US20040098976A1 - Diesel aftertreatment systems - Google Patents

Diesel aftertreatment systems Download PDF

Info

Publication number
US20040098976A1
US20040098976A1 US10/301,361 US30136102A US2004098976A1 US 20040098976 A1 US20040098976 A1 US 20040098976A1 US 30136102 A US30136102 A US 30136102A US 2004098976 A1 US2004098976 A1 US 2004098976A1
Authority
US
United States
Prior art keywords
reductant
set forth
heating element
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/301,361
Inventor
Michiel Van Nieuwstadt
Devesh Upadhyay
Michael Goebelbecker
William Ruona
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US10/301,361 priority Critical patent/US20040098976A1/en
Assigned to FORD MOTOR COMPANY reassignment FORD MOTOR COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOEBELBECKER, MICHAEL, RUONA, WILLIAM CHARALES, UPADHYAY, DEVESH, VAN NIEUWSTADT, MICHIEL J.
Assigned to FORD GLOBAL TECHNOLOGIES reassignment FORD GLOBAL TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FORD MOTOR COMPANY A DELAWARE CORPORATION
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: FORD GLOBAL TECHNOLOGIES, INC.
Priority to DE10347134A priority patent/DE10347134A1/en
Publication of US20040098976A1 publication Critical patent/US20040098976A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • F01N2390/02Arrangements for controlling or regulating exhaust apparatus using electric components only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • F01N2610/107Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance using glow plug heating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a system and a method for improving performance of an exhaust gas aftertreatment device and, more particularly, to using an air assist heated reductant delivery system to enhance system performance and reduce fuel penalty.
  • the inventors herein have recognized several disadvantages with this approach. Namely, if delivery of the reductant has been shut off, or reduced, as dictated by the operating conditions, some reductant may remain in the annular space, in contact with the heating element, and may therefore clog up the annular opening around the heating device by carbonation of the residual fuel. Such carbon build up may lead to a blockage of the passage at the tip by which the vaporized fuel enters the exhaust stream. Further, there is a delay in introducing the reductant into the exhaust gas stream due to the time it takes for the reductant to travel down the length of the heating element. Additionally, durability of the heating element is reduced because its temperature is not controlled and adjusted based on operating conditions, and due to soot contamination. Yet another disadvantage of the prior art approach is that extra power is consumed due to the above-mentioned lack of temperature control.
  • the present invention teaches a system and a method for introducing evaporated reductant into an exhaust gas stream entering a lean exhaust gas aftertreatment device while eliminating the above-mentioned disadvantages of the prior art approaches.
  • a reductant delivery system includes: an evaporator unit including at least a heating element; a mixing device having at least one inlet and at least one outlet, said outlet coupled to said evaporator unit; and a controller for introducing reductant and air into said mixing device through said inlet, injecting a mixture of said reductant and said air through said outlet into said evaporator unit, said controller adjusting a temperature of said heating device to evaporate said mixture.
  • a method for operating a reductant delivery system for an exhaust gas aftertreatment device includes: operating in a first mode where a reductant and air mixture is injected into the reductant delivery system and the heating element is turned on; and operating in a second mode where said reductant and air mixture is injected into the reductant delivery system, and the heating element is turned off.
  • the present invention provides a number of advantages.
  • creating a mixture of reductant and air improves the exhaust gas aftertreatment device efficiency, due to the enhanced mixing of the reductant with the bulk exhaust flow and improved catalytic action relative to the use of liquid phase reductant.
  • mixing reductant with air breaks up the reductant in small particles, thus resulting in faster evaporation process.
  • injecting air into the vaporizer unit prevents lacquering and soot deposits on the surface of the heating element.
  • the inventors have recognized that dynamically controlling the temperature of the heating element to take advantage of the heat supplied by the exhaust gasses prevents overheating, improves the heating element durability and reduces power consumption.
  • Yet another advantage of the present invention is that the heating element temperature can be controlled to ignite the injected reductant and air mixture, and thus produce carbon monoxide (CO), which further improves NOx reduction in the ALNC.
  • CO carbon monoxide
  • FIGS. 1A and 1B are schematic diagrams of an engine wherein the invention is used to advantage
  • FIG. 2 is a an example of one embodiment of an emission control system wherein the present invention is used to advantage
  • FIGS. 3A, 3B and 3 C are examples of reductant delivery systems in accordance with the present invention.
  • FIG. 4 is a high level flowchart of an exemplary routine for controlling a temperature of the heating element of the reductant delivery system in accordance with the present invention
  • FIGS. 5 and 6 describe an exemplary routine and a modification curve for determining an amount of reductant to be delivered to the exhaust gas aftertreatment device in accordance with the present invention.
  • Internal combustion engine 10 comprising a plurality of cylinders, one cylinder of which is shown in FIG. 1, is controlled by electronic engine controller 12 .
  • Engine 10 includes combustion chamber 30 and cylinder walls 32 with piston 36 positioned therein and connected to crankshaft 40 .
  • Combustion chamber 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valve 52 and exhaust valve 54 .
  • Intake manifold 44 is also shown having fuel injector 80 coupled thereto for delivering liquid fuel in proportion to the pulse width of signal FPW from controller 12 . Both fuel quantity, controlled by signal FPW and injection timing are adjustable.
  • Fuel is delivered to fuel injector 80 by a fuel system (not shown) including a fuel tank, fuel pump, and fuel rail (not shown).
  • Controller 12 is shown in FIG. 1 as a conventional microcomputer including: microprocessor unit 102 , input/output ports 104 , read-only memory 106 , random access memory 108 , and a conventional data bus. Controller 12 is shown receiving various signals from sensors coupled to engine 10 , in addition to those signals previously discussed, including: engine coolant temperature (ECT) from temperature sensor 112 coupled to cooling sleeve 114 ; a measurement of manifold pressure (MAP) from pressure sensor 116 coupled to intake manifold 44 ; a measurement (AT) of manifold temperature from temperature sensor 117 ; an engine speed signal (RPM) from engine speed sensor 118 coupled to crankshaft 40 .
  • ECT engine coolant temperature
  • MAP manifold pressure
  • AT measurement
  • RPM engine speed signal
  • An emission control system 20 coupled to an exhaust manifold 48 , is described in detail in FIG. 2 below.
  • engine 10 is a direct injection engine with injector 80 located to inject fuel directly into cylinder 30 .
  • Emission control system 20 is coupled downstream of an internal combustion engine 10 described with particular reference in FIG. 1.
  • Catalyst 14 is an Active Lean NOx Catalyst (ALNC) capable of reducing NOx in an oxygen rich environment.
  • Oxidation catalyst 13 is coupled upstream of the ALNC and may be a precious metal catalyst, preferably one containing platinum.
  • the oxidation catalyst exothermically combusts hydrocarbons (HC) in the incoming exhaust gas from the engine thus supplying heat to rapidly warm up the Active Lean NOx Catalyst (ALNC) 14 .
  • carbon monoxide (CO) produced as a result of HC combustion in the oxidation catalyst 13 improves NOx reduction in the ALNC.
  • Particulate filter 15 is coupled downstream of the ALNC and is capable of storing carbon particles from the exhaust.
  • a reductant delivery system 16 is coupled to the exhaust gas manifold between the oxidation catalyst and the ALNC. Alternative embodiments of the reductant delivery system are described later herein with particular reference to FIGS. 3 A- 3 C.
  • FIG. 3A generally represents an example of one embodiment of a reductant delivery system according to the present invention.
  • the system comprises an evaporator unit 21 housing an elongated heating element 22 .
  • the heating element is an electrically heated cylindrically shaped heating element.
  • the heating element could be rectangular shaped to increase its surface contact area with the injected reductant and air mixture.
  • an oxidizing catalytic coating may be added to the evaporator unit such as, for example, a coating on the inner surface of the heating element housing and a catalytic cap at the point where the evaporated reductant and air mixture enters the exhaust gas manifold, to facilitate CO generation.
  • the catalytic coating may be a precious metal coating, preferably one containing Platinum or Palladium.
  • Controller 12 controls the temperature of the heating element by providing a PWM signal of varying duty cycles. The duty cycle of the PWM control signal to the heating element is determined from a prestored table based on operating conditions to achieve desired heating element temperature.
  • the mixing unit 23 has a reductant inlet and an air inlet and an outlet 24 coupled to the evaporator unit 21 through which a mixture of reductant and air is injected into the housing and subsequently comes into contact with the surface of the heating element 22 .
  • both air and reductant can be injected through a single input.
  • the reductant can be supplied to the mixing unit 23 from the fuel tank or from a storage vessel.
  • Air pump 25 supplies pressurized air to the mixing unit 23 thereby creating a mixture of reductant and air.
  • the outlet 24 is configured so that it delivers the reductant and air mixture to a specific area on the surface of the heating element.
  • outlet 24 could be configured to deliver the reductant and air mixture to more than one area on the surface of the heating element.
  • the controller 12 can selectively enable and disable injection of the mixture to these areas depending on operating conditions such as engine speed, load, exhaust gas temperature, etc. For example, when the amount of reductant required is high, such as at high load conditions, it may be necessary to enable delivery of the reductant and air mixture to more than one area on the surface of the heating element.
  • FIG. 3B shows an alternate design for the heating element housing.
  • the heating element is surrounded by a delivery tube the inner diameter of which is wide enough to allow the heating element to be housed.
  • the delivery tube has a narrow channel drilled into it, which serves as a passage for the air and reductant mixture.
  • the air and reductant mixture is injected into the narrow channel and is rapidly vaporized by the heat provided by the enclosed heating element without coming into direct contact with its surface.
  • the durability of the heating element is further improved since the reductant and air mixture never comes into direct contact its surface.
  • the delivery tube has one or more holes at its tip through which the evaporated reductant and air mixture enters the exhaust gas manifold.
  • FIG. 3C shows an alternative embodiment of the heating element housing shown in FIG. 3B wherein a porous oxidizing catalytic plug, preferably one containing Platinum or Palladium, is placed at the tip of the delivery tube to facilitate conversion of the vaporized hydrocarbons to carbon monoxide. Additionally, one or more ports may be drilled into the delivery tube along its length and plugged up with porous oxidizing catalytic material to further facilitate conversion of hydrocarbons into carbon monoxide.
  • a porous oxidizing catalytic plug preferably one containing Platinum or Palladium
  • an improved reductant delivery system and method are presented.
  • Mixing reductant with air causes the reductant to be well distributed inside the reductant delivery system and thus speeds up the vaporization process.
  • system durability is improved by reducing lacquering and soot deposits through better distribution of the reductant and faster evaporation process.
  • the system performance is further improved through the addition of an oxidizing catalytic coating.
  • routines described in FIGS. 4 and 5 below may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various steps or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases, omitted. Likewise, the order of processing is not necessarily required to achieve the objects, features and advantages of the invention, but is provided for ease of illustration and description. Although not explicitly illustrated, one of ordinary skill in the art will recognize that one or more of the illustrated steps or functions may be repeatedly performed depending on the particular strategy being used.
  • step 100 desired heating element temperature, T des , is determined. This determination is based on what function the reductant evaporator system is performing such as whether the mixture is to be evaporated or combusted.
  • step 200 the routine proceeds to step 200 wherein operating conditions known to have an effect on the heating element temperature, such as the exhaust gas temperature upstream of the ALNC, are evaluated.
  • the exhaust gas temperature can be determined from a temperature sensor coupled in the exhaust gas manifold, or estimated based on parameters such as engine speed, load, engine temperature, ignition timing, etc.
  • step 300 optimal duty cycle to achieve desired heating element temperature is determined from a prestored experimentally determined temperature map of the heating element based on operating conditions such as the exhaust gas temperature in this example.
  • the routine then proceeds to step 400 wherein the duty cycle of the heating element control signal is adjusted to achieve desired heating element temperature.
  • the routine then exits.
  • step 500 the amount of NOx in the exhaust gas mixture entering the device, NOx fg , is estimated based on engine operating conditions. These conditions may include engine speed, engine load, exhaust temperatures, exhaust gas aftertreatment device temperatures, injection timing, engine temperature, and any other parameter know to those skilled in the art to indicate the amount of NOx produced by the combustion presses. Alternatively, a NOx sensor may be used to measure the amount of NOx in the exhaust gas mixture.
  • RA fg is the amount of reductant in the exhaust gas mixture entering the device, which can be determined based on engine operating conditions.
  • This initial reductant amount, RA inj — 1 is evaluated at steady state and yields a base reductant quantity to be injected for each engine speed and load point.
  • the amount is calibrated to achieve a certain feedgas reductant to NOx ratio, R des .
  • the ratio is typically obtained as a trade-off between NOx conversion and the fuel penalty due to reductant injection, and in this example is set at approximately 10.
  • the steady-state base reductant injection amount, RA inj — 1 is modified to account for engine operating conditions, such as engine coolant temperature, T c , exhaust gas temperature, T eg , EGR valve position, EGR pos , start of injection, SOI, and other parameters:
  • RA inj — 2 RA inj — 1 ⁇ f 1 ( T c ) ⁇ f 2 ( T eg ) ⁇ f 3 ( SoI ) ⁇ f 4 ( EGR pos )
  • step 900 a low pass filter is applied to smooth out the noise:
  • step 1000 wherein the reductant amount is further modified to account for engine transient behaviors as represented by the changes in the pedal position:
  • RA inj — 3 RA inj — 2 ⁇ f 5 ( pps — diff — p )
  • step 1100 the desired temperature of the heating element is obtained as described with particular reference to FIG. 4, thus achieving optimum temperature for reductant and air mixture evaporation.
  • the routine then proceeds to step 1200 wherein the areas on the surface of the heating element to which a reductant and air mixture is injected are selected basedlon operating conditions.
  • f 5 An example of f 5 is shown with particular reference to FIG. 6.
  • the amount of reductant to be injected should be adjusted to account for increases and decreases in the amount of NOx in the exhaust gas entering the device. This can be accomplished by continuously monitoring engine parameters that are capable of providing a measure of engine transient behaviors, such as a pedal position sensor, and continuously adjusting the amount of reductant to be injected as a function of filtered instantaneous changes in these parameters. Since NOx production typically increases at tip-in and decreases at tip-out, the result of such operation would be to increase the base injected amount in the former case, and decrease the base injected amount in the latter case. Further, using a reductant vaporizer unit ensures fast system response, more efficient system operation, better emission control, and improved fuel economy.

Abstract

A method for controlling a temperature of a heated element of a reductant delivery system for a lean exhaust gas aftertreatment device coupled downstream of an internal combustion engine is presented. The method teaches achieving a desired temperature of a heating element by selecting a control signal to the heating element from a predetermined temperature map based on engine operating conditions, such as exhaust gas temperature, engine speed, load, etc. Therefore, durability of the heating element and its power consumption are improved by, for example, controlling its temperature to prevent overheating, and having the ability to turn the heating element off when the exhaust gas temperatures are sufficiently high.

Description

    FIELD OF INVENTION
  • The present invention relates to a system and a method for improving performance of an exhaust gas aftertreatment device and, more particularly, to using an air assist heated reductant delivery system to enhance system performance and reduce fuel penalty. [0001]
  • BACKGROUND OF THE INVENTION
  • Current emission control regulations necessitate the use of catalysts in the exhaust systems of automotive vehicles in order to convert carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) produced during engine operation into harmless exhaust gasses. Vehicles equipped with diesel or lean gasoline engines offer the benefits of increased fuel economy. Such vehicles have to be equipped with lean exhaust aftertreatment devices, such as, for example, Active Lean NOx Catalysts (ALNC), which are capable of continuously reducing NOx emissions, even in an oxygen rich environment. In order to maximize NOx reduction in the ALNC, a hydrocarbon-based reductant, such as fuel (HC), has to be added to the exhaust gas entering the device. However, introducing fuel as a reductant reduces overall vehicle fuel economy. Therefore, in order to achieve high levels of NOx conversion in the ALNC while concurrently minimizing the fuel penalty, it is important to optimize usage of injected reductant. [0002]
  • In this regard, it is known that improved NOx conversion can be achieved by introducing the reductant in vapor rather than liquid form. Introducing the reductant in vapor form allows better distribution and mixing of the reductant with the exhaust gas entering the NOx reduction device. [0003]
  • One such system is described in U.S. Pat. No. 5,771,689, wherein a reductant is introduced into the exhaust system via an evaporator device that has a hollow body with a heating element protruding into its interior. The evaporator device protrudes into the wall of the exhaust pipe upstream of the catalyst. The reductant is introduced so that it flows through the narrow space between the hollow body and the heating element until it reaches the tip of the heating element from where it enters the exhaust pipe in vapor form and mixes with the exhaust gas entering the catalyst. [0004]
  • The inventors herein have recognized several disadvantages with this approach. Namely, if delivery of the reductant has been shut off, or reduced, as dictated by the operating conditions, some reductant may remain in the annular space, in contact with the heating element, and may therefore clog up the annular opening around the heating device by carbonation of the residual fuel. Such carbon build up may lead to a blockage of the passage at the tip by which the vaporized fuel enters the exhaust stream. Further, there is a delay in introducing the reductant into the exhaust gas stream due to the time it takes for the reductant to travel down the length of the heating element. Additionally, durability of the heating element is reduced because its temperature is not controlled and adjusted based on operating conditions, and due to soot contamination. Yet another disadvantage of the prior art approach is that extra power is consumed due to the above-mentioned lack of temperature control. [0005]
  • SUMMARY OF THE INVENTION
  • The present invention teaches a system and a method for introducing evaporated reductant into an exhaust gas stream entering a lean exhaust gas aftertreatment device while eliminating the above-mentioned disadvantages of the prior art approaches. [0006]
  • In accordance with the present invention, a reductant delivery system includes: an evaporator unit including at least a heating element; a mixing device having at least one inlet and at least one outlet, said outlet coupled to said evaporator unit; and a controller for introducing reductant and air into said mixing device through said inlet, injecting a mixture of said reductant and said air through said outlet into said evaporator unit, said controller adjusting a temperature of said heating device to evaporate said mixture. [0007]
  • In another aspect of the present invention, a method for operating a reductant delivery system for an exhaust gas aftertreatment device, the system including at least a heating element, includes: operating in a first mode where a reductant and air mixture is injected into the reductant delivery system and the heating element is turned on; and operating in a second mode where said reductant and air mixture is injected into the reductant delivery system, and the heating element is turned off. [0008]
  • The present invention provides a number of advantages. In particular, creating a mixture of reductant and air improves the exhaust gas aftertreatment device efficiency, due to the enhanced mixing of the reductant with the bulk exhaust flow and improved catalytic action relative to the use of liquid phase reductant. Additionally, mixing reductant with air breaks up the reductant in small particles, thus resulting in faster evaporation process. Additionally, injecting air into the vaporizer unit prevents lacquering and soot deposits on the surface of the heating element. Further, the inventors have recognized that dynamically controlling the temperature of the heating element to take advantage of the heat supplied by the exhaust gasses prevents overheating, improves the heating element durability and reduces power consumption. [0009]
  • Yet another advantage of the present invention is that the heating element temperature can be controlled to ignite the injected reductant and air mixture, and thus produce carbon monoxide (CO), which further improves NOx reduction in the ALNC. [0010]
  • It is a further advantage of this invention that CO generation is increased (and thus NOx conversion efficiency increased) by placing an oxidizing catalyst in the path of the reductant and air mixture prior to its mixing with the exhaust gasses. [0011]
  • The above advantages and other advantages, objects and features of the present invention will be readily apparent from the following detailed description of the preferred embodiments when taken in connection with the accompanying drawings.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objects and advantages described herein will be more fully understood by reading an example of an embodiment in which the invention is used to advantage, referred to herein as the Description of Preferred Embodiment, with reference to the drawings, wherein: [0013]
  • FIGS. 1A and 1B are schematic diagrams of an engine wherein the invention is used to advantage; [0014]
  • FIG. 2 is a an example of one embodiment of an emission control system wherein the present invention is used to advantage; [0015]
  • FIGS. 3A, 3B and [0016] 3C are examples of reductant delivery systems in accordance with the present invention;
  • FIG. 4 is a high level flowchart of an exemplary routine for controlling a temperature of the heating element of the reductant delivery system in accordance with the present invention; [0017]
  • FIGS. 5 and 6 describe an exemplary routine and a modification curve for determining an amount of reductant to be delivered to the exhaust gas aftertreatment device in accordance with the present invention.[0018]
  • DESCRIPTION OF PREFERRED EMBODIMENT(S)
  • [0019] Internal combustion engine 10, comprising a plurality of cylinders, one cylinder of which is shown in FIG. 1, is controlled by electronic engine controller 12. Engine 10 includes combustion chamber 30 and cylinder walls 32 with piston 36 positioned therein and connected to crankshaft 40. Combustion chamber 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valve 52 and exhaust valve 54. Intake manifold 44 is also shown having fuel injector 80 coupled thereto for delivering liquid fuel in proportion to the pulse width of signal FPW from controller 12. Both fuel quantity, controlled by signal FPW and injection timing are adjustable. Fuel is delivered to fuel injector 80 by a fuel system (not shown) including a fuel tank, fuel pump, and fuel rail (not shown).
  • [0020] Controller 12 is shown in FIG. 1 as a conventional microcomputer including: microprocessor unit 102, input/output ports 104, read-only memory 106, random access memory 108, and a conventional data bus. Controller 12 is shown receiving various signals from sensors coupled to engine 10, in addition to those signals previously discussed, including: engine coolant temperature (ECT) from temperature sensor 112 coupled to cooling sleeve 114; a measurement of manifold pressure (MAP) from pressure sensor 116 coupled to intake manifold 44; a measurement (AT) of manifold temperature from temperature sensor 117; an engine speed signal (RPM) from engine speed sensor 118 coupled to crankshaft 40.
  • An [0021] emission control system 20, coupled to an exhaust manifold 48, is described in detail in FIG. 2 below.
  • Referring now to FIG. 1B, an alternative embodiment is shown where [0022] engine 10 is a direct injection engine with injector 80 located to inject fuel directly into cylinder 30.
  • Referring now to FIG. 2, an example of an emission control system in accordance with the present invention is described. [0023] Emission control system 20 is coupled downstream of an internal combustion engine 10 described with particular reference in FIG. 1. Catalyst 14 is an Active Lean NOx Catalyst (ALNC) capable of reducing NOx in an oxygen rich environment. Oxidation catalyst 13 is coupled upstream of the ALNC and may be a precious metal catalyst, preferably one containing platinum. The oxidation catalyst exothermically combusts hydrocarbons (HC) in the incoming exhaust gas from the engine thus supplying heat to rapidly warm up the Active Lean NOx Catalyst (ALNC) 14. Additionally, carbon monoxide (CO) produced as a result of HC combustion in the oxidation catalyst 13 improves NOx reduction in the ALNC. Particulate filter 15 is coupled downstream of the ALNC and is capable of storing carbon particles from the exhaust.
  • A [0024] reductant delivery system 16 is coupled to the exhaust gas manifold between the oxidation catalyst and the ALNC. Alternative embodiments of the reductant delivery system are described later herein with particular reference to FIGS. 3A-3C.
  • The diagram of FIG. 3A generally represents an example of one embodiment of a reductant delivery system according to the present invention. The system comprises an [0025] evaporator unit 21 housing an elongated heating element 22. In this example, the heating element is an electrically heated cylindrically shaped heating element. Alternatively, the heating element could be rectangular shaped to increase its surface contact area with the injected reductant and air mixture.
  • In yet another alternative embodiment, an oxidizing catalytic coating may be added to the evaporator unit such as, for example, a coating on the inner surface of the heating element housing and a catalytic cap at the point where the evaporated reductant and air mixture enters the exhaust gas manifold, to facilitate CO generation. The catalytic coating may be a precious metal coating, preferably one containing Platinum or Palladium. [0026] Controller 12 controls the temperature of the heating element by providing a PWM signal of varying duty cycles. The duty cycle of the PWM control signal to the heating element is determined from a prestored table based on operating conditions to achieve desired heating element temperature. The mixing unit 23 has a reductant inlet and an air inlet and an outlet 24 coupled to the evaporator unit 21 through which a mixture of reductant and air is injected into the housing and subsequently comes into contact with the surface of the heating element 22.
  • In an alternative embodiment (not shown), both air and reductant can be injected through a single input. The reductant can be supplied to the mixing [0027] unit 23 from the fuel tank or from a storage vessel. Air pump 25 supplies pressurized air to the mixing unit 23 thereby creating a mixture of reductant and air. The outlet 24 is configured so that it delivers the reductant and air mixture to a specific area on the surface of the heating element. Alternatively, outlet 24 could be configured to deliver the reductant and air mixture to more than one area on the surface of the heating element. The controller 12 can selectively enable and disable injection of the mixture to these areas depending on operating conditions such as engine speed, load, exhaust gas temperature, etc. For example, when the amount of reductant required is high, such as at high load conditions, it may be necessary to enable delivery of the reductant and air mixture to more than one area on the surface of the heating element.
  • FIG. 3B shows an alternate design for the heating element housing. As can be seen in the drawing, the heating element is surrounded by a delivery tube the inner diameter of which is wide enough to allow the heating element to be housed. The delivery tube has a narrow channel drilled into it, which serves as a passage for the air and reductant mixture. The air and reductant mixture is injected into the narrow channel and is rapidly vaporized by the heat provided by the enclosed heating element without coming into direct contact with its surface. In this embodiment, the durability of the heating element is further improved since the reductant and air mixture never comes into direct contact its surface. The delivery tube has one or more holes at its tip through which the evaporated reductant and air mixture enters the exhaust gas manifold. [0028]
  • FIG. 3C shows an alternative embodiment of the heating element housing shown in FIG. 3B wherein a porous oxidizing catalytic plug, preferably one containing Platinum or Palladium, is placed at the tip of the delivery tube to facilitate conversion of the vaporized hydrocarbons to carbon monoxide. Additionally, one or more ports may be drilled into the delivery tube along its length and plugged up with porous oxidizing catalytic material to further facilitate conversion of hydrocarbons into carbon monoxide. [0029]
  • Therefore, according to the present invention, an improved reductant delivery system and method are presented. Mixing reductant with air causes the reductant to be well distributed inside the reductant delivery system and thus speeds up the vaporization process. Also, system durability is improved by reducing lacquering and soot deposits through better distribution of the reductant and faster evaporation process. The system performance is further improved through the addition of an oxidizing catalytic coating. [0030]
  • As will be appreciated by one of ordinary skill in the art, the routines described in FIGS. 4 and 5 below may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various steps or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases, omitted. Likewise, the order of processing is not necessarily required to achieve the objects, features and advantages of the invention, but is provided for ease of illustration and description. Although not explicitly illustrated, one of ordinary skill in the art will recognize that one or more of the illustrated steps or functions may be repeatedly performed depending on the particular strategy being used. [0031]
  • Referring now to FIG. 4, an exemplary routine for controlling the temperature of the heating element of the reductant delivery system in accordance with the present invention is described. First, in [0032] step 100, desired heating element temperature, Tdes, is determined. This determination is based on what function the reductant evaporator system is performing such as whether the mixture is to be evaporated or combusted. Next, the routine proceeds to step 200 wherein operating conditions known to have an effect on the heating element temperature, such as the exhaust gas temperature upstream of the ALNC, are evaluated. The exhaust gas temperature can be determined from a temperature sensor coupled in the exhaust gas manifold, or estimated based on parameters such as engine speed, load, engine temperature, ignition timing, etc. Next, in step 300, optimal duty cycle to achieve desired heating element temperature is determined from a prestored experimentally determined temperature map of the heating element based on operating conditions such as the exhaust gas temperature in this example. The routine then proceeds to step 400 wherein the duty cycle of the heating element control signal is adjusted to achieve desired heating element temperature. The routine then exits.
  • Therefore, by generating a map of the heating element temperature based on operating conditions, such as the exhaust gas temperature, or any parameter known to affect the temperature of the heated element, it is possible to dynamically control the temperature of the heated element to achieve optimal reductant and air mixture delivery while minimizing power consumption and preventing overheating of the heating element. In other words, it is possible to take advantage of the heat provided by the exhaust gas passing through the reductant delivery system when controlling the temperature of the heating element. For example, higher exhaust gas temperature result in less power requirements, while lower exhaust gas temperatures result in higher power requirements. It is also possible to completely turn off power supply when the exhaust gas temperature is high enough to keep the heating element at desired temperature such as at high engine load conditions. [0033]
  • Referring now to FIG. 5, an exemplary routine for controlling injection of a reductant into exhaust flow using a reductant vaporizer system as described in FIG. 3A is presented. First, in [0034] step 500, the amount of NOx in the exhaust gas mixture entering the device, NOxfg, is estimated based on engine operating conditions. These conditions may include engine speed, engine load, exhaust temperatures, exhaust gas aftertreatment device temperatures, injection timing, engine temperature, and any other parameter know to those skilled in the art to indicate the amount of NOx produced by the combustion presses. Alternatively, a NOx sensor may be used to measure the amount of NOx in the exhaust gas mixture. Next, in step 600, the steady-state reductant injection amount, RAinj 1, is calculated based on the following equation: ( RA fg + RA inj_ 1 ) NOx fg = R des
    Figure US20040098976A1-20040527-M00001
  • wherein RA[0035] fg is the amount of reductant in the exhaust gas mixture entering the device, which can be determined based on engine operating conditions. This initial reductant amount, RAinj 1, is evaluated at steady state and yields a base reductant quantity to be injected for each engine speed and load point. The amount is calibrated to achieve a certain feedgas reductant to NOx ratio, Rdes. The ratio is typically obtained as a trade-off between NOx conversion and the fuel penalty due to reductant injection, and in this example is set at approximately 10. Next, in step 700, the steady-state base reductant injection amount, RAinj 1, is modified to account for engine operating conditions, such as engine coolant temperature, Tc, exhaust gas temperature, Teg, EGR valve position, EGRpos, start of injection, SOI, and other parameters:
  • RA inj 2 =RA inj 1 ·f 1(T cf 2(T egf 3(SoIf 4(EGR pos)
  • The routine then proceeds to step [0036] 800 wherein the instantaneous change in the pedal position is computed as follows: pps_diff ( t ) = ( pps ( t ) - pps ( t - 1 ) ) T s
    Figure US20040098976A1-20040527-M00002
  • where T[0037] B is the sampling rate, and pps(t) denotes the pedal position at time t. Next, in step 900, a low pass filter is applied to smooth out the noise:
  • pps diff lp(t)=(1−k fpps diff lp(t−1)+k f ·pps diff(t−1)
  • where k[0038] f controls the rate of filtering. The routine then proceeds to step 1000 wherein the reductant amount is further modified to account for engine transient behaviors as represented by the changes in the pedal position:
  • RA inj 3 =RA inj 2 ·f 5(pps diff p)
  • where function f[0039] 5 is shaped to allow overinjection of reductant during pedal position tip-in and underinjection of reductant during pedal position tip-out. In an alternative embodiment, instead of pedal position, engine speed or fuel demand sensor, or any other parameter known to those skilled in the art to provide a measure of engine transient behavior may be used to obtain RAinj 3 Next, in step 1100, the desired temperature of the heating element is obtained as described with particular reference to FIG. 4, thus achieving optimum temperature for reductant and air mixture evaporation. The routine then proceeds to step 1200 wherein the areas on the surface of the heating element to which a reductant and air mixture is injected are selected basedlon operating conditions. These areas are selected from a prestored map based on such parameters as the amount of reductant to be delivered, engine load, speed, exhaust gas temperature, catalyst temperature, throttle position, etc. For example, at high engine loads it may be desirable to inject the reductant and air mixture faster than at low engine loads, and delivery to more than one area will therefore be enabled. The routine then exits. An example of f5 is shown with particular reference to FIG. 6.
  • Therefore, according to the present invention, in order to achieve more efficient exhaust aftertreatment device performance, the amount of reductant to be injected should be adjusted to account for increases and decreases in the amount of NOx in the exhaust gas entering the device. This can be accomplished by continuously monitoring engine parameters that are capable of providing a measure of engine transient behaviors, such as a pedal position sensor, and continuously adjusting the amount of reductant to be injected as a function of filtered instantaneous changes in these parameters. Since NOx production typically increases at tip-in and decreases at tip-out, the result of such operation would be to increase the base injected amount in the former case, and decrease the base injected amount in the latter case. Further, using a reductant vaporizer unit ensures fast system response, more efficient system operation, better emission control, and improved fuel economy. [0040]
  • This concludes the description of the invention. The reading of it by those skilled in the art would bring to mind many alterations and modifications without departing from the spirit and the scope of the invention. Accordingly, it is intended that the scope of the invention is defined by the following claims: [0041]

Claims (32)

1. A reductant delivery system, comprising:
an evaporator unit including at least a heating device;
a mixing device having at least one inlet and at least one outlet coupled to said evaporator unit; and
a controller for introducing reductant and air into said mixing device through said inlet, injecting a mixture of said reductant and said air through said outlet into said evaporator unit, said controller adjusting a temperature of said heating device to evaporate said mixture.
2. The system as set forth in claim 1 wherein said reductant is urea.
3. The system as set forth in claim 1 wherein said reductant is hydrocarbon.
4. The system as set forth in claim 1 wherein said reductant delivery system further comprises a container for housing said injected reductant and air mixture, wherein said reductant and air mixture evaporates inside said container without coming in direct contact with a surface of said heating element.
5. The system as set forth in claim 1 wherein said heating device is an electrically heated elongated heater plug.
6. The system as set forth in claim 5 wherein said heater plug is cylindrically shaped.
7. The system as set forth in claim 5 wherein said heater plug is rectangular in shape.
8. The system as set forth in claim 2 wherein said evaporator unit further comprises a hydrolyzing catalyst.
9. The system as set forth in claim 3 wherein said evaporator unit further comprises an oxidation catalyst.
10. The system as set forth in claim 1 wherein said controller supplies a pulse-width modulated signal of a predetermined duty cycle to adjust said heating device temperature.
11. The system as set forth in claim 10 wherein said controller turns off power to said heating device when said heating device temperature is above a predetermined temperature.
12. A method for controlling a temperature of a heating element of a reductant delivery system for an exhaust gas aftertreatment device, the device coupled downstream of an internal combustion engine, the method comprising:
estimating operating conditions; and
adjusting the temperature of the heating element based on said operating conditions.
13. The method as set forth in claim 12 wherein said operating conditions are engine operating conditions.
14. The method as set forth in claim 12 wherein said engine operating conditions comprise at least engine speed.
15. The method as set forth in claim 12 wherein said operating conditions comprise at least an exhaust gas mixture temperature.
16. The method as set forth in claim 12 wherein said operating conditions comprise at least engine load.
17. The method as set forth in claim 12 wherein said engine is a diesel engine.
18. The method as set forth in claim 17 wherein the exhaust gas aftertreatment device is an ALNC.
19. The method as set forth in claim 17 wherein the exhaust gas aftertreatment device is an SCR catalyst.
20. A method for operating a reductant delivery system for an exhaust gas aftertreatment device, the system including at least a heating element, the method comprising:
operating in a first mode where a reductant and air mixture is injected into the reductant delivery system and the heating element is turned on; and
operating in a second mode where said reductant and air mixture is injected into the reductant delivery system, and the heating element is turned off.
21. The method as set forth in claim 20 wherein said reductant is urea.
22. The method as set forth in claim 21 wherein the exhaust gas aftertreatment device is an SCR catalyst.
23. The method as set forth in claim 20 wherein said reductant is hydrocarbon.
24. The method as set forth in claim 23 wherein the exhaust gas aftertreatment device is an ALNC.
25. The method as set forth in claim 20 wherein the heating element is turned off when a temperature of the exhaust gas aftertreatment device is above a predetermined threshold.
26. A method for controlling a reductant delivery system for an exhaust gas aftertreatment device coupled downstream of an internal combustion engine exhaust, comprising:
injecting a mixture of reductant and air into the reductant delivery system;
adjusting a temperature of a heating element housed inside the reductant delivery system thereby causing said mixture to evaporate; and
introducing said evaporated mixture into the exhaust gas aftertreatment device.
27. The method as set forth in claim 26 wherein the engine is a diesel engine.
28. The method as set forth in claim 27 wherein the exhaust gas aftertreatment device is an ALNC.
29. The method as set forth in claim 28 wherein said mixture of reductant and air is a mixture of hydrocarbon and air.
30. The method as set forth in claim 27 wherein the exhaust gas aftertreatment device is an SCR catalyst.
31. The method as set forth in claim 30 wherein said mixture of reductant and air is a mixture of urea and air.
32. A method for operating a reductant delivery system for an exhaust gas aftertreatment device coupled downstream of an internal combustion engine, the system including at least a heating element, the method comprising:
operating the system in a first mode by injecting a reductant and air mixture into the system and adjusting a temperature of said heating element to evaporate said reductant and air mixture; and
operating the system in a second mode by injecting said reductant and air mixture into the system, and adjusting said temperature of said heating element to combust said reductant and air mixture.
US10/301,361 2002-11-21 2002-11-21 Diesel aftertreatment systems Abandoned US20040098976A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/301,361 US20040098976A1 (en) 2002-11-21 2002-11-21 Diesel aftertreatment systems
DE10347134A DE10347134A1 (en) 2002-11-21 2003-10-10 Diesel exhaust aftertreatment systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/301,361 US20040098976A1 (en) 2002-11-21 2002-11-21 Diesel aftertreatment systems

Publications (1)

Publication Number Publication Date
US20040098976A1 true US20040098976A1 (en) 2004-05-27

Family

ID=32312170

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/301,361 Abandoned US20040098976A1 (en) 2002-11-21 2002-11-21 Diesel aftertreatment systems

Country Status (2)

Country Link
US (1) US20040098976A1 (en)
DE (1) DE10347134A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066452A1 (en) * 2006-09-18 2008-03-20 Christopher Oberski Engine-Off Ammonia Vapor Management System and Method
US20080223021A1 (en) * 2007-03-15 2008-09-18 Furqan Shaikh Ammonia vapor management system and method
US20090140068A1 (en) * 2005-09-20 2009-06-04 Marco Ranalli Injection Nozzle Having Heating Element And Heat Accumulator And Method For Introducing An Oxidizable Fluid Into An Exhaust System Upstream Of A Catalytic Converter Or Filter
WO2010148237A3 (en) * 2009-06-18 2011-03-31 Cummins Ip, Inc. Apparatus, system, and method for reductant line heating control
US20140248042A1 (en) * 2013-03-04 2014-09-04 Faurecia Emissions Control Technologies, Germany Gmbh Vaporizer
JP2015140792A (en) * 2014-01-30 2015-08-03 株式会社デンソー reducing agent addition device
WO2015158948A1 (en) * 2014-04-17 2015-10-22 Wärtsilä Finland Oy System and method of catalyst frost protection of selective catalytic reduction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260353B1 (en) * 1998-07-10 2001-07-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha NOx reduction system for combustion exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260353B1 (en) * 1998-07-10 2001-07-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha NOx reduction system for combustion exhaust gas

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090140068A1 (en) * 2005-09-20 2009-06-04 Marco Ranalli Injection Nozzle Having Heating Element And Heat Accumulator And Method For Introducing An Oxidizable Fluid Into An Exhaust System Upstream Of A Catalytic Converter Or Filter
US20080066452A1 (en) * 2006-09-18 2008-03-20 Christopher Oberski Engine-Off Ammonia Vapor Management System and Method
US8209961B2 (en) 2006-09-18 2012-07-03 Ford Global Technologies, Llc Engine-off ammonia vapor management system and method
US7726118B2 (en) * 2006-09-18 2010-06-01 Ford Global Technologies, Llc Engine-off ammonia vapor management system and method
US20100236219A1 (en) * 2006-09-18 2010-09-23 Ford Global Technologies, Llc Engine-off ammonia vapor management system and method
US20110232611A1 (en) * 2007-03-15 2011-09-29 Ford Global Technologies, Llc Ammonia vapor management system and method
US7954311B2 (en) 2007-03-15 2011-06-07 Ford Global Technologies, Llc Ammonia vapor management system and method
US20080223021A1 (en) * 2007-03-15 2008-09-18 Furqan Shaikh Ammonia vapor management system and method
US8621848B2 (en) 2007-03-15 2014-01-07 Ford Global Technologies, Llc Ammonia vapor management system and method
US20110083621A1 (en) * 2009-06-18 2011-04-14 Cummins Ip, Inc. Apparatus, System, and Method for Reductant Line Heating Control
WO2010148237A3 (en) * 2009-06-18 2011-03-31 Cummins Ip, Inc. Apparatus, system, and method for reductant line heating control
US8561392B2 (en) 2009-06-18 2013-10-22 Cummins Ip, Inc. Apparatus, system, and method for reductant line heating control
US20140248042A1 (en) * 2013-03-04 2014-09-04 Faurecia Emissions Control Technologies, Germany Gmbh Vaporizer
US9624800B2 (en) * 2013-03-04 2017-04-18 Faurecia Emissions Control Technologies, Germany, GmbH Vaporizer
JP2015140792A (en) * 2014-01-30 2015-08-03 株式会社デンソー reducing agent addition device
WO2015158948A1 (en) * 2014-04-17 2015-10-22 Wärtsilä Finland Oy System and method of catalyst frost protection of selective catalytic reduction
KR20160146848A (en) * 2014-04-17 2016-12-21 바르실라 핀랜드 오이 System and method of catalyst frost protection of selective catalytic reduction
CN106460604A (en) * 2014-04-17 2017-02-22 瓦锡兰芬兰有限公司 System and method of catalyst frost protection of selective catalytic reduction
KR101856895B1 (en) * 2014-04-17 2018-06-19 바르실라 핀랜드 오이 System and method of catalyst frost protection of selective catalytic reduction

Also Published As

Publication number Publication date
DE10347134A1 (en) 2004-06-09

Similar Documents

Publication Publication Date Title
US6834498B2 (en) Diesel aftertreatment systems
US6895747B2 (en) Diesel aftertreatment systems
US6823663B2 (en) Exhaust gas aftertreatment systems
US6928806B2 (en) Exhaust gas aftertreatment systems
US6892530B2 (en) Exhaust gas aftertreatment systems
US7475535B2 (en) Diesel aftertreatment systems
US6167698B1 (en) Exhaust gas purification system for a lean burn engine
EP1431533B1 (en) Emissions control system for increasing selective catalytic reduction efficiency
US5606856A (en) Arrangement for an after treatment of exhaust gases from an internal combustion engine
JP2004514829A (en) Apparatus and method for post-treating exhaust gas
US6862879B2 (en) Diesel aftertreatment system
US10408103B1 (en) Method to power multiple electric heaters with a single power source
US20130064744A1 (en) Heated injection system for diesel engine exhaust systems
US20050066652A1 (en) Diesel aftertreatment systems
RU152002U1 (en) EMISSION TOXICITY REDUCTION DEVICE
EP2447494B1 (en) Exhaust emission control device for internal combustion engine
US20040098976A1 (en) Diesel aftertreatment systems
JP3855444B2 (en) Reducing agent supply device for internal combustion engine
US11047286B2 (en) Exhaust gas control apparatus for internal combustion engine
KR20130137502A (en) Purifier for exhaust gas and controling method thereof
Son et al. A study on the practicability of a secondary air injection for emission reduction
JPH0777032A (en) Exhaust purifier for diesel engine
JP2007192148A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORD MOTOR COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN NIEUWSTADT, MICHIEL J.;UPADHYAY, DEVESH;GOEBELBECKER, MICHAEL;AND OTHERS;REEL/FRAME:013560/0978

Effective date: 20021106

Owner name: FORD GLOBAL TECHNOLOGIES, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD MOTOR COMPANY A DELAWARE CORPORATION;REEL/FRAME:013554/0455

Effective date: 20021107

AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: MERGER;ASSIGNOR:FORD GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:013987/0838

Effective date: 20030301

Owner name: FORD GLOBAL TECHNOLOGIES, LLC,MICHIGAN

Free format text: MERGER;ASSIGNOR:FORD GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:013987/0838

Effective date: 20030301

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION