US20040094058A1 - Rapid prototyping material systems - Google Patents

Rapid prototyping material systems Download PDF

Info

Publication number
US20040094058A1
US20040094058A1 US10/295,132 US29513202A US2004094058A1 US 20040094058 A1 US20040094058 A1 US 20040094058A1 US 29513202 A US29513202 A US 29513202A US 2004094058 A1 US2004094058 A1 US 2004094058A1
Authority
US
United States
Prior art keywords
component
acidic
acid
basic
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/295,132
Other versions
US6742456B1 (en
Inventor
Vladek Kasperchik
Terry Lambright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/295,132 priority Critical patent/US6742456B1/en
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Assigned to HEWLETT-PACKARD COMPANY reassignment HEWLETT-PACKARD COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KASPERCHIK, VLADIK, LAMBRIGHT, TERRY M.
Priority to TW092114823A priority patent/TW200407274A/en
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEWLETT-PACKARD COMPANY
Priority to CNB2003801033765A priority patent/CN100379707C/en
Priority to PCT/US2003/035760 priority patent/WO2004043681A2/en
Priority to AU2003290692A priority patent/AU2003290692A1/en
Priority to JP2004551981A priority patent/JP4776232B2/en
Priority to KR1020057008470A priority patent/KR101018913B1/en
Priority to EP03783274.8A priority patent/EP1562876B1/en
Publication of US20040094058A1 publication Critical patent/US20040094058A1/en
Publication of US6742456B1 publication Critical patent/US6742456B1/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/72Processes of molding by spraying

Definitions

  • the present invention relates to the field of rapid prototyping.
  • the present invention relates to a material system for use in rapid prototyping.
  • Rapid prototyping is fast becoming a popular process for manufacturing three-dimensional objects including prototype parts and working tools such as structural ceramics and ceramic shell molds.
  • Such a printing process offers the advantages of speedy fabrication and low materials cost. It is considered one of the fastest rapid prototyping methods, and can be performed using a variety of colors as well.
  • the poor mechanical properties in the resulting product lead to the fact that the base or “green” object, which is fabricated by printing layers in a powder bed, must be subjected to labor intensive post-processing.
  • This post-processing often involves reinforcing the printed object by soaking it in binding or strengthening agents such as cyanoacrylate glue, etc. which penetrate the surface and fill the interconnected pores within the bulk.
  • binding or strengthening agents such as cyanoacrylate glue, etc. which penetrate the surface and fill the interconnected pores within the bulk.
  • Gypsum based powders and water swellable polymers currently available have long swelling times, which can be thirty minutes or more.
  • Another disadvantage of this and similar processes is that the resulting products can have a poor resolution, represented by a grainy texture of the product.
  • post-processing drying of the resulting article improves the mechanical properties slightly, the improvements are minimal and the drying process is very slow.
  • Other post-processing measures include reinforcing with polymerizable glues such as cyanoacrylate, or surface finishing, but these measures are costly and labor intensive as well.
  • the mechanical properties and surface finish depend on the properties of the system of materials in concert with their ability to intermix uniformly and react sufficiently.
  • the present invention provides a rapid prototyping system that preferably includes a basic component selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses; an acidic component; and an aqueous binder capable of stimulating a crosslinking reaction between the basic component and the acidic component to form a three-dimensional printed object.
  • the present invention provides a system for rapid prototyping, the compositions included in the system, and a rapid prototyping method incorporating the system.
  • the system for rapid prototyping is preferably leveraged from so-called acid-base cements.
  • the components included in the system preferably include a base such as a metal oxide or an aluminosilicate glass, a polymeric acid or other acid, and an aqueous binder.
  • the basic powder interacts with the acid in the presence of water, causing the formation of an ionically crosslinked hydrogel salt. Formation of the crosslinked hydrogel causes setting of the mixture.
  • both reactive components i.e., the acid component and the basic component
  • a dry powder mixture can contain only the basic component.
  • An aqueous or polar solvent binder solution that includes the acid component is then jetted onto the powder bed during the printing process.
  • a dry powder can contain the basic component as well as some of the acid component as a mixture.
  • An aqueous or polar solvent binder solution is then used that includes some of the acid component dissolved therein, so that both the powder mixture and the aqueous binder include some of the reactive acid component.
  • the aqueous or polar solvent binder solution and acid component mixture is then jetted onto the powder bed containing the mixture of the acid and basic components.
  • the printing process is similar to the conventional mechanics associated with rapid prototyping that uses a printing process. Multiple planar layers are printed and adjoined together to form a three-dimensional object. Printing is performed layer-by-layer, with each layer representing a cross section of a portion of the final desired product. The powder material forms each individual layer, and is evenly distributed and compressed by compression means such as a roller.
  • the printer used in the rapid prototyping method is an ink jet printer, a printer head deposits the binder onto the powder in a two-dimensional pattern, and the powder is bonded in the areas where the adhesive is deposited, thereby forming a printed layer of the final object to be produced.
  • Predetermined portions of the adjacent printed layers are adhered one to another by the use of an aqueous binder, resulting in the joining of the individual cross sections of the final product.
  • the binder is applied simultaneously with the printing of each individual layer.
  • the “un-printed” regions where no adhesive has been applied are then separated from the printed regions where adhesive binder has been applied, leaving a three-dimensional printed base or “green” product.
  • the acid component of the rapid prototyping system is water/solvent soluble, and is acidic relative to water/solvent. Consequently, contact of the acidic component with the aqueous or polar solvent binder solution causes protons to dissociate from the acidic component. The free protons are immediately attracted to the basic component of the rapid prototyping system, and the basic component releases multivalent cations (Me +z ) as they are replaced by the protons.
  • a representative (and the most simplified) example of this chemical process involves glass-ionomer chemistry, where the acid component in the rapid prototyping system is a polyacid such as polyacrylic acid.
  • the basic component in this example is aluminosilicate glass, for example.
  • the protons from the polyacrylic acid release upon the dissolving of the polyacrylic acid in the aqueous binder, and the protons attack the glass, which releases multivalent cations.
  • the cations then crosslink the polyacid through formation of ionic bonds, and the bonding causes the polyacid components to compress and solidify until the cement is completely solidified and extremely hard.
  • the basic component can be a metal oxide, and can also be an aluminosilicate glass.
  • the aqueous binder must be capable of stimulating a crosslinking reaction between the basic component and the acidic component to form a three-dimensional printed object.
  • the acidic component can be one or more acidic components such as an organic polyacid, a monomer acid, an oligomer acida monomer having anions capable of forming hydrogel (or solvent-gel) salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
  • an organic polyacid such as an organic polyacid, a monomer acid, an oligomer acida monomer having anions capable of forming hydrogel (or solvent-gel) salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
  • Examples of acid-base combinations that form a cement system for rapid prototyping include the following.
  • Metal oxide i.e., oxides of Be, Zn, Cu, Mg, Ca, Sr, Ba, or other metal oxides.
  • metal cations crosslink phosphate anions resulting in the formation of a hydrogel matrix.
  • a mixture of reactive aluminosilicate glasses i.e., xCaO*yAl 2 O 3 * zSiO 2 *nCaF2, and i.e. sometimes containing fluorine
  • setting of the cement involves the formation of a hydrogel matrix of silica gel and ionically crosslinked phosphate ions.
  • the average particle size for the glass is preferably approximately 30-50 ⁇ m or less, as glass particles with a smaller diameter can be difficult to spread.
  • Oxysalt-bonded cements These are formed by acid-base reactions of metal oxide powder such as ZnO or MgO, although the metal oxide powder is not limited to these oxides, and a concentrated solution of metal chloride or sulfate where the metal is, for example, Zn or Mg.
  • the basic component of the system is reactive aluminosilicate glass (i.e., xCaO*yAl 2 O 3 *zSiO 2 , and frequently containing fluorine, i.e., in the form of CaF 2
  • the acidic component of the system is organic polyacid containing functional groups such as —COOH, —SO 3 H, and —PO 3 H 2 .
  • the glass ionomer mixture may also contain small amounts of low molecular weight complexing agent such as L- or D-tartaric acid for adjusting the kinetics of the cement setting process.
  • the glass-ionomer cements should be pretreated to make the surface of the polyacid powder less hydrophilic and therefore les susceptible to clumping due to moisture absorption.
  • a preferable pretreatment includes the addition of some anti-caking hydrophobic agent to the dry cement mix.
  • the agent could include some stearate salts (Mg, Ca, Zn) or lecithin at a concentration of between 0.01 and 13.0 wt %.
  • the above types of cements provide superior compressive strength and significantly better mechanical properties relative to common systems typically used in rapid prototyping systems. Using these cements, there is no need for any reinforcing post-treatment.
  • the cements have a very short setting/curing time. No drying is necessary because water in the aqueous binder is consumed and becomes part of the solid phase during the acid-base setting reaction, which generally proceeds to completion much faster than drying of the green object composed of the materials currently present on the market. Further, the material produced by the cement has a continuous texture.
  • the cements of the present invention cure by means of ionic reactions like neutralization, salt formation, chelation, crystallization, or ionic and covalent cross-linking, specifically in the presence of water, or other polar solvent.
  • the components included in the system preferably include a base such as a metal oxide or an aluminosilicate glass, an acidic component, and an aqueous binder.
  • the acidic component is usually a polymeric acid (polycarboxylic, polysulfonic, polyphosphonic acids) or other acid (phosphoric acid, derivatives of salicylic acid), or a hydrolysable metal salt.
  • the binder is not limited to an aqueous one. Any polar solvent capable of interacting acid and base components may be effective, so long as it can dissolve or solubilize the components and promote the cross-linking reaction.
  • acid or polymeric acid component of the acid-base cement could be partially or fully substituted with unsaturated polymerizable acidic moieties of a monomeric or oligomeric nature, as well as their salts or other acid derivative groups.
  • unsaturated polymerizable acidic moieties of a monomeric or oligomeric nature as well as their salts or other acid derivative groups.
  • a cross-linked hydrogel formed after the acid-base interaction of the cement components could be further fortified by polymerization and, hence, covalent cross-linking of the unsaturated moieties.
  • polymerizable unsaturated monomers, oligomers or prepolymers with acid groups or reactive acid-derivative groups may include:
  • the reactive acid derivatives can be substituted with acid halides, with acid anhydrides, and with acid amides, nitriles, and esters, that readily hydrolyze into acid in the presence of water or other polar solvent, as such can enter into ion-exchange, neutralization, salt formation, or chelation reactions with the base component of the acid-base cement, i.e. metal oxides, ceramics, zeolites or leachable reactive glasses.
  • the polymerizable unsaturated monomers, oligomers, or prepolymers in the polymerizable cement mixtures in accordance with the invention can carry alkenyl, alkenoxy, cycloalkenyl, aralkenyl, or alkenaryl radicals, with acryl, methacryl, vinyl, or styryl radicals being preferable and, of these, the acryl and methacryl radicals which constitute the polymerizable groups in many monomers are especially preferable.
  • compounds that contain at least two polymerizable groups or at least two acid groups or acid-derivative groups are phosphoric-acid esters of glycerine dimethacrylate or 1-methacryloxyethane-1,1-diphosphonic acid.
  • the presence of polymerizable unsaturated acidic moieties in the acid-base cement systems is highly desirable, as well as the presence of a polymerization initiator in the mixture.
  • the role of the initiator is to enable triggering of polymerization of the unsaturated species after the initial setting caused by the interaction of the acid and base components of the cement.
  • the covalent polymerization of the unsaturated component of the cement could be initiated either by photoirradiation (light) or heat.
  • An example of the initiator used for the light-triggered polymerization is mixture of a-diketones and tertiary amines.
  • Typical initiators used for the heat-triggered polymerization include but are not limited to organic or inorganic peroxides such as benzoyl peroxide or ammonium persulfate.
  • the major purpose for the aqueous or polar solvent-based binder is to deliver and/or enable interaction of the acidic component of the cement with the basic component.
  • the liquid binder may also contain:
  • complexing agent i.e. tartaric acid or EDTA, to control the setting behavior and rate of the acid-base reactive system.
  • the initial acid-base interaction of the components is still used to print and produce the so-called “green object.”
  • the mechanical properties, the ease of handling, and the resistance to environmental factors (moisture and/or humidity) of the “green object” is significantly enhanced by the post-treatment involving curing material of the object through exposure to light or heat.
  • Polymerization of the unsaturated moieties in the “green object” results in covalent cross-linking and further fortification of the hydrogel salt matrix formed by the initial acid-base interaction.
  • covalent cross-linking of the unsaturated polymerizable moieties could be initiated immediately after the delivery of the aqueous or polar solvent-based binder into the powder.
  • covalent cross-linking happens in parallel with ionic cross-linking cased by acid-base interaction.
  • the mechanical embodiment of this approach implies the presence of a source of light in the visible or UV range, or heat from, for example, IR radiation, above the printed powder surface.
  • the “green object” in this case is cured at the same time as it is printed on the layer by layer basis.
  • An example reaction mixture involving reactive glass-ionomer chemistry in one embodiment of the invention includes between about 60% and about 90% by weight of a reactive aluminosilicate glass.
  • An acidic powder having an average molecular mass of between about 2,000 about 1,000,000 is present at about 5 wt % to about 40 wt %. It is preferred that in this case the acid component is a polyacrylic acid having an average molecular weight that is between about 10,000 and about 150,000. L- or D-tartaric acid is also included.
  • an ink-jettable aqueous binder is present at between about 5 wt % and about 50 wt % of the dry mixture.
  • acid-base cements that have previously been used for dental and surgical applications may be used with the present rapid prototyping system, and include polycarboxylate cements such as zinc oxide and polyacrylic acid-based surgical cements such as those disclosed in U.S. Pat. No. 3,751,391 which is hereby incorporated by reference, and glass-ionomer cements such as those disclosed in U.S. Pat. No. 3,814,717 which is hereby incorporated by reference, and in British Patent No. 1,316,129 which is also hereby incorporated by reference.
  • polycarboxylate cements such as zinc oxide and polyacrylic acid-based surgical cements
  • glass-ionomer cements such as those disclosed in U.S. Pat. No. 3,814,717 which is hereby incorporated by reference
  • British Patent No. 1,316,129 which is also hereby incorporated by reference.
  • the acidic and the basic component are mixed together in a dry powder form prior to the addition of the aqueous binder.
  • the basic component is a metal oxide or a reactive glass as described above, and the acidic component is an organic polyacid or a metal salt.
  • the surface of the powder is printed with ink-jettable aqueous binder, which dissolves the acidic component and causes initiation of the setting reaction. This approach is especially useful when the acidic component is a high molecular weight polyacid.
  • the aqueous binder may be delivered by an inkjet and may contain complexing agent(s) and coloring agent(s) as well.
  • the polyacid dissolves upon contact with the aqueous binder. A viscous liquid phase is formed, binding together partially reacted glass particles.
  • the organic polyacid is preferably of an average molecular weight ranging from about 10,000 to about 150,000, although the range can be expanded to range from about 2,000 to about 1,000,000. Most preferably, the organic polyacid is of a molecular weight that is less than 100,000.
  • the acidic component is stored separately from the powder, in a liquid form.
  • the acidic component is mixed with the aqueous binder. While not so limited, this approach could be typical for cases where the acidic component is of a relatively low average molecular weight.
  • the acid component is dissolved in the liquid binder and consequently is delivered to the basic component-containing powder by an inkjet in the case where inkjet printing is applied.
  • One advantage of this approach is a more efficient reaction as there is no need for the acidic component to dissolve in the aqueous binder during printing.
  • the first two applications are combined, so that while some of the acidic component and all of the basic component are combined together in a dry powder form prior to the addition of the aqueous binder. Further, the aqueous binder is separately mixed with additional amounts of the acidic component prior to printing. Under this approach, it is preferred that the acidic component in the dry powder has a higher average molecular weight than that of the acidic component that is mixed with the aqueous binder. This approach combines the advantages of the first and second approaches.
  • the integrity of the finally produced object is improved because of the initial presence of the acidic polymer in the binder, and the ability for a relatively high average molecular weight acid polymer to mix with the powder.
  • An additional benefit of this approach is improved solubility of the acidic component present in the powder.
  • the acidic component present in the liquid binder helps to solubilize the acidic binder in the powder, and results in better structural uniformity of the printed object.
  • Powder Mixture Composition Components Pts, weight Wt. % L-Tartaric Acid 0.015 1.23% Schott Reactive Glass K1 1 81.30% Poly(acrylic acid) M ⁇ 50,000 spray-dried 0.2 17.46%
  • Liquid Binder Composition (%, wt.): 2-Pyrrolidone 5.2% Tergitol-15-S-7 0.25% Tergitol-15-S-5 0.20% Polyethyleneglycol (M ⁇ 10K) 1.00% Dowfax-8390 0.15% Water balance
  • the colorless binder of the above formulation was jetted into the powder (glass-ionomer mixture).
  • the binder/powder mass ratio during the printing was 1.5:10.
  • the initial setting of the cement mixture was happening 2 min after the binder being jetted into the powder mix.
  • the printing produced white object.
  • the object had enough mechanical strength to be handled and cleaned from the non-reacted powder immediately after the printing was finished.
  • Powder Mixture Composition Components Pts, weight Wt. % L-Tartaric Acid 0.015 1.23 Experimental Reactive Glass LG163* 1 85.27 Poly(acrylic acid) M ⁇ 50,000 spray-dried 0.2 13.50
  • Liquid Binders Composition (% wt.):
  • the binders of the above formulation were jetted into the powder (glass-ionomer mixture).
  • the binder/powder mass ratio during the printing was 1.7:10.
  • the initial setting of the cement mixture was happening 4 min after the binder being jetted into the powder mix.
  • the printing produced a colored object.
  • the object had enough mechanical strength to be handled and cleaned from the non-reacted powder 5 min after the printing was finished.

Abstract

A rapid prototyping system preferably includes a basic component selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses; an acidic component (polymeric, oligomeric or polymerizable low molecular weight acid or hydrolyzable acidic metal salt); and an aqueous binder capable of stimulating a crosslinking reaction between the basic component and the acidic component to form a three-dimensional printed object.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of rapid prototyping. [0001]
  • More specifically, the present invention relates to a material system for use in rapid prototyping. [0002]
  • BACKGROUND OF THE INVENTION
  • Rapid prototyping is fast becoming a popular process for manufacturing three-dimensional objects including prototype parts and working tools such as structural ceramics and ceramic shell molds. [0003]
  • One form of rapid prototyping involves a process of sequentially forming layers. [0004]
  • In this process, a powdery material is used to form each individual layer of the desired product. [0005]
  • Such a printing process offers the advantages of speedy fabrication and low materials cost. It is considered one of the fastest rapid prototyping methods, and can be performed using a variety of colors as well. [0006]
  • However, there are several disadvantages in conventional powder based rapid prototyping processes including the fragility of the resulting product. Poor mechanical properties in the final product are characterized by a low modulus of elasticity and low fracture strength. Weakness in compression and tensile failures at low stress may be due to low density, poor adhesion between powder particles, low density of particles, and the presence of voids. In both the intralayer and interlayer levels, the powder particles are only loosely glued together. More particularly, powders that are presently being used in the market are based on gypsum and/or water swellable polymers such as starches, PVA, etc. Interaction of these powders with an aqueous binder results in poor mechanical strength as well as high porosity of the green object. Also, parts made by powder based rapid prototyping as well as jetted, direct build-up type rapid prototyping suffer from poor strength. The latter is due to the fact that only lower molecular weight polymers (namely their solutions) can be jetted since high molecular weight polymers have viscosities that are too high. [0007]
  • Further, the poor mechanical properties in the resulting product lead to the fact that the base or “green” object, which is fabricated by printing layers in a powder bed, must be subjected to labor intensive post-processing. This post-processing often involves reinforcing the printed object by soaking it in binding or strengthening agents such as cyanoacrylate glue, etc. which penetrate the surface and fill the interconnected pores within the bulk. Gypsum based powders and water swellable polymers currently available have long swelling times, which can be thirty minutes or more. Another disadvantage of this and similar processes is that the resulting products can have a poor resolution, represented by a grainy texture of the product. [0008]
  • While post-processing drying of the resulting article improves the mechanical properties slightly, the improvements are minimal and the drying process is very slow. Other post-processing measures include reinforcing with polymerizable glues such as cyanoacrylate, or surface finishing, but these measures are costly and labor intensive as well. Ultimately the mechanical properties and surface finish depend on the properties of the system of materials in concert with their ability to intermix uniformly and react sufficiently. [0009]
  • SUMMARY OF THE INVENTION
  • In one of many possible embodiments, the present invention provides a rapid prototyping system that preferably includes a basic component selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses; an acidic component; and an aqueous binder capable of stimulating a crosslinking reaction between the basic component and the acidic component to form a three-dimensional printed object. [0010]
  • Additional advantages and novel features of the invention will be set forth in the description which follows or may be learned by those skilled in the art through reading these materials or practicing the invention. The advantages of the invention may be achieved through the means recited in the attached claims. [0011]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In a wide variety of embodiments, the present invention provides a system for rapid prototyping, the compositions included in the system, and a rapid prototyping method incorporating the system. The system for rapid prototyping is preferably leveraged from so-called acid-base cements. The components included in the system preferably include a base such as a metal oxide or an aluminosilicate glass, a polymeric acid or other acid, and an aqueous binder. The basic powder interacts with the acid in the presence of water, causing the formation of an ionically crosslinked hydrogel salt. Formation of the crosslinked hydrogel causes setting of the mixture. [0012]
  • There are three general possibilities for implementation of the system and the materials included in rapid prototyping systems according to the present invention. First, both reactive components, i.e., the acid component and the basic component, can be present in a dry powder mixture. The powder is then inkjet printed with an aqueous or polar solvent binder solution that does not contain any of the reactive components that form the cement. Second, a dry powder mixture can contain only the basic component. An aqueous or polar solvent binder solution that includes the acid component is then jetted onto the powder bed during the printing process. Third, a dry powder can contain the basic component as well as some of the acid component as a mixture. An aqueous or polar solvent binder solution is then used that includes some of the acid component dissolved therein, so that both the powder mixture and the aqueous binder include some of the reactive acid component. The aqueous or polar solvent binder solution and acid component mixture is then jetted onto the powder bed containing the mixture of the acid and basic components. [0013]
  • Apart from the chemical aspects of the present invention, the printing process is similar to the conventional mechanics associated with rapid prototyping that uses a printing process. Multiple planar layers are printed and adjoined together to form a three-dimensional object. Printing is performed layer-by-layer, with each layer representing a cross section of a portion of the final desired product. The powder material forms each individual layer, and is evenly distributed and compressed by compression means such as a roller. When the printer used in the rapid prototyping method is an ink jet printer, a printer head deposits the binder onto the powder in a two-dimensional pattern, and the powder is bonded in the areas where the adhesive is deposited, thereby forming a printed layer of the final object to be produced. Predetermined portions of the adjacent printed layers are adhered one to another by the use of an aqueous binder, resulting in the joining of the individual cross sections of the final product. The binder is applied simultaneously with the printing of each individual layer. The “un-printed” regions where no adhesive has been applied are then separated from the printed regions where adhesive binder has been applied, leaving a three-dimensional printed base or “green” product. [0014]
  • Next, the chemical aspects of the present invention will be described. The acid component of the rapid prototyping system is water/solvent soluble, and is acidic relative to water/solvent. Consequently, contact of the acidic component with the aqueous or polar solvent binder solution causes protons to dissociate from the acidic component. The free protons are immediately attracted to the basic component of the rapid prototyping system, and the basic component releases multivalent cations (Me[0015] +z) as they are replaced by the protons.
  • The released cations from the basic component of the rapid prototyping system mediate the crosslinking of the compounds that make up the acid component. Ionic crosslinking of the acidic compounds reduces the mobility of the acid component. Eventually the crosslinking process results in solidification of the acid in the solution because of formation salt hydro (or solvent) gel, followed by setting and further hardening of the cement product. [0016]
  • A representative (and the most simplified) example of this chemical process involves glass-ionomer chemistry, where the acid component in the rapid prototyping system is a polyacid such as polyacrylic acid. The basic component in this example is aluminosilicate glass, for example. The protons from the polyacrylic acid release upon the dissolving of the polyacrylic acid in the aqueous binder, and the protons attack the glass, which releases multivalent cations. The cations then crosslink the polyacid through formation of ionic bonds, and the bonding causes the polyacid components to compress and solidify until the cement is completely solidified and extremely hard. [0017]
  • There are three basic chemical components of the rapid prototyping system, namely, an active acidic component, an active basic component, and an aqueous binder. The basic component can be a metal oxide, and can also be an aluminosilicate glass. The aqueous binder must be capable of stimulating a crosslinking reaction between the basic component and the acidic component to form a three-dimensional printed object. The acidic component can be one or more acidic components such as an organic polyacid, a monomer acid, an oligomer acida monomer having anions capable of forming hydrogel (or solvent-gel) salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide. [0018]
  • Examples of acid-base combinations that form a cement system for rapid prototyping include the following. [0019]
  • a. Zinc oxide—polycarboxylic acid cements. [0020]
  • b. Metal oxide (i.e., oxides of Be, Zn, Cu, Mg, Ca, Sr, Ba, or other metal oxides.)—orthophosphoric or poly (phosphoric acid) cements. In this case, metal cations crosslink phosphate anions resulting in the formation of a hydrogel matrix. [0021]
  • c. A mixture of reactive aluminosilicate glasses (i.e., xCaO*yAl[0022] 2O3* zSiO2*nCaF2, and i.e. sometimes containing fluorine) with orthophosphoric or poly (phosphoric acid). In this case, setting of the cement involves the formation of a hydrogel matrix of silica gel and ionically crosslinked phosphate ions. The average particle size for the glass is preferably approximately 30-50 μm or less, as glass particles with a smaller diameter can be difficult to spread.
  • d. Oxysalt-bonded cements. These are formed by acid-base reactions of metal oxide powder such as ZnO or MgO, although the metal oxide powder is not limited to these oxides, and a concentrated solution of metal chloride or sulfate where the metal is, for example, Zn or Mg. [0023]
  • e. Glass-ionomer cements. In this case, the basic component of the system is reactive aluminosilicate glass (i.e., xCaO*yAl[0024] 2O3*zSiO2, and frequently containing fluorine, i.e., in the form of CaF2, and the acidic component of the system is organic polyacid containing functional groups such as —COOH, —SO3H, and —PO3H2. The glass ionomer mixture may also contain small amounts of low molecular weight complexing agent such as L- or D-tartaric acid for adjusting the kinetics of the cement setting process. In some cases, the glass-ionomer cements should be pretreated to make the surface of the polyacid powder less hydrophilic and therefore les susceptible to clumping due to moisture absorption. A preferable pretreatment includes the addition of some anti-caking hydrophobic agent to the dry cement mix. The agent could include some stearate salts (Mg, Ca, Zn) or lecithin at a concentration of between 0.01 and 13.0 wt %.
  • The above types of cements provide superior compressive strength and significantly better mechanical properties relative to common systems typically used in rapid prototyping systems. Using these cements, there is no need for any reinforcing post-treatment. The cements have a very short setting/curing time. No drying is necessary because water in the aqueous binder is consumed and becomes part of the solid phase during the acid-base setting reaction, which generally proceeds to completion much faster than drying of the green object composed of the materials currently present on the market. Further, the material produced by the cement has a continuous texture. [0025]
  • The cements of the present invention cure by means of ionic reactions like neutralization, salt formation, chelation, crystallization, or ionic and covalent cross-linking, specifically in the presence of water, or other polar solvent. As discussed above, the components included in the system preferably include a base such as a metal oxide or an aluminosilicate glass, an acidic component, and an aqueous binder. The acidic component is usually a polymeric acid (polycarboxylic, polysulfonic, polyphosphonic acids) or other acid (phosphoric acid, derivatives of salicylic acid), or a hydrolysable metal salt. The binder is not limited to an aqueous one. Any polar solvent capable of interacting acid and base components may be effective, so long as it can dissolve or solubilize the components and promote the cross-linking reaction. [0026]
  • In one of the embodiments of current invention, acid or polymeric acid component of the acid-base cement could be partially or fully substituted with unsaturated polymerizable acidic moieties of a monomeric or oligomeric nature, as well as their salts or other acid derivative groups. In such a case, a cross-linked hydrogel formed after the acid-base interaction of the cement components could be further fortified by polymerization and, hence, covalent cross-linking of the unsaturated moieties. Examples of polymerizable unsaturated monomers, oligomers or prepolymers with acid groups or reactive acid-derivative groups may include: [0027]
  • unsaturated organic esters of phosphoric and phosphonic acids (German AS No. 2 711 234 & German OS No. 3 150 285), [0028]
  • unsaturated organic esters of monofluorophosphoric acid (U.S. Pat. No. 3,997,504), [0029]
  • unsaturated organic esters of phosphoric acids that contain either chlorine or bromine bonded directly to the phosphorus (Eur. Pat. No. 0 058 483), [0030]
  • unsaturated organic esters of phosphoric acid in the form of pyrophosphates (anhydrides) (German OS No. 3 048 410), [0031]
  • unsaturated carboxylic acids, [0032]
  • unsaturated sulfur-containing organic acid moieties with groups of —SO[0033] 2H, —SO3H, —O—SO3H type,
  • unsaturated organic derivatives of boric acid i.e. the ones containing groups: —B(OH)[0034] 2, B(OH)(OR), —O—B(OH)2, —O—B(OH)(OR) wherein R is H or alkyl,
  • unsaturated organic moieties containing cationic acid radicals like NR[0035] 2H+, —RR2H+ (wherein R is H or alkyl), and/or
  • unsaturated organic moieties containing different combinations of the acidic species listed in the a)-h). [0036]
  • The reactive acid derivatives can be substituted with acid halides, with acid anhydrides, and with acid amides, nitriles, and esters, that readily hydrolyze into acid in the presence of water or other polar solvent, as such can enter into ion-exchange, neutralization, salt formation, or chelation reactions with the base component of the acid-base cement, i.e. metal oxides, ceramics, zeolites or leachable reactive glasses. Especially preferred are acid groups or reactive acid derivatives in the form of carboxylate, phosphate, phosphonate, sulfonate, or borate acid radicals or of their reactive derivatives. [0037]
  • The polymerizable unsaturated monomers, oligomers, or prepolymers in the polymerizable cement mixtures in accordance with the invention can carry alkenyl, alkenoxy, cycloalkenyl, aralkenyl, or alkenaryl radicals, with acryl, methacryl, vinyl, or styryl radicals being preferable and, of these, the acryl and methacryl radicals which constitute the polymerizable groups in many monomers are especially preferable. Especially appropriate are compounds that contain at least two polymerizable groups or at least two acid groups or acid-derivative groups. Examples are phosphoric-acid esters of glycerine dimethacrylate or 1-methacryloxyethane-1,1-diphosphonic acid. [0038]
  • The presence of polymerizable unsaturated acidic moieties in the acid-base cement systems is highly desirable, as well as the presence of a polymerization initiator in the mixture. The role of the initiator is to enable triggering of polymerization of the unsaturated species after the initial setting caused by the interaction of the acid and base components of the cement. The covalent polymerization of the unsaturated component of the cement could be initiated either by photoirradiation (light) or heat. An example of the initiator used for the light-triggered polymerization is mixture of a-diketones and tertiary amines. Typical initiators used for the heat-triggered polymerization include but are not limited to organic or inorganic peroxides such as benzoyl peroxide or ammonium persulfate. [0039]
  • The major purpose for the aqueous or polar solvent-based binder is to deliver and/or enable interaction of the acidic component of the cement with the basic component. Apart from water and/or solvent, the liquid binder may also contain: [0040]
  • a. surfactants/wetting agent to facilitate quick wetting of the powder surface by the binder, [0041]
  • b. colorants such as dyes or pigments to provide color for the printed object, [0042]
  • c. co-solvents to improve dye solubility in the binder, [0043]
  • d. soluble polymers to modify rheological behavior and improve jettability of the binder, [0044]
  • e. complexing agent, i.e. tartaric acid or EDTA, to control the setting behavior and rate of the acid-base reactive system. [0045]
  • In the case where the acidic part of the system contains covalently polymerizable acidic moieties, the initial acid-base interaction of the components is still used to print and produce the so-called “green object.” After the initial printing, the mechanical properties, the ease of handling, and the resistance to environmental factors (moisture and/or humidity) of the “green object” is significantly enhanced by the post-treatment involving curing material of the object through exposure to light or heat. Polymerization of the unsaturated moieties in the “green object” results in covalent cross-linking and further fortification of the hydrogel salt matrix formed by the initial acid-base interaction. [0046]
  • In another embodiment of the current invention, covalent cross-linking of the unsaturated polymerizable moieties could be initiated immediately after the delivery of the aqueous or polar solvent-based binder into the powder. In this case covalent cross-linking happens in parallel with ionic cross-linking cased by acid-base interaction. The mechanical embodiment of this approach implies the presence of a source of light in the visible or UV range, or heat from, for example, IR radiation, above the printed powder surface. The “green object” in this case is cured at the same time as it is printed on the layer by layer basis. [0047]
  • An example reaction mixture involving reactive glass-ionomer chemistry in one embodiment of the invention includes between about 60% and about 90% by weight of a reactive aluminosilicate glass. An acidic powder having an average molecular mass of between about 2,000 about 1,000,000 is present at about 5 wt % to about 40 wt %. It is preferred that in this case the acid component is a polyacrylic acid having an average molecular weight that is between about 10,000 and about 150,000. L- or D-tartaric acid is also included. Finally, an ink-jettable aqueous binder is present at between about 5 wt % and about 50 wt % of the dry mixture. [0048]
  • There are other cement systems that can be used in accordance with the principles of the present invention. For example, acid-base cements that have previously been used for dental and surgical applications may be used with the present rapid prototyping system, and include polycarboxylate cements such as zinc oxide and polyacrylic acid-based surgical cements such as those disclosed in U.S. Pat. No. 3,751,391 which is hereby incorporated by reference, and glass-ionomer cements such as those disclosed in U.S. Pat. No. 3,814,717 which is hereby incorporated by reference, and in British Patent No. 1,316,129 which is also hereby incorporated by reference. [0049]
  • Several applications can be created and modified using the above-described materials in the present rapid prototyping system. According to a first application, the acidic and the basic component are mixed together in a dry powder form prior to the addition of the aqueous binder. Preferably in this application, the basic component is a metal oxide or a reactive glass as described above, and the acidic component is an organic polyacid or a metal salt. The surface of the powder is printed with ink-jettable aqueous binder, which dissolves the acidic component and causes initiation of the setting reaction. This approach is especially useful when the acidic component is a high molecular weight polyacid. [0050]
  • According to this first application and other applications, the aqueous binder may be delivered by an inkjet and may contain complexing agent(s) and coloring agent(s) as well. In the case where the chemistry involves a glass-ionomer system, the polyacid dissolves upon contact with the aqueous binder. A viscous liquid phase is formed, binding together partially reacted glass particles. When the polyacid is a high molecular weight compound the mechanical properties of the final product are significantly improved. The organic polyacid is preferably of an average molecular weight ranging from about 10,000 to about 150,000, although the range can be expanded to range from about 2,000 to about 1,000,000. Most preferably, the organic polyacid is of a molecular weight that is less than 100,000. [0051]
  • According to a second application of the present rapid prototyping system, the acidic component is stored separately from the powder, in a liquid form. Preferably, the acidic component is mixed with the aqueous binder. While not so limited, this approach could be typical for cases where the acidic component is of a relatively low average molecular weight. In any respect, the acid component is dissolved in the liquid binder and consequently is delivered to the basic component-containing powder by an inkjet in the case where inkjet printing is applied. One advantage of this approach is a more efficient reaction as there is no need for the acidic component to dissolve in the aqueous binder during printing. [0052]
  • According to a third application of the printing system of the present invention, the first two applications are combined, so that while some of the acidic component and all of the basic component are combined together in a dry powder form prior to the addition of the aqueous binder. Further, the aqueous binder is separately mixed with additional amounts of the acidic component prior to printing. Under this approach, it is preferred that the acidic component in the dry powder has a higher average molecular weight than that of the acidic component that is mixed with the aqueous binder. This approach combines the advantages of the first and second approaches. Further, the integrity of the finally produced object is improved because of the initial presence of the acidic polymer in the binder, and the ability for a relatively high average molecular weight acid polymer to mix with the powder. An additional benefit of this approach is improved solubility of the acidic component present in the powder. The acidic component present in the liquid binder helps to solubilize the acidic binder in the powder, and results in better structural uniformity of the printed object. [0053]
  • EXAMPLE #1
  • Powder Mixture Composition: [0054]
    Components Pts, weight Wt. %
    L-Tartaric Acid 0.015 1.23%
    Schott Reactive Glass K1 1 81.30%
    Poly(acrylic acid) M ˜50,000 spray-dried 0.2 17.46%
  • Liquid Binder Composition (%, wt.): [0055]
    2-Pyrrolidone 5.2%
    Tergitol-15-S-7 0.25%
    Tergitol-15-S-5 0.20%
    Polyethyleneglycol (M ˜10K) 1.00%
    Dowfax-8390 0.15%
    Water balance
  • The colorless binder of the above formulation was jetted into the powder (glass-ionomer mixture). The binder/powder mass ratio during the printing was 1.5:10. The initial setting of the cement mixture was happening 2 min after the binder being jetted into the powder mix. The printing produced white object. The object had enough mechanical strength to be handled and cleaned from the non-reacted powder immediately after the printing was finished. [0056]
  • EXAMPLE #2
  • Powder Mixture Composition: [0057]
    Components Pts, weight Wt. %
    L-Tartaric Acid 0.015 1.23
    Experimental Reactive Glass LG163* 1 85.27
    Poly(acrylic acid) M ˜50,000 spray-dried 0.2 13.50
  • Liquid Binders Composition (% wt.): [0058]
  • Clear [0059]
    2-Pyrrolidone 5.2%
    Tergitol-15-S-7 0.25%
    Tergitol-15-S-5 0.20%
    Polyethyleneglycol (M ˜10K) 1.00%
    Dowfax-8390 0.15%
    Water balance
  • Yellow [0060]
    2-Pyrrolidone 5.2%
    Tergitol-15-S-7 0.25%
    Tergitol-15-S-5 0.20%
    Polyethyleneglycol (M ˜10K) 1.00%
    Dowfax-8390 0.15%
    Acid Yellow 23 (yellow dye) 0.6%
    Water balance
  • Cyan [0061]
    2-Pyrrolidone 5.2%
    Tergitol-15-S-7 0.25%
    Tergitol-15-S-5 0.20%
    Polyethyleneglycol (M ˜10K) 1.00%
    Dowfax-8390 0.15%
    Direct Blue 199 (cyan dye) 0.6%
    Water balance
  • Magenta [0062]
    2-Pyrrolidone 5.2%
    Tergitol-15-S-7 0.25%
    Tergitol-15-S-5 0.20%
    Polyethyleneglycol (M ˜10K) 1.00%
    Dowfax-8390 0.15%
    Ilford M377 (magenta dye) 0.6%
    Water balance
  • The binders of the above formulation were jetted into the powder (glass-ionomer mixture). The binder/powder mass ratio during the printing was 1.7:10. The initial setting of the cement mixture was happening 4 min after the binder being jetted into the powder mix. The printing produced a colored object. The object had enough mechanical strength to be handled and cleaned from the non-reacted powder 5 min after the printing was finished. [0063]
  • The preceding description has been presented only to illustrate and describe the invention. It is not intended to be exhaustive or to limit the invention to any precise form disclosed. Many modifications and variations are possible in light of the above teaching. [0064]
  • The preferred embodiment was chosen and described in order to best explain the principles of the invention and its practical application. The preceding description is intended to enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims.[0065]

Claims (45)

What is claimed is:
1. A rapid prototyping material system, which comprises:
a basic component selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses;
an acidic component; and
an aqueous binder capable of initiating a crosslinking reaction between said basic component and said acidic component to form a three-dimensional printed object.
2. A rapid prototyping system according to claim 1, wherein said acidic component is one or more acidic components selected from the group consisting of an organic polyacid, a monomer acid, a monomer having anions capable of forming hydrogel salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
3. A rapid prototyping system according to claim 1, wherein said basic component is a metal oxide, and said acidic component is a polycarboxylic acid.
4. A rapid prototyping system according to claim 3, wherein said metal oxide is zinc oxide.
5. A rapid prototyping system according to claim 1, wherein said basic component is a metal oxide, and said acidic component is at least one component selected from the group consisting of orthophosphoric acid and polyphosphoric acid.
6. A rapid prototyping system according to claim 5, wherein cations from said metal in said metal oxide are capable of mediating crosslinking of phosphate anionic species from said orthophosphoric acid and/or said polyphosphoric acid.
7. A rapid prototyping system according to claim 5, wherein said metal in said metal oxide is selected from the group consisting of Be, Zn, Cu, Mg, Ca, Sr and Ba.
8. A rapid prototyping system according to claim 1, wherein said basic component is one or more varieties of said aluminosilicate glass, and said acidic component is at least one component selected from the group consisting of orthophosphoric acid and polyphosphoric acid.
9. A rapid prototyping system according to claim 1, wherein said basic component is a metal oxide, and said acidic component is a metal chloride or sulfate that forms an oxysalt bond with said metal oxide.
10. A rapid prototyping system according to claim 9, wherein each of said basic component and said acidic component includes Zn and/or Mg.
11. A rapid prototyping system according to claim 1, wherein said basic component is one or more varieties of said aluminosilicate glass, and said acidic component is an organic polyacid and contains one or more functional groups selected from the group consisting of —COOH, —SO3H, and —PO3H2.
12. A rapid prototyping system according to claim 11, wherein said basic and acidic components combine to form glass-ionomer cements, and aid system further comprises a complexing agent for adjusting reaction kinetics between said acidic component and said basic component.
13. A rapid prototyping system according to claim 12, wherein said complexing agent is L- or D-tartaric acid.
14. A rapid prototyping system according to claim 1, wherein said acidic and said basic component are mixed together in a dry powder form prior to the addition of said aqueous binder, said acidic component being an organic polyacid of an average molecular weight ranging from about 500 to about 1,000,000.
15. A rapid prototyping system according to claim 14, wherein said organic polyacid is of an average molecular weight ranging from about 2,000 to about 150,000.
16. A rapid prototyping system according to claim 1, wherein said basic component is in a powder form, and said acidic component is stored separately in a liquid form, and mixed with said aqueous binder.
17. A rapid prototyping system according to claim 1, wherein said acidic and said basic component are combined together in a dry powder form prior to the addition of said aqueous binder, and said aqueous binder is separately mixed with additional amounts of said acidic component.
18. A rapid prototyping system according to claim 17, wherein said acidic component in said dry powder has a higher average molecular weight than said acidic component that is mixed with said aqueous binder.
19. A rapid prototyping system according to claim 1, wherein said acidic component further includes unsaturated covalently polymerizable unsaturated acidic moieties of a monomeric or oligomeric nature, and/or salts or other acid derivative groups of said moieties; and said system further includes a polymerization initiator.
20. A composition for rapid prototyping, which comprises:
a basic component and an acidic component mixed together in a dry powder form, wherein said basic component is selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses, and said acidic component is one or more acidic components selected from the group consisting of an organic polyacid, a monomer acid, a monomer having anions capable of forming hydrogel salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
21. A composition according to claim 20, wherein said acid component is an organic polyacid of an average molecular weight ranging from about 2,000 to about 1,000,000.
22. A composition according to claim 21, wherein said organic polyacid is of an average molecular weight ranging from about 10,000 to about 150,000.
23. A composition according to claim 20, wherein said acid component is an organic polyacid having a higher average molecular weight than that of a separate acid component that is mixed with an aqueous binder capable of stimulating a crosslinking reaction between a basic component and said acidic component to form a three-dimensional printed object.
24. A composition according to claim 20, wherein said acidic component further includes unsaturated covalently polymerizable acidic moieties of a monomeric or oligomeric nature, and/or salts or other acid derivative groups of said moieties; and said composition further includes a polymerization initiator.
25. A composition for rapid prototyping, which comprises:
an acidic component mixed with an aqueous binder capable of stimulating a crosslinking reaction between a basic component and said acidic component to form a three-dimensional printed object, the basic component being selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses, and the acid component being one or more acidic components selected from the group consisting of an organic polyacid, a monomer acid, a monomer having anions capable of forming hydrogel salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
26. A composition according to claim 25, wherein said acidic component further includes unsaturated covalently polymerizable acidic moieties of a monomeric or oligomeric nature, and/or salts or other acid derivative groups of said moieties; and said composition further includes a polymerization initiator.
27. A method for printing a three-dimensional object, which comprises:
iteratively infiltrating individual layers of powder including a basic component with an aqueous binder solution capable of stimulating a crosslinking reaction between said basic component and an acidic component, the infiltrated powder layers being formed adjacent to one another to form said three-dimensional printed object,
wherein said basic component is selected from the group consisting of a metal oxide, and one or more aluminosilicate glasses, and said acid component is mixed with said powder and/or said aqueous binder solution.
28. A method according to claim 27, wherein said acid component is selected from the group consisting of an organic polyacid, a monomer acid, a monomer having anions capable of forming hydrogel salts that are cross-linkable with metal ions from said basic metal oxide, and a hydrolyzable metal salt capable of forming an oxysalt polymer matrix with said basic metal oxide.
29. A method according to claim 27, wherein said basic component is a metal oxide, and said acidic component is a polycarboxylic acid.
30. A method according to claim 29, wherein said metal oxide is zinc oxide.
31. A method according to claim 27, wherein said basic component is a metal oxide, and said acidic component is at least one component selected from the group consisting of orthophosphoric acid and polyphosphoric acid.
32. A method according to claim 31, wherein cations from said metal in said metal oxide are capable of crosslinking with phosphate anions from said orthophosphoric acid and/or said polyphosphoric acid.
33. A method according to claim 32, wherein said metal in said metal oxide is selected from the group consisting of Be, Zn, Cu, Mg, Ca, Sr and Ba.
34. A method according to claim 27, wherein said basic component is one or more varieties of said aluminosilicate glass, and said acidic component is at least one component selected from the group consisting of orthophosphoric acid and polyphosphoric acid.
35. A method according to claim 27, wherein said basic component is a metal oxide, and said acidic component is a metal chloride or sulfate that forms an oxysalt bond with said metal oxide.
36. A method according to claim 35, wherein each of said basic component and said acidic component includes Zn and/or Mg.
37. A method according to claim 27, wherein said basic component is one or more varieties of said aluminosilicate glass, and said acidic component is an organic polyacid and contains one or more functional groups selected from the group consisting of —COOH, —SO3H, and —PO3H2.
38. A rapid prototyping system according to claim 37, wherein said basic and acidic components combine to form glass-ionomer cements, and said system further comprises a complexing agent for adjusting reaction kinetics between said acidic component and said basic component.
39. A method according to claim 38, wherein said complexing agent is L- or D-tartaric acid.
40. A method according to claim 27, wherein said acidic component is mixed with said dry powder prior to the addition of said aqueous binder, said acidic component being an organic polyacid of an average molecular weight ranging from about 2,000 to about 1,000,000.
41. A method according to claim 40, wherein said organic polyacid is of an average molecular weight ranging from about 10,000 to about 150,000.
42. A method according to claim 27, wherein said acidic component is entirely separate from said powder, and is mixed with said aqueous binder.
43. A method according to claim 27, wherein said acidic component is mixed with said dry powder prior to the addition of said aqueous binder, and said aqueous binder is separately mixed with additional amounts of said acidic component.
44. A method according to claim 43, wherein said acidic component mixed with said dry powder has a higher average molecular weight than said acidic component that is mixed with said aqueous binder.
45. A method according to claim 44, wherein said acidic component further includes unsaturated covalently polymerizable acidic moieties of a monomeric or oligomeric nature, and/or salts or other acid derivative groups of said moieties; and said system further includes a polymerization initiator.
US10/295,132 2002-11-14 2002-11-14 Rapid prototyping material systems Expired - Lifetime US6742456B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/295,132 US6742456B1 (en) 2002-11-14 2002-11-14 Rapid prototyping material systems
TW092114823A TW200407274A (en) 2002-11-14 2003-05-30 Rapid prototyping material systems
CNB2003801033765A CN100379707C (en) 2002-11-14 2003-11-10 Rapid prototyping material systems
EP03783274.8A EP1562876B1 (en) 2002-11-14 2003-11-10 Use of rapid prototyping material systems and method for printing a 3d object
PCT/US2003/035760 WO2004043681A2 (en) 2002-11-14 2003-11-10 Rapid prototyping material systems
AU2003290692A AU2003290692A1 (en) 2002-11-14 2003-11-10 Rapid prototyping material systems
JP2004551981A JP4776232B2 (en) 2002-11-14 2003-11-10 Material system for rapid prototyping
KR1020057008470A KR101018913B1 (en) 2002-11-14 2003-11-10 Rapid prototyping material systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/295,132 US6742456B1 (en) 2002-11-14 2002-11-14 Rapid prototyping material systems

Publications (2)

Publication Number Publication Date
US20040094058A1 true US20040094058A1 (en) 2004-05-20
US6742456B1 US6742456B1 (en) 2004-06-01

Family

ID=32297112

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/295,132 Expired - Lifetime US6742456B1 (en) 2002-11-14 2002-11-14 Rapid prototyping material systems

Country Status (8)

Country Link
US (1) US6742456B1 (en)
EP (1) EP1562876B1 (en)
JP (1) JP4776232B2 (en)
KR (1) KR101018913B1 (en)
CN (1) CN100379707C (en)
AU (1) AU2003290692A1 (en)
TW (1) TW200407274A (en)
WO (1) WO2004043681A2 (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025905A1 (en) * 2000-10-04 2004-02-12 Ingo Ederer Method for unpacking shaped bodies embedded inside unbound particle material
US20040170765A1 (en) * 2001-04-10 2004-09-02 Ingo Ederer Method and device for applying fluids
US20040225398A1 (en) * 2003-01-16 2004-11-11 Kia Silverbrook 3-D object creation system using multiple materials in multiple layers
US20050017394A1 (en) * 2003-06-16 2005-01-27 Voxeljet Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US20050167872A1 (en) * 2002-06-05 2005-08-04 Tatsuo Tsubaki Method for constructing patterns in a layered manner
US20060160250A1 (en) * 2004-08-11 2006-07-20 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US20060237159A1 (en) * 2003-06-17 2006-10-26 Voxelet Gmbh Method for the layered construction of models
US20080233302A1 (en) * 2004-05-24 2008-09-25 Technische Universität Berlin Method and Device for Production of a Three-Dimensional Article
US20080260945A1 (en) * 2004-02-19 2008-10-23 Ingo Ederer Method and Device for Applying Fluids
US7665636B2 (en) 2002-05-20 2010-02-23 Ingo Ederer Device for feeding fluids
US7736578B2 (en) 2006-06-30 2010-06-15 Ingo Ederer Method for the construction of a laminated compound
US20100212584A1 (en) * 2007-10-23 2010-08-26 Voxeljet Technology Gmbh Device for the layer-wise production of patterns
US20100244301A1 (en) * 2007-10-11 2010-09-30 Voxeljet Technology Gmbh Material system and method for changing properties of a plastic component
US20100272519A1 (en) * 2007-10-21 2010-10-28 Voxeljet Technology Gmbh Method and device for conveying particulate material during the layer-wise production of patterns
US20100291314A1 (en) * 2006-08-20 2010-11-18 Voxeljet Technology Self-hardening material and process for layerwise formation of models
US20110091923A1 (en) * 2009-10-21 2011-04-21 Robert Adam Modavis Compact Optical Reader System
US20110129640A1 (en) * 2009-11-30 2011-06-02 George Halsey Beall Method and binder for porous articles
WO2011050791A3 (en) * 2009-10-31 2011-06-23 Mtu Aero Engines Gmbh Method and device for producing a component
US20110223437A1 (en) * 2008-11-20 2011-09-15 Voxeljet Technology Gmbh Method for the layered construction of plastic models
US20130221192A1 (en) * 2012-02-29 2013-08-29 Ford Motor Company Interchangeable mold inserts
WO2014078537A1 (en) 2012-11-14 2014-05-22 Dentsply International Inc. Three-dimensional fabricating material systems for producing dental products
US8741194B1 (en) 2000-09-25 2014-06-03 Voxeljet Ag Method for producing a part using a depostion technique
US8911226B2 (en) 2010-04-14 2014-12-16 Voxeljet Ag Device for producing three-dimensional models
US8956144B2 (en) 2010-02-04 2015-02-17 Voxeijet AG Device for producing three-demensional models
US9174391B2 (en) 2010-03-31 2015-11-03 Voxeljet Ag Device for producing three-dimensional models
WO2015171639A1 (en) * 2014-05-05 2015-11-12 Viridis3D LLC Binder, adhesive and active filler system for three-dimensional printing of ceramics
US9242413B2 (en) 2011-01-05 2016-01-26 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area
US9333709B2 (en) 2010-03-31 2016-05-10 Voxeljet Ag Device and method for producing three-dimensional models
US9505176B2 (en) 2007-07-18 2016-11-29 Voxeljet Ag Method for producing three-dimensional components
US20170021563A1 (en) * 2015-07-20 2017-01-26 Korea University Research And Business Foundation 3-dimensional printing apparatus
US9770867B2 (en) 2010-12-29 2017-09-26 Voxeljet Ag Method and material system for building models in layers
WO2017223084A1 (en) 2016-06-20 2017-12-28 Dentsply Sirona Inc. Three dimensional fabricating material systems and methods for producing layered dental products
WO2018005900A1 (en) 2016-06-30 2018-01-04 Dentsply Sirona Inc. High strength three-dimensional fabricating material systems and methods for producing dental products
US9878494B2 (en) 2011-08-31 2018-01-30 Voxeljet Ag Device for constructing models in layers
US9914169B2 (en) 2010-04-17 2018-03-13 Voxeljet Ag Method and device for producing three-dimensional models
US9943981B2 (en) 2013-12-11 2018-04-17 Voxeljet Ag 3D infiltration method
US10052682B2 (en) 2012-10-12 2018-08-21 Voxeljet Ag 3D multi-stage method
US10059062B2 (en) 2012-05-25 2018-08-28 Voxeljet Ag Device for producing three-dimensional models with special building platforms and drive systems
US10059058B2 (en) 2012-06-22 2018-08-28 Voxeljet Ag Device for building a multilayer structure with storage container or filling container movable along the dispensing container
US10213831B2 (en) 2012-11-25 2019-02-26 Voxeljet Ag Construction of a 3D printing device for producing components
US10220568B2 (en) 2013-12-02 2019-03-05 Voxeljet Ag Interchangeable container with moveable side walls
US10220567B2 (en) 2012-03-06 2019-03-05 Voxeljet Ag Method and device for producing three-dimensional models
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US10233110B2 (en) 2015-06-22 2019-03-19 Ricoh Company, Ltd. Material set for manufacturing glass object, liquid material for manufacturing glass object, method of manufacturing glass object, glass object, and device for manufacturing glass object
EP3352975A4 (en) * 2016-02-25 2019-05-15 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing with a sintering aid/fixer fluid and a liquid functional material
US10343301B2 (en) 2013-02-28 2019-07-09 Voxeljet Ag Process for producing a moulding using a water-soluble casting mould and material system for the production thereof
US10442170B2 (en) 2013-12-20 2019-10-15 Voxeljet Ag Device, special paper, and method for producing shaped articles
CN111032315A (en) * 2017-07-19 2020-04-17 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing
US10639848B2 (en) * 2015-09-28 2020-05-05 Hewlett-Packard Development Company, L.P. Temperature determination in additive manufacturing systems
US10682809B2 (en) 2014-12-22 2020-06-16 Voxeljet Ag Method and device for producing 3D moulded parts by means of a layer construction technique
WO2020170053A1 (en) 2019-02-19 2020-08-27 Io Tech Group Ltd. 3d fabrication for dental applications based on ablation
US10759707B2 (en) * 2015-05-28 2020-09-01 3M Innovative Properties Company Additive manufacturing process for producing ceramic articles using a sol containing nano-sized particles
US10786945B2 (en) 2013-10-30 2020-09-29 Voxeljet Ag Method and device for producing three-dimensional models using a binding agent system
US10843404B2 (en) 2015-05-20 2020-11-24 Voxeljet Ag Phenolic resin method
US10858528B2 (en) 2015-12-23 2020-12-08 Kornit Digital Ltd. Rub-resistant inkjet composition
US10882110B2 (en) 2015-09-09 2021-01-05 Voxeljet Ag Method and device for applying fluids
US10913207B2 (en) 2014-05-26 2021-02-09 Voxeljet Ag 3D reverse printing method and device
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
US11001005B2 (en) 2017-05-25 2021-05-11 Tdbt Ip Inc. Aseptic printer system including dual-arm mechanism
US11077611B2 (en) 2015-03-17 2021-08-03 Voxeljet Ag Method and device for producing 3D shaped articles with a double recoater
US11097471B2 (en) 2014-03-31 2021-08-24 Voxeljet Ag Method and device for 3D printing using temperature-controlled processing
US11235518B2 (en) 2015-12-01 2022-02-01 Voxeljet Ag Method and device for producing three-dimensional components with the aid of an overfeed sensor
US11273605B2 (en) 2016-11-15 2022-03-15 Voxeljet Ag Integrated print head maintenance station for powder bed-based 3D printing
US11279087B2 (en) 2017-07-21 2022-03-22 Voxeljet Ag Process and apparatus for producing 3D moldings comprising a spectrum converter
US20220134650A1 (en) * 2020-11-05 2022-05-05 BWXT Advanced Technologies LLC Photon propagation modified additive manufacturing compositions and methods of additive manufacturing using same
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system
US11820076B2 (en) 2019-11-01 2023-11-21 Voxeljet Ag 3D printing process and molding produced by this process using lignosulfate
US11826958B2 (en) 2019-02-05 2023-11-28 Voxeljet Ag Exchangeable process unit
US11877398B2 (en) 2021-02-11 2024-01-16 Io Tech Group Ltd. PCB production by laser systems
US11890810B2 (en) 2015-09-16 2024-02-06 Voxeljet Ag Device and method for producing three-dimensional shaped parts

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US20010050031A1 (en) * 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
GB0103754D0 (en) * 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
GB0112675D0 (en) * 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
US7442749B2 (en) * 2002-08-29 2008-10-28 Nippon Shokubai Co., Ltd. Sulfur-containing poly (unsaturated carboxylic acid) and its uses and production process
US7422713B2 (en) * 2003-10-14 2008-09-09 Hewlett-Packard Development Company, L.P. Hybrid organic-inorganic composition for solid freeform fabrication
US7381360B2 (en) * 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
US7435763B2 (en) * 2004-04-02 2008-10-14 Hewlett-Packard Development Company, L.P. Solid freeform compositions, methods of application thereof, and systems for use thereof
DE102005019699B3 (en) * 2005-04-28 2007-01-04 Daimlerchrysler Ag Production of 3-dimensional objects such as casting moulds, involves coating a surface with separate layers of water- and-or alcohol-soluble metal salt and binding particles and layers together by spraying with water or alcohol
EP2089215B1 (en) 2006-12-08 2015-02-18 3D Systems Incorporated Three dimensional printing material system
JP5129267B2 (en) 2007-01-10 2013-01-30 スリーディー システムズ インコーポレーテッド 3D printing material system with improved color, article performance and ease of use
WO2008103450A2 (en) 2007-02-22 2008-08-28 Z Corporation Three dimensional printing material system and method using plasticizer-assisted sintering
US7991498B2 (en) 2009-02-03 2011-08-02 Objet Geometries Ltd. Method and system for building painted three-dimensional objects
DE102009030113A1 (en) 2009-06-22 2010-12-23 Voxeljet Technology Gmbh Method and device for supplying fluids during the layering of models
US8991211B1 (en) 2009-11-01 2015-03-31 The Exone Company Three-dimensional printing glass articles
DE102013004940A1 (en) 2012-10-15 2014-04-17 Voxeljet Ag Method and device for producing three-dimensional models with tempered printhead
EP2868692B1 (en) 2013-11-05 2017-10-25 DSM IP Assets B.V. Stabilized matrix-filled liquid radiation curable resin compositions for additive fabrication
DE102014107330A1 (en) * 2014-05-23 2015-11-26 Heraeus Kulzer Gmbh Printable and sinterable dental compositions for the manufacture of parts of dental prostheses and process for their preparation
WO2016175832A1 (en) 2015-04-30 2016-11-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
US10435535B2 (en) 2015-09-17 2019-10-08 3Dbotics, Inc. Material system and method for fabricating refractory material-based 3D printed objects
US10391755B2 (en) 2015-10-23 2019-08-27 Ricoh Company, Ltd. Solid freeform fabrication material set, method of fabricating solid freeform object, method of fabricating dental prosthesis, and device for fabricating solid freeform object
WO2017194535A1 (en) 2016-05-10 2017-11-16 Arcelik Anonim Sirketi A production material suitable for use in a 3d printing device
BR112019010426A2 (en) 2017-02-24 2019-09-03 Hewlett Packard Development Co three dimensional printing (3d)
WO2018156938A1 (en) 2017-02-24 2018-08-30 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2019147266A1 (en) 2018-01-26 2019-08-01 Hewlett-Packard Development Company, L.P. Three-dimensional printing
CN110028299B (en) * 2019-03-11 2021-07-23 济南大学 3D printing white cement-based material and using method and application thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365408A (en) * 1963-08-12 1968-01-23 Kurashiki Rayon Co Adhesives comprising polyvinyl alcohol bearing or mixed with substances bearing carboxyl groups, and a stabilizer
US3814717A (en) 1970-12-04 1974-06-04 Dental Materials Section Labor Poly(carboxylic acid)-fluoroalumino-silicate glass surgical cement
US3751391A (en) 1971-10-28 1973-08-07 Nat Res Dev Zinc oxide-poly(acrylic acid)surgical cements
SU426977A1 (en) * 1972-08-29 1974-05-05 Н. В. Конецкий, А. А. Мухин, Р. Н. Гольдинова, CHARGE FOR THE MANUFACTURE OF LIGHTWEIGHT REFRACTORIES
US4183759A (en) * 1976-04-09 1980-01-15 The White Sea and Baltic Company Limited Hardenable compositions
US4161410A (en) * 1976-10-27 1979-07-17 Denton Industries, Inc. Settable dental compositions with polyterpene binder
BR7802205A (en) * 1977-04-13 1978-12-19 White Sea & Baltic Co PROCESS FOR PREPARING A CASTING MOLD OR MALE
GB8326053D0 (en) * 1983-09-29 1983-11-02 Bryant & May Ltd Striking composition and surface for safety matches
SU1298391A1 (en) * 1985-07-05 1987-03-23 Макеевский Инженерно-Строительный Институт Composition for cast safety belt of mine workings
EP0312525A1 (en) * 1987-02-04 1989-04-26 Dental Composite Ltd. Radiopaque glass ionomer cement liner for dental cavities
JPH02203938A (en) * 1989-02-01 1990-08-13 Matsushita Electric Ind Co Ltd Catalyst
US5084491A (en) * 1989-03-16 1992-01-28 The Ohio University Reinforcing glass ionomer dental filling material with stainless steel, or metals thereof
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
GB2256860B (en) * 1991-06-20 1995-05-31 Patrick Louis Cedric Grubb Zirconium-containing substances
JPH05102402A (en) * 1991-10-08 1993-04-23 Nec Corp Semiconductor device
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
GB9623185D0 (en) * 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
US6007318A (en) * 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
NL1006059C2 (en) * 1997-05-14 1998-11-17 Geest Adrianus F Van Der Method and device for manufacturing a shaped body.
US6080345A (en) * 1997-08-08 2000-06-27 Corning Incorporated Method of forming and shaping plasticized mixtures
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US6503691B1 (en) * 1999-12-17 2003-01-07 Creo Srl Polymer system with switchable physical properties and its use in direct exposure printing plates
US20010050031A1 (en) * 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US7527231B2 (en) * 2002-01-24 2009-05-05 Eli Zhadanov Device for holding shower accessories

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403324B2 (en) 2000-09-25 2016-08-02 Voxeljet Ag Method for producing a part using a deposition technique
US8741194B1 (en) 2000-09-25 2014-06-03 Voxeljet Ag Method for producing a part using a depostion technique
US10213938B2 (en) 2000-09-25 2019-02-26 Voxeljet Ag Method for producing a part using a deposition technique
US20040025905A1 (en) * 2000-10-04 2004-02-12 Ingo Ederer Method for unpacking shaped bodies embedded inside unbound particle material
US20040170765A1 (en) * 2001-04-10 2004-09-02 Ingo Ederer Method and device for applying fluids
US7879393B2 (en) 2001-04-10 2011-02-01 Ingo Ederer Method and device for applying fluids
US7665636B2 (en) 2002-05-20 2010-02-23 Ingo Ederer Device for feeding fluids
US20050167872A1 (en) * 2002-06-05 2005-08-04 Tatsuo Tsubaki Method for constructing patterns in a layered manner
US7955537B2 (en) 2002-06-05 2011-06-07 Ingo Ederer Method for constructing patterns in a layered manner
US20070208448A1 (en) * 2003-01-16 2007-09-06 Silverbrook Research Pty Ltd Printer system including a placement mechanism for placing objects
US7231275B2 (en) * 2003-01-16 2007-06-12 Silverbrook Research Pty Ltd 3-D object creation system using multiple materials in multiple layers
US20040225398A1 (en) * 2003-01-16 2004-11-11 Kia Silverbrook 3-D object creation system using multiple materials in multiple layers
US7797071B2 (en) 2003-01-16 2010-09-14 Silverbrook Research Pty Ltd Printer system including a placement mechanism for placing objects
US8506870B2 (en) 2003-06-16 2013-08-13 Voxeljet Technology Gmbh Methods of manufacturing layered three-dimensional forms
US20080237933A1 (en) * 2003-06-16 2008-10-02 Rainer Hochsmann Methods and systems for manufacturing the manufacture of layered three-dimensional forms
US20050017394A1 (en) * 2003-06-16 2005-01-27 Voxeljet Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US7807077B2 (en) * 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US8122939B2 (en) 2003-06-17 2012-02-28 Rainer Hochsmann Method for the layered construction of models
US8020604B2 (en) 2003-06-17 2011-09-20 Hoechsmann Rainer Method for the layered construction of models
US20060237159A1 (en) * 2003-06-17 2006-10-26 Voxelet Gmbh Method for the layered construction of models
US8096262B2 (en) 2004-02-19 2012-01-17 Ingo Ederer Method and device for applying fluids
US9463488B2 (en) 2004-02-19 2016-10-11 Voxeljet Ag Method for applying particle material including a metering system and leveling element
US20080260945A1 (en) * 2004-02-19 2008-10-23 Ingo Ederer Method and Device for Applying Fluids
US20080233302A1 (en) * 2004-05-24 2008-09-25 Technische Universität Berlin Method and Device for Production of a Three-Dimensional Article
US7767130B2 (en) 2004-05-24 2010-08-03 Voxeljet Technology Gmbh Method and device for production of a three-dimensional article
US9242031B2 (en) 2004-08-11 2016-01-26 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US7939003B2 (en) * 2004-08-11 2011-05-10 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US8877112B2 (en) 2004-08-11 2014-11-04 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US10695466B2 (en) 2004-08-11 2020-06-30 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US10406262B2 (en) 2004-08-11 2019-09-10 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US20110169193A1 (en) * 2004-08-11 2011-07-14 Cornell Research Foundation Modular fabrication systems and methods
US11472100B2 (en) 2004-08-11 2022-10-18 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US10034964B2 (en) 2004-08-11 2018-07-31 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US20060160250A1 (en) * 2004-08-11 2006-07-20 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US8636938B2 (en) 2004-08-11 2014-01-28 Cornell Research Foundation, Inc. Modular fabrication systems and methods
US11938674B2 (en) 2004-08-11 2024-03-26 Cornell University Modular fabrication systems and methods
US20100243123A1 (en) * 2006-06-30 2010-09-30 Voxeljet Technology Gmbh Method for the construction of a laminated compound
US7927539B2 (en) 2006-06-30 2011-04-19 Ingo Ederer Method for the construction of a laminated compound
US7736578B2 (en) 2006-06-30 2010-06-15 Ingo Ederer Method for the construction of a laminated compound
US9676143B2 (en) 2006-08-10 2017-06-13 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US9643360B2 (en) 2006-08-20 2017-05-09 Voxeljet Ag Self-hardening material and process for layerwise formation of models
US20100291314A1 (en) * 2006-08-20 2010-11-18 Voxeljet Technology Self-hardening material and process for layerwise formation of models
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US10960655B2 (en) 2007-07-18 2021-03-30 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
US9505176B2 (en) 2007-07-18 2016-11-29 Voxeljet Ag Method for producing three-dimensional components
US20100244301A1 (en) * 2007-10-11 2010-09-30 Voxeljet Technology Gmbh Material system and method for changing properties of a plastic component
US8349233B2 (en) 2007-10-11 2013-01-08 Voxeljet Gmbh Material system and method for changing properties of a plastic component
US20100272519A1 (en) * 2007-10-21 2010-10-28 Voxeljet Technology Gmbh Method and device for conveying particulate material during the layer-wise production of patterns
US10099426B2 (en) 2007-10-21 2018-10-16 Voxeljet Ag Method and device for layer-wise production of patterns
US8727672B2 (en) 2007-10-21 2014-05-20 Voxeljet Ag Method and device for conveying particulate material during the layer-wise production of patterns
US9469074B2 (en) 2007-10-21 2016-10-18 Voxeljet Ag Method and device for conveying particulate material during the layer-wise production of patterns
US9757831B2 (en) 2007-10-23 2017-09-12 Voxeljet Ag Methods for assembling a device for the layer-wise production of patterns
US10799989B2 (en) 2007-10-23 2020-10-13 Voxeljet Ag Pre-assembled module for a device for the layer-wise production of patterns
US20100212584A1 (en) * 2007-10-23 2010-08-26 Voxeljet Technology Gmbh Device for the layer-wise production of patterns
US8992205B2 (en) 2007-10-23 2015-03-31 Voxeijet AG Device for the layer-wise production of patterns
US20110223437A1 (en) * 2008-11-20 2011-09-15 Voxeljet Technology Gmbh Method for the layered construction of plastic models
US8715832B2 (en) 2008-11-20 2014-05-06 Voxeljet Ag Method for the layered construction of plastic models
US8342403B2 (en) 2009-10-21 2013-01-01 Corning Incorporated Compact optical reader system
US20110091923A1 (en) * 2009-10-21 2011-04-21 Robert Adam Modavis Compact Optical Reader System
WO2011050791A3 (en) * 2009-10-31 2011-06-23 Mtu Aero Engines Gmbh Method and device for producing a component
US20110129640A1 (en) * 2009-11-30 2011-06-02 George Halsey Beall Method and binder for porous articles
US9925721B2 (en) 2010-02-04 2018-03-27 Voxeljet Ag Device for producing three-dimensional models
US8956144B2 (en) 2010-02-04 2015-02-17 Voxeijet AG Device for producing three-demensional models
US9656423B2 (en) 2010-03-31 2017-05-23 Voxeljet Ag Device and method for producing three-dimensional models
US9815243B2 (en) 2010-03-31 2017-11-14 Voxeljet Ag Device for producing three-dimensional models
US9174391B2 (en) 2010-03-31 2015-11-03 Voxeljet Ag Device for producing three-dimensional models
US9993975B2 (en) 2010-03-31 2018-06-12 Voxeljet Ag Device for producing three-dimensional models
US9333709B2 (en) 2010-03-31 2016-05-10 Voxeljet Ag Device and method for producing three-dimensional models
US9962885B2 (en) 2010-04-14 2018-05-08 Voxeljet Ag Device for producing three-dimensional models
US8911226B2 (en) 2010-04-14 2014-12-16 Voxeljet Ag Device for producing three-dimensional models
US10639715B2 (en) 2010-04-17 2020-05-05 Voxeljet Ag Method and device for producing three-dimensional models
US9914169B2 (en) 2010-04-17 2018-03-13 Voxeljet Ag Method and device for producing three-dimensional models
US10179365B2 (en) 2010-04-17 2019-01-15 Voxeljet Ag Method and device for producing three-dimensional models
US9770867B2 (en) 2010-12-29 2017-09-26 Voxeljet Ag Method and material system for building models in layers
US11407216B2 (en) 2011-01-05 2022-08-09 Voxeljet Ag Device and method for constructing a layer body
US10946636B2 (en) 2011-01-05 2021-03-16 Voxeljet Ag Device and method for constructing a layer body
US10513105B2 (en) 2011-01-05 2019-12-24 Voxeljet Ag Device and method for constructing a layer body
US9242413B2 (en) 2011-01-05 2016-01-26 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position adjustable body defining the working area
US9649812B2 (en) 2011-01-05 2017-05-16 Voxeljet Ag Device and method for constructing a laminar body comprising at least one position-adjustable body defining the working area
US10913204B2 (en) 2011-08-31 2021-02-09 Voxeljet Ag Device for constructing models in layers and methods thereof
US9878494B2 (en) 2011-08-31 2018-01-30 Voxeljet Ag Device for constructing models in layers
US20130221192A1 (en) * 2012-02-29 2013-08-29 Ford Motor Company Interchangeable mold inserts
US10589460B2 (en) 2012-03-06 2020-03-17 Voxeljet Ag Method and device for producing three-dimensional models
US10220567B2 (en) 2012-03-06 2019-03-05 Voxeljet Ag Method and device for producing three-dimensional models
US11225029B2 (en) 2012-05-25 2022-01-18 Voxeljet Ag Device for producing three-dimensional models and methods thereof
US10059062B2 (en) 2012-05-25 2018-08-28 Voxeljet Ag Device for producing three-dimensional models with special building platforms and drive systems
US10059058B2 (en) 2012-06-22 2018-08-28 Voxeljet Ag Device for building a multilayer structure with storage container or filling container movable along the dispensing container
US10052682B2 (en) 2012-10-12 2018-08-21 Voxeljet Ag 3D multi-stage method
WO2014078537A1 (en) 2012-11-14 2014-05-22 Dentsply International Inc. Three-dimensional fabricating material systems for producing dental products
US10213831B2 (en) 2012-11-25 2019-02-26 Voxeljet Ag Construction of a 3D printing device for producing components
US11130290B2 (en) 2012-11-25 2021-09-28 Voxeljet Ag Construction of a 3D printing device for producing components
US10343301B2 (en) 2013-02-28 2019-07-09 Voxeljet Ag Process for producing a moulding using a water-soluble casting mould and material system for the production thereof
US11072090B2 (en) 2013-02-28 2021-07-27 Voxeljet Ag Material system for producing a molded part using a water-soluble casting mold
US10786945B2 (en) 2013-10-30 2020-09-29 Voxeljet Ag Method and device for producing three-dimensional models using a binding agent system
US11541596B2 (en) 2013-10-30 2023-01-03 Voxeljet Ag Method and device for producing three-dimensional models using a binding agent system
US10220568B2 (en) 2013-12-02 2019-03-05 Voxeljet Ag Interchangeable container with moveable side walls
US11292188B2 (en) 2013-12-02 2022-04-05 Voxeljet Ag Interchangeable container with moveable side walls
US11850796B2 (en) 2013-12-02 2023-12-26 Voxeljet Ag Interchangeable container with moveable side walls
US9943981B2 (en) 2013-12-11 2018-04-17 Voxeljet Ag 3D infiltration method
US10889055B2 (en) 2013-12-20 2021-01-12 Voxeljet Ag Device, special paper, and method for producing shaped articles
US10442170B2 (en) 2013-12-20 2019-10-15 Voxeljet Ag Device, special paper, and method for producing shaped articles
US11097471B2 (en) 2014-03-31 2021-08-24 Voxeljet Ag Method and device for 3D printing using temperature-controlled processing
WO2015171639A1 (en) * 2014-05-05 2015-11-12 Viridis3D LLC Binder, adhesive and active filler system for three-dimensional printing of ceramics
US9856390B2 (en) 2014-05-05 2018-01-02 3Dbotics, Inc. Binder, adhesive and active filler system for three-dimensional printing of ceramics
US10913207B2 (en) 2014-05-26 2021-02-09 Voxeljet Ag 3D reverse printing method and device
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
US10682809B2 (en) 2014-12-22 2020-06-16 Voxeljet Ag Method and device for producing 3D moulded parts by means of a layer construction technique
US11077611B2 (en) 2015-03-17 2021-08-03 Voxeljet Ag Method and device for producing 3D shaped articles with a double recoater
US10843404B2 (en) 2015-05-20 2020-11-24 Voxeljet Ag Phenolic resin method
US10759707B2 (en) * 2015-05-28 2020-09-01 3M Innovative Properties Company Additive manufacturing process for producing ceramic articles using a sol containing nano-sized particles
US10233110B2 (en) 2015-06-22 2019-03-19 Ricoh Company, Ltd. Material set for manufacturing glass object, liquid material for manufacturing glass object, method of manufacturing glass object, glass object, and device for manufacturing glass object
US20170021563A1 (en) * 2015-07-20 2017-01-26 Korea University Research And Business Foundation 3-dimensional printing apparatus
US10882110B2 (en) 2015-09-09 2021-01-05 Voxeljet Ag Method and device for applying fluids
US11890810B2 (en) 2015-09-16 2024-02-06 Voxeljet Ag Device and method for producing three-dimensional shaped parts
US10639848B2 (en) * 2015-09-28 2020-05-05 Hewlett-Packard Development Company, L.P. Temperature determination in additive manufacturing systems
US11235518B2 (en) 2015-12-01 2022-02-01 Voxeljet Ag Method and device for producing three-dimensional components with the aid of an overfeed sensor
US10858528B2 (en) 2015-12-23 2020-12-08 Kornit Digital Ltd. Rub-resistant inkjet composition
EP3352975A4 (en) * 2016-02-25 2019-05-15 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing with a sintering aid/fixer fluid and a liquid functional material
US11020874B2 (en) 2016-02-25 2021-06-01 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing with a sintering aid/fixer fluid and a liquid functional material
WO2017223084A1 (en) 2016-06-20 2017-12-28 Dentsply Sirona Inc. Three dimensional fabricating material systems and methods for producing layered dental products
US10299896B2 (en) * 2016-06-20 2019-05-28 Dentsply Sirona Inc. Three-dimensional fabricating material systems and methods for producing layered dental products
US10849724B2 (en) 2016-06-30 2020-12-01 Dentsply Sirona Inc. High strength three dimensional fabricating material systems and methods for producing dental products
WO2018005900A1 (en) 2016-06-30 2018-01-04 Dentsply Sirona Inc. High strength three-dimensional fabricating material systems and methods for producing dental products
US11273605B2 (en) 2016-11-15 2022-03-15 Voxeljet Ag Integrated print head maintenance station for powder bed-based 3D printing
US11760023B2 (en) 2016-11-15 2023-09-19 Voxeljet Ag Print head parking or maintenance unit for powder bed-based 3D printing, 3D printing systems and methods thereof
US11312080B2 (en) 2017-05-25 2022-04-26 Tdbt Ip Inc. Aseptic printer system including dual-arm mechanism
US11001005B2 (en) 2017-05-25 2021-05-11 Tdbt Ip Inc. Aseptic printer system including dual-arm mechanism
CN111032315A (en) * 2017-07-19 2020-04-17 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) printing
US11318532B2 (en) 2017-07-19 2022-05-03 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
US11731361B2 (en) 2017-07-21 2023-08-22 Voxeljet Ag Process and apparatus for producing 3D moldings comprising a spectrum converter
US11279087B2 (en) 2017-07-21 2022-03-22 Voxeljet Ag Process and apparatus for producing 3D moldings comprising a spectrum converter
US11826958B2 (en) 2019-02-05 2023-11-28 Voxeljet Ag Exchangeable process unit
US11642202B2 (en) 2019-02-19 2023-05-09 Io Tech Group Ltd. Methods of fabricating a 3D device using ablation
US11185396B2 (en) 2019-02-19 2021-11-30 Io Tech Group Ltd. 3D fabrication for dental applications based on ablation
WO2020170053A1 (en) 2019-02-19 2020-08-27 Io Tech Group Ltd. 3d fabrication for dental applications based on ablation
US11820076B2 (en) 2019-11-01 2023-11-21 Voxeljet Ag 3D printing process and molding produced by this process using lignosulfate
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system
US11731350B2 (en) * 2020-11-05 2023-08-22 BWXT Advanced Technologies LLC Photon propagation modified additive manufacturing compositions and methods of additive manufacturing using same
US20220134650A1 (en) * 2020-11-05 2022-05-05 BWXT Advanced Technologies LLC Photon propagation modified additive manufacturing compositions and methods of additive manufacturing using same
US11877398B2 (en) 2021-02-11 2024-01-16 Io Tech Group Ltd. PCB production by laser systems

Also Published As

Publication number Publication date
KR20050086557A (en) 2005-08-30
CN1711223A (en) 2005-12-21
WO2004043681A2 (en) 2004-05-27
AU2003290692A1 (en) 2004-06-03
EP1562876A2 (en) 2005-08-17
KR101018913B1 (en) 2011-03-02
JP2006506246A (en) 2006-02-23
WO2004043681A3 (en) 2004-08-19
EP1562876B1 (en) 2018-02-21
US6742456B1 (en) 2004-06-01
AU2003290692A8 (en) 2004-06-03
TW200407274A (en) 2004-05-16
JP4776232B2 (en) 2011-09-21
CN100379707C (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US6742456B1 (en) Rapid prototyping material systems
US7435763B2 (en) Solid freeform compositions, methods of application thereof, and systems for use thereof
US7422713B2 (en) Hybrid organic-inorganic composition for solid freeform fabrication
CN1572855A (en) Cement system including a binder for use in freeform fabrication
EP1594677B1 (en) Freeform fabrication low density material systems
JP2006504813A (en) Three-dimensional printing material system and method
US20050089636A1 (en) Resin-modified inorganic phosphate cement for solid freeform fabrication
DE10158233A1 (en) Reactive system for three-dimensional printing comprises two or more components that react chemically with one another to form a solid after adding a liquid medium
DE3231845C2 (en)
JP4220236B2 (en) Utilization of polyacids with narrow molar mass distribution
JP3108431B2 (en) Molding
JPH06504233A (en) Method of manufacturing ceramic shell as mold and binder
JP4695134B2 (en) Chemical composition
KR101064388B1 (en) Artificial marble using water-soluble electrolyte and process for preparing the same
NL8002225A (en) JOINT CEMENT.
EP4108692A1 (en) Material system for 3d printing
JPH02229325A (en) Soil surface treatment
KR20140071601A (en) the method for fabricating paint

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD COMPANY, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KASPERCHIK, VLADIK;LAMBRIGHT, TERRY M.;REEL/FRAME:013759/0446

Effective date: 20021030

AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., COLORAD

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:013776/0928

Effective date: 20030131

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.,COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:013776/0928

Effective date: 20030131

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12