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for actuating a prosthetic ankle based on a relaxed position
US7896927B2 (en) 2004-02-12 2011-03-01 össur hf. Systems and methods for actuating a prosthetic ankle based on a relaxed position
US7637957B2 (en) * 2004-02-12 2009-12-29 össur hf System and method for motion-controlled foot unit
US20110106274A1 (en) * 2004-02-12 2011-05-05 Ossur Hf System and method for motion-controlled foot unit
US9271851B2 (en) 2004-02-12 2016-03-01 össur hf. Systems and methods for actuating a prosthetic ankle
US20080215161A1 (en) * 2004-02-12 2008-09-04 Ossur Hf System and method for motion-controlled foot unit
US7811334B2 (en) 2004-02-12 2010-10-12 Ossur Hf. System and method for motion-controlled foot unit
US8657886B2 (en) 2004-02-12 2014-02-25 össur hf Systems and methods for actuating a prosthetic ankle
US8057550B2 (en) 2004-02-12 2011-11-15 össur hf. Transfemoral prosthetic systems and methods for operating the same
US20060224246A1 (en) * 2004-02-12 2006-10-05 Clausen Arinbjorn V Systems and methods for adjusting the angle of a prosthetic ankle based on a measured surface angle
US8617254B2 (en) 2004-03-10 2013-12-31 Ossur Hf Control system and method for a prosthetic knee
US20050283257A1 (en) * 2004-03-10 2005-12-22 Bisbee Charles R Iii Control system and method for a prosthetic knee
US9345591B2 (en) 2004-03-10 2016-05-24 össur hf Control system and method for a prosthetic knee
US20110093091A1 (en) * 2004-03-16 2011-04-21 Tensegrity Prosthetics, Inc. Tensegrity Joints for Prosthetic, Orthotic, and Robotic Devices
DE102004020368B4 (en) * 2004-04-23 2014-03-06 Otto Bock Healthcare Gmbh Artificial jointless foot
DE102004020368A1 (en) * 2004-04-23 2005-12-15 Otto Bock Healthcare Gmbh Artificial jointless foot
US7691154B2 (en) 2004-05-07 2010-04-06 össur hf Systems and methods of controlling pressure within a prosthetic knee
US20060136072A1 (en) * 2004-05-07 2006-06-22 Bisbee Charles R Iii Magnetorheologically actuated prosthetic knee
US20050267603A1 (en) * 2004-05-28 2005-12-01 Lecomte Christophe G Foot prosthesis with resilient multi-axial ankle
US8025699B2 (en) 2004-05-28 2011-09-27 össur hf Foot prosthesis with resilient multi-axial ankle
US20090287315A1 (en) * 2004-05-28 2009-11-19 össur hf. Foot prosthesis with resilient multi-axial ankle
US20050267602A1 (en) * 2004-05-28 2005-12-01 Clausen Arinbjorn V Foot prosthesis with resilient multi-axial ankle
US7998221B2 (en) 2004-05-28 2011-08-16 össur hf Foot prosthesis with resilient multi-axial ankle
US20060058893A1 (en) * 2004-05-28 2006-03-16 Clausen Arinbjorn V Method of measuring the performance of a prosthetic foot
US7846213B2 (en) 2004-05-28 2010-12-07 össur hf. Foot prosthesis with resilient multi-axial ankle
US7581454B2 (en) 2004-05-28 2009-09-01 össur hf Method of measuring the performance of a prosthetic foot
US20070106395A9 (en) * 2004-05-28 2007-05-10 Clausen Arinbjorn V Foot prosthesis with resilient multi-axial ankle
US9132022B2 (en) 2004-05-28 2015-09-15 össur hf Foot prosthesis with resilient multi-axial ankle
US7347877B2 (en) 2004-05-28 2008-03-25 össur hf Foot prosthesis with resilient multi-axial ankle
WO2005117749A3 (en) * 2004-05-28 2006-06-01 Ossur Engineering Inc Foot prosthesis with resilient multi-axial ankle
US7891258B2 (en) 2004-05-28 2011-02-22 össur hf Method of measuring the performance of a prosthetic foot
US9668887B2 (en) 2004-05-28 2017-06-06 össur hf Foot prosthesis with resilient multi-axial ankle
US20090293641A1 (en) * 2004-05-28 2009-12-03 Clausen Arinbjoern V Method of measuring the performance of a prosthetic foot
US9078774B2 (en) * 2004-12-22 2015-07-14 össur hf Systems and methods for processing limb motion
US20100324456A1 (en) * 2004-12-22 2010-12-23 Ossur Hf Systems and methods for processing limb motion
US7811333B2 (en) 2004-12-22 2010-10-12 Ossur Hf Systems and methods for processing limb motion
US20060135883A1 (en) * 2004-12-22 2006-06-22 Jonsson Helgi Systems and methods for processing limb motion
US10290235B2 (en) 2005-02-02 2019-05-14 össur hf Rehabilitation using a prosthetic device
US8858648B2 (en) 2005-02-02 2014-10-14 össur hf Rehabilitation using a prosthetic device
US8048007B2 (en) 2005-02-02 2011-11-01 össur hf Prosthetic and orthotic systems usable for rehabilitation
US20060173552A1 (en) * 2005-02-02 2006-08-03 Roy Kim D Prosthetic and orthotic systems usable for rehabilitation
US9462966B2 (en) 2005-02-02 2016-10-11 össur hf Sensing systems and methods for monitoring gait dynamics
US20110098606A1 (en) * 2005-02-02 2011-04-28 Ossur Hf Sensing systems and methods for monitoring gait dynamics
US8869626B2 (en) 2005-02-02 2014-10-28 össur hf Sensing systems and methods for monitoring gait dynamics
US8122772B2 (en) 2005-02-02 2012-02-28 össur hf Sensing systems and methods for monitoring gait dynamics
US10369025B2 (en) 2005-02-02 2019-08-06 Össur Iceland Ehf Sensing systems and methods for monitoring gait dynamics
US8801802B2 (en) 2005-02-16 2014-08-12 össur hf System and method for data communication with a mechatronic device
US10080672B2 (en) 2005-03-31 2018-09-25 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US10588759B2 (en) 2005-03-31 2020-03-17 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs and variable-damper elements
US9339397B2 (en) 2005-03-31 2016-05-17 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US10137011B2 (en) 2005-03-31 2018-11-27 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US8500823B2 (en) 2005-03-31 2013-08-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US20100241242A1 (en) * 2005-03-31 2010-09-23 Massachusetts Institute Of Technology Artificial Joints Using Agonist-Antagonist Actuators
US10342681B2 (en) 2005-03-31 2019-07-09 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US8512415B2 (en) 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US9333097B2 (en) 2005-03-31 2016-05-10 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US20110040216A1 (en) * 2005-03-31 2011-02-17 Massachusetts Institute Of Technology Exoskeletons for running and walking
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US8870967B2 (en) 2005-03-31 2014-10-28 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US10485681B2 (en) 2005-03-31 2019-11-26 Massachusetts Institute Of Technology Exoskeletons for running and walking
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
US20100114329A1 (en) * 2005-03-31 2010-05-06 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US11273060B2 (en) 2005-03-31 2022-03-15 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US20100324699A1 (en) * 2005-03-31 2010-12-23 Massachusetts Institute Of Technology Model-Based Neuromechanical Controller for a Robotic Leg
US8734528B2 (en) * 2005-03-31 2014-05-27 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US20070123997A1 (en) * 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US11491032B2 (en) 2005-03-31 2022-11-08 Massachusetts Institute Of Technology Artificial joints using agonist-antagonist actuators
US9539117B2 (en) 2005-03-31 2017-01-10 Massachusetts Institute Of Technology Method for controlling a robotic limb joint
US9149370B2 (en) 2005-03-31 2015-10-06 Massachusetts Institute Of Technology Powered artificial knee with agonist-antagonist actuation
US20130110256A1 (en) * 2005-03-31 2013-05-02 Massachusetts Institute Of Technology Artificial Ankle-Foot System with Spring, Variable-Damping, and Series-Elastic Actuator Components
US8814949B2 (en) 2005-04-19 2014-08-26 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9066819B2 (en) 2005-04-19 2015-06-30 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US9717606B2 (en) 2005-04-19 2017-08-01 össur hf Combined active and passive leg prosthesis system and a method for performing a movement with such a system
US7527253B2 (en) * 2005-06-09 2009-05-05 Arizona Board Of Regents Adjustable stiffness leaf spring actuators
US20070040312A1 (en) * 2005-06-09 2007-02-22 Arizona Board Of Regents Adjustable stiffness leaf spring actuators
US20100076346A1 (en) * 2005-06-30 2010-03-25 University Of Virginia Patent Foundation Method and System for Energy Returning Ankle Foot Orthosis (ERAFO)
US8299634B2 (en) 2005-08-10 2012-10-30 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US9057361B2 (en) 2005-08-10 2015-06-16 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US7652386B2 (en) * 2005-08-10 2010-01-26 Bionic Power Inc. Method and apparatus for harvesting biomechanical energy
US7659636B2 (en) 2005-08-10 2010-02-09 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US8487456B2 (en) 2005-08-10 2013-07-16 Bionic Power Inc. Methods and apparatus for harvesting biomechanical energy
US20100276944A1 (en) * 2005-08-10 2010-11-04 Simon Fraser University Methods and apparatus for harvesting biomechanical energy
US20080277943A1 (en) * 2005-08-10 2008-11-13 Donelan James M Method and apparatus for harvesting biomechanical energy
US7485152B2 (en) 2005-08-26 2009-02-03 The Ohio Willow Wood Company Prosthetic leg having electronically controlled prosthetic knee with regenerative braking feature
US8048172B2 (en) * 2005-09-01 2011-11-01 össur hf Actuator assembly for prosthetic or orthotic joint
US20070050045A1 (en) * 2005-09-01 2007-03-01 Clausen Arinbjorn V Sensing system and method for motion-controlled foot unit
US20150073566A1 (en) * 2005-09-01 2015-03-12 össur hf System and method for determining terrain transitions
US8702811B2 (en) 2005-09-01 2014-04-22 össur hf System and method for determining terrain transitions
US8709097B2 (en) 2005-09-01 2014-04-29 össur hf Actuator assembly for prosthetic or orthotic joint
US20070050047A1 (en) * 2005-09-01 2007-03-01 Ragnarsdottlr Heidrun G System and method for determining terrain transitions
US8852292B2 (en) 2005-09-01 2014-10-07 Ossur Hf System and method for determining terrain transitions
US20070156252A1 (en) * 2005-09-01 2007-07-05 Ossur Hf Actuator assebmly for prosthetic or orthotic joint
US9351854B2 (en) 2005-09-01 2016-05-31 össur hf Actuator assembly for prosthetic or orthotic joint
US20080016860A1 (en) * 2006-05-05 2008-01-24 Sri International Wave powered generation
US7538445B2 (en) * 2006-05-05 2009-05-26 Sri International Wave powered generation
US20070257490A1 (en) * 2006-05-05 2007-11-08 Sri International Wave powered generation using electroactive polymers
US7649276B2 (en) * 2006-05-05 2010-01-19 Sri International Wave powered generation
US7557456B2 (en) 2006-05-05 2009-07-07 Sri International Wave powered generation using electroactive polymers
US20070257491A1 (en) * 2006-05-05 2007-11-08 Sri International Wave powered generation
US11571316B2 (en) 2006-05-09 2023-02-07 Ottobock Se & Co. Kgaa Control of a passive prosthetic knee joint with adjustable damping
US20090171469A1 (en) * 2006-06-30 2009-07-02 Freygardur Thorsteinsson Intelligent orthosis
US7578799B2 (en) 2006-06-30 2009-08-25 Ossur Hf Intelligent orthosis
US7985193B2 (en) 2006-06-30 2011-07-26 Ossur Hf Intelligent orthosis
US20100185301A1 (en) * 2006-10-17 2010-07-22 Andrew H Hansen Equilibrium-point prosthetic and orthotic ankle-foot systems, devices, and methods of use
WO2008048658A3 (en) * 2006-10-17 2008-07-03 Univ Northwestern Equilibrium-point prosthetic and orthotic ankle-foot systems
US8597369B2 (en) * 2006-10-17 2013-12-03 Northwestern University Equilibrium-point prosthetic and orthotic ankle-foot systems and devices
WO2008048658A2 (en) * 2006-10-17 2008-04-24 Northwestern University Equilibrium-point prosthetic and orthotic ankle-foot systems
US10130495B2 (en) * 2006-12-14 2018-11-20 Blatchford Products Limited Prosthetic ankle and foot combination
US9999526B2 (en) 2006-12-14 2018-06-19 Blatchford Products Limited Prosthetic ankle joint mechanism
US20190021882A1 (en) * 2006-12-14 2019-01-24 Blatchford Products Limited Prosthetic ankle joint mechanism
US11679008B2 (en) * 2006-12-14 2023-06-20 Blatchford Products Limited Prosthetic ankle joint mechanism
US11529246B2 (en) 2006-12-14 2022-12-20 Blatchford Products Limited Prosthetic ankle and foot combination
US20150351938A1 (en) * 2006-12-14 2015-12-10 Blatchford Products Limited Prosthetic ankle and foot combination
US9526635B2 (en) 2007-01-05 2016-12-27 Victhom Laboratory Inc. Actuated leg orthotics or prosthetics for amputees
US9066817B2 (en) 2007-01-05 2015-06-30 Victhom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US20090299480A1 (en) * 2007-01-05 2009-12-03 Victhom Human Bionics Inc. Joint Actuation Mechanism for a Prosthetic and/or Orthotic Device Having a Compliant Transmission
US11007072B2 (en) * 2007-01-05 2021-05-18 Victhom Laboratory Inc. Leg orthotic device
US8435309B2 (en) 2007-01-05 2013-05-07 Victhom Human Bionics Joint actuation mechanism for a prosthetic and/or orthotic device having a compliant transmission
US20100160844A1 (en) * 2007-01-05 2010-06-24 Benoit Gilbert High Torque Active Mechanism for Orthotic and/or Prosthetic Devices
US8211042B2 (en) 2007-01-05 2012-07-03 Victom Human Bionics Inc. High torque active mechanism for orthotic and/or prosthetic devices
US20160302956A1 (en) * 2007-01-05 2016-10-20 Victhom Laboratory Inc. Actuated leg prostheses for amputees
US9808357B2 (en) 2007-01-19 2017-11-07 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US11607326B2 (en) 2007-01-19 2023-03-21 Victhom Laboratory Inc. Reactive layer control system for prosthetic devices
US10405996B2 (en) 2007-01-19 2019-09-10 Victhom Laboratory Inc. Reactive layer control system for prosthetic and orthotic devices
US10299943B2 (en) 2008-03-24 2019-05-28 össur hf Transfemoral prosthetic systems and methods for operating the same
US20090287314A1 (en) * 2008-05-13 2009-11-19 Rifkin Jerome R Joints for prosthetic, orthotic and/or robotic devices
US8821589B2 (en) 2008-05-13 2014-09-02 Jerome R. Rifkin Joints for prosthetic, orthotic and/or robotic devices
US8945035B2 (en) * 2008-08-28 2015-02-03 Richard A. Nace Knee brace with improved gait swing assist
US20130035623A1 (en) * 2008-08-28 2013-02-07 Nace Richard A Knee Brace with Improved Gait Swing Assist
US8900325B2 (en) 2008-09-04 2014-12-02 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US10105244B2 (en) 2008-09-04 2018-10-23 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US9211201B2 (en) 2008-09-04 2015-12-15 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US9554922B2 (en) 2008-09-04 2017-01-31 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US8419804B2 (en) 2008-09-04 2013-04-16 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100179668A1 (en) * 2008-09-04 2010-07-15 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US10285828B2 (en) 2008-09-04 2019-05-14 Bionx Medical Technologies, Inc. Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US20100174385A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US20100174384A1 (en) * 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US9345592B2 (en) 2008-09-04 2016-05-24 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US10070974B2 (en) 2008-09-04 2018-09-11 Bionx Medical Technologies, Inc. Hybrid terrain-adaptive lower-extremity systems
US20100113980A1 (en) * 2008-09-04 2010-05-06 Iwalk, Inc. Hybrid Terrain-Adaptive Lower-Extremity Systems
US9351856B2 (en) 2008-09-04 2016-05-31 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US10376388B2 (en) 2009-04-13 2019-08-13 The United States Government As Represented By The Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US10105243B2 (en) 2009-04-13 2018-10-23 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US9549827B2 (en) 2009-04-13 2017-01-24 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
US9017418B2 (en) 2009-05-05 2015-04-28 össur hf Control systems and methods for prosthetic or orthotic devices
US20100286796A1 (en) * 2009-05-05 2010-11-11 Ossur Hf Control systems and methods for prosthetic or orthotic devices
US9387096B2 (en) 2009-06-17 2016-07-12 Ossur Hf Feedback control systems and methods for prosthetic or orthotic devices
US20100324698A1 (en) * 2009-06-17 2010-12-23 Ossur Hf Feedback control systems and methods for prosthetic or orthotic devices
US20110208322A1 (en) * 2009-07-14 2011-08-25 Tensegrity Prosthetics Inc. Joints for Prosthetic, Orthotic and/or Robotic Devices
US20110213471A1 (en) * 2010-02-26 2011-09-01 össur hf Prosthetic foot with a curved split
US8486156B2 (en) 2010-02-26 2013-07-16 össur hf Prosthetic foot with a curved split
US10406002B2 (en) 2010-04-05 2019-09-10 Bionx Medical Technologies, Inc. Controlling torque in a prosthesis or orthosis based on a deflection of series elastic element
US9693883B2 (en) 2010-04-05 2017-07-04 Bionx Medical Technologies, Inc. Controlling power in a prosthesis or orthosis based on predicted walking speed or surrogate for same
US8480760B2 (en) 2010-04-12 2013-07-09 Northwestern University Passive ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and method of use
US11020250B2 (en) 2010-09-29 2021-06-01 Össur Iceland Ehf Prosthetic and orthotic devices and methods and systems for controlling the same
US8915968B2 (en) 2010-09-29 2014-12-23 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9925071B2 (en) 2010-09-29 2018-03-27 össur hf Prosthetic and orthotic devices and methods and systems for controlling the same
US9974666B2 (en) * 2010-10-25 2018-05-22 Otto Bock Healthcare Gmbh Prosthetic foot
US20150305894A1 (en) * 2010-10-25 2015-10-29 Otto Bock Healthcare Gmbh Prosthetic foot
US9839552B2 (en) 2011-01-10 2017-12-12 Bionx Medical Technologies, Inc. Powered joint orthosis
US10537449B2 (en) 2011-01-12 2020-01-21 Bionx Medical Technologies, Inc. Controlling powered human augmentation devices
US8696764B2 (en) 2011-01-20 2014-04-15 Northwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces
WO2012099709A3 (en) * 2011-01-20 2012-11-01 Nothwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and methods of use
WO2012099709A2 (en) * 2011-01-20 2012-07-26 Nothwestern University Further improvements to ankle-foot prosthesis and orthosis capable of automatic adaptation to sloped walking surfaces and methods of use
US9687377B2 (en) 2011-01-21 2017-06-27 Bionx Medical Technologies, Inc. Terrain adaptive powered joint orthosis
US8721737B2 (en) * 2011-02-03 2014-05-13 Marquette University Passive ankle prosthesis with energy return simulating that of a natural ankle
US20120203359A1 (en) * 2011-02-03 2012-08-09 Marquette University Passive Ankle Prosthesis with Energy Return Simulating That of a Natural Ankle
US9060883B2 (en) 2011-03-11 2015-06-23 Iwalk, Inc. Biomimetic joint actuators
US9872782B2 (en) 2011-03-11 2018-01-23 Bionx Medical Technologies, Inc. Biomimetic joint actuators
US9060884B2 (en) 2011-05-03 2015-06-23 Victhom Human Bionics Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US11185429B2 (en) 2011-05-03 2021-11-30 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US10251762B2 (en) 2011-05-03 2019-04-09 Victhom Laboratory Inc. Impedance simulating motion controller for orthotic and prosthetic applications
US11278411B2 (en) 2011-05-26 2022-03-22 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US11944545B2 (en) 2011-05-26 2024-04-02 Cartiva, Inc. Implant introducer
US9526632B2 (en) 2011-05-26 2016-12-27 Cartiva, Inc. Methods of repairing a joint using a wedge-shaped implant
US10376368B2 (en) 2011-05-26 2019-08-13 Cartiva, Inc. Devices and methods for creating wedge-shaped recesses
US9155543B2 (en) 2011-05-26 2015-10-13 Cartiva, Inc. Tapered joint implant and related tools
US20130046218A1 (en) * 2011-08-15 2013-02-21 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
US9492302B2 (en) * 2011-08-15 2016-11-15 North Carolina State University Apparatus and clutch for using controlled storage and release of mechanical energy to aid locomotion
US9222468B2 (en) 2011-09-01 2015-12-29 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
US8736087B2 (en) 2011-09-01 2014-05-27 Bionic Power Inc. Methods and apparatus for control of biomechanical energy harvesting
US9028559B2 (en) 2011-09-26 2015-05-12 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US10758377B2 (en) 2011-09-26 2020-09-01 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
US11478364B2 (en) 2011-09-26 2022-10-25 Össur Iceland Ehf Frictionless vertical suspension mechanism for prosthetic feet
US9999523B2 (en) 2011-09-26 2018-06-19 össur hf Frictionless vertical suspension mechanism for prosthetic feet
US9737419B2 (en) 2011-11-02 2017-08-22 Bionx Medical Technologies, Inc. Biomimetic transfemoral prosthesis
US10575970B2 (en) 2011-11-11 2020-03-03 Össur Iceland Ehf Robotic device and method of using a parallel mechanism
US10543109B2 (en) 2011-11-11 2020-01-28 Össur Iceland Ehf Prosthetic device and method with compliant linking member and actuating linking member
US9032635B2 (en) 2011-12-15 2015-05-19 Massachusetts Institute Of Technology Physiological measurement device or wearable device interface simulator and method of use
US8961618B2 (en) 2011-12-29 2015-02-24 össur hf Prosthetic foot with resilient heel
US9198780B2 (en) 2012-02-14 2015-12-01 Ossur Hf Vacuum assisted suspension system
US9889025B2 (en) 2012-02-14 2018-02-13 Ossur Hf Vacuum assisted suspension system
US10617537B2 (en) 2012-02-14 2020-04-14 Ossur Hf Vacuum assisted suspension system
US9017419B1 (en) 2012-03-09 2015-04-28 össur hf Linear actuator
US10646358B2 (en) * 2012-03-14 2020-05-12 Vanderbilt University System and method for providing biomechanically suitable running gait in powered lower limb devices
US20130268090A1 (en) * 2012-03-14 2013-10-10 Vanderbilt University System and method for providing biomechanically suitable running gait in powered lower limb devices
US10806605B2 (en) * 2012-03-19 2020-10-20 Massachusetts Institute Of Technology Variable impedance mechanical interface
US11883307B2 (en) 2012-03-19 2024-01-30 Massachusetts Institute Of Technology Variable impedance mechanical interface
US20130282141A1 (en) * 2012-03-19 2013-10-24 Massachusetts Institute Of Technology Variable Impedance Mechanical Interface
US9895240B2 (en) 2012-03-29 2018-02-20 Ösur hf Powered prosthetic hip joint
US10940027B2 (en) 2012-03-29 2021-03-09 Össur Iceland Ehf Powered prosthetic hip joint
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US9975249B2 (en) 2012-04-18 2018-05-22 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US11141294B2 (en) 2012-04-30 2021-10-12 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US11058561B2 (en) 2012-04-30 2021-07-13 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US10369018B2 (en) 2012-04-30 2019-08-06 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US9072617B2 (en) 2012-04-30 2015-07-07 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US9615946B2 (en) 2012-04-30 2017-04-11 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US9486335B2 (en) 2012-04-30 2016-11-08 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US9044348B2 (en) 2012-04-30 2015-06-02 Ossur Hf Prosthetic device, system and method for increasing vacuum attachment
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US11432947B2 (en) * 2012-07-23 2022-09-06 Blatchford Products Limited Lower limb prosthesis
US20190046336A1 (en) * 2012-07-23 2019-02-14 Blatchford Products Limited Lower limb prosthesis
US9439786B2 (en) 2012-08-01 2016-09-13 össur hf Prosthetic ankle module
US10342680B2 (en) 2012-08-01 2019-07-09 Ossur Iceland Ehf Prosthetic ankle module
US9351900B2 (en) 2012-09-17 2016-05-31 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10427293B2 (en) 2012-09-17 2019-10-01 Prisident And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10016290B2 (en) 2012-09-17 2018-07-10 Vanderbilt University Walking controller for powered ankle prostheses
US11464700B2 (en) 2012-09-17 2022-10-11 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US11129734B2 (en) 2012-09-21 2021-09-28 U.S. Department Of Veterans Affairs Ankle-foot prosthesis for automatic adaptation to sloped walking surfaces
CN102885660A (en) * 2012-10-24 2013-01-23 北京工道风行智能技术有限公司 Power below-knee prosthesis with discrete soft toe joints
US20180256372A1 (en) * 2012-11-26 2018-09-13 Otto Bock Healthcare Gmbh Orthopedic device
DE102012023023A1 (en) * 2012-11-26 2014-05-28 Otto Bock Healthcare Gmbh Orthopedic device
US9993356B2 (en) 2012-11-26 2018-06-12 Otto Bock Healthcare Gmbh Orthopedic device
US11730611B2 (en) 2012-11-26 2023-08-22 Ottobock Se & Co. Kgaa Orthopedic device
US10893959B2 (en) 2012-11-26 2021-01-19 Ottobock Se & Co. Kgaa Orthopedic device
US10369019B2 (en) 2013-02-26 2019-08-06 Ossur Hf Prosthetic foot with enhanced stability and elastic energy return
US9561118B2 (en) 2013-02-26 2017-02-07 össur hf Prosthetic foot with enhanced stability and elastic energy return
US11285024B2 (en) 2013-02-26 2022-03-29 Össur Iceland Ehf Prosthetic foot with enhanced stability and elastic energy return
US9364348B2 (en) 2013-03-01 2016-06-14 Ossur Hf Vacuum suspension system
US9820873B2 (en) 2013-03-01 2017-11-21 Ossur Hf Vacuum suspension system
US10695197B2 (en) 2013-03-14 2020-06-30 Össur Iceland Ehf Prosthetic ankle and method of controlling same based on weight-shifting
US20140276304A1 (en) * 2013-03-14 2014-09-18 Yale University Friction-Based Orthotic Impedence Modulation Device
US9707104B2 (en) 2013-03-14 2017-07-18 össur hf Prosthetic ankle and method of controlling same based on adaptation to speed
US11576795B2 (en) 2013-03-14 2023-02-14 össur hf Prosthetic ankle and method of controlling same based on decreased loads
US9788985B2 (en) * 2013-03-14 2017-10-17 Yale University Friction-based orthotic impedence modulation device
US10137024B2 (en) * 2013-04-08 2018-11-27 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US9439797B2 (en) 2013-04-08 2016-09-13 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US20140303539A1 (en) * 2013-04-08 2014-10-09 Elwha Llc Apparatus, System, and Method for Controlling Movement of an Orthopedic Joint Prosthesis in a Mammalian Subject
US10420666B2 (en) 2013-04-08 2019-09-24 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US20160158032A1 (en) * 2013-05-03 2016-06-09 Springactive, Inc. Quasi-Active Prosthetic Joint System
US20160158031A1 (en) * 2013-05-03 2016-06-09 Springactive, Inc. Quasi-Active Prosthetic Joint System
US10843332B2 (en) 2013-05-31 2020-11-24 President And Fellow Of Harvard College Soft exosuit for assistance with human motion
US10918558B2 (en) 2013-08-10 2021-02-16 Imobilities Incorporated Portable human exoskeleton system
US9639164B2 (en) * 2013-09-26 2017-05-02 Fujitsu Limited Gesture input method
US20150089455A1 (en) * 2013-09-26 2015-03-26 Fujitsu Limited Gesture input method
US11801192B2 (en) * 2013-11-07 2023-10-31 Samsung Electronics Co., Ltd. Walking assistance robot and method of controlling the walking assistance robot
US20190021938A1 (en) * 2013-11-07 2019-01-24 Samsung Electronics Co., Ltd. Walking assistance robot and method of controlling the walking assistance robot
US11324655B2 (en) 2013-12-09 2022-05-10 Trustees Of Boston University Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
US20150261140A1 (en) * 2014-03-12 2015-09-17 Ricoh Company, Ltd. Transfer device and image forming apparatus including same
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
US10390974B2 (en) 2014-04-11 2019-08-27 össur hf. Prosthetic foot with removable flexible members
US11446166B2 (en) 2014-04-11 2022-09-20 Össur Iceland Ehf Prosthetic foot with removable flexible members
USD797292S1 (en) 2014-06-30 2017-09-12 össur hf Prosthetic foot plate
US11147692B2 (en) 2014-06-30 2021-10-19 Össur Iceland Ehf Prosthetic feet and foot covers
US9999524B2 (en) 2014-06-30 2018-06-19 össur hf Prosthetic feet and foot covers
US10729568B2 (en) 2014-07-01 2020-08-04 Ossur Hf Pump mechanism for vacuum suspension system
US9757256B2 (en) 2014-07-01 2017-09-12 Ossur Hf Pump mechanism for vacuum suspension system
US10434030B2 (en) 2014-09-19 2019-10-08 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US10449105B2 (en) * 2014-10-26 2019-10-22 Springactive, Inc. System and method of bidirectional compliant joint torque actuation
US10695198B2 (en) 2015-01-08 2020-06-30 Ossur Iceland Ehf Pump mechanism
US10028845B2 (en) 2015-01-08 2018-07-24 Ossur Iceland Ehf Pump mechanism
US11679012B2 (en) 2015-01-08 2023-06-20 Ossur Iceland Ehf Pump mechanism
US10792170B2 (en) * 2015-02-12 2020-10-06 Board Of Regents, The University Of Texas Systems Systems and methods for prosthetic device control
EP4257092A3 (en) * 2015-03-04 2024-01-24 Ottobock Prosthetics, LLC Lower limb prosthesis
US10610384B2 (en) 2015-03-04 2020-04-07 Freedom Innovations, Llc Lower limb prosthesis
US11786383B2 (en) 2015-03-04 2023-10-17 Ottobock Prosthetics, Llc Lower limb prosthesis
US20180116826A1 (en) * 2015-03-04 2018-05-03 Freedom Innovations, Llc Lower limb prosthesis
US11839552B2 (en) 2015-03-31 2023-12-12 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US10973644B2 (en) 2015-03-31 2021-04-13 Cartiva, Inc. Hydrogel implants with porous materials and methods
US9907663B2 (en) 2015-03-31 2018-03-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US11717411B2 (en) 2015-03-31 2023-08-08 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10758374B2 (en) 2015-03-31 2020-09-01 Cartiva, Inc. Carpometacarpal (CMC) implants and methods
US11020231B2 (en) 2015-04-14 2021-06-01 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11701231B2 (en) 2015-04-14 2023-07-18 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US10952858B2 (en) 2015-04-14 2021-03-23 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
US11246725B2 (en) 2015-05-21 2022-02-15 Ossur Iceland Ehf Pump system
US9943421B2 (en) 2015-05-21 2018-04-17 Ossur Iceland Ehf Membrane pump system for use with a prosthetic system
US10561508B2 (en) 2015-05-21 2020-02-18 Ossur Iceland Ehf Vacuum pump system with heel pump for a prosthetic leg
US10179055B2 (en) 2015-05-29 2019-01-15 Ossur Iceland Ehf Pump system for use with a prosthetic device
USD795433S1 (en) 2015-06-30 2017-08-22 Össur Iceland Ehf Prosthetic foot cover
US10413429B2 (en) 2015-08-27 2019-09-17 Ossur Iceland Ehf Pump system
US11357647B2 (en) 2015-08-27 2022-06-14 Ossur Iceland Ehf Pump system
US10722386B2 (en) 2015-09-18 2020-07-28 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US9949850B2 (en) 2015-09-18 2018-04-24 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US11707365B2 (en) 2015-09-18 2023-07-25 Össur Iceland Ehf Magnetic locking mechanism for prosthetic or orthotic joints
US10988192B1 (en) * 2015-10-08 2021-04-27 Boston Dynamics, Inc. Three-piston ankle mechanism of a legged robot and associated control system
US11932332B2 (en) 2015-10-08 2024-03-19 Boston Dynamics, Inc. Three-piston ankle mechanism of a legged robot and associated control system
US10603803B2 (en) 2015-10-21 2020-03-31 Fondazione Istituto Italiano Di Tecnologia Humanoid robot foot comprising an active variable stiffness mechanism
WO2017068037A1 (en) * 2015-10-21 2017-04-27 Fondazione Istituto Italiano Di Tecnologia Humanoid robot foot comprising an active variable stiffness mechanism
US9994269B1 (en) * 2015-11-12 2018-06-12 Schaft Inc. Rotatable extension for robot foot
US10195099B2 (en) 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
US11590046B2 (en) 2016-03-13 2023-02-28 President And Fellows Of Harvard College Flexible members for anchoring to the body
WO2017180970A1 (en) * 2016-04-14 2017-10-19 Marquette University Passive ankle prosthesis with energy return
US10898349B2 (en) 2016-04-14 2021-01-26 Marquette University Passive ankle prosthesis with energy return
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
US10512554B2 (en) 2016-08-26 2019-12-24 Ossur Iceland Ehf Pump system
US11376139B2 (en) 2016-08-26 2022-07-05 Ossur Iceland Ehf Pump system
US11109993B2 (en) 2016-11-09 2021-09-07 Djo, Llc Orthopedic walking boot having a mechanically adjustable ramp insert
WO2018089513A1 (en) * 2016-11-09 2018-05-17 Djo, Llc Orthopedic walking boot having a mechanically adjustable ramp insert
US11690750B2 (en) 2016-11-09 2023-07-04 Djo, Llc Orthopedic walking boot having a mechanically adjustable ramp insert
US10821007B2 (en) 2016-12-01 2020-11-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
US11771572B2 (en) 2016-12-01 2023-10-03 Össur Iceland Ehf Prosthetic feet having heel height adjustability
US11819437B2 (en) 2016-12-22 2023-11-21 Ottobock Se & Co. Kgaa Ankle foot orthosis
US11014804B2 (en) 2017-03-14 2021-05-25 President And Fellows Of Harvard College Systems and methods for fabricating 3D soft microstructures
DE102017112457A1 (en) 2017-06-06 2018-12-06 Ottobock Se & Co. Kgaa Orthopedic technical joint device
WO2018224552A1 (en) 2017-06-06 2018-12-13 Ottobock Se & Co. Kgaa Orthopedic joint device
US11278434B2 (en) 2017-06-06 2022-03-22 Ottobock Se & Co. Kgaa Orthopedic joint device
DE102017115267A1 (en) 2017-07-07 2019-01-10 Ottobock Se & Co. Kgaa Orthopedic technical joint device
US10980648B1 (en) 2017-09-15 2021-04-20 Össur Iceland Ehf Variable stiffness mechanism and limb support device incorporating the same
US11446164B1 (en) 2017-09-15 2022-09-20 Össur Iceland Ehf Variable stiffness mechanisms
USD915596S1 (en) 2018-04-10 2021-04-06 Össur Iceland Ehf Prosthetic foot with tapered fasteners
RU2712576C2 (en) * 2018-06-28 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калмыцкий государственный университет имени Б.Б. Городовикова" Device for facilitating walking using frame from high-carbon plastic
WO2022056037A1 (en) * 2020-09-09 2022-03-17 Massachusetts Institute Of Technology Leaf spring with high resolution stiffness control

Also Published As

Publication number Publication date
US20160067058A1 (en) 2016-03-10
US9687363B2 (en) 2017-06-27
US8551184B1 (en) 2013-10-08
US20140088728A1 (en) 2014-03-27
US9084689B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
US9687363B2 (en) Variable-mechanical-impedance artificial legs
US10588759B2 (en) Artificial human limbs and joints employing actuators, springs and variable-damper elements
US10575970B2 (en) Robotic device and method of using a parallel mechanism
US7942935B2 (en) Device and system for prosthetic knees and ankles
US9289316B2 (en) Quasi-active prosthetic joint system
US5899869A (en) Orthopedic appliance with weight activated brake and variable extension assist
US8870967B2 (en) Artificial joints using agonist-antagonist actuators
US3995324A (en) Actuator device for artificial leg
US20220054284A1 (en) Prosthetic joint with a mechanical response system to position and rate of change
US4442554A (en) Biomechanical ankle device
WO2012177125A1 (en) A prosthetic or orthotic device
Unal et al. Towards a fully passive transfemoral prosthesis for normal walking
US20180036148A1 (en) Energy-harvesting mesofluidic impulse prosthesis
US10702403B2 (en) Prosthetic joint
CN108836583A (en) A kind of main passive-type ankle-joint artificial limb of change bar spool gear five-rod
Behrens et al. Design of a fully-passive transfemoral prosthesis prototype
WO2014057086A1 (en) Prosthetic ankle-foot system
Fujino et al. Above knee prosthesis for ascending/descending stairs with no external energy source
EP3068348A1 (en) Robotic device and method of using a parallel mechanism
US20230125274A1 (en) Prosthetic Foot and Ankle System with Damper
US20230225884A1 (en) Transfemoral prosthesis for walking, sitting-standing, stair climbing
WO2022146400A1 (en) 3 degrees of freedom ankle prosthesis
RU2177279C2 (en) Femur prosthesis
TR2023005398A2 (en) A ROBOTIC KNEE UNIT
AWAD et al. Dynamic Coupling Characteristics of a Semi-Active Knee Prosthesis

Legal Events

Date Code Title Description
AS Assignment

Owner name: POWERED HUMAN AUGMENTATION DEVICES, INC., NEW HAMP

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:HERR, HUGH, DR.;REEL/FRAME:019901/0148

Effective date: 20070926

Owner name: IWALK LLC, NEW HAMPSHIRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POWERED HUMAN AUGMENTATION DEVICES, INC.;REEL/FRAME:019901/0283

Effective date: 20070919

AS Assignment

Owner name: IWALK, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IWALK LLC;REEL/FRAME:026799/0099

Effective date: 20090811

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: VENTURE LENDING & LEASING IX, INC., CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:AFERO INC.;REEL/FRAME:054256/0299

Effective date: 20201023