US20040068849A1 - Differentially entangled nonwoven fabric for use as wipes - Google Patents

Differentially entangled nonwoven fabric for use as wipes Download PDF

Info

Publication number
US20040068849A1
US20040068849A1 US10/445,586 US44558603A US2004068849A1 US 20040068849 A1 US20040068849 A1 US 20040068849A1 US 44558603 A US44558603 A US 44558603A US 2004068849 A1 US2004068849 A1 US 2004068849A1
Authority
US
United States
Prior art keywords
nonwoven
wipe
making
agents
fibrous batt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/445,586
Inventor
Patrick Barge
Nick Carter
Charles Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avintiv Specialty Materials Inc
Original Assignee
Polymer Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/269,243 external-priority patent/US20030124942A1/en
Application filed by Polymer Group Inc filed Critical Polymer Group Inc
Priority to US10/445,586 priority Critical patent/US20040068849A1/en
Assigned to POLYMER GROUP, INC. reassignment POLYMER GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARTER, NICK, FULLER, CHARLES, BARGE, PATRICK
Publication of US20040068849A1 publication Critical patent/US20040068849A1/en
Assigned to CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT reassignment CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC, POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT reassignment WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC., POLY-BOND, INC., POLYMER GROUP, INC.
Assigned to CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT reassignment CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: CHICOPEE, INC., FIBERTECH GROUP, INC., PGI POLYMER, INC., POLY-BOND INC., POLYMER GROUP, INC.
Assigned to PGI POLYMER, INC., LORETEX CORPORATION, FABRENE CORP., DOMINION TEXTILE (USA) INC., TECHNETICS GROUP, INC., POLYMER GROUP, INC., CHICOPEE, INC., PNA CORPORATION, FNA ACQUISITION, INC., POLY-BOND INC., PGI EUROPE, INC., FNA POLYMER CORP., BONLAM (S.C.), INC., FABRENE GROUP L.L.C., PRISTINE BRANDS CORPORATION, FABPRO ORIENTED POLYMERS, INC., FIBERGOL CORPORATION, FIBERTECH GROUP, INC., POLYLONIX SEPARATION TECHNOLOGIES, INC. reassignment PGI POLYMER, INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT
Assigned to DOMINION TEXTILE (USA) INC., FABRENE CORP., LORETEX CORPORATION, FIBERGOL CORPORATION, PGI POLYMER, INC., POLYLONIX SEPARATION TECHNOLOGIES, INC., FNA POLYMER CORP., POLYMER GROUP, INC., FABPRO ORIENTED POLYMERS, INC., FIBERTECH GROUP, INC., PRISTINE BRANDS CORPORATION, PNA CORPORATION, POLY-BOND INC., BONLAM (S.C.), INC., TECHNETICS GROUP, INC., CHICOPEE, INC., FNA ACQUISITION, INC., FABRENE GROUP L.L.C., PGI EUROPE, INC. reassignment DOMINION TEXTILE (USA) INC. RELEASE OF SECURITY INTEREST IN PATENTS Assignors: CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • D04H1/495Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet for formation of patterns, e.g. drilling or rearrangement

Definitions

  • the invention disclosed herein is directed to wipes, preferably wipes for use in cleansing applications, made from a hydroentangled nonwoven fabric, whereby the outer surface fibers of a single fibrous batt are highly hydroentangled and the inner fibers of the single fibrous batt are lightly entangled, the resulting fabric thus exhibits a low linting, lofty structure, and favorable tactile and ductile softness while obtaining sufficient physical strength.
  • a method for forming a suitable nonwoven fabric meeting the aforementioned requirements has been identified in the application of fluidic energy such that a single fibrous batt is imparted with a highly entangled surface of outer fibers, while retaining the loft and absorbency of a lightly entangled central layer of core fibers.
  • a functional additive such as an aqueous or non-aqueous soap or cleansing composition provides for a cleansing wipe particularly suited for hygienic end-uses, in addition to home care and end-use wipe applications.
  • the present invention is directed to a method of forming a nonwoven fabric suitable for various wipe applications, the outer surface of highly entangled fibers provides for a low lint wipe, while the lightly entangled fibers of he inner layer promotes the flow of air through the fabric so as to enhance lather formation.
  • a fabric is formed from a fibrous batt that is subjected to fluidic energy, preferably hydraulic energy, applied to one or both faces of a fibrous batt. The hydraulic energy is moderated against the basis weight of the fibrous batt to achieve the degree of surface entanglement desired.
  • a method of making a nonwoven fabric embodying the present invention includes the steps of providing a fibrous batt comprising a fibrous matrix. While use of natural fibers is common, the fibrous matrix may comprise synthetic fibers or blends of natural and synthetic fibers.
  • the synthetic fibers are chosen from the group consisting of viscose cellulose, polyacrylates, polyolefins, polyamides, polyesters and combinations thereof. Further, the synthetic fibers may comprise homogeneous, bicomponent and/or multi-component profiles, and the blends thereof.
  • the fibrous batt is carded and crosslapped to form a fibrous batt.
  • the fibrous batt is then continuously indexed through a station composed of a rotary foraminous surface and a fluidic manifold. Fluid streams from the fluidic manifold impinge upon the fibrous batt at a controlled energy level so as to integrate a portion of the overall fibrous content.
  • the energy level is controlled such that the energy is sufficient to induce high levels of entanglement in the surface fibers, but has insufficient transmitted energy to induce high levels of entanglement of the inner fibers.
  • a plurality of such stations can be employed whereby fluid streams are at the same or differing energy levels, impinging one or alternately both surfaces of the fibrous batt.
  • the resulting differentially entangled nonwoven web exhibits a highly entangled fibrous outer surface and a lightly entangled fibrous core.
  • the present method further contemplates the provision of a three-dimensional image transfer device having a movable imaging surface.
  • a three-dimensional image transfer device having a movable imaging surface.
  • Such three-dimensional image transfer devices are disclosed in U.S. Pat. No. 5,098,764, hereby incorporated by reference.
  • the image transfer device may comprise a drum-like apparatus that is rotatable with respect to one or more hydroentangling manifolds.
  • tension control means can be employed to further enhance the physical performance of the resulting lofty material.
  • a further aspect of the present invention is directed to a method of forming a nonwoven fabric which exhibits a sufficient degree of softness and nonlinting performance, while providing the necessary resistance to tearing and abrasion, to facilitate use in a wide variety of applications.
  • the fabric exhibits a high degree of loft and absorbency, thus permitting its use in those applications in which the fabric is applied as a cleaning wipe.
  • the lightly entangled inner layer may comprise large denier fibers so as to lend to the bulkiness and resiliency of the nonwoven fabric.
  • the outer surfaces may comprise dissimilar fibers, wherein one outer surface may utilize splittable fiber or sub-denier fibers and the opposing outer surface may utilize a larger denier trilobal fiber.
  • the various fibers selected for the outer surfaces are not to be a limitation of the present invention.
  • a method of making the present durable nonwoven fabric comprises the steps of providing a fibrous matrix or batt, which is subjected to controlled levels of hydraulic energy.
  • a homogeneous cotton fibrous batt has been found to desirably yield a fabric with soft hand and good absorbency.
  • the fibrous batt is formed into a differentially entangled nonwoven fabric by the application of sufficient energy to entangle only the outer layers of the fibrous batt.
  • the fabric can be passed over an image transfer device defined by three-dimensional elements against which the differentially entangled nonwoven fabric is forced during further application of further energy, whereby the fibrous constituents of the web are imaged and patterned by movement into regions between the three-dimensional elements of the transfer device.
  • the end-use nonwoven fabric wipes include the use of various aqueous and non-aqueous compositions.
  • the performance specific chemistries can be incorporated into or topically applied to the resulting differentially entangled fabric. Such chemistries can be durably applied to the constituent fibers of the fibrous batt, to the fibrous batt during manufacture, and/or to the resulting fabric.
  • FIG. 1 is a diagrammatic view of an apparatus for manufacturing a differentially entangled nonwoven fabric, embodying the principles of the present invention.
  • FIG. 2 is a diagrammatic view of five consecutive entangling sections and an image transfer station.
  • the present invention is directed to a method of forming nonwoven fabrics by hydroentanglement, wherein the outer surface of the fabric is substantially more entangled than the core layer. Hydroentanglement by this method is controlled by the application of fluidic energy such that the energy imparted into fibers of the fabric is sufficient to highly entangle only the outer fibers.
  • the inner fibers are lightly entangled such that the overall structure is resistant to separation of the layers, yet retain much of the loftiness or bulk of the fibrous core layer that is responsible for tactile and ductile softness, absorbency, as well as the promotion of air flow through the fabric.
  • a nonwoven fabric for application as a wipe can be produced such that the level of surface entanglement can be controlled resulting in surface layers that are extremely resistant to Tinting while the fabric retains some loft of the fibrous inner layer, which allows for a desirable circulation of air through the wipe, assisting with lather formation.
  • a material of this nature may be used as a wet wipe or dry, wherein the wipe is particularly suitable for cleansing applications.
  • the level of entanglement energy can be continuously varied to modify the physical properties of the wipe material to meet the required performance. It is within the scope of the present invention to control the level of entanglement in the resulting fabric to obtain materials with varying degrees of loft, absorbency, strength, and Tinting performance.
  • Nonwoven fabrics are frequently produced using staple length fibers, the fabric typically has a degree of exposed surface fibers that will lint if not sufficiently retained into the structure of the fabric.
  • the present invention provides a finished fabric that can be cut, processed or treated, and packaged for retail sale. The cost associated with forming and finishing steps can be desirably reduced.
  • the fabric is formed from a fibrous batt that typically comprises natural fibers, but may comprise synthetic staple fibers and natural/synthetic fiber blends.
  • the fibrous batt is preferably carded and cross-lapped to form a fibrous batt, designated P.
  • the fibrous batt comprises 100% cross-lap fibers, that is, all of the fibers of the web have been formed by cross-lapping a carded web so that the fibers are oriented at an angle relative to the machine direction of the resultant web.
  • the fibrous batt has a draft ratio of approximately 2.5 to 1.
  • U.S. Pat. No. 5,475,903, hereby incorporated by reference illustrates a web drafting apparatus.
  • FIG. 2 illustrates a hydroentangling apparatus for forming nonwoven fabrics in accordance with the present invention.
  • the apparatus includes a foraminous forming surface in the form of belt 02 upon which the fibrous batt P is positioned for pre-entangling by entangling manifold 01 into a wetted, lightly entangled fibrous web P′. Pre-entangling of the fibrous web is subsequently effected by movement of the web P′sequentially over a drum 10 having a foraminous forming surface, with entangling manifold 12 effecting entanglement of the web.
  • Further entanglement of the web may be effected on the foraminous forming surface of a drum 20 by entanglement manifold 22 , with the web subsequently passed over successive foraminous drums 30 , 40 and 50 , for successive entangling treatment by entangling manifolds 32 , 42 and 51 .
  • the total, optimal energy input to the fibrous batt to give the desired level of surface entanglement is in the range of about 0.040 to 0.060 hp-hr/lb.
  • the entangling apparatus of FIG. 2 may further include an imaging and patterning drum 18 comprising a three-dimensional image transfer device for effecting imaging and patterning of the now-entangled precursor web.
  • the image transfer device includes a moveable imaging surface which moves relative to a plurality of entangling manifolds 61 , 62 , 63 and 64 , which act in cooperation with three-dimensional elements defined by the imaging surface of the image transfer device to effect imaging and patterning of the fabric being formed.
  • the total energy applied to the fibrous batt of the imaging manifolds is adjusted to maintain the energy input in the range of about 0.040 to 0.060 hp-hr/lb.
  • the present invention contemplates that the fibrous web P′ be advanced onto the moveable imaging surface of the image transfer device at a rate which is substantially equal to the rate of movement of the imaging surface.
  • a J-box or scray can be employed for supporting the precursor web P′ as it is advanced onto the image transfer device to thereby minimize tension within the fibrous web.
  • Manufacture of a durable nonwoven fabric embodying the principles of the present invention is initiated by providing the precursor nonwoven web preferably in the form of natural and/or synthetic fibers, most preferably a cotton or cotton blend, which desirably provides good tactile and ductile softness and absorbency.
  • fabric weights on the order of about 1 to 8 ounces per square yard, with the range of 2 to 5 ounces per square yard being most preferred, provided the best combination of loft, softness, drapeability, absorbency, and durability.
  • the various nonwoven wipe applications include the use of aqueous and non-aqueous compositions.
  • the lightly entangled inner layer may comprise large denier fibers so as to lend to the bulkiness and resiliency of the nonwoven fabric.
  • the outer surfaces may comprise dissimilar fibers, wherein one outer surface may utilize splittable fiber or sub-denier fibers and the opposing outer surface may utilize a larger denier trilobal fiber. The various fibers selected for the outer surfaces are not to be a limitation of the present invention.
  • the nonwoven wipe embodying the principles of the present invention is suitable for home care cleaning or cleansing wipes.
  • the nonwoven wipe may be used in various home care applications, wherein the end use article may be a dry or wet hand held sheet, a mitt formation, or a cleaning implement capable of retaining the article.
  • the nonwoven wipe is suitable for cleaning various household surfaces such as, kitchen and bathroom countertops, sinks, bathtubs, showers, appliances, and fixtures.
  • Cleansing compositions suitable for such end use applications include those that are described in U.S. Pat. No. 6,103,683 to Romano, et al., U.S. Pat. No. 6,340,663 to Deleo, et al., U.S. Pat. No. 5,108,642 to Aszman, et al., and U.S. Pat. No. 6,534,472 Arvanitidou, et al., all of which are hereby incorporated by reference.
  • Selected cleaning compositions may also include surfactants, such as alkylpolysaccharides, alkyl ethoxylates, alkyl sulfonates, and mixtures thereof; organic solvent, mono- or polycarboxylic acids, odor control agents, such as cyclodextrin, peroxides, such as benzoyl peroxide, hydrogen peroxide, and mixtures thereof, thickening polymers, aqueous solvent systems, suds suppressors, perfumes or fragrances, and detergent adjuvants, such as detergency builder, buffer, preservative, antibacterial agent, colorant, bleaching agents, chelants, enzymes, hydrotropes, and mixtures thereof.
  • the aforementioned compositions preferably comprise from about 50% to about 500%, preferably from about 200% to about 400% by weight of the nonwoven cleaning article.
  • the nonwoven wipe embodying the principles of the present invention is also suitable for personal cleaning or cleansing articles.
  • Nonlimiting examples of such applications include dry or wet facial wipes, body wipes, and baby wipes.
  • Suitable methods for the application of various aqueous and non-aqueous compositions comprise aqueous/alcoholic impregnates, including flood coating, spray coating or metered dosing. Further, more specialized techniques, such as Meyer Rod, floating knife or doctor blade, which are typically used to impregnate cleansing solutions into absorbent sheets, may also be used.
  • the following compositions preferably comprise from about 50% to about 500%, preferably from about 200% to about 400% by weight of the nonwoven cleaning article.
  • the nonwoven may incorporate a functional additive, such as an alphahydroxycarboxylic acid, which refers not only the acid form but also salts thereof.
  • Typical cationic counterions to form the salt are the alkali metals, alkaline earth metals, ammonium, C 2 -C 8 trialkanolammonium cation and mixtures thereof.
  • alpha-hydroxycarboxylic acids include not only hydroxyacids but also alpha-ketoacids and related compounds of polymeric forms of hydroxyacid.
  • Amounts of the alpha-hydroxycarboxylic acids may range from about 0.01 to about 20%, preferably from about 0.1 to about 15%, more preferably from about 1 to about 10%, optimally from about 3 to about 8% by weight of the composition which impregnates the substrate.
  • the amount of impregnating composition relative to the substrate may range from about 20:1 to 1:20, preferably from 10: 1 to about 1:10 and optimally from about 2:1 to about 1:2 by weight.
  • a humectant may be incorporated with the aforementioned alpha-hydroxycarboxylic compositions.
  • Humectants are normally polyols.
  • Representative polyols include glycerin, diglycerin, polyalkylene glycols and more preferably alkylene polyols and their derivatives. Amounts of the polyol may range from about 0.5 to about 95%, preferably from about 1 to about 50%, more preferably from about 1.5 to 20%, optimally from about 3 to about 10% by weight of the impregnating composition.
  • a variety of cosmetically acceptable carrier vehicles may be employed although the carrier vehicle normally will be water. Amounts of the carrier vehicle may range from about 0.5 to about 99%, preferably from about 1 to about 80%, more preferably from about 50 to about 70%, optimally from about 65 to 75% by weight of the impregnating composition.
  • Preservatives can desirably be incorporated protect against the growth of potentially harmful microorganisms.
  • Suitable traditional preservatives for compositions of this invention are alkyl esters of para-hydroxybenzoic acid.
  • Other preservatives which have more recently come into use include hydantoin derivatives, propionate salts, and a variety of quatemary ammonium compounds.
  • Preservatives are preferably employed in amounts ranging from 0.01% to 2% by weight of the composition.
  • the composition may further include herbal extracts.
  • Illustrative extracts include Roman Chamomile, Green Tea, Scullcap, Nettle Root, Swertia laponica, Fennel and Aloe Vera extracts. Amount of each of the extracts may range from about 0.001 to about 1%, preferably from about 0.01 to about 0.5%, optimally from about 0.05 to about 0.2% by weight of a composition.
  • Additional functional additives may also include vitamins such as Vitamin E Acetate, Vitamin C, Vitamin A Palmitate, Panthenol and any of the Vitamin B complexes.
  • Anti-irritant agents may also be present including those of steviosides, alpha-bisabolol and glycyhrizzinate salts, each vitamin or anti-irritant agent being present in amounts ranging from about 0.001 to about 1.0%, preferably from about 0.01 to about 0.3% by weight of the composition.
  • These impregnating compositions of the present invention may involve a range of pH although it is preferred to have a relatively low pH, for instance, a pH from about 2 to about 6.5, preferably from about 2.5 to about 4.5.
  • lotions may be incorporated into the nonwoven wipe.
  • the lotion preferably also comprises one or more of the following: an effective amount of a preservative, an effective amount of a humectant, an effective amount of an emollient; an effective amount of a fragrance, and an effective amount of a fragrance solubilizer.
  • an emollient is a material that softens, soothes, supples, coats, lubricates, or moisturizes the skin.
  • the term emollient includes, but is not limited to, conventional lipid materials (e.g. fats, waxes), polar lipids (lipids that have been hydrophylically modified to render them more water soluble), silicones, hydrocarbons, and other solvent materials.
  • Emollients useful in the present invention can be petroleum based, fatty acid ester type, alkyl ethoxylate type, fatty acid ester ethoxylates, fatty alcohol type, polysiloxane type, mucopolysaccharides, or mixtures thereof.
  • Fragrance components such as perfumes, include, but are not limited to water insoluble oils, including essential oils.
  • Fragrance solubilizers are components which reduce the tendency of the water insoluble fragrance component to precipitate from the lotion.
  • fragrance solubilizers include alcohols such as ethanol, isopropanol, benzyl alcohol, and phenoxyethanol; any high HLB (HLB greater than 13) emulsifier, including but not limited to polysorbate; and highly ethoxylated acids and alcohols.
  • Preservatives prevent the growth of micro-organisms in the liquid lotion and/or the substrate.
  • preservatives are hydrophobic or hydrophilic organic molecules.
  • Suitable preservatives include, but are not limited to parabens, such as methyl parabens, propyl parabens, and combinations thereof.
  • the lotion can also comprise an effective amount of a kerotolytic for providing the function of encouraging healing of the skin.
  • a kerotolytic is Allantoin ((2,5-Dioxo-4-Imidazolidinyl)Urea), a heterocyclic organic compound having an empirical formula C 4 H 6 N 4 O 3 .
  • Allantoin is commercially available from Tri-K Industries of Emerson, N.J. It is generally known that hyperhydrated skin is more susceptible to skin disorders, including heat rash, abrasion, pressure marks and skin barrier loss.
  • a premoistened wipe according to the present invention can include an effective amount of allantoin for encouraging the healing of skin, such as skin which is over hydrated.
  • the lotion can further comprise between about 0.1 and about 3 percent by eight Allantoin, and about 0.1 to about 10 percent by weight of an aloe extract, such as aloe vera, which can serve as an emollient.
  • Aloe vera extract is available in the form of a concentrated powder from the Rita Corporation of Woodstock, Ill.
  • latherants may be incorporated within the nonwoven wipe.
  • anionic lathering surfactants useful in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; McCutcheon's, Functional Materials, North American Edition (1992); and U.S. Pat. No. 3,929,678, to Laughlin et al., issued Dec. 30, 1975, all of which are incorporated by reference herein in their entirety.
  • anionic lathering surfactants are useful herein.
  • anionic lathering surfactants include those selected from the group consisting of sarcosinates, sulfates, isethionates, taurates, phosphates, lactylates, glutamates, and mixtures thereof.
  • Nonlimiting examples of nonionic lathering surfactants and amphoteric surfactants for use in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992); both of which are incorporated by reference herein in their entirety.
  • Nonionic lathering surfactants useful herein include those selected from the group consisting of alkyl glucosides, alkyl polyglucosides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, lathering sucrose esters, amine oxides, and mixtures thereof.
  • amphoteric lathering surfactant is also intended to encompass zwitterionic surfactants, which are well known to formulators skilled in the art as a subset of amphoteric surfactants.
  • amphoteric lathering surfactants can be used in the compositions of the present invention. Particularly useful are those which are broadly described as derivatives of aliphatic secondary and tertiary amines, preferably wherein the nitrogen is in a cationic state, in which the aliphatic radicals can be straight or branched chain and wherein one of the radicals contains an ionizable water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • an ionizable water solubilizing group e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • Nonlimiting examples of amphoteric or zwitterionic surfactants are those selected from the group consisting of betaines, sultaines, hydroxysultaines, alkyliminoacetates, iminodialkanoates, aminoalkanoates, and mixtures thereof.
  • compositions utilized in accordance with the present invention can comprise a wide range of optional ingredients.
  • CTFA International Cosmetic ingredient Dictionary, Sixth Edition, 1995 which is incorporated by reference herein in its entirety, describes a wide variety of nonlimiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention.
  • Nonlimiting examples of functional classes of ingredients are described at page 537 of this reference.
  • Examples of these functional classes include: abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, bulking agents, chelating agents, chemical additives, natural additives, colorants, cosmetic astringents, cosmetic biocides, degreasers, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents (emollient, humectants, miscellaneous, and occlusive), skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents (nonsurfactant), sunscreen agents, ultraviolet light absorbers, and viscosity increasing agents (aqueous and nonaqueous).
  • Examples of other functional classes of materials useful herein that are well known to one of ordinary skill in the art include so
  • safe and effective amount means an amount of an active ingredient high enough to modify the condition to be treated or to deliver the desired skin benefit, but low enough to avoid serious side effects, at a reasonable benefit to risk ratio within the scope of sound medical judgment.
  • the nonwoven wipe may be used in industrial and medical applications.
  • the article may be useful in paint preparation and cleaning outdoor surfaces, such as lawn furniture, grills, and outdoor equipment, wherein the low linting attributes of the fabric may be desirable.
  • the nonwoven wipe may be suitable for cleaning, waxing, and polishing the exterior and/or interior of cars, wherein the wipe may impregnated or coated with a soap or wax.
  • oils such as plant oils, animal oils, terpenoids, silicon oils, mineral oils, white mineral oils, paraffinic solvents, polybutylenes, polyisobutylenes, polyalphaolefins, and mixtures thereof, toluenes, sequestering agents, corrosion inhibitors, abrasives, petroleum distillates, and the combinations thereof
  • a medical wipe may incorporate an antimicrobial composition, including, but not limited to iodines, alcohols, such as such as ethanol or propanol, biocides, abrasives, metallic materials, such as metal oxide, metal salt, metal complex, metal alloy or mixtures thereof, bacteriostatic complexes, bactericidal complexs, and the combinations thereof.
  • an antimicrobial composition including, but not limited to iodines, alcohols, such as such as ethanol or propanol, biocides, abrasives, metallic materials, such as metal oxide, metal salt, metal complex, metal alloy or mixtures thereof, bacteriostatic complexes, bactericidal complexs, and the combinations thereof.
  • the differentially entangled wipe of the present invention is particularly suitable for dispensing from a tub of stacked, folded wipes, or for dispensing as “pop-up” wipes, in which the cleaning article is stored in the tub as a perforated continuous roll, wherein upon pulling a wipe out of the tub, an edge of the next wipe is presented for easy dispensing.
  • the wipes of the present invention can be folded in any of various known folding patterns, such as C-folding, but is preferably Z-folded. A Z-folded configuration enables a folded stack of wipes to be interleaved with overlapping portions.
  • the wipe may be packaged in various convenient forms, whereby the method of packaging is not meant to be a limitation of the present invention.
  • a nonwoven fabric was made in accordance with the present invention by providing a fibrous batt comprising 100 weight percent cotton fiber.
  • the fibrous batt had a basis weight of 3.4 ounces per square yard (plus or minus 7%).
  • the fibrous web was 100% carded and cross-lapped, with a draft ratio of 2.8 to 1.
  • the fabric comprised 100 weight percent cotton as available from Barnhardt Manufacturing Company under code number RMC#2811.
  • the fibrous batt was entangled by a series of entangling manifold stations such as diagrammatically illustrated in FIG. 1 and in greater detail in FIG. 2.
  • FIG. 2 illustrates disposition of fibrous batt P on a foraminous forming surface in the form of belt 02 , with the batt acted upon by a pre-entangling manifold 01 operating at 55 bar to form a wetted and lightly entangled fibrous web.
  • the web then passes through a series of entangling stations comprising drums having foraminous forming surfaces, for entangling by entangling manifolds, with the web thereafter directed about the foraminous forming surface of a drum 10 for entangling by entanglement manifold 12 operating at 40 bar.
  • the web is thereafter passed over successive foraminous drums 20 , 30 , 40 and 50 , with successive entangling treatment by entangling manifolds 22 , 32 , 42 and 51 .
  • each of the entangling manifolds included 120 micron orifices spaced at 42.3 per inch, with manifolds 22 , 32 , 42 and 51 successively operated at 55, 40, 55, and 0 bar, with a line speed of 45 meters per minute.
  • the total energy input into the fibrous batt is calculated to be 0.052 hp-hr/lb.
  • a web having a trimmed width of 127 inches was employed.
  • the comparative example is selected from a commercially available product in the form of Webril 100% Cotton Handi-Pad as available from the Kendall Company. This product is formed by compression forming cotton fiber during a mercerization process.
  • Table 1 sets forth comparative test data for a fabric made by the present invention compared against a commercially available mercerized cotton fabric. Testing was done in accordance with the following test methods. Test Method Basis weight (ounces/yd 2 ) ASTM D3776 Bulk (inches) ASTM D5729 Tensiles MD and CD Grabs (lb/in) ASTM D5034 Elongation MD and CD Grabs (%) ASTM D5034
  • Example 1 The physical test data for Example 1 and the Comparative Example are given in Table 1.
  • the data in Table 1 show that the two materials have similar basis weights, but the nonwoven fabric manufactured by the present invention has much greater tensile strength in both the machine and cross direction, 20 and 40 times greater, respectively, than that of the Comparative material.
  • the tensile properties of Example 1 are more uniform when comparing the machine direction to the cross direction tensile and elongation properties.

Abstract

The invention is directed to a hydroentangled nonwoven wipe, the outer surface of which exhibits highly entangled fibers whereas the inner layer exhibits lightly entangled fibers. In particular, the present invention contemplates that a fabric is formed from a fibrous batt that is subjected to fluidic energy, preferably hydraulic energy, applied to one or both faces of a fibrous batt. The hydraulic energy is moderated against the basis weight of the fibrous batt to achieve the degree of surface entanglement desired. Wipes formed in accordance with the present invention exhibit a sufficient degree of strength, softness, non-linting performance, and air flow so as to promote the formation of lather, while providing the necessary resistance to tearing and abrasion, to facilitate use in a wide variety of wipe applications.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation-in-part of U.S. patent application Ser. No. 10/269,243, filed Oct. 11, 2003.[0001]
  • TECHNICAL FIELD
  • The invention disclosed herein is directed to wipes, preferably wipes for use in cleansing applications, made from a hydroentangled nonwoven fabric, whereby the outer surface fibers of a single fibrous batt are highly hydroentangled and the inner fibers of the single fibrous batt are lightly entangled, the resulting fabric thus exhibits a low linting, lofty structure, and favorable tactile and ductile softness while obtaining sufficient physical strength. [0002]
  • BACKGROUND OF THE INVENTION
  • The use of natural fiber materials in industrial applications has been found to be highly advantageous in situations where a nonlinting, absorbent pad or wiper is required. A material that has been employed in such applications is found in the Webril material registered to the Kendall Company of Massachusetts. The Webril material is a compressed, mercerized cotton fibrous batt. The mercerization process involves the swelling of the natural cotton's ribbon like profile into an approximately round profile of larger diameter. Typically, caustic washes are utilized while the cotton batt is under tension to induce the swelling of the cotton fiber. Because of the use of a caustic solution, it is necessary to subsequently treat the cotton material with an acidic solution so as to neutralize the material and render it useable. A number of complicated steps are required to successfully perform the process, with a significant amount of environmentally harmful effluent being produced. [0003]
  • In the interest of forming natural fiber nonwoven pads or wipers without the by- products of mercerization, the application of a resin binder in conjunction with hydroentanglement was explored as evidenced by U.S. Pat. Nos. 2,862,251, 3,033,721, 3,769,659, and 3,931,436 to Kalwaites et al, and U.S. Pat. Nos. 3,081,515 and 3,025,585 to Griswold et al. The application of resin binder was found to have a deleterious effect on the softness of the corresponding nonwoven fabric. [0004]
  • The findings by Evans, U.S. Pat. No. 3,485,706, suggested that the impedance of energetic water streams on a fibrous batt could produce a nonwoven fabric by the entanglement of those fibers with one another through the depth of the fibrous batt, thus obviating the need for a resin binder. However, the action of the water streams upon the fibrous batt and the action of entangling the fibers result in a fabric having significantly decreased bulk, and correspondingly decreased tactile and ductile softness. [0005]
  • Various attempts have been made in order to obtain a durable natural fiber nonwoven fabric while maintaining sufficient strength and softness. In U.S. Pat. No. 5,849,647 to Neveu, a hydrophilic cotton stratified structure is formed by interceding an air-randomized core in between two previously formed, highly fiber oriented carded layers. The stratified layers are subsequently treated with a soda liquor which is then boiled off to render an integrated structure. While a cotton structure performed by the manner described can render an ultimate material that is low linting, the material must undergo substantial processing in the forming of separate and distinct layers and the juxtaposition of those layers during the caustic integration step. U.S. Pat. No. 4,647,490 to Bailey et al., formed an apertured, cotton fiber nonwoven material by hydroentanglement induced by oscillating water streams. In the Bailey process, the fibers of the fibrous batt are washed down and through the fibrous batt in order to entangle the fibers and form apertures in the fabric. U.S. Pat. No. 4,426,417 to Meitner et al., incorporated the use of thermoplastic meltblown during the formation of a fibrous batt as a means for attaining the loft for absorbency and maintain sufficient physical strength by bonding the fibers together. As the nature of the Meitner process is based upon the total and effective binding of the fibers to the thermoplastic meltblown there are potential issues with unbound or loosely bound fibers being disengaged from the meltblown. [0006]
  • Given the prior art attempt to form a nonlinting, soft and yet strong absorbent materials, there remains a need for a nonwoven fabric exhibiting these characteristics and yet is formed in an expeditious and uncomplicated manner. [0007]
  • A method for forming a suitable nonwoven fabric meeting the aforementioned requirements has been identified in the application of fluidic energy such that a single fibrous batt is imparted with a highly entangled surface of outer fibers, while retaining the loft and absorbency of a lightly entangled central layer of core fibers. Further, the incorporation of a functional additive, such as an aqueous or non-aqueous soap or cleansing composition provides for a cleansing wipe particularly suited for hygienic end-uses, in addition to home care and end-use wipe applications. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a method of forming a nonwoven fabric suitable for various wipe applications, the outer surface of highly entangled fibers provides for a low lint wipe, while the lightly entangled fibers of he inner layer promotes the flow of air through the fabric so as to enhance lather formation. In particular, the present invention contemplates that a fabric is formed from a fibrous batt that is subjected to fluidic energy, preferably hydraulic energy, applied to one or both faces of a fibrous batt. The hydraulic energy is moderated against the basis weight of the fibrous batt to achieve the degree of surface entanglement desired. [0009]
  • In accordance with the present invention, a method of making a nonwoven fabric embodying the present invention includes the steps of providing a fibrous batt comprising a fibrous matrix. While use of natural fibers is common, the fibrous matrix may comprise synthetic fibers or blends of natural and synthetic fibers. The synthetic fibers are chosen from the group consisting of viscose cellulose, polyacrylates, polyolefins, polyamides, polyesters and combinations thereof. Further, the synthetic fibers may comprise homogeneous, bicomponent and/or multi-component profiles, and the blends thereof. [0010]
  • In a particularly preferred form, the fibrous batt is carded and crosslapped to form a fibrous batt. The fibrous batt is then continuously indexed through a station composed of a rotary foraminous surface and a fluidic manifold. Fluid streams from the fluidic manifold impinge upon the fibrous batt at a controlled energy level so as to integrate a portion of the overall fibrous content. The energy level is controlled such that the energy is sufficient to induce high levels of entanglement in the surface fibers, but has insufficient transmitted energy to induce high levels of entanglement of the inner fibers. A plurality of such stations can be employed whereby fluid streams are at the same or differing energy levels, impinging one or alternately both surfaces of the fibrous batt. The resulting differentially entangled nonwoven web exhibits a highly entangled fibrous outer surface and a lightly entangled fibrous core. [0011]
  • Subsequent to hydroentanglement, the present method further contemplates the provision of a three-dimensional image transfer device having a movable imaging surface. Such three-dimensional image transfer devices are disclosed in U.S. Pat. No. 5,098,764, hereby incorporated by reference. In a typical configuration, the image transfer device may comprise a drum-like apparatus that is rotatable with respect to one or more hydroentangling manifolds. [0012]
  • It is within the purview of this invention that tension control means can be employed to further enhance the physical performance of the resulting lofty material. [0013]
  • A further aspect of the present invention is directed to a method of forming a nonwoven fabric which exhibits a sufficient degree of softness and nonlinting performance, while providing the necessary resistance to tearing and abrasion, to facilitate use in a wide variety of applications. The fabric exhibits a high degree of loft and absorbency, thus permitting its use in those applications in which the fabric is applied as a cleaning wipe. [0014]
  • In one embodiment of the present invention, the lightly entangled inner layer may comprise large denier fibers so as to lend to the bulkiness and resiliency of the nonwoven fabric. In a second embodiment of the present invention, the outer surfaces may comprise dissimilar fibers, wherein one outer surface may utilize splittable fiber or sub-denier fibers and the opposing outer surface may utilize a larger denier trilobal fiber. The various fibers selected for the outer surfaces are not to be a limitation of the present invention. [0015]
  • A method of making the present durable nonwoven fabric comprises the steps of providing a fibrous matrix or batt, which is subjected to controlled levels of hydraulic energy. A homogeneous cotton fibrous batt has been found to desirably yield a fabric with soft hand and good absorbency. The fibrous batt is formed into a differentially entangled nonwoven fabric by the application of sufficient energy to entangle only the outer layers of the fibrous batt. Subsequently, the fabric can be passed over an image transfer device defined by three-dimensional elements against which the differentially entangled nonwoven fabric is forced during further application of further energy, whereby the fibrous constituents of the web are imaged and patterned by movement into regions between the three-dimensional elements of the transfer device. [0016]
  • In accordance with the present invention, the end-use nonwoven fabric wipes include the use of various aqueous and non-aqueous compositions. The performance specific chemistries can be incorporated into or topically applied to the resulting differentially entangled fabric. Such chemistries can be durably applied to the constituent fibers of the fibrous batt, to the fibrous batt during manufacture, and/or to the resulting fabric. [0017]
  • Other features and advantages of the present invention will become readily apparent from the following detailed description, the accompanying drawings, and the appended claims.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic view of an apparatus for manufacturing a differentially entangled nonwoven fabric, embodying the principles of the present invention; and [0019]
  • FIG. 2 is a diagrammatic view of five consecutive entangling sections and an image transfer station.[0020]
  • DETAILED DESCRIPTION
  • While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment of the invention, with the understanding that the present disclosure is to be considered as an exemplification of the invention, and is not intended to limit the invention to the specific embodiment illustrated. [0021]
  • The present invention is directed to a method of forming nonwoven fabrics by hydroentanglement, wherein the outer surface of the fabric is substantially more entangled than the core layer. Hydroentanglement by this method is controlled by the application of fluidic energy such that the energy imparted into fibers of the fabric is sufficient to highly entangle only the outer fibers. The inner fibers are lightly entangled such that the overall structure is resistant to separation of the layers, yet retain much of the loftiness or bulk of the fibrous core layer that is responsible for tactile and ductile softness, absorbency, as well as the promotion of air flow through the fabric. By advancing the fibrous batt with a relatively low tension through one or more entanglement stations, differential fiber entanglement is achieved, with the physical properties, both aesthetic and mechanical, of the resultant fabric being desirably achieved. [0022]
  • In accordance with a further aspect of the present invention, a nonwoven fabric for application as a wipe can be produced such that the level of surface entanglement can be controlled resulting in surface layers that are extremely resistant to Tinting while the fabric retains some loft of the fibrous inner layer, which allows for a desirable circulation of air through the wipe, assisting with lather formation. A material of this nature may be used as a wet wipe or dry, wherein the wipe is particularly suitable for cleansing applications. The level of entanglement energy can be continuously varied to modify the physical properties of the wipe material to meet the required performance. It is within the scope of the present invention to control the level of entanglement in the resulting fabric to obtain materials with varying degrees of loft, absorbency, strength, and Tinting performance. [0023]
  • Nonwoven fabrics are frequently produced using staple length fibers, the fabric typically has a degree of exposed surface fibers that will lint if not sufficiently retained into the structure of the fabric. The present invention provides a finished fabric that can be cut, processed or treated, and packaged for retail sale. The cost associated with forming and finishing steps can be desirably reduced. [0024]
  • With reference to FIG. 2, therein is illustrated an apparatus for practicing the present method for forming a nonwoven fabric. The fabric is formed from a fibrous batt that typically comprises natural fibers, but may comprise synthetic staple fibers and natural/synthetic fiber blends. The fibrous batt is preferably carded and cross-lapped to form a fibrous batt, designated P. In a current embodiment, the fibrous batt comprises 100% cross-lap fibers, that is, all of the fibers of the web have been formed by cross-lapping a carded web so that the fibers are oriented at an angle relative to the machine direction of the resultant web. In this current embodiment, the fibrous batt has a draft ratio of approximately 2.5 to 1. U.S. Pat. No. 5,475,903, hereby incorporated by reference, illustrates a web drafting apparatus. [0025]
  • FIG. 2 illustrates a hydroentangling apparatus for forming nonwoven fabrics in accordance with the present invention. The apparatus includes a foraminous forming surface in the form of [0026] belt 02 upon which the fibrous batt P is positioned for pre-entangling by entangling manifold 01 into a wetted, lightly entangled fibrous web P′. Pre-entangling of the fibrous web is subsequently effected by movement of the web P′sequentially over a drum 10 having a foraminous forming surface, with entangling manifold 12 effecting entanglement of the web. Further entanglement of the web may be effected on the foraminous forming surface of a drum 20 by entanglement manifold 22, with the web subsequently passed over successive foraminous drums 30, 40 and 50, for successive entangling treatment by entangling manifolds 32, 42 and 51. The total, optimal energy input to the fibrous batt to give the desired level of surface entanglement is in the range of about 0.040 to 0.060 hp-hr/lb.
  • The entangling apparatus of FIG. 2 may further include an imaging and [0027] patterning drum 18 comprising a three-dimensional image transfer device for effecting imaging and patterning of the now-entangled precursor web. The image transfer device includes a moveable imaging surface which moves relative to a plurality of entangling manifolds 61, 62, 63 and 64, which act in cooperation with three-dimensional elements defined by the imaging surface of the image transfer device to effect imaging and patterning of the fabric being formed. The total energy applied to the fibrous batt of the imaging manifolds is adjusted to maintain the energy input in the range of about 0.040 to 0.060 hp-hr/lb.
  • The present invention contemplates that the fibrous web P′ be advanced onto the moveable imaging surface of the image transfer device at a rate which is substantially equal to the rate of movement of the imaging surface. A J-box or scray can be employed for supporting the precursor web P′ as it is advanced onto the image transfer device to thereby minimize tension within the fibrous web. By controlling the rate of advancement of the fibrous batt P and the web P′ through the process so as to minimize, or substantially eliminate, tension within the web, differential hydroentanglement of the fibrous web is desirably effected. [0028]
  • Manufacture of a durable nonwoven fabric embodying the principles of the present invention is initiated by providing the precursor nonwoven web preferably in the form of natural and/or synthetic fibers, most preferably a cotton or cotton blend, which desirably provides good tactile and ductile softness and absorbency. During development, it was ascertained that fabric weights on the order of about 1 to 8 ounces per square yard, with the range of 2 to 5 ounces per square yard being most preferred, provided the best combination of loft, softness, drapeability, absorbency, and durability. [0029]
  • In accordance with the present invention, the various nonwoven wipe applications include the use of aqueous and non-aqueous compositions. In one embodiment of the present invention, the lightly entangled inner layer may comprise large denier fibers so as to lend to the bulkiness and resiliency of the nonwoven fabric. In a second embodiment of the present invention, the outer surfaces may comprise dissimilar fibers, wherein one outer surface may utilize splittable fiber or sub-denier fibers and the opposing outer surface may utilize a larger denier trilobal fiber. The various fibers selected for the outer surfaces are not to be a limitation of the present invention. [0030]
  • The nonwoven wipe embodying the principles of the present invention is suitable for home care cleaning or cleansing wipes. The nonwoven wipe may be used in various home care applications, wherein the end use article may be a dry or wet hand held sheet, a mitt formation, or a cleaning implement capable of retaining the article. The nonwoven wipe is suitable for cleaning various household surfaces such as, kitchen and bathroom countertops, sinks, bathtubs, showers, appliances, and fixtures. [0031]
  • Cleansing compositions suitable for such end use applications include those that are described in U.S. Pat. No. 6,103,683 to Romano, et al., U.S. Pat. No. 6,340,663 to Deleo, et al., U.S. Pat. No. 5,108,642 to Aszman, et al., and U.S. Pat. No. 6,534,472 Arvanitidou, et al., all of which are hereby incorporated by reference. Selected cleaning compositions may also include surfactants, such as alkylpolysaccharides, alkyl ethoxylates, alkyl sulfonates, and mixtures thereof; organic solvent, mono- or polycarboxylic acids, odor control agents, such as cyclodextrin, peroxides, such as benzoyl peroxide, hydrogen peroxide, and mixtures thereof, thickening polymers, aqueous solvent systems, suds suppressors, perfumes or fragrances, and detergent adjuvants, such as detergency builder, buffer, preservative, antibacterial agent, colorant, bleaching agents, chelants, enzymes, hydrotropes, and mixtures thereof. The aforementioned compositions preferably comprise from about 50% to about 500%, preferably from about 200% to about 400% by weight of the nonwoven cleaning article. [0032]
  • The nonwoven wipe embodying the principles of the present invention is also suitable for personal cleaning or cleansing articles. Nonlimiting examples of such applications include dry or wet facial wipes, body wipes, and baby wipes. Suitable methods for the application of various aqueous and non-aqueous compositions comprise aqueous/alcoholic impregnates, including flood coating, spray coating or metered dosing. Further, more specialized techniques, such as Meyer Rod, floating knife or doctor blade, which are typically used to impregnate cleansing solutions into absorbent sheets, may also be used. The following compositions preferably comprise from about 50% to about 500%, preferably from about 200% to about 400% by weight of the nonwoven cleaning article. [0033]
  • The nonwoven may incorporate a functional additive, such as an alphahydroxycarboxylic acid, which refers not only the acid form but also salts thereof. Typical cationic counterions to form the salt are the alkali metals, alkaline earth metals, ammonium, C[0034] 2-C8 trialkanolammonium cation and mixtures thereof. The term “alpha-hydroxycarboxylic acids” include not only hydroxyacids but also alpha-ketoacids and related compounds of polymeric forms of hydroxyacid.
  • Amounts of the alpha-hydroxycarboxylic acids may range from about 0.01 to about 20%, preferably from about 0.1 to about 15%, more preferably from about 1 to about 10%, optimally from about 3 to about 8% by weight of the composition which impregnates the substrate. The amount of impregnating composition relative to the substrate may range from about 20:1 to 1:20, preferably from 10: 1 to about 1:10 and optimally from about 2:1 to about 1:2 by weight. [0035]
  • Further, a humectant may be incorporated with the aforementioned alpha-hydroxycarboxylic compositions. Humectants are normally polyols. Representative polyols include glycerin, diglycerin, polyalkylene glycols and more preferably alkylene polyols and their derivatives. Amounts of the polyol may range from about 0.5 to about 95%, preferably from about 1 to about 50%, more preferably from about 1.5 to 20%, optimally from about 3 to about 10% by weight of the impregnating composition. [0036]
  • A variety of cosmetically acceptable carrier vehicles may be employed although the carrier vehicle normally will be water. Amounts of the carrier vehicle may range from about 0.5 to about 99%, preferably from about 1 to about 80%, more preferably from about 50 to about 70%, optimally from about 65 to 75% by weight of the impregnating composition. [0037]
  • Preservatives can desirably be incorporated protect against the growth of potentially harmful microorganisms. Suitable traditional preservatives for compositions of this invention are alkyl esters of para-hydroxybenzoic acid. Other preservatives which have more recently come into use include hydantoin derivatives, propionate salts, and a variety of quatemary ammonium compounds. Preservatives are preferably employed in amounts ranging from 0.01% to 2% by weight of the composition. [0038]
  • The composition may further include herbal extracts. Illustrative extracts include Roman Chamomile, Green Tea, Scullcap, Nettle Root, Swertia laponica, Fennel and Aloe Vera extracts. Amount of each of the extracts may range from about 0.001 to about 1%, preferably from about 0.01 to about 0.5%, optimally from about 0.05 to about 0.2% by weight of a composition. [0039]
  • Additional functional additives may also include vitamins such as Vitamin E Acetate, Vitamin C, Vitamin A Palmitate, Panthenol and any of the Vitamin B complexes. Anti-irritant agents may also be present including those of steviosides, alpha-bisabolol and glycyhrizzinate salts, each vitamin or anti-irritant agent being present in amounts ranging from about 0.001 to about 1.0%, preferably from about 0.01 to about 0.3% by weight of the composition. [0040]
  • These impregnating compositions of the present invention may involve a range of pH although it is preferred to have a relatively low pH, for instance, a pH from about 2 to about 6.5, preferably from about 2.5 to about 4.5. [0041]
  • In addition to cosmetic compositions, lotions may be incorporated into the nonwoven wipe. The lotion preferably also comprises one or more of the following: an effective amount of a preservative, an effective amount of a humectant, an effective amount of an emollient; an effective amount of a fragrance, and an effective amount of a fragrance solubilizer. [0042]
  • As used herein, an emollient is a material that softens, soothes, supples, coats, lubricates, or moisturizes the skin. The term emollient includes, but is not limited to, conventional lipid materials (e.g. fats, waxes), polar lipids (lipids that have been hydrophylically modified to render them more water soluble), silicones, hydrocarbons, and other solvent materials. Emollients useful in the present invention can be petroleum based, fatty acid ester type, alkyl ethoxylate type, fatty acid ester ethoxylates, fatty alcohol type, polysiloxane type, mucopolysaccharides, or mixtures thereof. [0043]
  • Fragrance components, such as perfumes, include, but are not limited to water insoluble oils, including essential oils. Fragrance solubilizers are components which reduce the tendency of the water insoluble fragrance component to precipitate from the lotion. Examples of fragrance solubilizers include alcohols such as ethanol, isopropanol, benzyl alcohol, and phenoxyethanol; any high HLB (HLB greater than 13) emulsifier, including but not limited to polysorbate; and highly ethoxylated acids and alcohols. [0044]
  • Preservatives prevent the growth of micro-organisms in the liquid lotion and/or the substrate. Generally, such preservatives are hydrophobic or hydrophilic organic molecules. Suitable preservatives include, but are not limited to parabens, such as methyl parabens, propyl parabens, and combinations thereof. [0045]
  • The lotion can also comprise an effective amount of a kerotolytic for providing the function of encouraging healing of the skin. An especially preferred kerotolytic is Allantoin ((2,5-Dioxo-4-Imidazolidinyl)Urea), a heterocyclic organic compound having an empirical formula C[0046] 4 H6 N4 O3. Allantoin is commercially available from Tri-K Industries of Emerson, N.J. It is generally known that hyperhydrated skin is more susceptible to skin disorders, including heat rash, abrasion, pressure marks and skin barrier loss. A premoistened wipe according to the present invention can include an effective amount of allantoin for encouraging the healing of skin, such as skin which is over hydrated.
  • U.S. Pat. No. 5,534,265 issued Jul. 9, 1996; U.S. Pat. No. 5,043,155 issued Aug. 27, 1991; and U.S. Pat. No. 5,648,083 issued Jul. 15, 1997, are incorporated herein by reference for the purpose of disclosing additional lotion ingredients. [0047]
  • The lotion can further comprise between about 0.1 and about 3 percent by eight Allantoin, and about 0.1 to about 10 percent by weight of an aloe extract, such as aloe vera, which can serve as an emollient. Aloe vera extract is available in the form of a concentrated powder from the Rita Corporation of Woodstock, Ill. [0048]
  • Further, latherants may be incorporated within the nonwoven wipe. Nonlimiting examples of anionic lathering surfactants useful in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; McCutcheon's, Functional Materials, North American Edition (1992); and U.S. Pat. No. 3,929,678, to Laughlin et al., issued Dec. 30, 1975, all of which are incorporated by reference herein in their entirety. A wide variety of anionic lathering surfactants are useful herein. Nonlimiting examples of anionic lathering surfactants include those selected from the group consisting of sarcosinates, sulfates, isethionates, taurates, phosphates, lactylates, glutamates, and mixtures thereof. [0049]
  • Nonlimiting examples of nonionic lathering surfactants and amphoteric surfactants for use in the compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (1986), published by allured Publishing Corporation; and McCutcheon's, Functional Materials, North American Edition (1992); both of which are incorporated by reference herein in their entirety. [0050]
  • Nonionic lathering surfactants useful herein include those selected from the group consisting of alkyl glucosides, alkyl polyglucosides, polyhydroxy fatty acid amides, alkoxylated fatty acid esters, lathering sucrose esters, amine oxides, and mixtures thereof. [0051]
  • The term “amphoteric lathering surfactant,” as used herein, is also intended to encompass zwitterionic surfactants, which are well known to formulators skilled in the art as a subset of amphoteric surfactants. [0052]
  • A wide variety of amphoteric lathering surfactants can be used in the compositions of the present invention. Particularly useful are those which are broadly described as derivatives of aliphatic secondary and tertiary amines, preferably wherein the nitrogen is in a cationic state, in which the aliphatic radicals can be straight or branched chain and wherein one of the radicals contains an ionizable water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Nonlimiting examples of amphoteric or zwitterionic surfactants are those selected from the group consisting of betaines, sultaines, hydroxysultaines, alkyliminoacetates, iminodialkanoates, aminoalkanoates, and mixtures thereof. [0053]
  • Additional compositions utilized in accordance with the present invention can comprise a wide range of optional ingredients. The CTFA International Cosmetic ingredient Dictionary, Sixth Edition, 1995, which is incorporated by reference herein in its entirety, describes a wide variety of nonlimiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Nonlimiting examples of functional classes of ingredients are described at page 537 of this reference. Examples of these functional classes include: abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, bulking agents, chelating agents, chemical additives, natural additives, colorants, cosmetic astringents, cosmetic biocides, degreasers, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents (emollient, humectants, miscellaneous, and occlusive), skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents (nonsurfactant), sunscreen agents, ultraviolet light absorbers, and viscosity increasing agents (aqueous and nonaqueous). Examples of other functional classes of materials useful herein that are well known to one of ordinary skill in the art include solubilizing agents, sequestrants, and keratolytics, and the like. [0054]
  • The aforementioned classes of ingredients are incorporated in a safe and effective amount. The term “safe and effective amount” as used herein, means an amount of an active ingredient high enough to modify the condition to be treated or to deliver the desired skin benefit, but low enough to avoid serious side effects, at a reasonable benefit to risk ratio within the scope of sound medical judgment. [0055]
  • In addition to home care and personal care end uses, the nonwoven wipe may be used in industrial and medical applications. For instance, the article may be useful in paint preparation and cleaning outdoor surfaces, such as lawn furniture, grills, and outdoor equipment, wherein the low linting attributes of the fabric may be desirable. Further, the nonwoven wipe may be suitable for cleaning, waxing, and polishing the exterior and/or interior of cars, wherein the wipe may impregnated or coated with a soap or wax. Other aqueous or non-aqueous functional industrial solvents include, oils, such as plant oils, animal oils, terpenoids, silicon oils, mineral oils, white mineral oils, paraffinic solvents, polybutylenes, polyisobutylenes, polyalphaolefins, and mixtures thereof, toluenes, sequestering agents, corrosion inhibitors, abrasives, petroleum distillates, and the combinations thereof [0056]
  • A medical wipe may incorporate an antimicrobial composition, including, but not limited to iodines, alcohols, such as such as ethanol or propanol, biocides, abrasives, metallic materials, such as metal oxide, metal salt, metal complex, metal alloy or mixtures thereof, bacteriostatic complexes, bactericidal complexs, and the combinations thereof. [0057]
  • The differentially entangled wipe of the present invention is particularly suitable for dispensing from a tub of stacked, folded wipes, or for dispensing as “pop-up” wipes, in which the cleaning article is stored in the tub as a perforated continuous roll, wherein upon pulling a wipe out of the tub, an edge of the next wipe is presented for easy dispensing. The wipes of the present invention can be folded in any of various known folding patterns, such as C-folding, but is preferably Z-folded. A Z-folded configuration enables a folded stack of wipes to be interleaved with overlapping portions. The wipe may be packaged in various convenient forms, whereby the method of packaging is not meant to be a limitation of the present invention. [0058]
  • EXAMPLES Example 1
  • Using a forming apparatus as illustrated in FIG. 1, a nonwoven fabric was made in accordance with the present invention by providing a fibrous batt comprising 100 weight percent cotton fiber. The fibrous batt had a basis weight of 3.4 ounces per square yard (plus or minus 7%). The fibrous web was 100% carded and cross-lapped, with a draft ratio of 2.8 to 1. [0059]
  • The fabric comprised 100 weight percent cotton as available from Barnhardt Manufacturing Company under code number RMC#2811. The fibrous batt was entangled by a series of entangling manifold stations such as diagrammatically illustrated in FIG. 1 and in greater detail in FIG. 2. FIG. 2 illustrates disposition of fibrous batt P on a foraminous forming surface in the form of [0060] belt 02, with the batt acted upon by a pre-entangling manifold 01 operating at 55 bar to form a wetted and lightly entangled fibrous web. The web then passes through a series of entangling stations comprising drums having foraminous forming surfaces, for entangling by entangling manifolds, with the web thereafter directed about the foraminous forming surface of a drum 10 for entangling by entanglement manifold 12 operating at 40 bar. The web is thereafter passed over successive foraminous drums 20, 30, 40 and 50, with successive entangling treatment by entangling manifolds 22, 32, 42 and 51. In the present examples, each of the entangling manifolds included 120 micron orifices spaced at 42.3 per inch, with manifolds 22, 32, 42 and 51 successively operated at 55, 40, 55, and 0 bar, with a line speed of 45 meters per minute. The total energy input into the fibrous batt is calculated to be 0.052 hp-hr/lb. A web having a trimmed width of 127 inches was employed.
  • Comparative Example
  • The comparative example is selected from a commercially available product in the form of Webril 100% Cotton Handi-Pad as available from the Kendall Company. This product is formed by compression forming cotton fiber during a mercerization process. [0061]
  • The accompanying Table 1 sets forth comparative test data for a fabric made by the present invention compared against a commercially available mercerized cotton fabric. Testing was done in accordance with the following test methods. [0062]
    Test Method
    Basis weight (ounces/yd2) ASTM D3776
    Bulk (inches) ASTM D5729
    Tensiles MD and CD Grabs (lb/in) ASTM D5034
    Elongation MD and CD Grabs (%) ASTM D5034
  • The physical test data for Example 1 and the Comparative Example are given in Table 1. The data in Table 1 show that the two materials have similar basis weights, but the nonwoven fabric manufactured by the present invention has much greater tensile strength in both the machine and cross direction, 20 and 40 times greater, respectively, than that of the Comparative material. In addition, the tensile properties of Example 1 are more uniform when comparing the machine direction to the cross direction tensile and elongation properties. [0063]
  • From the foregoing, it will be observed that numerous modifications and variations can be affected without departing from the true spirit and scope of the novel concept of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated herein is intended or should be inferred. The disclosure is intended to cover, by the appended claims, all such modifications as fall within the scope of the claims. [0064]
    TABLE 1
    Comparative
    Physical Property Units Example 1 Example
    Basis Weight osy 3.4 3.2
    Bulk inches 0.033 0.061
    Grab Tensile-MD lb./in. 23.3 1.3
    Grab Tensile-CD lb./in. 23.3 0.5
    Combined Grab 13.7 0.6
    Tensile/Basis
    Weight
    Grab Elongation-MD % 32.9 35.4
    Grab Elongation-CD % 76.1 118.7
    Combined Grab 32.1 48.2
    Elongation/
    Basis Weight

Claims (18)

What is claimed is:
1. A method of making a nonwoven personal care wipe comprising the steps of:
a. providing a nonwoven wipe, comprising a single fibrous batt whereupon the single fibrous batt is entangled by the application of hydraulic energy to form a highly entangled outer surface regions and a lightly entangled inner core region; and
b. a cleansing composition comprising an effective amount of a cleansing surfactant, said aqueous liquid cleansing composition being coated onto or impregnated into said substrate to the extent of from 50% to 500% by weight of the substrate.
2. A method of making a nonwoven personal care wipe as in claim 1, wherein said fibrous batt comprises cotton.
3. A method of making a nonwoven personal care wipe as in claim 1, wherein said fibrous batt comprises a blend of cotton and synthetic staple fibers.
4. A method of making a nonwoven personal care wipe as in claim 3, wherein said synthetic staple fibers are selected from the group consisting of viscose cellulose, polyacrylates, polyolefins, polyamides, polyesters and the combinations thereof.
5. A method of making a nonwoven personal care wipe as in claim 1, wherein said outer surface regions comprise dissimilar fibers.
6. A method of making a nonwoven personal care wipe as in claim 1, wherein said hydraulic energy is applied in the range of about 0.040 to 0.060 hp-hr/lb.
7. A method of making a nonwoven personal care wipe as in claim 1, wherein the fabric is imaged by the application of hydraulic energy upon a three-dimensional image transfer device having a movable imaging surface.
8. A method of making a nonwoven personal care wipe as in claim 1, wherein said cleansing composition is an aqueous or non-aqueous composition.
9. A method of making a nonwoven personal care wipe as in claim 1, wherein said cleansing composition is selected from the group consisting of abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, bulking agents, chelating agents, chemical additives, natural additives, colorants, vitamins, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, emollients, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents, skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents, sunscreen agents, ultraviolet light absorbers, viscosity increasing agents, and the combinations thereof.
10. A method of making a nonwoven home care wipe comprising the steps of:
a. providing a nonwoven wipe, comprising a single fibrous batt whereupon the single fibrous batt is entangled by the application of hydraulic energy to form a highly entangled outer surface region and a lightly entangled inner core region; and
b. a cleansing composition comprising an effective amount of a cleansing surfactant, said aqueous liquid cleansing composition being coated onto or impregnated into said substrate to the extent of from 50% to 500% by weight of the substrate.
11. A method of making a nonwoven home care wipe as in claim 9, wherein said cleansing composition is an aqueous or non-aqueous composition.
12. A method of making a nonwoven home care wipe as in claim 9, wherein said cleansing composition is selected from the group consisting of alkylpolysaccharides, alkyl ethoxylates, alkyl sulfonates, organic solvents, mono- or polycarboxylic acids, odor control agents, peroxides, hydrogen peroxides, thickening polymers, aqueous solvent systems, suds suppressors, perfumes or fragrances, detergent adjuvants, buffers, preservatives, antibacterial agents, colorants, bleaching agents, abrasive compounds, degreasers, chelants, enzymes, hydrotropes, and the combinations thereof.
13. A method of making a nonwoven industrial wipe comprising the steps of:
a. providing a nonwoven wipe, comprising a single fibrous batt whereupon the single fibrous batt is entangled by the application of hydraulic energy to form a highly entangled outer surface region and a lightly entangled inner core region; and
b. a cleansing composition comprising an effective amount of a cleansing surfactant, said aqueous liquid cleansing composition being coated onto or impregnated into said substrate to the extent of from 50% to 500% by weight of the substrate.
14. A method of making a nonwoven industrial wipe as in claim 12, wherein said cleansing composition is an aqueous or non-aqueous composition.
15. A method of making a nonwoven industrial wipe as in claim 12, wherein said cleansing composition is a solvent selected from the group consisting of oils, paraffinic solvents, polybutylenes, polyisobutylenes, polyalphaolefins, toluenes, sequestering agents, corrosion inhibitors, abrasives, petroleum distillates, and the combinations thereof.
16. A method of making a nonwoven medical wipe comprising the steps of:
a. providing a nonwoven wipe, comprising a single fibrous batt whereupon the single fibrous batt is entangled by the application of hydraulic energy to form a highly entangled outer surface region and a lightly entangled inner core region; and
b. a cleansing composition comprising an effective amount of a cleansing surfactant, said aqueous liquid cleansing composition being coated onto or impregnated into said substrate to the extent of from 50% to 500% by weight of the substrate.
17. A method of making a nonwoven medical wipe as in claim 15, wherein said cleansing composition is an aqueous or non-aqueous composition.
18. A method of making a nonwoven medical wipe as in claim 15, wherein said cleansing composition is selected from the group consisting of iodines, alcohols, biocides, abrasives, metallic materials, bacteriostatic complexes, bactericidal complexes, and the combinations thereof.
US10/445,586 2002-10-11 2003-05-27 Differentially entangled nonwoven fabric for use as wipes Abandoned US20040068849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/445,586 US20040068849A1 (en) 2002-10-11 2003-05-27 Differentially entangled nonwoven fabric for use as wipes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/269,243 US20030124942A1 (en) 2001-10-12 2002-10-11 Differentially entangled nonwoven fabric for use as wipes
US10/445,586 US20040068849A1 (en) 2002-10-11 2003-05-27 Differentially entangled nonwoven fabric for use as wipes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/269,243 Continuation-In-Part US20030124942A1 (en) 2001-10-12 2002-10-11 Differentially entangled nonwoven fabric for use as wipes

Publications (1)

Publication Number Publication Date
US20040068849A1 true US20040068849A1 (en) 2004-04-15

Family

ID=32068733

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/445,586 Abandoned US20040068849A1 (en) 2002-10-11 2003-05-27 Differentially entangled nonwoven fabric for use as wipes

Country Status (1)

Country Link
US (1) US20040068849A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040258844A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Nonwoven cleaning articles having compound three-dimensional images
WO2005009191A1 (en) * 2003-07-31 2005-02-03 Edmak Limited A cleansing pad
US20050124519A1 (en) * 2003-12-03 2005-06-09 Sherry Alan E. Method, articles and compositions for cleaning bathroom surfaces
US20050144766A1 (en) * 2003-12-15 2005-07-07 Polymer Group, Inc. Durable lightweight imaged nonwoven wipe
US20050227566A1 (en) * 2002-12-27 2005-10-13 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Hydroentangled textile and use in a personal cleansing implement
US20100062671A1 (en) * 2008-09-05 2010-03-11 Nutek Disposables, Inc. Composite wipe
US20110302734A1 (en) * 2009-02-13 2011-12-15 Georgia-Pacific France Item for cleaning the skin
CN107847355A (en) * 2015-07-15 2018-03-27 阿文提特种材料公司 Low fibre shedding is imaged hydroentangled nonwoven composite
CN108754856A (en) * 2018-07-03 2018-11-06 安徽宜民服饰股份有限公司 A kind of plant fiber spunlace non-woven cloth processing technology of selective resistance every ultraviolet light
KR20180123556A (en) * 2016-04-04 2018-11-16 킴벌리-클라크 월드와이드, 인크. Cleaning products with low lint and high fluid absorbency and release properties
CN112522858A (en) * 2020-11-27 2021-03-19 湖北欣柔卫生用品股份有限公司 Production method of pre-bleaching small-micropore all-cotton spunlace non-woven fabric

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862251A (en) * 1955-04-12 1958-12-02 Chicopee Mfg Corp Method of and apparatus for producing nonwoven product
US3025585A (en) * 1959-11-19 1962-03-20 Chicopec Mfg Corp Apparatus and method for making nonwoven fabric
US3081515A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Foraminous nonwoven fabric
US3485706A (en) * 1968-01-18 1969-12-23 Du Pont Textile-like patterned nonwoven fabrics and their production
US3769659A (en) * 1970-03-24 1973-11-06 Johnson & Johnson Method and apparatus (continuous imperforate portions on backing means of open sandwich)
US3931436A (en) * 1974-07-30 1976-01-06 Owens-Illinois, Inc. Segmented gas discharge display panel device and method of manufacturing same
US4426417A (en) * 1983-03-28 1984-01-17 Kimberly-Clark Corporation Nonwoven wiper
US4647490A (en) * 1983-05-20 1987-03-03 Johnson & Johnson Cotton patterned fabric
US5106457A (en) * 1990-08-20 1992-04-21 James River Corporation Hydroentangled nonwoven fabric containing synthetic fibers having a ribbon-shaped crenulated cross-section and method of producing the same
US5240764A (en) * 1992-05-13 1993-08-31 E. I. Du Pont De Nemours And Company Process for making spunlaced nonwoven fabrics
US5475903A (en) * 1994-09-19 1995-12-19 American Nonwovens Corporation Composite nonwoven fabric and method
US5780369A (en) * 1997-06-30 1998-07-14 Kimberly-Clark Worldwide, Inc. Saturated cellulosic substrate
US5801107A (en) * 1993-06-03 1998-09-01 Kimberly-Clark Corporation Liquid transport material
US5849647A (en) * 1993-01-29 1998-12-15 James River Hydrophilic cotton lap and products made from it
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US6378179B1 (en) * 2001-01-05 2002-04-30 Gary F. Hirsch System and method for reconstituting fibers from recyclable waste material
US6502288B2 (en) * 2000-02-11 2003-01-07 Polymer Group, Inc. Imaged nonwoven fabrics
US6695941B2 (en) * 2000-06-01 2004-02-24 Polymer Group, Inc. Method of making nonwoven fabric for buffing applications
US6725512B2 (en) * 2001-06-05 2004-04-27 Polymer Group, Inc. Imaged nonwoven fabric for cleaning applications

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3081515A (en) * 1954-06-16 1963-03-19 Johnson & Johnson Foraminous nonwoven fabric
US2862251A (en) * 1955-04-12 1958-12-02 Chicopee Mfg Corp Method of and apparatus for producing nonwoven product
US3033721A (en) * 1955-04-12 1962-05-08 Chicopee Mfg Corp Method and machine for producing nonwoven fabric and resulting product
US3025585A (en) * 1959-11-19 1962-03-20 Chicopec Mfg Corp Apparatus and method for making nonwoven fabric
US3485706A (en) * 1968-01-18 1969-12-23 Du Pont Textile-like patterned nonwoven fabrics and their production
US3769659A (en) * 1970-03-24 1973-11-06 Johnson & Johnson Method and apparatus (continuous imperforate portions on backing means of open sandwich)
US3931436A (en) * 1974-07-30 1976-01-06 Owens-Illinois, Inc. Segmented gas discharge display panel device and method of manufacturing same
US4426417A (en) * 1983-03-28 1984-01-17 Kimberly-Clark Corporation Nonwoven wiper
US4647490A (en) * 1983-05-20 1987-03-03 Johnson & Johnson Cotton patterned fabric
US5106457A (en) * 1990-08-20 1992-04-21 James River Corporation Hydroentangled nonwoven fabric containing synthetic fibers having a ribbon-shaped crenulated cross-section and method of producing the same
US5240764A (en) * 1992-05-13 1993-08-31 E. I. Du Pont De Nemours And Company Process for making spunlaced nonwoven fabrics
US5849647A (en) * 1993-01-29 1998-12-15 James River Hydrophilic cotton lap and products made from it
US5801107A (en) * 1993-06-03 1998-09-01 Kimberly-Clark Corporation Liquid transport material
US5475903A (en) * 1994-09-19 1995-12-19 American Nonwovens Corporation Composite nonwoven fabric and method
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
US5780369A (en) * 1997-06-30 1998-07-14 Kimberly-Clark Worldwide, Inc. Saturated cellulosic substrate
US6502288B2 (en) * 2000-02-11 2003-01-07 Polymer Group, Inc. Imaged nonwoven fabrics
US6695941B2 (en) * 2000-06-01 2004-02-24 Polymer Group, Inc. Method of making nonwoven fabric for buffing applications
US6378179B1 (en) * 2001-01-05 2002-04-30 Gary F. Hirsch System and method for reconstituting fibers from recyclable waste material
US6725512B2 (en) * 2001-06-05 2004-04-27 Polymer Group, Inc. Imaged nonwoven fabric for cleaning applications

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227566A1 (en) * 2002-12-27 2005-10-13 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Hydroentangled textile and use in a personal cleansing implement
US20060162139A1 (en) * 2002-12-27 2006-07-27 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Hydroentangled textile and use in a personal cleansing implement
US7331090B2 (en) 2002-12-27 2008-02-19 Unilever Home & Personal Care Usa, Division Of Conopco Hydroentangled textile and use in a personal cleansing implement
US7381667B2 (en) 2002-12-27 2008-06-03 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Hydroentangled textile and use in a personal cleansing implement
US20040258844A1 (en) * 2003-04-11 2004-12-23 Polymer Group, Inc. Nonwoven cleaning articles having compound three-dimensional images
WO2005009191A1 (en) * 2003-07-31 2005-02-03 Edmak Limited A cleansing pad
US20080168748A1 (en) * 2003-07-31 2008-07-17 Edmak Limited Cleansing Pad
US7842654B2 (en) * 2003-12-03 2010-11-30 The Procter & Gamble Company Method, articles and compositions for cleaning bathroom surfaces
US20050124519A1 (en) * 2003-12-03 2005-06-09 Sherry Alan E. Method, articles and compositions for cleaning bathroom surfaces
US20050144766A1 (en) * 2003-12-15 2005-07-07 Polymer Group, Inc. Durable lightweight imaged nonwoven wipe
US7069629B2 (en) * 2003-12-15 2006-07-04 Polymer Group, Inc. Durable lightweight imaged nonwoven wipe
US20100062671A1 (en) * 2008-09-05 2010-03-11 Nutek Disposables, Inc. Composite wipe
US20110302734A1 (en) * 2009-02-13 2011-12-15 Georgia-Pacific France Item for cleaning the skin
CN107847355A (en) * 2015-07-15 2018-03-27 阿文提特种材料公司 Low fibre shedding is imaged hydroentangled nonwoven composite
KR20180123556A (en) * 2016-04-04 2018-11-16 킴벌리-클라크 월드와이드, 인크. Cleaning products with low lint and high fluid absorbency and release properties
CN109072512A (en) * 2016-04-04 2018-12-21 金伯利-克拉克环球有限公司 Cleaning products with low lint and high fluid absorbency and release characteristics
US20190008354A1 (en) * 2016-04-04 2019-01-10 Kimberly-Clark Worldwide, Inc. Cleaning Product With Low Lint and High Fluid Absorbency and Release Properties
US11344175B2 (en) * 2016-04-04 2022-05-31 Kimberly-Clark Worldwide, Inc. Cleaning product with low lint and high fluid absorbency and release properties
AU2016402255B2 (en) * 2016-04-04 2022-06-30 Kimberly-Clark Worldwide, Inc. Cleaning product with low lint and high fluid absorbency and release properties
KR102493024B1 (en) 2016-04-04 2023-01-30 킴벌리-클라크 월드와이드, 인크. Cleaning products with low lint and high fluid absorption and release properties
CN108754856A (en) * 2018-07-03 2018-11-06 安徽宜民服饰股份有限公司 A kind of plant fiber spunlace non-woven cloth processing technology of selective resistance every ultraviolet light
CN112522858A (en) * 2020-11-27 2021-03-19 湖北欣柔卫生用品股份有限公司 Production method of pre-bleaching small-micropore all-cotton spunlace non-woven fabric

Similar Documents

Publication Publication Date Title
JP4739182B2 (en) Pattern sheet products
EP2971313B1 (en) Nonwoven fabrics of short individualized bast fibers and products made therefrom
US9949609B2 (en) Water dispersible wipe substrate
US6926931B2 (en) Dual sided nonwoven cleaning articles
US9926655B2 (en) Entangled substrate of short individualized bast fibers
US9926654B2 (en) Nonwoven fabrics comprised of individualized bast fibers
US20040068849A1 (en) Differentially entangled nonwoven fabric for use as wipes
US20060210771A1 (en) Cleaning sheet with improved three-dimensional cleaning surface
US20050268442A1 (en) Mechanically extensible substrates
US20040258844A1 (en) Nonwoven cleaning articles having compound three-dimensional images
US7069629B2 (en) Durable lightweight imaged nonwoven wipe
US20060005717A1 (en) Embossed three-dimensional nonwoven fabrics and the products thereof
US20050025936A1 (en) Nonwoven cleaning articles having intercalated three-dimensional images
US20040258843A1 (en) Dual sided nonwoven articles for cleaning

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARGE, PATRICK;CARTER, NICK;FULLER, CHARLES;REEL/FRAME:014551/0016;SIGNING DATES FROM 20030815 TO 20030917

AS Assignment

Owner name: CITICORP NORTH AMERICA, INC. AS FIRST LIEN COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015732/0080

Effective date: 20040805

AS Assignment

Owner name: WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNORS:CHICOPEE, INC.;FIBERTECH GROUP, INC.;POLY-BOND, INC.;AND OTHERS;REEL/FRAME:015778/0311

Effective date: 20040805

AS Assignment

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE GROUP L.L.C., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLYLONIX SEPARATION TECHNOLOGIES, INC., SOUTH CAR

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: CHICOPEE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: BONLAM (S.C.), INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FIBERGOL CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLYMER GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: TECHNETICS GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI POLYMER, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FIBERTECH GROUP, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA POLYMER CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: PNA CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: POLY-BOND INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PRISTINE BRANDS CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FNA ACQUISITION, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: DOMINION TEXTILE (USA) INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: FABRENE CORP., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: PGI EUROPE, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:WILMINGTON TRUST COMPANY, AS SECOND LIEN COLLATERAL AGENT;REEL/FRAME:016851/0471

Effective date: 20051122

Owner name: FABPRO ORIENTED POLYMERS, INC., SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: LORETEX CORPORATION, SOUTH CAROLINA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:CITICORP NORTH AMERICA, INC., AS FIRST LIEN COLLATERAL AGENT;REEL/FRAME:016851/0436

Effective date: 20051122

Owner name: CITICORP NORTH AMERICA, INC., AS COLLATERAL AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:POLYMER GROUP, INC.;CHICOPEE, INC.;FIBERTECH GROUP, INC.;AND OTHERS;REEL/FRAME:016851/0624

Effective date: 20051122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION