US20040107635A1 - Anti-static additive compositions for hydrocarbon fuels - Google Patents

Anti-static additive compositions for hydrocarbon fuels Download PDF

Info

Publication number
US20040107635A1
US20040107635A1 US10/310,427 US31042702A US2004107635A1 US 20040107635 A1 US20040107635 A1 US 20040107635A1 US 31042702 A US31042702 A US 31042702A US 2004107635 A1 US2004107635 A1 US 2004107635A1
Authority
US
United States
Prior art keywords
composition
monomer
copolymer
vinyl monomer
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/310,427
Inventor
Cyrus Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Octel America Inc
Original Assignee
Octel America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Octel America Inc filed Critical Octel America Inc
Priority to US10/310,427 priority Critical patent/US20040107635A1/en
Assigned to OCTEL AMERICA, INC. reassignment OCTEL AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENRY, JR., CYRUS PERSHING
Publication of US20040107635A1 publication Critical patent/US20040107635A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2462Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
    • C10L1/2475Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds

Definitions

  • the present invention relates to methods and compositions for increasing hydrocarbon conductivity, and more particularly relates, in one embodiment, to blends of halogen-free alkylvinyl monomer and a cationic vinyl monomer copolymer compositions with polysulfone copolymers that increase the conductivity of liquid hydrocarbons, such as solvents and fuels, and thereby control the build-up of potentially hazardous static charges in such liquids, and to methods of making and using such compositions.
  • electrostatic charges can be frictionally transferred between two dissimilar, nonconductive materials. When this occurs, the electrostatic charge thus created appears at the surfaces of the contacting materials. The magnitude of the generated charge is dependent upon the nature of and, more particularly, the respective conductivity of each material. In fact, electrostatic charging also occurs when a solid is mixed with a liquid and when water settles through a hydrocarbon solution. It is the latter situations that are of greatest interest to the petroleum industry, for when such charges are built up in or around flammable liquids, their eventual discharge can lead to incendiary sparking, and perhaps to a serious fire or explosion.
  • grounding and bonding are not sufficient to prevent electrostatic build-up in low conductivity, volatile organic liquids such as distillate fuels like diesel, gasoline, jet fuel, turbine fuels and kerosene.
  • grounding and bonding do not prevent static charge accumulation in relatively clean (i.e. contaminant free) light hydrocarbon oils such as organic solvents and cleaning fluids. This is because the conductivity of these organics is so low that a static charge moves very slowly through these liquids and can take a considerable time to reach the surface of a grounded, conductive container. Until this occurs, a high surface-voltage potential can be achieved which can create an incendiary spark, ignition or explosion can thus occur in an environment of air-hydrocarbon vapor.
  • halogen-containing compositions introduced into fuels have played a significant role in achieving anti-static properties in fuels. While these halogen-containing compositions are effective as anti-static agents, in certain situations, some halogen-containing hydrocarbon compounds have been linked to human and animal health risks as well as environmental degradation. Legislative enactments, including the 1990 amendment to “The Clean Air Act” in the United States, signal a trend away from the continued permissible use in some media of compositions containing halogens. Even where the use of halogen-containing compositions is still permitted, stringent regulations often govern the use, storage and, in particular, the disposal of and/or treatment of waste streams containing these compositions. Such factors call into question the continued practical and economic feasibility of anti-static agents containing halogens without regard to the media being treated.
  • compositions have necessarily contained as much as about 10% (by weight of active ingredients) sulfur in a form that increases or creates sulfur contamination of the fuels or other fluids upon their addition thereto.
  • Sulfur in various forms, such as sulfur dioxide, is known as an undesirable contaminant. Its undesirability is due to a variety of reasons, including the problems it causes in handling and its interference with, or undesirable side effects encountered in, the end uses of the sulfur-contaminated fluid. While the presence of sulfur in certain forms in certain fluids is acceptable, it is preferred to minimize the presence of sulfur.
  • U.S. Pat. No. 5,672,183 concerns a composition having increased electrical conductivity, comprising a liquid hydrocarbon and an anti-static amount of a hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer.
  • the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, and an average molecular weight of from about 800 to about 1,000,000.
  • T-3512 a product designated TOLAD 3512 (T-3512) which generally can be described as a copolymer of an alkylvinyl monomer and a cationic vinyl monomer. It is believed the T-3512 has been primarily used as an anti-static component in diesel fuel. Diesel fuel, like most fuels, is shipped through pipelines. These pipelines are “shared” with different fuels being shipped through a single pipeline in turn. Thus, it is feasible that if a pipeline has been operated such that a diesel fuel shipment containing T-3512 is followed by a fuel, such as an aviation fuel, containing STADIS® 450, a fuel composition including both has been achieved.
  • a fuel such as an aviation fuel, containing STADIS® 450
  • a composition having increased electrical conductivity which includes a) a liquid hydrocarbon; b) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer; and c) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide.
  • compositions and methods that provides improved anti-static properties for a variety of media; the provision of such composition and method that does not require the use of halogens in all situations; the provision of such composition and method that allows use of lower levels of sulfur, reduction of the use of sulfur in an environmentally unacceptable form; and the provision of such composition that may be produced with relatively low cost and waste.
  • FIG. 1 is a graphical description of the results of the Examples.
  • a blend of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer with at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide can provide a composition, which can increase the electrical conductivity of a hydrocarbon fluid that it is mixed with. While each of these components is known separately as an anti-static additive for hydrocarbon fuels, it has been discovered that better conductivity may be obtained with the blends, in some cases, than can be obtained with each copolymer separately. That is, a synergistic effect may be observed.
  • the use of a copolymer of an alkylvinyl monomer and a cationic vinyl monomer in the blend permits less of the polysulfone copolymer to be used.
  • the polysulfone copolymer is a relatively more expensive copolymer, and it contains sulfur. As noted, the proportion of sulfur dioxide is desired to be minimized. Further, the blends of this invention have an absence of halogen atoms.
  • hydrocarbon liquid and “hydrocarbon fluid” are synonymous and that these terms encompass conventional hydrocarbon fuels as well as oxygenated fuels (e.g. methanol, ethanol, etc.) and blends thereof. It is also expected that the compositions of the invention may find use as antistatic additives in fuels to be developed in the future.
  • the hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer is described in and may be made by the procedures of U.S. Pat. No. 5,672,183, the entirety of which is incorporated by reference herein.
  • the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, the copolymer having an average molecular weight of from about 800 to about 1,000,000.
  • the cationic vinyl monomer is a cationic quaternary ammonium vinyl monomer, and in a preferred embodiment is a cationic quaternary ammonium acrylate monomer or a cationic quaternary ammonium methacrylate monomer.
  • the hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide includes about 50 mol percent of units from sulfur dioxide, about 40 to 50 mol percent of units derived from one or more 1-alkenes each having from about 6 to 24 carbon atoms, and from about 0 to 10 mol percent of units derived from an olefinic compound having the formula ACH ⁇ CHB wherein A is a group having the formula —(C x H 2x )—COOH wherein x is from 0 to about 17, and B is hydrogen or carboxyl, with the proviso that when B is carboxyl, x is 0, and wherein A and B together can be a dicarboxylic anhydride group.
  • the molecular weight of the polysulfone copolymer may range from about 5,000 to about 500,000 such as from about 10,000 to about 500,000, in one non-limiting embodiment, and preferably from about 10,000 to about 100,000.
  • An optional component of the anti-static blend of this invention is a polymeric polyamine.
  • the polyamine is also an anti-static agent, and preferably has the formula
  • R9 is an aliphatic hydrocarbyl group of 8 to 24 carbon atoms
  • R10 is an alkylene group of 2 to 6 carbon atoms
  • R8 is R9, or an n-aliphatic hydrocarbyl alkylene group of the formula R9 NHR10,
  • a is an integer of 0 to 20
  • b is an integer of 0 to 20
  • c is an integer of 0 to 20
  • y is an integer of 1 to 2
  • An arylsulfonic acid may also be present, where the arylsulfonic acid forms a salt with and to neutralize the polyamine. This improved the resistance of the formulation to degradation, which is not desirable.
  • the polyamine and the sulfonic acid are described in U.S. Pat. No. 3,917,466, the disclosure of which is incorporated by reference herein. It is preferred that the polymeric polyamine be present as a salt, particularly a sulfonic acid salt, for improved resistance to degradation in storage.
  • At least two different polysulfone copolymers are employed in the blend. It is noted that a suitable composition including polysulfone and a quaternary ammonia salt are also described in U.S. Pat. No. 3,811,848, herein incorporated by reference.
  • the weight ratio of the copolymer of an alkylvinyl monomer and a cationic vinyl monomer to the polysulfone copolymer ranges from any functional level, to a preferred range being about 1:5 to about 2.5:1. More preferably the ratio of copolymer of alkyvinyl monomer and cationic vinyl monomer to polysulphone copolymer will be less than about 1:1.
  • the total amount of active additive required may be less than 2.0 mg/l, although concentrations of about 1.5 mg/l are considered to be adequate.
  • effective amounts range from about 0.6-1.2 mg/l. It is generally desirable to use lower values of concentration, primarily for economic reasons, but also to prevent additive interference with end uses of the treated liquid. Also, lower concentrations are less likely to cause the treated fuel to take up water, as can occur under some conditions when surface-active chemicals are present.
  • the method of increasing the conductivity of the fuel comprises the addition of one of the above compositions to the fuel or hydrocarbon solvent in a concentration effective to increase the conductivity of the fuel or solvent.
  • the compositions of this invention may be preformulated and added to the fuel or solvent all at once, or the various components can be added separately in any sequence. This method can be carried out efficiently with conventional blending and/or mixing equipment, which is widely available and used in the fuel industry.
  • This invention therefore achieves anti-static properties in fuels by using compositions that are inexpensive to manufacture, and for preferred embodiments, the constituents are readily available and inexpensive. Common processing equipment can be used, and if a halogen-free form is employed, the need for treatment of hazardous waste halogen-containing by products is eliminated. Normal combustion of fuel treated with preferred additive compositions of this invention is not adversely affected and does not produce hazardous products such as dioxin or other hazardous halogenated products. Moreover, the very low levels of sulfur in these anti-static compositions result in a product that is more environmentally acceptable than commercially available products containing higher levels of sulfur, particularly sulfur in more offensive forms.
  • Examples are prepared in which a jet fuel was treated with STADIS® 450, obtained from Octel Starreon.
  • the STADIS® 450 can be described as a composition of polysulphone+quaternary ammonium salt+amine/epichlorohydrin adduct dinonylnaphthylsulphonic acid.
  • STADIS® 450 was added to achieve a concentration of 0.50 mg/l.
  • TOLAD 3512 obtained from STADISBaker-Petrolite, can be generally described ascan be generally described as an alkylvinyl co-polymer.
  • TOLAD 3512 was added to the STADIS® 450 treated fuel in 0.1 mg/l increments and conductivity of the fuel measured.
  • the synergistic effect of combining the STADIS® 450 and TOLAD 3512 can be seen in the following table and in appended figure.
  • Fuel Sample Jet Fuel provided by Petro-Canada Oakville Refinery

Abstract

It has been discovered that less expensive, and in some cases synergistically effective anti-static additive blends may be added to hydrocarbon fuels to improve the conductivity thereof. The blend includes an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer and an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide. Optional ingredients include polymeric polyamines and aryl sulfonic acids.

Description

    FIELD OF THE INVENTION
  • The present invention relates to methods and compositions for increasing hydrocarbon conductivity, and more particularly relates, in one embodiment, to blends of halogen-free alkylvinyl monomer and a cationic vinyl monomer copolymer compositions with polysulfone copolymers that increase the conductivity of liquid hydrocarbons, such as solvents and fuels, and thereby control the build-up of potentially hazardous static charges in such liquids, and to methods of making and using such compositions. [0001]
  • BACKGROUND OF THE INVENTION
  • It is widely known that electrostatic charges can be frictionally transferred between two dissimilar, nonconductive materials. When this occurs, the electrostatic charge thus created appears at the surfaces of the contacting materials. The magnitude of the generated charge is dependent upon the nature of and, more particularly, the respective conductivity of each material. In fact, electrostatic charging also occurs when a solid is mixed with a liquid and when water settles through a hydrocarbon solution. It is the latter situations that are of greatest interest to the petroleum industry, for when such charges are built up in or around flammable liquids, their eventual discharge can lead to incendiary sparking, and perhaps to a serious fire or explosion. [0002]
  • While incendiary sparking is an ubiquitous problem in the petroleum industry, the potential for fire and explosion is probably at its greatest during product handling, transfer and transportation. For example, static charges are known to accumulate in solvents and fuels when they flow through piping, especially when these liquids flow through high surface area or “fine” filters and other process controls such as is common during tank truck filling. Countermeasures designed to prevent accumulation of electrostatic charges on a container being filled and to prevent sparks by conducting the container to ground can be employed, such as container grounding (i.e. “earthing”) and bonding. But it has been recognized that these measures are inadequate to deal successfully with all of the electrostatic hazards presented by hydrocarbon fuels. [0003]
  • Alone, grounding and bonding are not sufficient to prevent electrostatic build-up in low conductivity, volatile organic liquids such as distillate fuels like diesel, gasoline, jet fuel, turbine fuels and kerosene. Similarly, grounding and bonding do not prevent static charge accumulation in relatively clean (i.e. contaminant free) light hydrocarbon oils such as organic solvents and cleaning fluids. This is because the conductivity of these organics is so low that a static charge moves very slowly through these liquids and can take a considerable time to reach the surface of a grounded, conductive container. Until this occurs, a high surface-voltage potential can be achieved which can create an incendiary spark, ignition or explosion can thus occur in an environment of air-hydrocarbon vapor. [0004]
  • One can directly attack the source of the increased hazard presented by these low conductivity organic liquids by increasing the conductivity of the liquid with additives. The increased conductivity of the liquid will substantially reduce the time necessary for any charges that exist in the liquid to be conducted away by the grounded inside surface of the container. Various compositions are known for use as liquid hydrocarbon additives to increase the electrical conductivity of these liquids. For example, in U.S. Pat. Nos. 3,578,421; 3,677,724; 3,807,977; 3,811,848; and 3,917,466 there are described anti-static additives generally of the alpha-olefin-sulfone copolymer class. In U.S. Pat. No. 3,677,725 an anti-static additive of the alpha-olefin-maleic anhydride copolymer class is described. Anti-static amines and methyl vinyl ether-maleic anhydride copolymers are described in U.S. Pat. No. 3,578,421. Still further, anti-static aliphatic amines-fluorinated polyolefins are described in U.S. Pat. No. 3,652,238. Similarly, anti-static chromium salts and amine phosphates are disclosed in U.S. Pat. No. 3,758,283. And, in U.S. Pat. No. 4,333,741 there are disclosed olefin-acrylonitrile copolymers for use as anti-static additives in hydrocarbons. [0005]
  • In the past, halogen-containing compositions introduced into fuels have played a significant role in achieving anti-static properties in fuels. While these halogen-containing compositions are effective as anti-static agents, in certain situations, some halogen-containing hydrocarbon compounds have been linked to human and animal health risks as well as environmental degradation. Legislative enactments, including the 1990 amendment to “The Clean Air Act” in the United States, signal a trend away from the continued permissible use in some media of compositions containing halogens. Even where the use of halogen-containing compositions is still permitted, stringent regulations often govern the use, storage and, in particular, the disposal of and/or treatment of waste streams containing these compositions. Such factors call into question the continued practical and economic feasibility of anti-static agents containing halogens without regard to the media being treated. [0006]
  • Other prior art compositions have necessarily contained as much as about 10% (by weight of active ingredients) sulfur in a form that increases or creates sulfur contamination of the fuels or other fluids upon their addition thereto. Sulfur in various forms, such as sulfur dioxide, is known as an undesirable contaminant. Its undesirability is due to a variety of reasons, including the problems it causes in handling and its interference with, or undesirable side effects encountered in, the end uses of the sulfur-contaminated fluid. While the presence of sulfur in certain forms in certain fluids is acceptable, it is preferred to minimize the presence of sulfur. [0007]
  • U.S. Pat. No. 5,672,183 concerns a composition having increased electrical conductivity, comprising a liquid hydrocarbon and an anti-static amount of a hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer. The copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, and an average molecular weight of from about 800 to about 1,000,000. [0008]
  • Of course, in addition to the description of these materials in the patent literature, significant commercial examples exist. For example, Octel has been selling a range of anti-static additives under the trade name STADIS® for many years. Generally, the STADIS® products contain an alternating copolymer made from reacting 1-1-decene with SO[0009] 2. The alternating copolymer is not sold alone, but is formulated with other components. Typical other formulations are given below:
  • STADIS® 125 polysulphone+quaternary ammonium salt (see U.S. Pat. No. 3,811,848)
  • STADIS® 450 polysulphone+quaternary ammonium salt amine/epichlorhydrin adduct dinonylnaphthylsulphonic acid (see U.S. Pat. No. 3,917,466)
  • Similarly, Baker Hughes Incorporated sells a product designated TOLAD 3512 (T-3512) which generally can be described as a copolymer of an alkylvinyl monomer and a cationic vinyl monomer. It is believed the T-3512 has been primarily used as an anti-static component in diesel fuel. Diesel fuel, like most fuels, is shipped through pipelines. These pipelines are “shared” with different fuels being shipped through a single pipeline in turn. Thus, it is feasible that if a pipeline has been operated such that a diesel fuel shipment containing T-3512 is followed by a fuel, such as an aviation fuel, containing STADIS® 450, a fuel composition including both has been achieved. [0010]
  • However, notwithstanding the availability of STADIS® and TOLAD 3512 for many years, no information is available, that customers have intentionally formulating a fuel with better anti-static compounds. [0011]
  • A need has therefore clearly arisen for an effective, low cost anti-static agent that is useful with a wide variety of volatile hydrocarbon liquids. It is especially desirable in many situations that the agent be free of halogens. [0012]
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the present invention to provide a novel liquid hydrocarbon composition having increased electrical conductivity. [0013]
  • It is another object of the present invention to provide a method to effectively reduce accumulated static electrical charge on a surface of a liquid hydrocarbon. [0014]
  • In carrying out these and other objects of the invention, there is provided, in one form, a composition having increased electrical conductivity, which includes a) a liquid hydrocarbon; b) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer; and c) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide. [0015]
  • Among the several advantages found to be achieved by the present invention, therefore, may be noted the provision of a composition and method that provides improved anti-static properties for a variety of media; the provision of such composition and method that does not require the use of halogens in all situations; the provision of such composition and method that allows use of lower levels of sulfur, reduction of the use of sulfur in an environmentally unacceptable form; and the provision of such composition that may be produced with relatively low cost and waste.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graphical description of the results of the Examples.[0017]
  • DETAILED DESCRIPTION OF THE INVENTION
  • It has been discovered that a blend of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer with at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide can provide a composition, which can increase the electrical conductivity of a hydrocarbon fluid that it is mixed with. While each of these components is known separately as an anti-static additive for hydrocarbon fuels, it has been discovered that better conductivity may be obtained with the blends, in some cases, than can be obtained with each copolymer separately. That is, a synergistic effect may be observed. Further, the use of a copolymer of an alkylvinyl monomer and a cationic vinyl monomer in the blend permits less of the polysulfone copolymer to be used. The polysulfone copolymer is a relatively more expensive copolymer, and it contains sulfur. As noted, the proportion of sulfur dioxide is desired to be minimized. Further, the blends of this invention have an absence of halogen atoms. [0018]
  • Within the context of this invention, it should be understood that the terms “hydrocarbon liquid” and “hydrocarbon fluid” are synonymous and that these terms encompass conventional hydrocarbon fuels as well as oxygenated fuels (e.g. methanol, ethanol, etc.) and blends thereof. It is also expected that the compositions of the invention may find use as antistatic additives in fuels to be developed in the future. [0019]
  • The hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer is described in and may be made by the procedures of U.S. Pat. No. 5,672,183, the entirety of which is incorporated by reference herein. In a preferred embodiment, the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, the copolymer having an average molecular weight of from about 800 to about 1,000,000. In another embodiment, the cationic vinyl monomer is a cationic quaternary ammonium vinyl monomer, and in a preferred embodiment is a cationic quaternary ammonium acrylate monomer or a cationic quaternary ammonium methacrylate monomer. [0020]
  • In a preferred embodiment, the hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide includes about 50 mol percent of units from sulfur dioxide, about 40 to 50 mol percent of units derived from one or more 1-alkenes each having from about 6 to 24 carbon atoms, and from about 0 to 10 mol percent of units derived from an olefinic compound having the formula ACH═CHB wherein A is a group having the formula —(C[0021] xH2x)—COOH wherein x is from 0 to about 17, and B is hydrogen or carboxyl, with the proviso that when B is carboxyl, x is 0, and wherein A and B together can be a dicarboxylic anhydride group. The molecular weight of the polysulfone copolymer may range from about 5,000 to about 500,000 such as from about 10,000 to about 500,000, in one non-limiting embodiment, and preferably from about 10,000 to about 100,000.
  • An optional component of the anti-static blend of this invention is a polymeric polyamine. The polyamine is also an anti-static agent, and preferably has the formula [0022]
    Figure US20040107635A1-20040610-C00001
  • where [0023]
  • R9 is an aliphatic hydrocarbyl group of 8 to 24 carbon atoms, [0024]
  • R10 is an alkylene group of 2 to 6 carbon atoms, [0025]
  • R8 is R9, or an n-aliphatic hydrocarbyl alkylene group of the formula R9 NHR10, [0026]
  • a is an integer of 0 to 20, [0027]
  • b is an integer of 0 to 20, [0028]
  • c is an integer of 0 to 20, and [0029]
  • y is an integer of 1 to 2, [0030]
  • with the proviso that when R8 is R9 then a is an integer of 2 to 20 and b=c=0, and when R is R9 NH—R10 then a is 0 and b+c is an integer of 2 to 20. [0031]
  • An arylsulfonic acid may also be present, where the arylsulfonic acid forms a salt with and to neutralize the polyamine. This improved the resistance of the formulation to degradation, which is not desirable. The polyamine and the sulfonic acid are described in U.S. Pat. No. 3,917,466, the disclosure of which is incorporated by reference herein. It is preferred that the polymeric polyamine be present as a salt, particularly a sulfonic acid salt, for improved resistance to degradation in storage. [0032]
  • In one preferred embodiment of the invention, at least two different polysulfone copolymers are employed in the blend. It is noted that a suitable composition including polysulfone and a quaternary ammonia salt are also described in U.S. Pat. No. 3,811,848, herein incorporated by reference. [0033]
  • The weight ratio of the copolymer of an alkylvinyl monomer and a cationic vinyl monomer to the polysulfone copolymer ranges from any functional level, to a preferred range being about 1:5 to about 2.5:1. More preferably the ratio of copolymer of alkyvinyl monomer and cationic vinyl monomer to polysulphone copolymer will be less than about 1:1. [0034]
  • It will be appreciated that it is difficult to predict in advance what an effective amount of antistatic additive composition should be used in any particular hydrocarbon liquid since the effective amount would be dependent upon a number of interrelated factors including, but not necessarily limited to, the nature of the hydrocarbon liquid, the proportions and types of copolymers used in the antistatic additive composition, the effects of other additives in the liquid, etc. Nevertheless, to give a general, non-limiting indication of the expected effective ranges, the total amount of active additive required may be less than 2.0 mg/l, although concentrations of about 1.5 mg/l are considered to be adequate. Preferably, in some embodiments, effective amounts range from about 0.6-1.2 mg/l. It is generally desirable to use lower values of concentration, primarily for economic reasons, but also to prevent additive interference with end uses of the treated liquid. Also, lower concentrations are less likely to cause the treated fuel to take up water, as can occur under some conditions when surface-active chemicals are present. [0035]
  • The method of increasing the conductivity of the fuel comprises the addition of one of the above compositions to the fuel or hydrocarbon solvent in a concentration effective to increase the conductivity of the fuel or solvent. The compositions of this invention may be preformulated and added to the fuel or solvent all at once, or the various components can be added separately in any sequence. This method can be carried out efficiently with conventional blending and/or mixing equipment, which is widely available and used in the fuel industry. [0036]
  • This invention therefore achieves anti-static properties in fuels by using compositions that are inexpensive to manufacture, and for preferred embodiments, the constituents are readily available and inexpensive. Common processing equipment can be used, and if a halogen-free form is employed, the need for treatment of hazardous waste halogen-containing by products is eliminated. Normal combustion of fuel treated with preferred additive compositions of this invention is not adversely affected and does not produce hazardous products such as dioxin or other hazardous halogenated products. Moreover, the very low levels of sulfur in these anti-static compositions result in a product that is more environmentally acceptable than commercially available products containing higher levels of sulfur, particularly sulfur in more offensive forms. [0037]
  • The following examples describe preferred embodiments of the invention. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims, which follow the examples. For example, specific combinations of copolymers, other than those specifically tried, in other proportions or ratios or added in different ways, falling within the claimed parameters, but not specifically identified or tried in a particular composition to improve the polymerization inhibition herein, are anticipated to be within the scope of this invention. In the examples all percentages are given on a weight basis unless otherwise indicated. [0038]
  • EXAMPLES
  • Evaluation of the Effect of [0039] TOLAD 3512 on the Conductivity of a Jet Fuel Pre-Treated with STADIS® 450
  • Examples are prepared in which a jet fuel was treated with STADIS® 450, obtained from Octel Starreon. The STADIS® 450 can be described as a composition of polysulphone+quaternary ammonium salt+amine/epichlorohydrin adduct dinonylnaphthylsulphonic acid. STADIS® 450 was added to achieve a concentration of 0.50 mg/l. [0040] TOLAD 3512, obtained from STADISBaker-Petrolite, can be generally described ascan be generally described as an alkylvinyl co-polymer. TOLAD 3512 was added to the STADIS® 450 treated fuel in 0.1 mg/l increments and conductivity of the fuel measured. The synergistic effect of combining the STADIS® 450 and TOLAD 3512 can be seen in the following table and in appended figure.
  • Fuel Sample: Jet Fuel provided by Petro-Canada Oakville Refinery [0041]
  • Initial Fuel Conductivity: 0 pS/m [0042]
  • Conductivity of Jet Fuel with 0.50 mg/l of STADIS® 450: 196 pS/m [0043]
  • Conductivity of Jet Fuel with 0.50 mg/l of STADIS® 450 and 1.2 mg/l of TOLAD 3512: 589 pS/m [0044]
  • Conductivity Profile of Jet Fuel Sample Pre-Treated with 0.5 mg/l of STADIS® 450 [0045]
    Incremental Additions of Cumulative mg/l Added
    TOLAD 3512, mg/liter of TOLAD 3512 Conductivity, pS/m
    0 0 196
    0.1 0.1 237
    0.1 0.2 297
    0.1 0.3 340
    0.1 0.4 404
    0.1 0.5 418
    0.1 0.6 440
    0.1 0.7 483
    0.1 0.8 507
    0.1 0.9 532
    0.1 1 556
    0.1 1.1 572
    0.1 1.2 589
  • In view of the above, it will be seen that the several advantages of the invention are achieved and other advantageous results attained. [0046]
  • As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense. [0047]

Claims (19)

1. A composition having increased electrical conductivity, comprising
a) a liquid hydrocarbon;
b) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer; and
c) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide.
2. The composition of claim 1 further comprising d) a polyamine.
3. The composition of claim 2 further comprising e) an aryl sulfonic acid.
4. The composition of claim 1 further comprising an anti-static amount of at least two hydrocarbon soluble polysulfone copolymers, each of at least one olefin and sulfur dioxide.
5. The composition of claim 1 where the weight ratio of copolymer of an alkylvinyl monomer and a cationic vinyl monomer to polysulfone copolymer ranges from about 1:5 to about 2.5:1.
6. The composition of claim 1 wherein b) the cationic vinyl monomer is a cationic quaternary ammonium vinyl monomer.
7. The composition of claim 1 wherein b) the cationic vinyl monomer is selected from the group consisting of a cationic quaternary ammonium acrylate monomer and a cationic quaternary ammonium methacrylate monomer.
8. The composition of claim 1 further comprising a copolymer of an alkyl vinyl monomer and a nitrile-containing monomer.
9. A composition having increased electrical conductivity, comprising
a) a liquid hydrocarbon;
b) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, and
c) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide further comprising about 50 mol percent of units from sulfur dioxide, about 40 to 50 mol percent of units derived from one or more 1-alkenes each having from about 6 to 24 carbon atoms, and from about 0 to 10 mol percent of units derived from an olefinic compound having the formula ACH═CHB wherein A is a group having the formula —(CxH2x)—COOH wherein x is from 0 to about 17, and B is hydrogen or carboxyl, with the proviso that when B is carboxyl, x is 0, and wherein A and B together can be a dicarboxylic anhydride group
where the weight ratio of copolymer of an alkylvinyl monomer and a cationic vinyl monomer to polysulfone copolymer ranges from about 1:5 to about 2.5:1.
10. The composition of claim 9 further comprising d) a polyamine.
11. The composition of claim 9 further comprising e) an aryl sulfonic acid.
12. The composition of claim 9 where in b) the cationic vinyl monomer is a cationic quaternary ammonium vinyl monomer.
13. The composition of claim 9 where in b) the cationic vinyl monomer is selected from the group consisting of a cationic quaternary ammonium acrylate monomer and a cationic quaternary ammonium methacrylate monomer.
14. A composition for improving the anti-static property of a liquid hydrocarbon comprising:
a) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, and
b) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide.
15. The composition of claim 14 further comprising d) a polyamine.
16. The composition of claim 14 further comprising e) an aryl sulfonic acid.
17. The composition of claim 14 where the weight ratio of copolymer of an alkylvinyl monomer and a cationic vinyl monomer to polysulfone copolymer ranges from about 1:5 to about 2.5:1.
18. The composition of claim 14 further comprising a copolymer of an alkyl vinyl monomer and a nitrile-containing monomer.
19. A method for improving the anti-static property of a liquid hydrocarbon comprising:
a) providing a hydrocarbon fuel;
b) adding to the hydrocarbon fuel, in any order:
i) an anti-static amount of at least one hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, and
ii) an anti-static amount of at least one hydrocarbon soluble polysulfone copolymer of at least one olefin and sulfur dioxide.
US10/310,427 2002-12-05 2002-12-05 Anti-static additive compositions for hydrocarbon fuels Abandoned US20040107635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/310,427 US20040107635A1 (en) 2002-12-05 2002-12-05 Anti-static additive compositions for hydrocarbon fuels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/310,427 US20040107635A1 (en) 2002-12-05 2002-12-05 Anti-static additive compositions for hydrocarbon fuels

Publications (1)

Publication Number Publication Date
US20040107635A1 true US20040107635A1 (en) 2004-06-10

Family

ID=32468036

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/310,427 Abandoned US20040107635A1 (en) 2002-12-05 2002-12-05 Anti-static additive compositions for hydrocarbon fuels

Country Status (1)

Country Link
US (1) US20040107635A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050039384A1 (en) * 2003-07-03 2005-02-24 Gormley Fiona K. Fuel oil composition
US20080104883A1 (en) * 2006-10-20 2008-05-08 Claire Ansell Method of formulating a fuel composition
US20090077869A1 (en) * 2007-09-25 2009-03-26 Schwab Scott D Diesel fuel additive compositions for prolonged antistatic performance
US20100175315A1 (en) * 2007-07-20 2010-07-15 Innospec Limited Hydrocarbon compositions
US20130212931A1 (en) * 2012-02-16 2013-08-22 Baker Hughes Incorporated Biofuel having improved cold flow properties

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US433741A (en) * 1890-08-05 mckiearnan
US2853373A (en) * 1954-11-22 1958-09-23 Sun Oil Co Motor fuel
US3062230A (en) * 1959-05-27 1962-11-06 Koehler Aircraft Products Comp Fill valve
US3186810A (en) * 1962-03-09 1965-06-01 Du Pont Stabilized distillate fuel oils and additive compositions therefor
US3578421A (en) * 1968-07-26 1971-05-11 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US3578422A (en) * 1969-03-03 1971-05-11 Lubrizol Corp Emulsion resistant fuel compositions
US3652238A (en) * 1970-08-06 1972-03-28 Texaco Inc Antistatic fuel composition
US3677724A (en) * 1969-02-07 1972-07-18 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of amine derivatives of 1-olefin/maleic anhydride copolymers and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US3677725A (en) * 1970-02-04 1972-07-18 Mobil Oil Corp Liquid hydrocarbon compositions containing antistatic agents
US3758283A (en) * 1971-09-24 1973-09-11 Du Pont Conductivity additive for liquid hydrocarbons
US3807977A (en) * 1972-06-30 1974-04-30 Du Pont Antistatic additive compositions
US3811848A (en) * 1972-06-30 1974-05-21 Du Pont Antistatic additive compositions
US3820963A (en) * 1972-03-02 1974-06-28 Dow Chemical Co Modified turbine engine fuel
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4029480A (en) * 1972-06-30 1977-06-14 E. I. Du Pont De Nemours And Company Hydrocarbon fuel compositions containing polysulfone antistatic additives
US4182810A (en) * 1978-04-21 1980-01-08 Phillips Petroleum Company Prevention of fouling in polymerization reactors
US4211534A (en) * 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
US4416668A (en) * 1978-10-25 1983-11-22 Petrolite Corporation Antistatic agents for organic liquids
US4491651A (en) * 1982-05-17 1985-01-01 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4537601A (en) * 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4647291A (en) * 1985-12-12 1987-03-03 Exxon Research And Engineering Company Anti-mist liquid degradation
US5254138A (en) * 1991-05-03 1993-10-19 Uop Fuel composition containing a quaternary ammonium salt
US5672183A (en) * 1996-07-01 1997-09-30 Petrolite Corporation Anti-static additives for hydrocarbons
US6391070B2 (en) * 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US433741A (en) * 1890-08-05 mckiearnan
US2853373A (en) * 1954-11-22 1958-09-23 Sun Oil Co Motor fuel
US3062230A (en) * 1959-05-27 1962-11-06 Koehler Aircraft Products Comp Fill valve
US3186810A (en) * 1962-03-09 1965-06-01 Du Pont Stabilized distillate fuel oils and additive compositions therefor
US3578421A (en) * 1968-07-26 1971-05-11 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US3677724A (en) * 1969-02-07 1972-07-18 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of amine derivatives of 1-olefin/maleic anhydride copolymers and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US3578422A (en) * 1969-03-03 1971-05-11 Lubrizol Corp Emulsion resistant fuel compositions
US3677725A (en) * 1970-02-04 1972-07-18 Mobil Oil Corp Liquid hydrocarbon compositions containing antistatic agents
US3652238A (en) * 1970-08-06 1972-03-28 Texaco Inc Antistatic fuel composition
US3758283A (en) * 1971-09-24 1973-09-11 Du Pont Conductivity additive for liquid hydrocarbons
US3820963A (en) * 1972-03-02 1974-06-28 Dow Chemical Co Modified turbine engine fuel
US3807977A (en) * 1972-06-30 1974-04-30 Du Pont Antistatic additive compositions
US4029480A (en) * 1972-06-30 1977-06-14 E. I. Du Pont De Nemours And Company Hydrocarbon fuel compositions containing polysulfone antistatic additives
US3811848A (en) * 1972-06-30 1974-05-21 Du Pont Antistatic additive compositions
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4182810A (en) * 1978-04-21 1980-01-08 Phillips Petroleum Company Prevention of fouling in polymerization reactors
US4211534A (en) * 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
US4416668A (en) * 1978-10-25 1983-11-22 Petrolite Corporation Antistatic agents for organic liquids
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
US4491651A (en) * 1982-05-17 1985-01-01 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4537601A (en) * 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
US4647291A (en) * 1985-12-12 1987-03-03 Exxon Research And Engineering Company Anti-mist liquid degradation
US5254138A (en) * 1991-05-03 1993-10-19 Uop Fuel composition containing a quaternary ammonium salt
US5672183A (en) * 1996-07-01 1997-09-30 Petrolite Corporation Anti-static additives for hydrocarbons
US6391070B2 (en) * 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050039384A1 (en) * 2003-07-03 2005-02-24 Gormley Fiona K. Fuel oil composition
US7520906B2 (en) * 2003-07-03 2009-04-21 Infineum International Ltd. Fuel oil composition
US20080104883A1 (en) * 2006-10-20 2008-05-08 Claire Ansell Method of formulating a fuel composition
US8926716B2 (en) * 2006-10-20 2015-01-06 Shell Oil Company Method of formulating a fuel composition
US20100175315A1 (en) * 2007-07-20 2010-07-15 Innospec Limited Hydrocarbon compositions
US8876921B2 (en) * 2007-07-20 2014-11-04 Innospec Limited Hydrocarbon compositions
US20090077869A1 (en) * 2007-09-25 2009-03-26 Schwab Scott D Diesel fuel additive compositions for prolonged antistatic performance
US20130212931A1 (en) * 2012-02-16 2013-08-22 Baker Hughes Incorporated Biofuel having improved cold flow properties

Similar Documents

Publication Publication Date Title
US6391070B2 (en) Anti-static additive compositions for hydrocarbon fuels
EP3127992B1 (en) Additives to reduce metal pick-up in fuels
US8425627B2 (en) Fuel additive concentrate composition and fuel composition and method thereof
EP0909305B1 (en) Anti-static additives for hydrocarbons
KR20140116175A (en) Corrosion inhibitor compositions for oxygenated gasolines
KR20010111491A (en) Fuel composition
BRPI0705107B1 (en) methods and compositions for reducing combustion engine deposits, fuel, fuel composition and fuel additive concentrate
EP1554369A1 (en) Cleaning compositions for oil-gas wells, well lines, casings, equipment, storage tanks, etc., and method of use
JP5283812B2 (en) Improved fuel additive formulations and methods of use
US20040107635A1 (en) Anti-static additive compositions for hydrocarbon fuels
US20240117263A1 (en) Composition for cleaning combustion engine systems
US8821594B2 (en) Synergistic additive composition for petroleum fuels
CA2503018A1 (en) Cleaning compositions for oil-gas wells, well lines, casings, equipment, storage tanks, etc., and method of use
CN1729284A (en) Cleaning compositions for oil-gas wells, well lines, casings, equipment, storage tanks, etc., and method of use
US3141745A (en) Dehazing polymer-containing hydrocarbon oils
CA1257772A (en) Fuel additive for use in alcohol fuels
WO2024028885A1 (en) A corrosion inhibitor composition for an inert aqueous interface in fuel pipelines
WO2008054368A2 (en) Synergistic additive composition for petroleum fuels
GB2158091A (en) A fuel additive for use in alcohol fuels
JPH10158665A (en) Fuel oil additive
WO1992013047A1 (en) Fuel composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCTEL AMERICA, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENRY, JR., CYRUS PERSHING;REEL/FRAME:014012/0781

Effective date: 20030305

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION