US20040083079A1 - Rule based capacity management system for an inter office facility - Google Patents

Rule based capacity management system for an inter office facility Download PDF

Info

Publication number
US20040083079A1
US20040083079A1 US10/689,370 US68937003A US2004083079A1 US 20040083079 A1 US20040083079 A1 US 20040083079A1 US 68937003 A US68937003 A US 68937003A US 2004083079 A1 US2004083079 A1 US 2004083079A1
Authority
US
United States
Prior art keywords
equipment
data
rules
rule
review
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/689,370
Inventor
Chuxin Chen
Ralph Gnauck
George Noll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Labs Inc
Original Assignee
SBC Technology Resources Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SBC Technology Resources Inc filed Critical SBC Technology Resources Inc
Priority to US10/689,370 priority Critical patent/US20040083079A1/en
Publication of US20040083079A1 publication Critical patent/US20040083079A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/32Monitoring with visual or acoustical indication of the functioning of the machine
    • G06F11/324Display of status information

Definitions

  • the present invention relates generally to monitoring systems and more particularly, to a system and method for monitoring and analyzing one or more pieces of telecommunication network equipment via a rule based system.
  • An IOF can generically represent any node (or group of nodes) in a telecommunication network, and more specifically identifies one or more pieces of equipment used to interconnect various links or nodes, such as other networks, telephone lines, and/or trunks.
  • TIRKS Trunks Integrated Record Keeping System
  • RBOC regional bell operating company
  • TIRKS provides a great detail of information
  • the method of acquiring the information is very long and tedious.
  • many steps must be performed on TIRKS.
  • the information provided by TIRKS is in a raw-data format, and must be manually complied into a tabular form to represent the desired information (e.g., exhaust conditions of one or more pieces of equipment). If there is an exhaust condition, a new job must be created for TIRKS, and a job story must be manually created to satisfy various RBOC reporting requirements.
  • What is desired is a system and method that automatically monitors one or more pieces of equipment, analyzes the pieces of equipment, and creates review and/or reports from the analysis.
  • FIG. 1 is a simplified description of several typical telecommunication networks and a monitor system according to one or more embodiments of the present invention.
  • FIG. 2 illustrates one embodiment of the monitoring system of FIG. 1.
  • FIG. 3 is a block diagram of an exemplary inter-office facility including several different pieces of equipment, which the present embodiment may monitor.
  • FIGS. 4 - 5 provide a simplified diagram and flow chart that illustrates one embodiment of a software program for implementing features of the present invention.
  • FIG. 6 is a flow chart that illustrates one embodiment of an inference engine for the software program of FIGS. 4 - 5 .
  • FIGS. 7 - 10 , 12 - 14 provide screen shots, such as from the computer system of FIG. 2, that illustrate different embodiments of the present invention.
  • FIG. 11 provides a graphical illustration of one embodiment of a rule tree for use by the software program of FIGS. 4 - 5 .
  • inter-office facility a central office
  • IPF inter-office facility
  • the following disclosure is divided into three different sections.
  • the exemplary network identifies two telecommunication networks that may benefit from the present invention, and the exemplary system provides an example of a system for providing a graphical user interface for monitoring a specific node of either or both of the networks.
  • an exemplary software routine is discussed for implementing one embodiment of the graphical user interface.
  • a plurality of screen shots are provided for illustrating the graphical user interface.
  • the reference numerals 10 and 12 designate, in general, two simplified networks.
  • the networks 10 , 12 include a plurality of nodes 14 and a plurality of links 16 .
  • a node is a point of connection in a network, and can be of any size.
  • an IOF is a node of a telecommunications network.
  • the IOF may include many different pieces of equipment (e.g., switches), each of which may also be considered a node of the network.
  • each node includes a plurality of terminations where a service enters or exits the network 10 , 12 .
  • the nodes 14 are IOF's and the links 16 are various types of trunks.
  • a monitoring system 20 may be connected to one or more nodes of the networks 10 , 12 for monitoring one or more pieces of equipment of the nodes.
  • the monitoring system 20 includes a personal computer 21 with a graphics display 22 , a control unit 24 , and user inputs 26 such as a keyboard and pointer device.
  • the computer 21 is connected through a log-on connection 30 to a file server 32 , which also includes hardware equipment found in a typical server computer.
  • the file server 32 is further connected to an inventory system 34 , such as the TIRKS system discussed above. It is well known by those of ordinary skill in the art that various implementations can exist for the monitoring system 20 .
  • the monitoring system 20 may include a larger, mainframe-type computer that is either locally or remotely accessible by a terminal or personal computer.
  • the monitoring system 20 may include a series of computers.
  • the monitoring system may include or utilize a series of adjunct processors to one or more of the nodes 14 .
  • the monitoring system 20 can perform various software routines that can produce a series of graphical output images.
  • the images are arranged in a unique way to illustrate the status of a particular node in the network 10 .
  • the images can be used by network engineers to analyze one or more particular pieces of equipment at the node.
  • the images can also identify exhaust conditions that may occur.
  • the images are produced by a unique software program, discussed below, and may appear on the graphics display 22 .
  • one node 14 of the network 10 or 12 may be an IOF 100 , as illustrated. It is understood, however, that the illustrated IOF of FIG. 3 is simplified for the sake of clarity, and many different configurations are well known in the art.
  • the IOF 100 includes many different pieces of equipment that a network engineer may desire to review.
  • the IOF includes one or more pieces of equipment described in Table 1, below.
  • TABLE 1 Equipment Description D4 102 A multiplexer/de-multiplexer unit for combining multiple digital lines (e.g., DS0s) 104 into a digital trunk (e.g., DS1) 106; ORB 108 An office repeater bay that receives and amplifies a DS1 signal 110; M1-3 112 A multiplexer/de-multiplexer unit for combining multiple DS1s 114 into a DS3 116; MFT1 118 A 2-wire metallic frame terminal for amplifying and/or balancing an analog or digital line 120; MFT2 122 A 4-wire metallic frame terminal for amplifying and/or balancing an analog or digital line 124; SMAS 126 A port for allowing access and/or test of a digital line 128; Switch 130 A trunk-side switch.
  • Examples include a tandem (TMD) or plain old telephone (POTS) system; DCS1-0 132 A narrow band electronic cross-connect system that reconfigures a DS0 134; DCS3-1 136 A wide band electronic cross-connect system that reconfigures a DS1 138; DCS3-3 140 A broad band electronic cross-connect system that reconfigures a DS3 142; ATM 144 An asynchronous transfer mode switch for trunks 146; DSL 148 A digital subscriber line splitter 148 for servicing a DSL line 150.
  • TMD tandem
  • POTS plain old telephone
  • a rule based capacity management computer program 200 can be used for creating reviews of various equipment in the IOF 100 .
  • the computer program 200 may be performed by a single component of the monitoring system 20 of FIG. 2, or may have different aspects distributed throughout various processing platforms.
  • the computer program 200 is performed by the file server 32 .
  • the computer program 200 includes a presentation layer 202 , a business layer 204 , and a data layer 206 .
  • the presentation layer 202 provides, in the present embodiment, the graphical user interface (“GUI”) to the user (e.g., the network engineer).
  • GUI graphical user interface
  • the GUI allows the user to set specific parameters for specific reviews and forecasts, and also presents the data from the reviews and forecasts.
  • the presentation layer 202 may have many different components, such as listed in Table 2, below.
  • TABLE 2 Component Description Review Monitor A table screen that shows how many reviews a user has created. It retrieves this information from the server. It also provides a history of the reviews. User Preference This describes user preferences, such as a location and responsibility, color of charts, and so forth.
  • D&C Chart A graph of demand vs.
  • Chart Properties This allows customization of the D&C Chart. Forecast and This is a report that allows the user to enter a single Pending Job event forecasted demand and/or a published forecast. Also, the user can enter pending jobs that are not yet input to the inventory system 208. Review Details This provides parameters defined for the review. It identifies a time frame (e.g., monthly), forecast vs. trend, warning levels, etc. Standard This identifies standard equipment configurations for Configuration the equipment. This is used to help determine the best Selection combination of equipment, since the equipment configuration is fairly complex. Local Office This assists how the system automatically selects Profile equipment for a specific office. Job Justification This is a word-processing document automatically Story created by the system for specific vendors. (e.g., RBOCs). Rule Based Editor This allows the user (or an administrator) to edit rules. For example, if an equipment type changes to a new model, different rules (with different parameters) may apply.
  • Rule Based Editor This allows the user (or an administrator) to edit rules. For example, if
  • the data layer 206 includes a database of the raw data for the reviews and forecasts.
  • the raw data comes from an inventory control system 208 , such as the TIRKS system discussed above, using conventional techniques.
  • the data layer 206 includes the rules that have either been predefined or defined by the network engineer.
  • the rules define such things as specific configurations of pieces of equipment, typical equipment performance parameters, equipment endurance estimations, and so forth.
  • An exemplary group of rules is provided in Table 3, below. TABLE 3 Rule D4s come in groups of eight. D4s can handle x amount of capacity. D4s last for 2 years. Each D4 is 7 feet tall.
  • the business layer 204 serves as the engine between the presentation layer 202 and the data layer 206 .
  • the business layer 204 can predict future capacity situations in one or more pieces of equipment being reviewed, and can predict exhaust conditions among the pieces of equipment.
  • the business layer 204 may have many different components, such as listed in Table 4, below.
  • TABLE 4 Component Description Review Database This accesses the inventory system 208 (TIRKS) Inference Engine This is an artificial intelligence engine that performs the analysis, including the material for the D&C chart. Job Justification This creates the job justification story of Table 2 from Story the data layer 206.
  • Detect Equipment This identifies equipment exhaust conditions, from the Exhaust Inference Engine Generate D&C This creates the D&C Chart of Table 2 from the data Chart layer 206. Select Standard This selects the appropriate standard configuration for Configuration the review. Distribution This distributes the results. For example, an email can be sent to the user responsive to predetermined “alarm” conditions.
  • the computer program 200 begins execution at step 250 , where the network engineer defines a review.
  • the engineer can define the review by selecting one or more pieces of equipment, and various parameters for the equipment.
  • the engineer can also used predefined rules, or modify rules as desired.
  • step 252 data relevant for the review is tracked.
  • the data may be acquired by the TIRKS inventory system 208 .
  • the data is provided in a raw format. This data acquisition may occur over repeated intervals for a time span specified at step 250 .
  • the data is analyzed.
  • the analysis is based on the previously provided rules.
  • the data can be accumulated in a predetermined manner, such as is required by a job justification story.
  • the data can be analyzed using an inference engine 300 to perform certain forecasts. For example, a prediction that the system under review will “exhaust” at a certain point in the future can be made.
  • Execution of the inference engine 300 begins at step 302 where the data acquired at step 252 (FIG. 5) is loaded. This data represents actual equipment status.
  • the rule base is searched for a match. If the equipment matches a rule, then execution proceeds to step 306 where the rule is “fired.” A rule is fired by performing “consequences” of the rule.
  • a consequence is an action or a conclusion that can be made from the particular piece of equipment.
  • the consequence is provided for further analysis or reporting.
  • step 308 Upon completion of step 308 , or upon a negative determination at step 304 , execution returns to step 302 until all of the data has been parsed (determined at step 309 ). As a result, each piece of data that has a corresponding rule will be fired on.
  • the data is organized into a predetermined format and reported.
  • the data may be reported as a job justification story, in an email notification, and/or in various graphs. Since, in some embodiments, the program 200 may perform over an extended period of time, the data reporting step 256 may be repeated throughout the period of time, in similar or different reporting formats.
  • the program 200 can also be described by showing several different images from the presentation layer 202 . Since the images are dynamic and interactive, screen shots of the images will be further discussed. The screen shots relate to exemplary situations of a node in the network, such as the IOF of FIG. 3. It is understood that different portions of the screen shots can be combined in various manners to produce even more examples of the graphical user interface.
  • a screen shot 350 illustrates one example of the user preference component of Table 2, above.
  • the screen 350 includes a menu 352 that allows a user to select one or more possible regions (or “engineering areas”) for review. Once a region is selected, a window 354 lists all the IOF's for the engineering areas. The user can then transfer specific IOF's to a window 356 for further review. Specific technologies can be selected in a window 358 and a time period for review can be determined in a window 360 . Once the selections are made, an initial review can be automatically created with a button 362 to create a review for the selected offices and technologies. Further customization is possible by activating a button 364 . This allows the user to choose “Review Monitor” and “D & C Chart” components as well as selecting an engineering function of the user.
  • one advanced option is to modify a local office profile with a screen 400 .
  • the configuration of an office repeater bay for a particular IOF e.g. IOF 100 of FIG. 3 is to be modified (e.g., ORB 108 ).
  • Each IOF can have different frame heights, and hold different quantities of equipment. As such, the user can change certain parameters of the equipment in the IOF.
  • a standard configuration list 450 may be used to select a standard configuration for a specific IOF.
  • the standard configurations are fixed and created by engineering boards and/or various equipment vendors.
  • a rule-base manager screen 500 allows the user to define rules for the rule based capacity management program 200 .
  • the screen 500 allows the user to embed or encode business logic, company guidelines, and equipment properties into the rules.
  • the rules are organized in a tree structure 502 .
  • One part of the tree structure 502 is a rule set 504 .
  • the rule set 504 categorizes the different “areas” of rules, which identify where the rules will be applied and helps the inference engine 300 (FIG. 6) to identify which rule set to apply when the need arises.
  • a standard configuration rule set requirement (“StdConfigReq-S8”) is one group of rules for a specific IOF.
  • Other examples of rule sets would include a group of rules directed to timing requirements, sizing requirements, and so forth.
  • Each rule includes an antecedent 508 and a consequent 510 .
  • the antecedent 508 serves as a precondition for the rule, and the consequent 510 serves as a conclusion for the rule.
  • the rule office repeater bay (“ORB”) has one antecedent basis of:
  • a screen shot 550 illustrates one example of the review monitor component.
  • the screen 550 creates a review (e.g., review “CRLS12DCO-5E M&S ALL T”) for a particular piece of equipment (e.g., “DC0”) of an IOF (e.g., central office “CRLSCA12”).
  • a window 552 allows the user to schedule the review and a window 554 allows the user to select a certain piece of equipment with a HECIG code.
  • the HECIG code identifies a human equipment common interface (HECIG) value. All the HECIGs that were included are shown, and can be sorted by a function 556 .
  • HECIG human equipment common interface
  • a window 558 allows the user to modify the growth rate of the IOF, if certain conditions are known. For example, a population area served by the IOF can be under relatively rapid expansion.
  • a window 560 can allow different growth rate computation methods.
  • a notification window 562 can be used to activate email notification of the user when certain conditions are met.
  • a forecast button 564 causes a forecast and pending jobs window to appear, discussed below.
  • a forecast and pending job screen 600 is used to illustrate different forecasts and jobs that make up a review.
  • the screen 600 can be divided into two different sections: a forecast section 602 and a pending jobs section 604 .
  • the forecast section 602 indicates the status of a job (e.g., whether the current job is being used), the HECIG code of the exact equipment type, date and quantity for the forecast, and a description of what is causing the demand for forecast.
  • the user (acting as the “owner”) may create a forecast, may “insert” it in the review list, and may “include” or use the forecast in the review.
  • the pending jobs section 604 identifies various equipment modifications that are being performed.
  • a screen shot 650 illustrates one example of a D&C chart.
  • the D&C chart 650 analyses an office repeater bay (“ORB”).
  • a vertical axis 652 identifies a bit rate level (e.g., DS1) for the ORB, and a horizontal axis 654 identifies time.
  • a curve 656 identifies maximum capacity for the ORB. As can be seen, the maximum capacity has been increased at several times during the previous months, due to various enhancements to the ORB.
  • a curve 658 identifies working or consumed capacity of the ORB up until the time of the last review. In the present case, the consumed capacity 658 has always been below the maximum 656 .
  • a curve 660 identifies a projected trend for the consumed capacity 658 . As can be seen, the projected trend 660 intersects the maximum capacity 656 at a point 662 . In the present embodiment, the point 662 identifies a date of 9/2002. This identifies to the user that an exhaust condition will probably occur at that date. The user may then respond appropriately, such as by increasing the maximum capacity for the ORB. The user may have requested email notification at a predetermined time before the point 662 (such as through the window 562 of FIG. 12). Since the review is performed for a period of time, more data will become available for analysis and a more accurate intersection point can be determined.
  • a system and method for monitoring and analyzing one or more pieces of telecommunication network equipment via a rule based system allow a user to quickly determine the status of the equipment.
  • the system may be interactive, and can quickly provide specific information without providing superfluous or unnecessary information to the user.
  • implementations of the various embodiments described above can be performed very quickly, as compared to conventional techniques, such as running a TIRKS online report facility.

Abstract

A rule based capacity management system for an inter office facility is provided. The system includes a presentation layer for providing a graphical user interface to a user. The presentation layer is capable of receiving one or more rules from the user and for providing one or more analytical reports of the equipment based on the rules. The system also includes a data layer for storing rules, including the rules received from the user, and for connecting to an inventory system such as trunks integrated record keeping system (TIRKS). The system also includes a business layer interfacing between the presentation layer and the data layer. The business layer creates the analytical reports responsive to the rules and the raw data.

Description

    CROSS REFERENCES
  • This application is a continuation of U.S. patent application Ser. No. 10/171,375, filed on Jun. 13, 2002, which is a continuation of U.S. patent application Ser. No. 09/687,635, filed on Oct. 13, 2000, and issued on Aug. 13, 2002, as U.S. Pat. No. 6,434,514.[0001]
  • BACKGROUND
  • The present invention relates generally to monitoring systems and more particularly, to a system and method for monitoring and analyzing one or more pieces of telecommunication network equipment via a rule based system. [0002]
  • It is often desired to monitor specific pieces of equipment of a telecommunication network. Traditionally, the monitoring has been provided in a flat-file, data dump format. For example, a conventional monitoring system can show if a piece of equipment in a network is up or down. [0003]
  • However, it is often desired to have a deeper analysis of the equipment. Consider for example an inter-office facility, or “IOF”. An IOF can generically represent any node (or group of nodes) in a telecommunication network, and more specifically identifies one or more pieces of equipment used to interconnect various links or nodes, such as other networks, telephone lines, and/or trunks. [0004]
  • One way to monitor equipment in an IOF is to use a system called the Trunks Integrated Record Keeping System (“TIRKS”). TIRKS is commonly used to help a regional bell operating company (“RBOC”) determine if facilities exist to provide service, track order completion, fulfill circuit orders, and perform inventory planning. [0005]
  • Although TIRKS provides a great detail of information, the method of acquiring the information is very long and tedious. For example, in order to review equipment of an IOF, many steps must be performed on TIRKS. The information provided by TIRKS is in a raw-data format, and must be manually complied into a tabular form to represent the desired information (e.g., exhaust conditions of one or more pieces of equipment). If there is an exhaust condition, a new job must be created for TIRKS, and a job story must be manually created to satisfy various RBOC reporting requirements. [0006]
  • What is desired is a system and method that automatically monitors one or more pieces of equipment, analyzes the pieces of equipment, and creates review and/or reports from the analysis.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified description of several typical telecommunication networks and a monitor system according to one or more embodiments of the present invention. [0008]
  • FIG. 2 illustrates one embodiment of the monitoring system of FIG. 1. [0009]
  • FIG. 3 is a block diagram of an exemplary inter-office facility including several different pieces of equipment, which the present embodiment may monitor. [0010]
  • FIGS. [0011] 4-5 provide a simplified diagram and flow chart that illustrates one embodiment of a software program for implementing features of the present invention.
  • FIG. 6 is a flow chart that illustrates one embodiment of an inference engine for the software program of FIGS. [0012] 4-5.
  • FIGS. [0013] 7-10, 12-14 provide screen shots, such as from the computer system of FIG. 2, that illustrate different embodiments of the present invention.
  • FIG. 11 provides a graphical illustration of one embodiment of a rule tree for use by the software program of FIGS. [0014] 4-5.
  • DETAILED DESCRIPTION
  • The present disclosure relates to capacity management systems, such as can be used in an inter-office facility or a central office (hereinafter inter-office facility, or “IOF”). It is understood, however, that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of equipment, connections, and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to limit the invention from that described in the claims. [0015]
  • The following disclosure is divided into three different sections. First of all, an exemplary network and system is provided. The exemplary network identifies two telecommunication networks that may benefit from the present invention, and the exemplary system provides an example of a system for providing a graphical user interface for monitoring a specific node of either or both of the networks. Secondly, an exemplary software routine is discussed for implementing one embodiment of the graphical user interface. Thirdly, a plurality of screen shots are provided for illustrating the graphical user interface. [0016]
  • Exemplary Network and System
  • Referring to FIG. 1, the [0017] reference numerals 10 and 12 designate, in general, two simplified networks. The networks 10, 12 include a plurality of nodes 14 and a plurality of links 16. A node is a point of connection in a network, and can be of any size. For example, an IOF is a node of a telecommunications network. Likewise, the IOF may include many different pieces of equipment (e.g., switches), each of which may also be considered a node of the network.
  • In the illustration of FIG. 1, some of the nodes exist in both [0018] networks 10, 12, and are therefore considered hubs. In the present example, each node includes a plurality of terminations where a service enters or exits the network 10, 12. In continuance of the example, the nodes 14 are IOF's and the links 16 are various types of trunks.
  • Referring also to FIG. 2, a [0019] monitoring system 20 may be connected to one or more nodes of the networks 10, 12 for monitoring one or more pieces of equipment of the nodes. In one embodiment, the monitoring system 20 includes a personal computer 21 with a graphics display 22, a control unit 24, and user inputs 26 such as a keyboard and pointer device. The computer 21 is connected through a log-on connection 30 to a file server 32, which also includes hardware equipment found in a typical server computer. The file server 32 is further connected to an inventory system 34, such as the TIRKS system discussed above. It is well known by those of ordinary skill in the art that various implementations can exist for the monitoring system 20. For example, in some implementations, the monitoring system 20 may include a larger, mainframe-type computer that is either locally or remotely accessible by a terminal or personal computer. In other implementations, the monitoring system 20 may include a series of computers. In still other implementations, the monitoring system may include or utilize a series of adjunct processors to one or more of the nodes 14.
  • The [0020] monitoring system 20 can perform various software routines that can produce a series of graphical output images. The images are arranged in a unique way to illustrate the status of a particular node in the network 10. For example, the images can be used by network engineers to analyze one or more particular pieces of equipment at the node. The images can also identify exhaust conditions that may occur. The images are produced by a unique software program, discussed below, and may appear on the graphics display 22.
  • Referring now to FIG. 3, for the sake of example, one [0021] node 14 of the network 10 or 12 may be an IOF 100, as illustrated. It is understood, however, that the illustrated IOF of FIG. 3 is simplified for the sake of clarity, and many different configurations are well known in the art.
  • The IOF [0022] 100 includes many different pieces of equipment that a network engineer may desire to review. In the present example, the IOF includes one or more pieces of equipment described in Table 1, below.
    TABLE 1
    Equipment Description
    D4 102 A multiplexer/de-multiplexer unit for combining multiple digital
    lines (e.g., DS0s) 104 into a digital trunk (e.g., DS1) 106;
    ORB 108 An office repeater bay that receives and amplifies a DS1 signal 110;
    M1-3 112 A multiplexer/de-multiplexer unit for combining multiple DS1s 114
    into a DS3 116;
    MFT1 118 A 2-wire metallic frame terminal for amplifying and/or balancing an
    analog or digital line 120;
    MFT2 122 A 4-wire metallic frame terminal for amplifying and/or balancing an
    analog or digital line 124;
    SMAS 126 A port for allowing access and/or test of a digital line 128;
    Switch 130 A trunk-side switch. Examples include a tandem (TMD) or plain old
    telephone (POTS) system;
    DCS1-0 132 A narrow band electronic cross-connect system that reconfigures a
    DS0 134;
    DCS3-1 136 A wide band electronic cross-connect system that reconfigures a DS1
    138;
    DCS3-3 140 A broad band electronic cross-connect system that reconfigures a
    DS3 142;
    ATM 144 An asynchronous transfer mode switch for trunks 146;
    DSL 148 A digital subscriber line splitter 148 for servicing a DSL line 150.
  • In the present example, it is desired to allow a user such as a network engineer to monitor and review one or more of the pieces of equipment of the [0023] IOF 100.
  • Software Description
  • Referring now to FIG. 4, a rule based capacity [0024] management computer program 200 can be used for creating reviews of various equipment in the IOF 100. The computer program 200 may be performed by a single component of the monitoring system 20 of FIG. 2, or may have different aspects distributed throughout various processing platforms. In the present embodiment, the computer program 200 is performed by the file server 32.
  • The [0025] computer program 200 includes a presentation layer 202, a business layer 204, and a data layer 206. The presentation layer 202 provides, in the present embodiment, the graphical user interface (“GUI”) to the user (e.g., the network engineer). The GUI allows the user to set specific parameters for specific reviews and forecasts, and also presents the data from the reviews and forecasts. The presentation layer 202 may have many different components, such as listed in Table 2, below.
    TABLE 2
    Component Description
    Review Monitor A table screen that shows how many reviews a user
    has created. It retrieves this information from the
    server. It also provides a history of the reviews.
    User Preference This describes user preferences, such as a location and
    responsibility, color of charts, and so forth.
    D&C Chart A graph of demand vs. capacity for a particular
    location.
    Chart Properties This allows customization of the D&C Chart.
    Forecast and This is a report that allows the user to enter a single
    Pending Job event forecasted demand and/or a published forecast.
    Also, the user can enter pending jobs that are not yet
    input to the inventory system 208.
    Review Details This provides parameters defined for the review. It
    identifies a time frame (e.g., monthly), forecast vs.
    trend, warning levels, etc.
    Standard This identifies standard equipment configurations for
    Configuration the equipment. This is used to help determine the best
    Selection combination of equipment, since the equipment
    configuration is fairly complex.
    Local Office This assists how the system automatically selects
    Profile equipment for a specific office.
    Job Justification This is a word-processing document automatically
    Story created by the system for specific vendors.
    (e.g., RBOCs).
    Rule Based Editor This allows the user (or an administrator) to edit rules.
    For example, if an equipment type changes to a new
    model, different rules (with different parameters) may
    apply.
  • The [0026] data layer 206 includes a database of the raw data for the reviews and forecasts. The raw data comes from an inventory control system 208, such as the TIRKS system discussed above, using conventional techniques. In addition, the data layer 206 includes the rules that have either been predefined or defined by the network engineer. The rules define such things as specific configurations of pieces of equipment, typical equipment performance parameters, equipment endurance estimations, and so forth. An exemplary group of rules is provided in Table 3, below.
    TABLE 3
    Rule
    D4s come in groups of eight.
    D4s can handle x amount of capacity.
    D4s last for 2 years.
    Each D4 is 7 feet tall.
  • The [0027] business layer 204 serves as the engine between the presentation layer 202 and the data layer 206. In the present embodiment, the business layer 204 can predict future capacity situations in one or more pieces of equipment being reviewed, and can predict exhaust conditions among the pieces of equipment. The business layer 204 may have many different components, such as listed in Table 4, below.
    TABLE 4
    Component Description
    Review Database This accesses the inventory system 208 (TIRKS)
    Inference Engine This is an artificial intelligence engine that performs
    the analysis, including the material for the D&C chart.
    Job Justification This creates the job justification story of Table 2 from
    Story the data layer 206.
    Detect Equipment This identifies equipment exhaust conditions, from the
    Exhaust Inference Engine
    Generate D&C This creates the D&C Chart of Table 2 from the data
    Chart layer
    206.
    Select Standard This selects the appropriate standard configuration for
    Configuration the review.
    Distribution This distributes the results. For example, an email can
    be sent to the user responsive to predetermined
    “alarm” conditions.
  • Referring now to FIG. 5, the [0028] computer program 200 begins execution at step 250, where the network engineer defines a review. The engineer can define the review by selecting one or more pieces of equipment, and various parameters for the equipment. The engineer can also used predefined rules, or modify rules as desired.
  • At [0029] step 252, data relevant for the review is tracked. In the present embodiment, the data may be acquired by the TIRKS inventory system 208. The data is provided in a raw format. This data acquisition may occur over repeated intervals for a time span specified at step 250.
  • At [0030] step 254, the data is analyzed. The analysis is based on the previously provided rules. For example, the data can be accumulated in a predetermined manner, such as is required by a job justification story.
  • Referring also to FIG. 6, in one embodiment, the data can be analyzed using an [0031] inference engine 300 to perform certain forecasts. For example, a prediction that the system under review will “exhaust” at a certain point in the future can be made. Execution of the inference engine 300 begins at step 302 where the data acquired at step 252 (FIG. 5) is loaded. This data represents actual equipment status. At step 304, the rule base is searched for a match. If the equipment matches a rule, then execution proceeds to step 306 where the rule is “fired.” A rule is fired by performing “consequences” of the rule. A consequence is an action or a conclusion that can be made from the particular piece of equipment. At step 308, the consequence is provided for further analysis or reporting. Upon completion of step 308, or upon a negative determination at step 304, execution returns to step 302 until all of the data has been parsed (determined at step 309). As a result, each piece of data that has a corresponding rule will be fired on.
  • Referring again to FIG. 5, at [0032] step 256, the data is organized into a predetermined format and reported. The data may be reported as a job justification story, in an email notification, and/or in various graphs. Since, in some embodiments, the program 200 may perform over an extended period of time, the data reporting step 256 may be repeated throughout the period of time, in similar or different reporting formats.
  • Exemplary Screen Shots
  • The [0033] program 200 can also be described by showing several different images from the presentation layer 202. Since the images are dynamic and interactive, screen shots of the images will be further discussed. The screen shots relate to exemplary situations of a node in the network, such as the IOF of FIG. 3. It is understood that different portions of the screen shots can be combined in various manners to produce even more examples of the graphical user interface.
  • Referring now to FIG. 7, a [0034] screen shot 350 illustrates one example of the user preference component of Table 2, above. The screen 350 includes a menu 352 that allows a user to select one or more possible regions (or “engineering areas”) for review. Once a region is selected, a window 354 lists all the IOF's for the engineering areas. The user can then transfer specific IOF's to a window 356 for further review. Specific technologies can be selected in a window 358 and a time period for review can be determined in a window 360. Once the selections are made, an initial review can be automatically created with a button 362 to create a review for the selected offices and technologies. Further customization is possible by activating a button 364. This allows the user to choose “Review Monitor” and “D & C Chart” components as well as selecting an engineering function of the user.
  • Referring also to FIG. 8, one advanced option is to modify a local office profile with a [0035] screen 400. In the present example, the configuration of an office repeater bay for a particular IOF (e.g. IOF 100 of FIG. 3) is to be modified (e.g., ORB 108). Each IOF can have different frame heights, and hold different quantities of equipment. As such, the user can change certain parameters of the equipment in the IOF.
  • Referring also to FIG. 9, a [0036] standard configuration list 450 may be used to select a standard configuration for a specific IOF. In the present embodiment, the standard configurations are fixed and created by engineering boards and/or various equipment vendors.
  • Referring to FIGS. 10 and 11, a rule-[0037] base manager screen 500 allows the user to define rules for the rule based capacity management program 200. The screen 500 allows the user to embed or encode business logic, company guidelines, and equipment properties into the rules.
  • The rules are organized in a [0038] tree structure 502. One part of the tree structure 502 is a rule set 504. The rule set 504 categorizes the different “areas” of rules, which identify where the rules will be applied and helps the inference engine 300 (FIG. 6) to identify which rule set to apply when the need arises. In the example of FIG. 10, a standard configuration rule set requirement (“StdConfigReq-S8”) is one group of rules for a specific IOF. Other examples of rule sets would include a group of rules directed to timing requirements, sizing requirements, and so forth.
  • Another part of the [0039] tree structure 502 are rules 506. Each rule includes an antecedent 508 and a consequent 510. The antecedent 508 serves as a precondition for the rule, and the consequent 510 serves as a conclusion for the rule. In the example of FIG. 10, the rule office repeater bay (“ORB”) has one antecedent basis of:
  • TechName is ORB. [0040]
  • If this antecedent is met, the following three consequents are made: [0041]
  • Required Feature ==TechName; [0042]
  • Required Feature ==FrameHeight; [0043]
  • Required Feature ==EquipmentDetail. [0044]
  • The consequents dictate a name, frame height, and equipment detail description for the ORB. [0045]
  • By having the above described tree structure, a great deal of flexibility is provided to the rules. For example, if later on the user wants to change the rules for the ORB, the consequent or antecedent can be readily modified. As a result, changes to equipment, company guidelines, or other rule logic does not require the user to rebuild the entire rule based [0046] capacity management program 200.
  • Referring now to FIG. 12, another way to create a review is with the review monitor component of Table 2, above. A screen shot [0047] 550 illustrates one example of the review monitor component. The screen 550 creates a review (e.g., review “CRLS12DCO-5E M&S ALL T”) for a particular piece of equipment (e.g., “DC0”) of an IOF (e.g., central office “CRLSCA12”). A window 552 allows the user to schedule the review and a window 554 allows the user to select a certain piece of equipment with a HECIG code. The HECIG code identifies a human equipment common interface (HECIG) value. All the HECIGs that were included are shown, and can be sorted by a function 556.
  • A [0048] window 558 allows the user to modify the growth rate of the IOF, if certain conditions are known. For example, a population area served by the IOF can be under relatively rapid expansion. A window 560 can allow different growth rate computation methods. A notification window 562 can be used to activate email notification of the user when certain conditions are met. A forecast button 564 causes a forecast and pending jobs window to appear, discussed below.
  • Referring to FIG. 13, a forecast and [0049] pending job screen 600 is used to illustrate different forecasts and jobs that make up a review. The screen 600 can be divided into two different sections: a forecast section 602 and a pending jobs section 604. The forecast section 602 indicates the status of a job (e.g., whether the current job is being used), the HECIG code of the exact equipment type, date and quantity for the forecast, and a description of what is causing the demand for forecast. The user (acting as the “owner”) may create a forecast, may “insert” it in the review list, and may “include” or use the forecast in the review. The pending jobs section 604 identifies various equipment modifications that are being performed.
  • Referring now to FIG. 14, one type of forecast is a D&C chart, as discussed in Table 2, above. A screen shot [0050] 650 illustrates one example of a D&C chart. In continuance with the present example, the D&C chart 650 analyses an office repeater bay (“ORB”). A vertical axis 652 identifies a bit rate level (e.g., DS1) for the ORB, and a horizontal axis 654 identifies time. A curve 656 identifies maximum capacity for the ORB. As can be seen, the maximum capacity has been increased at several times during the previous months, due to various enhancements to the ORB.
  • A [0051] curve 658 identifies working or consumed capacity of the ORB up until the time of the last review. In the present case, the consumed capacity 658 has always been below the maximum 656. A curve 660 identifies a projected trend for the consumed capacity 658. As can be seen, the projected trend 660 intersects the maximum capacity 656 at a point 662. In the present embodiment, the point 662 identifies a date of 9/2002. This identifies to the user that an exhaust condition will probably occur at that date. The user may then respond appropriately, such as by increasing the maximum capacity for the ORB. The user may have requested email notification at a predetermined time before the point 662 (such as through the window 562 of FIG. 12). Since the review is performed for a period of time, more data will become available for analysis and a more accurate intersection point can be determined.
  • Conclusion
  • Thus, there is disclosed a system and method for monitoring and analyzing one or more pieces of telecommunication network equipment via a rule based system. In some embodiments, the system and method allow a user to quickly determine the status of the equipment. The system may be interactive, and can quickly provide specific information without providing superfluous or unnecessary information to the user. In addition, implementations of the various embodiments described above can be performed very quickly, as compared to conventional techniques, such as running a TIRKS online report facility. [0052]
  • While the invention has been particularly shown and described with reference to the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing form the spirit and scope of the invention. [0053]

Claims (12)

What is claimed is:
1. A system for monitoring equipment in a telecommunications network, the system comprising:
a monitor set including at least one of either a subset of the equipment, a review period, or a configuration for the equipment;
a plurality of rules related to the monitor set, wherein the rules include at least one rule usable to predict exhaustion of the equipment;
means for obtaining data related to the monitor set; and
a program for creating one or more analytical reports about the monitor set based on the rules and the data, wherein the analytical report includes a prediction of exhaustion of the equipment, wherein the program includes:
an inference engine having instructions for retrieving the data from a data layer of an inventory retrieval system, determining if a match exists between the data and one or more of the rules, if a match exists, firing the rule on the data to produce an analysis and formatting the analysis into the analytical reports.
2. The system of claim 1 wherein the at least one rule usable to predict exhaustion of the equipment includes a projected lifetime of the equipment.
3. The system of claim 2 wherein the at least one rule usable to predict exhaustion of the equipment includes a capacity of the equipment.
4. A method for monitoring equipment in a telecommunications system and predicting when the equipment will be exhausted, the method comprising:
selecting a configuration for the equipment;
defining a review for the selected configuration, the review identifying one or more rules usable to calculate exhaustion of the equipment;
obtaining equipment related data using a separate inventory system;
requesting the retrieval of the obtained data for the defined review so that the data can be compared to the one or more rules; and
receiving a comparison of the data and the review.
5. The method of claim 4 wherein identifying the one or more rules usable to calculate exhaustion of the equipment includes identifying at least one of a lifetime of the equipment and a capacity of the equipment.
6. The method of claim 4 wherein the review further identifies a review interval and/or a notification preference and wherein the data can also be compared to the review interval and/or the notification preference.
7. The method of claim 4 wherein the configuration is selected from a list of predetermined possible configurations.
8. The method of claim 4 wherein identifying one or more rules comprises:
selecting a rule from a rule tree according to a rule set definition, the rule comprising an antecedent and a consequent; and
modifying either or both of the antecedent and the consequent of the selected rule.
9. The method of claim 4 further comprising receiving the comparison as an analyzed conclusion provided through an email operation.
10. A system for monitoring equipment in a telecommunications network, the system comprising:
a monitor set including at least one of either a subset of the equipment, a review period, or a configuration for the equipment;
a plurality of rules related to the monitor set, wherein at least one rule enables a prediction of equipment exhaustion;
means for obtaining data related to the monitor set; and
a program for creating one or more analytical reports about the monitor set based on the rules and the data, wherein at least one of the analytical reports details a relationship between demand and capacity for at least a portion of the equipment.
11. The system of claim 10 further comprising a graphical user interface for receiving additional rules from a user and for providing the additional rules to the program.
12. The system of claim 10 wherein the program comprises an inference engine comprising instructions for retrieving the data from a data layer of an inventory retrieval system, determining if a match exists between the data and one or more of the rules, if a match exists, firing the rule on the data to produce an analysis, and formatting the analysis into the analytical reports, wherein the analytical report includes a prediction of equipment exhaustion.
US10/689,370 2000-10-13 2003-10-20 Rule based capacity management system for an inter office facility Abandoned US20040083079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/689,370 US20040083079A1 (en) 2000-10-13 2003-10-20 Rule based capacity management system for an inter office facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/687,635 US6434514B1 (en) 2000-10-13 2000-10-13 Rule based capacity management system for an inter office facility
US10/171,375 US6668241B2 (en) 2000-10-13 2002-06-13 Rule based capacity management system for an inter office facility
US10/689,370 US20040083079A1 (en) 2000-10-13 2003-10-20 Rule based capacity management system for an inter office facility

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/171,375 Continuation US6668241B2 (en) 2000-10-13 2002-06-13 Rule based capacity management system for an inter office facility

Publications (1)

Publication Number Publication Date
US20040083079A1 true US20040083079A1 (en) 2004-04-29

Family

ID=24761194

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/687,635 Expired - Fee Related US6434514B1 (en) 2000-10-13 2000-10-13 Rule based capacity management system for an inter office facility
US10/171,375 Expired - Fee Related US6668241B2 (en) 2000-10-13 2002-06-13 Rule based capacity management system for an inter office facility
US10/689,370 Abandoned US20040083079A1 (en) 2000-10-13 2003-10-20 Rule based capacity management system for an inter office facility

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/687,635 Expired - Fee Related US6434514B1 (en) 2000-10-13 2000-10-13 Rule based capacity management system for an inter office facility
US10/171,375 Expired - Fee Related US6668241B2 (en) 2000-10-13 2002-06-13 Rule based capacity management system for an inter office facility

Country Status (1)

Country Link
US (3) US6434514B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104778551A (en) * 2015-04-15 2015-07-15 国网湖南省电力公司 Designing and analyzing method of visualization grid

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854754A1 (en) * 1998-11-27 2000-06-08 Alcatel Sa Method, editor, computer, control module and storage means for editing configuration data for telecommunication systems
US6434514B1 (en) * 2000-10-13 2002-08-13 Sbc Technology Resources, Inc. Rule based capacity management system for an inter office facility
JP3486400B2 (en) * 2001-03-01 2004-01-13 アライドテレシス株式会社 Network monitoring device, network monitoring program, network monitoring method, and computer network system
US7343403B2 (en) * 2001-03-29 2008-03-11 Mitsubishi Denki Kabushiki Kaisha Network management system for remote setup of control equipment in a network
US7149752B2 (en) * 2002-12-03 2006-12-12 Jp Morgan Chase Bank Method for simplifying databinding in application programs
US8032439B2 (en) * 2003-01-07 2011-10-04 Jpmorgan Chase Bank, N.A. System and method for process scheduling
US7401156B2 (en) * 2003-02-03 2008-07-15 Jp Morgan Chase Bank Method using control interface to suspend software network environment running on network devices for loading and executing another software network environment
US7299478B2 (en) * 2003-03-28 2007-11-20 Sbc Knowledge Ventures, L.P. Integration service and domain object for telecommunications operational support
US8700753B2 (en) * 2003-03-28 2014-04-15 Denis L. Bagsby Distributed computer system for telecommunications operational support
US7379998B2 (en) * 2003-03-31 2008-05-27 Jp Morgan Chase Bank System and method for multi-platform queue queries
US7366722B2 (en) * 2003-05-15 2008-04-29 Jp Morgan Chase Bank System and method for specifying application services and distributing them across multiple processors using XML
US7509641B2 (en) * 2003-05-16 2009-03-24 Jp Morgan Chase Bank Job processing framework
US7155810B2 (en) * 2003-09-30 2007-01-02 Hitachi Global Storage Technologies Netherlands, B.V. Method for fabricating a magnetic head
US20050096965A1 (en) * 2003-10-29 2005-05-05 Cheng-Hwa Liu Method and apparatus of dynamic customer demand forecasting
US20050144174A1 (en) * 2003-12-31 2005-06-30 Leonid Pesenson Framework for providing remote processing of a graphical user interface
US20050222990A1 (en) * 2004-04-06 2005-10-06 Milne Kenneth T Methods and systems for using script files to obtain, format and disseminate database information
US7376830B2 (en) * 2004-04-26 2008-05-20 Jp Morgan Chase Bank System and method for routing messages
US7577245B2 (en) * 2004-07-29 2009-08-18 At&T Intellectual Property I, L.P. Method of detecting misrouted inter-office transport facility routes in a telecommunications system
US7580837B2 (en) 2004-08-12 2009-08-25 At&T Intellectual Property I, L.P. System and method for targeted tuning module of a speech recognition system
US7242751B2 (en) 2004-12-06 2007-07-10 Sbc Knowledge Ventures, L.P. System and method for speech recognition-enabled automatic call routing
US7864942B2 (en) 2004-12-06 2011-01-04 At&T Intellectual Property I, L.P. System and method for routing calls
US7954062B2 (en) * 2005-01-03 2011-05-31 International Business Machines Corporation Application status board mitigation system and method
US7751551B2 (en) 2005-01-10 2010-07-06 At&T Intellectual Property I, L.P. System and method for speech-enabled call routing
US8965949B2 (en) * 2005-04-29 2015-02-24 Xerox Corporation System and method for applying computational knowledge to device data
US7657020B2 (en) 2005-06-03 2010-02-02 At&T Intellectual Property I, Lp Call routing system and method of using the same
US7610172B2 (en) * 2006-06-16 2009-10-27 Jpmorgan Chase Bank, N.A. Method and system for monitoring non-occurring events
US10922623B2 (en) * 2017-04-18 2021-02-16 At&T Intellectual Property I, L.P. Capacity planning, management, and engineering automation platform

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210704A (en) * 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
US5678042A (en) * 1993-11-15 1997-10-14 Seagate Technology, Inc. Network management system having historical virtual catalog snapshots for overview of historical changes to files distributively stored across network domain
US5687290A (en) * 1993-09-20 1997-11-11 Cabletron Systems, Inc. Method and apparatus for monitoring and controlling communications networks
US5720826A (en) * 1995-05-30 1998-02-24 Canon Kabushiki Kaisha Photovoltaic element and fabrication process thereof
US5761432A (en) * 1996-07-15 1998-06-02 At&T Corp Method and apparatus for providing an efficient use of telecommunication network resources
US5799317A (en) * 1995-11-08 1998-08-25 Mci Communications Corporation Data management system for a telecommunications signaling system 7(SS#7)
US5999179A (en) * 1997-11-17 1999-12-07 Fujitsu Limited Platform independent computer network management client
US6025039A (en) * 1995-09-28 2000-02-15 Canon Kabushiki Kaisha Method for producing a photovoltaic cell
US6225999B1 (en) * 1996-12-31 2001-05-01 Cisco Technology, Inc. Customizable user interface for network navigation and management
US6350489B1 (en) * 1995-12-22 2002-02-26 Canon Kabushiki Kaisha Deposited-film forming process and deposited-film forming apparatus
US6668241B2 (en) * 2000-10-13 2003-12-23 Sbc Technology Resources, Inc. Rule based capacity management system for an inter office facility
US6892317B1 (en) * 1999-12-16 2005-05-10 Xerox Corporation Systems and methods for failure prediction, diagnosis and remediation using data acquisition and feedback for a distributed electronic system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210704A (en) * 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
US5687290A (en) * 1993-09-20 1997-11-11 Cabletron Systems, Inc. Method and apparatus for monitoring and controlling communications networks
US5678042A (en) * 1993-11-15 1997-10-14 Seagate Technology, Inc. Network management system having historical virtual catalog snapshots for overview of historical changes to files distributively stored across network domain
US5720826A (en) * 1995-05-30 1998-02-24 Canon Kabushiki Kaisha Photovoltaic element and fabrication process thereof
US6025039A (en) * 1995-09-28 2000-02-15 Canon Kabushiki Kaisha Method for producing a photovoltaic cell
US5799317A (en) * 1995-11-08 1998-08-25 Mci Communications Corporation Data management system for a telecommunications signaling system 7(SS#7)
US6350489B1 (en) * 1995-12-22 2002-02-26 Canon Kabushiki Kaisha Deposited-film forming process and deposited-film forming apparatus
US5761432A (en) * 1996-07-15 1998-06-02 At&T Corp Method and apparatus for providing an efficient use of telecommunication network resources
US6225999B1 (en) * 1996-12-31 2001-05-01 Cisco Technology, Inc. Customizable user interface for network navigation and management
US5999179A (en) * 1997-11-17 1999-12-07 Fujitsu Limited Platform independent computer network management client
US6892317B1 (en) * 1999-12-16 2005-05-10 Xerox Corporation Systems and methods for failure prediction, diagnosis and remediation using data acquisition and feedback for a distributed electronic system
US6668241B2 (en) * 2000-10-13 2003-12-23 Sbc Technology Resources, Inc. Rule based capacity management system for an inter office facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104778551A (en) * 2015-04-15 2015-07-15 国网湖南省电力公司 Designing and analyzing method of visualization grid

Also Published As

Publication number Publication date
US20030033121A1 (en) 2003-02-13
US6668241B2 (en) 2003-12-23
US6434514B1 (en) 2002-08-13

Similar Documents

Publication Publication Date Title
US6668241B2 (en) Rule based capacity management system for an inter office facility
US10999140B2 (en) Mitigation of likelihood and impact of a server-reconfiguration failure
US7428300B1 (en) Diagnosing fault patterns in telecommunication networks
US7475364B2 (en) Interactive topology graphs for visualization and characterization of SONET consumption patterns
US5734697A (en) Method and apparatus for improving telecommunications system performance
US8694634B2 (en) System and method for performing capacity planning for enterprise applications
US8321247B2 (en) Business level metric for information technology
US8041797B2 (en) Apparatus and method for allocating resources based on service level agreement predictions and associated costs
US6125105A (en) Method and apparatus for forecasting future values of a time series
US6751664B1 (en) Method for monitoring and meeting customer bandwidth demand in operational IP data networks
CA2142501A1 (en) System and method for scheduling resource requests
US6836756B1 (en) Time simulation techniques to determine network availability
US20030208523A1 (en) System and method for static and dynamic load analyses of communication network
US7926707B2 (en) Maintenance support for high priority customers
US20030037145A1 (en) Apparatus and method of allocating communications resources
US20050222806A1 (en) Detection of outliers in communication networks
CN111190794A (en) Operation and maintenance monitoring and management system
US7725434B2 (en) Methods, systems, and computer program products for automatic creation of data tables and elements
US20070168460A1 (en) Service evaluation method, system, and computer program product
CN114595970A (en) Resource scheduling intelligent decision method and device, electronic equipment and storage medium
Shogan A single server queue with arrival rate dependent on server breakdowns
CN116974805A (en) Root cause determination method, apparatus and storage medium
US7346473B2 (en) Method and system for providing performance analysis using fuzzy logic
US8203967B2 (en) Methods, systems, and computer program products for implementing a standardized interpretive engine
US7447161B2 (en) System and method for enhanced SONET network analysis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION