US20040142523A1 - Method of forming vertical mosfet with ultra-low on-resistance and low gate charge - Google Patents

Method of forming vertical mosfet with ultra-low on-resistance and low gate charge Download PDF

Info

Publication number
US20040142523A1
US20040142523A1 US10/754,276 US75427604A US2004142523A1 US 20040142523 A1 US20040142523 A1 US 20040142523A1 US 75427604 A US75427604 A US 75427604A US 2004142523 A1 US2004142523 A1 US 2004142523A1
Authority
US
United States
Prior art keywords
trench
substrate
diffusion region
forming
cap layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/754,276
Inventor
Izak Bencuya
Brian Mo
Ashok Challa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Izak Bencuya
Mo Brian Sze-Ki
Ashok Challa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izak Bencuya, Mo Brian Sze-Ki, Ashok Challa filed Critical Izak Bencuya
Priority to US10/754,276 priority Critical patent/US20040142523A1/en
Publication of US20040142523A1 publication Critical patent/US20040142523A1/en
Priority to US10/997,818 priority patent/US7745289B2/en
Priority to US12/821,590 priority patent/US8101484B2/en
Priority to US13/344,269 priority patent/US8710584B2/en
Assigned to SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC reassignment SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAIRCHILD SEMICONDUCTOR CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Definitions

  • the present invention relates to field effect transistors (FETs) and, in particular, to trench double-diffused metal-oxide-semiconductor (DMOS) transistors and methods of fabricating the same.
  • FETs field effect transistors
  • DMOS metal-oxide-semiconductor
  • MOSFETs Power Metal-Oxide-Semiconductor Field Effect Transistors
  • One type of MOSFET is a double-diffused trench MOSFET, or what is known as a “trench DMOS” transistor.
  • a cross-sectional view of a portion of a typical n-channel trench DMOS transistor 10 is shown in FIG. 1. It should be pointed out that the relative thickness of the various layers are not necessarily drawn to scale.
  • the trench DMOS transistor 10 shown in FIG. 1, includes an n-type substrate 100 over which a substrate out-diffusion layer 101 is formed.
  • An n-type epitaxial layer 102 is formed over substrate out-diffusion layer 101 and a p-type body layer 108 covers epitaxial layer 102 .
  • One or more trenches 109 extend through the body layer 108 and a portion of the epitaxial layer 102 .
  • Gate oxide layer 104 lines the sidewalls and bottom of each trench 109 and a conductive material 106 , typically doped polysilicon, lines gate oxide layer 104 and fills each trench 109 .
  • N+ source regions 110 flank each trench 109 and extend a predetermined distance into body layer 108 .
  • trench DMOS transistor 10 also typically includes one or more metal layers, which contact source regions 110 , with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 1.
  • FIG. 2 shows a doping concentration profile, taken along a cross-section labeled “xx” in FIG. 1.
  • Cross section xx is representative of the resistance path 116 that a drain-to-source current, I DS , encounters as charge carriers travel from source region 110 to the drain of trench DMOS transistor 10 , when trench DMOS transistor is on.
  • the various regions that comprise path 116 are source region 110 , body region 108 , epitaxial layer 102 , substrate out-diffusion layer 101 and substrate 100 .
  • the resistance encountered by I DS due to the presence of these various regions is typically quantified as the drain-to-source resistance, R DS (on).
  • a high drain-to-source resistance, i.e. R DS (on) limits certain performance characteristics of the transistor. For example, both the transconductance, g m , of the device, which is a measure of the current carrying capability of the device (given a certain gate voltage) and the frequency response of the device, which characterizes the speed of the device, are reduced the higher R DS (on) is.
  • Another factor that limits the speed of the trench DMOS transistor is the gate oxide charge, Q g . The higher Q g is the larger the gate-to-drain overlap capacitance becomes and, consequently, the lower the switching capability of the device becomes.
  • the channel length, channel resistance and channel concentration profile are critical characteristics that affect the operating performance of a trench MOSFET. Whereas the absolute values of these characteristics are important, so too is the controllability of their variation. Wide device-to-device variations negatively affect the reproducibility of a device having desired performance capabilities.
  • a trench DMOS transistor and its method of manufacture is provided.
  • the trench DMOS transistor is characterized by an ultra-low on resistance (i.e., R DS (on)) and a low gate charge.
  • the method of manufacture minimizes variations in the transistor characteristics by controlling out-diffusion from the substrate.
  • a trench DMOS transistor comprises a substrate having a first conductivity type that embodies a drain layer of the transistor, the substrate having a substrate doping concentration; a substrate out-diffusion layer formed over the substrate, the substrate out-diffusion layer having a first major surface closest to the substrate that has a doping concentration approximately equal to that of the substrate doping concentration and a second major surface having a lower concentration than the substrate doping concentration; a body region having a second conductivity type, which is epitaxially formed over the substrate; at least one trench having a bottom and sidewalls, each trench extending through the substrate out-diffusion layer and the body region; a dielectric material lining the sidewalls and bottom of the at least one trench; a conductive material lining the dielectric material and substantially filling the trenches; and source regions having the first conductivity type positioned next to each trench within the body region.
  • a substrate cap layer is positioned between the substrate and the substrate out-diffusion layer in the trench DMOS transistor described in reference to the first aspect of the invention.
  • the thickness of the dielectric material at the bottom of the trenches is thicker than a thickness of the dielectric material on the sidewalls of the trenches so that improved gate charge performance is realized.
  • a method of fabricating a trench DMOS transistor comprises providing a substrate having a first conductivity type that embodies a drain layer of the transistor, the substrate having a substrate doping concentration; forming a substrate out-diffusion layer over the substrate, the substrate out-diffusion layer having a first major surface closest to the substrate that has a doping concentration approximately equal to that of the substrate doping concentration and a second major surface having a lower concentration than the substrate doping concentration; forming a body region having a second conductivity type over the substrate; forming one or more trenches through the substrate out-diffusion layer and the body region, each trench having a bottom and sidewalls; forming a dielectric plug at the bottom of each trench; lining the sidewalls and bottom of each trench with a dielectric material; lining the dielectric material with a conductive material and substantially filling the trenches with the conductive material; and forming source regions having the first conductivity type positioned next
  • the dielectric plug described in reference to the fourth aspect of the invention is formed either by high density plasma chemical vapor deposition or sub-atmospheric chemical vapor deposition.
  • FIG. 1 shows a cross-sectional view of a conventional trench DMOS transistor
  • FIG. 2 shows a doping concentration profile, taken along a cross-section labeled “xx” in FIG. 1, of the trench DMOS transistor shown in FIG. 1;
  • FIG. 3 shows a cross-sectional view of an exemplary n-channel trench DMOS transistor 30 according to one embodiment of the present invention
  • FIG. 4 shows an exemplary doping concentration profile, taken along a cross-section labeled “yy” in FIG. 3, of the trench DMOS transistor shown in FIG. 3;
  • FIG. 5 shows an exemplary process flow, according to another aspect of the invention, for fabricating the trench DMOS transistor shown in FIG. 3;
  • FIGS. 6 A- 6 K show cross-sectional views of the formation of the trench DMOS transistor according to the process flow shown in FIG. 5.
  • the present invention is directed at a trench MOSFET device, and its method of manufacture, that can be used in applications such as cellular phone power supplies, battery switching.
  • the trench MOSFET of the present invention is defined by a structure having a low drain-to-source resistance, low gate charge and a method of fabrication that minimizes device-to-device variations in operating characteristics by controlling out-diffusion from the transistor substrate.
  • FIG. 3 shows a cross-sectional illustration of an exemplary n-channel trench DMOS transistor 30 according to one embodiment of the present invention.
  • Trench DMOS transistor 30 includes an n-type substrate 300 , which has a resistivity of, for example, 1-5 m ⁇ -cm, over which a substrate cap layer 301 is formed.
  • Substrate cap layer 301 is heavily doped and has a resistivity of, for example, 1 m ⁇ -cm.
  • Substrate cap layer 301 functions to provide a more constant resistivity range than what substrate vendors typically guarantee. For example, substrate vendors typically guarantee that the resistivity of an Arsenic n-type substrate be only somewhere within the range of 1-5 m ⁇ -cm.
  • the more precisely controlled resistivity of substrate cap layer 301 relative to substrate resistivities, ensures a more predictable and stable channel length.
  • a substrate out-diffusion layer 302 is formed over substrate cap layer 301 .
  • Substrate cap layer 301 functions to better control and reduce the channel length of trench DMOS transistor 30 by inhibiting substrate out-diffusion. Better control of the channel length leads to a more predictable and reproducible R DS (on), Q g and breakdown voltage.
  • a p-type body 308 is formed over substrate out-diffusion layer 302 . The thickness and resistivity of p-type body are, for example, 4 ⁇ m and 0.1 ⁇ -cm, respectively.
  • One or more trenches 309 extend through the body layer 308 , substrate out-diffusion layer 302 , substrate cap layer 301 and, preferably, a portion of substrate 300 .
  • Gate oxide layer 304 lines the sidewalls and bottom of each trench 309 and a conductive material 306 , for example, doped polysilicon, lines gate oxide layer 304 and fills each trench 309 .
  • the thickness of gate oxide layer 304 is preferably thicker at the bottom of each trench 309 than on the sidewalls of the trench 309 .
  • N+ source regions 310 flank each trench 309 and extend a predetermined distance into body layer 308 .
  • Heavy body regions 312 are positioned within body layer 308 , between source regions 310 , and extend a predetermined distance into body layer 308 .
  • dielectric caps 314 cover the filled trenches 309 and also partially cover source regions 310 .
  • Trench DMOS transistor 30 also includes one or more metal layers, which contact source regions 310 , with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 3.
  • the thickness of gate oxide layer 304 be larger at the bottoms of each trench 309 than on the sidewalls of each trench 309 .
  • the reason for this is that a thicker gate oxide at the bottom trenches 309 alleviates high electric fields in the vicinity of the bottom of trenches 309 , thereby providing a higher breakdown voltage, BVdss.
  • the relatively greater thickness also has the effect of reducing the drain overlap capacitance, so that the gate charge, Q g , is reduced.
  • trench DMOS transistor 30 does not incorporate an n-type epitaxial layer as trench DMOS transistor 10 does (see, layer 102 in FIG. 1).
  • the primary purpose of the epitaxial layer is to provide a region for depletion to avoid reach through.
  • the trench DMOS transistor of the present invention is envisioned to be mainly for low voltage applications.
  • a benefit of the absence of any n-type epitaxial layer in trench DMOS transistor 30 is that a reduced current path is realized so that R DS (on) is lowered.
  • a lower R DS (on) improves certain performance capabilities of the device, which are characterized by, for example, a higher transconductance, g m , and an improved frequency response.
  • body 308 is formed by epitaxial deposition, as compared to an implant/diffusion process as used in the manufacture of the trench DMOS transistor shown in FIG. 1.
  • the diffusion step in the manufacture of a trench DMOS is typically performed at high temperature and operates to drive all junctions, including the substrate out-diffusion layer 102 , for example, in the trench DMOS transistor shown in FIG. 1.
  • a typical diffusion cycle used in the manufacture of the trench DMOS transistor 10 of FIG. 1 can result in a substrate out-diffusion layer thickness of over 2 ⁇ m.
  • the thickness of substrate out-diffusion layer 302 can be made much thinner, for example approximately less than or equal to 1 ⁇ m.
  • channel 318 can hold more charge than that of a conventional trench DMOS transistor having a body formed using an implant/diffusion process. Because the channel 318 of trench DMOS transistor 30 can hold more charge, it is less likely that drain-to-source punch-through will occur. Hence, the channel length of channel 318 of trench DMOS 30 can be reduced. The reduction in length of channel 318 and substrate out-diffusion layer 302 , reduce the overall distance of the drain/source path, so that a lower R DS (on) is realized.
  • FIG. 4 there is shown an exemplary doping concentration profile, taken along a cross-section labeled “yy,” for the trench DMOS transistor 30 shown in FIG. 3. Comparing this doping profile to the doping profile of a conventional trench DMOS transistor, shows that (1) there is no n-type epitaxial layer used in the trench DMOS transistor 30 of the present invention; (2) the channel length of the trench DMOS transistor 30 of the present invention is shorter; and (3) the substrate out-diffusion layer is shorter and has a steeper concentration gradient for the trench DMOS transistor 30 of the present invention. All of these characteristics have the effect of reducing the overall drain to source current path, thereby making R DS (on) smaller.
  • FIG. 5 there is shown an exemplary process flow, according to another aspect of the invention, for fabricating a trench DMOS transistor.
  • This process flow can be used, for example, to fabricate the trench DMOS transistor shown in FIG. 3.
  • the process flow shown in FIG. 5 will now be described in reference to FIGS. 6A through 6K.
  • a substrate 300 having a resistivity of, for example 1 to 5 m ⁇ -cm is provided. This is shown in FIG. 6A.
  • a substrate cap layer 301 is formed over the substrate 300 .
  • Substrate cap layer 301 has a resistivity of, for example less than or approximately equal to 1 m ⁇ -cm and a thickness of approximately 1 ⁇ m.
  • the structure following step 502 is shown in FIG. 6B.
  • a substrate out-diffusion layer 302 is formed over substrate cap layer 301 . This is shown in FIG. 6C.
  • an out-diffusion layer is formed coincidentally as various high-temperature processing steps (e.g. steps 530 and 532 in FIG. 5) performed later in the fabrication process.
  • a p-type body region 308 is formed over substrate out-diffusion layer 302 .
  • Body region is formed, for example, using an implant and drive in process, using boron as the dopant with a dose of about 1E12 to 1E15 cm-2.
  • body region 308 has a depth of approximately 4 ⁇ m.
  • the structure following step 504 is shown in FIG. 6D.
  • an initial oxide layer is formed over the p-type body region 308 , over which an active area of transistor 30 is defined using, for example, standard photolithography.
  • trenches 309 are formed.
  • an anisotropic etch is used to create trenches 309 .
  • the anisotropic etch is in the form of a plasma, which is an almost neutral mixture of energetic molecules, ions and electrons that have been excited in a radio-frequency electric field.
  • Different gases are used depending on the material to be etched.
  • the principal consideration is that the reaction products must be volatile.
  • the reactants may be, for example, He:O 2 , NF 3 and HBr
  • the pressure may be, for example, 140 mTorr and the duration of the etch may be approximately 3 minutes.
  • the trenches have a depth of approximately 2.5 ⁇ m.
  • each trench 309 extends vertically downward from an exposed surface of body region 308 , into and through body region 308 , through substrate out-diffusion layer 302 , through substrate cap layer 301 and partially into substrate 300 .
  • an oxide plug 303 is formed at the bottom of each trench 309 .
  • These oxide plugs 303 can be formed in a variety of ways.
  • SA-CVD sub-atmospheric chemical vapor deposition
  • step 512 the oxide is etched back so that only an oxide plug 303 remains at the bottom of each trench 309 .
  • a sacrificial oxide having a thickness of about 500 ⁇ may be deposited (step 514 ) and then stripped (step 516 ) to prepare the trench sidewalls for a gate oxide.
  • the oxide plug 303 can be alternatively formed using a process known as high-density plasma chemical vapor deposition (HDP-CVD).
  • HDP-CVD high-density plasma chemical vapor deposition
  • step 520 oxide is deposited on the sidewalls, bottom and over the upper and lower corners of each trench 309 .
  • the oxide is etched back using a wet etch to leave an oxide plug 303 at the bottom of each trench 309 .
  • the structure following formation of oxide plugs 303 is shown in FIG. 6F.
  • a gate oxide 304 is formed on the sidewalls of trenches 309 as is shown in FIG. 6G.
  • the thickness of gate oxide 304 in this example is preferably about 200 ⁇ .
  • trenches 309 are lined and filled with polysilicon and then doped using, for example, an n-type implant or by administering a conventional POCL 3 doping process. Doping can also be performed using an in-situ process, i.e., as the polysilicon is deposited.
  • the structure following step 528 is shown in FIG. 6H.
  • a source region 310 is formed. Similar to formation of heavy body region 312 , in this example a double implant is used. In this example, a surface through which source region 310 is to be formed is defined using, for example, conventional photolithography. Through this surface, two separate n-type implants are performed, although in some applications a single implant may be sufficient. In this example, a first implant of arsenic is performed at a dose and energy of, for example, 8E15 cm-2 and 80 keV, respectively and a second implant of phosphorous is performed at a dose and energy of 5E15 cm-2 and 60 keV, respectively. The purpose of the first implant is to form a source region 310 and the purpose of the second implant is to extend source region 310 to the surface so that a source contact can be formed. The structure following formation of source region 310 is shown in FIG. 6J.
  • an insulating layer e.g., borophosphosilicate glass, having a thickness in the range of about 5 to 15 k ⁇ is deposited over the exposed surface of the entire structure. Then the insulating layer is densified or “flowed”.

Abstract

A vertical trench double-diffused metal-oxide-semiconductor (DMOS) field effect transistor characterized by a reduced drain-to-source resistance and a lower gate charge and providing a high transconductance and an enhanced frequency response.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 09/640,955, filed Aug. 16, 2000, now U.S. Pat. No. ______, entitled “Vertical MOSFET with Ultra-low Resistance and Low Gate Charge”, which disclosure is incorporated herein by reference. A first related application is U.S. application Ser. No. 09/640,954 in the names of Henry W. Hurst et al., and entitled “A Method of Creating Thick Oxide on the Bottom Surface of a Trench Structure in Silicon” and assigned to the present assignee. A second related application is U.S. application Ser. No. 09/640,496 in the name of James J. Murphy, and entitled “Selective Oxide Deposition in the Bottom of a Trench” and assigned to the present assignee. Both of these applications are incorporated by reference for all purposes.[0001]
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • NOT APPLICABLE [0002]
  • REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK
  • NOT APPLICABLE [0003]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to field effect transistors (FETs) and, in particular, to trench double-diffused metal-oxide-semiconductor (DMOS) transistors and methods of fabricating the same. [0004]
  • Power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) are well known in the semiconductor industry. One type of MOSFET is a double-diffused trench MOSFET, or what is known as a “trench DMOS” transistor. A cross-sectional view of a portion of a typical n-channel [0005] trench DMOS transistor 10 is shown in FIG. 1. It should be pointed out that the relative thickness of the various layers are not necessarily drawn to scale.
  • The [0006] trench DMOS transistor 10, shown in FIG. 1, includes an n-type substrate 100 over which a substrate out-diffusion layer 101 is formed. An n-type epitaxial layer 102 is formed over substrate out-diffusion layer 101 and a p-type body layer 108 covers epitaxial layer 102. One or more trenches 109 extend through the body layer 108 and a portion of the epitaxial layer 102. Gate oxide layer 104 lines the sidewalls and bottom of each trench 109 and a conductive material 106, typically doped polysilicon, lines gate oxide layer 104 and fills each trench 109. N+ source regions 110 flank each trench 109 and extend a predetermined distance into body layer 108. Heavy body regions 112 are positioned within body layer 108, between source regions 110, and extend a predetermined distance into body layer 108. Finally, dielectric caps 114 cover the filled trenches 109 and also partially cover source regions 110. Note that trench DMOS transistor 10 also typically includes one or more metal layers, which contact source regions 110, with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 1.
  • FIG. 2 shows a doping concentration profile, taken along a cross-section labeled “xx” in FIG. 1. Cross section xx is representative of the [0007] resistance path 116 that a drain-to-source current, IDS, encounters as charge carriers travel from source region 110 to the drain of trench DMOS transistor 10, when trench DMOS transistor is on. The various regions that comprise path 116 are source region 110, body region 108, epitaxial layer 102, substrate out-diffusion layer 101 and substrate 100.
  • The resistance encountered by I[0008] DS due to the presence of these various regions is typically quantified as the drain-to-source resistance, RDS(on). A high drain-to-source resistance, i.e. RDS(on), limits certain performance characteristics of the transistor. For example, both the transconductance, gm, of the device, which is a measure of the current carrying capability of the device (given a certain gate voltage) and the frequency response of the device, which characterizes the speed of the device, are reduced the higher RDS(on) is. Another factor that limits the speed of the trench DMOS transistor is the gate oxide charge, Qg. The higher Qg is the larger the gate-to-drain overlap capacitance becomes and, consequently, the lower the switching capability of the device becomes.
  • Because the drain-source voltage is dropped almost entirely across the channel region, which comprises the body and epitaxial layers, the channel length, channel resistance and channel concentration profile are critical characteristics that affect the operating performance of a trench MOSFET. Whereas the absolute values of these characteristics are important, so too is the controllability of their variation. Wide device-to-device variations negatively affect the reproducibility of a device having desired performance capabilities. [0009]
  • BRIEF SUMMARY OF THE INVENTION
  • Generally, according to an exemplary embodiment of the present invention a trench DMOS transistor and its method of manufacture is provided. The trench DMOS transistor is characterized by an ultra-low on resistance (i.e., R[0010] DS(on)) and a low gate charge. The method of manufacture minimizes variations in the transistor characteristics by controlling out-diffusion from the substrate.
  • In a first aspect of the invention, a trench DMOS transistor is disclosed. In an exemplary embodiment the trench DMOS transistor comprises a substrate having a first conductivity type that embodies a drain layer of the transistor, the substrate having a substrate doping concentration; a substrate out-diffusion layer formed over the substrate, the substrate out-diffusion layer having a first major surface closest to the substrate that has a doping concentration approximately equal to that of the substrate doping concentration and a second major surface having a lower concentration than the substrate doping concentration; a body region having a second conductivity type, which is epitaxially formed over the substrate; at least one trench having a bottom and sidewalls, each trench extending through the substrate out-diffusion layer and the body region; a dielectric material lining the sidewalls and bottom of the at least one trench; a conductive material lining the dielectric material and substantially filling the trenches; and source regions having the first conductivity type positioned next to each trench within the body region. [0011]
  • In a second aspect of the invention, a substrate cap layer is positioned between the substrate and the substrate out-diffusion layer in the trench DMOS transistor described in reference to the first aspect of the invention. [0012]
  • In a third aspect of the invention, the thickness of the dielectric material at the bottom of the trenches is thicker than a thickness of the dielectric material on the sidewalls of the trenches so that improved gate charge performance is realized. [0013]
  • In a fourth aspect of the invention, a method of fabricating a trench DMOS transistor is disclosed. The method comprises providing a substrate having a first conductivity type that embodies a drain layer of the transistor, the substrate having a substrate doping concentration; forming a substrate out-diffusion layer over the substrate, the substrate out-diffusion layer having a first major surface closest to the substrate that has a doping concentration approximately equal to that of the substrate doping concentration and a second major surface having a lower concentration than the substrate doping concentration; forming a body region having a second conductivity type over the substrate; forming one or more trenches through the substrate out-diffusion layer and the body region, each trench having a bottom and sidewalls; forming a dielectric plug at the bottom of each trench; lining the sidewalls and bottom of each trench with a dielectric material; lining the dielectric material with a conductive material and substantially filling the trenches with the conductive material; and forming source regions having the first conductivity type positioned next to each trench within the body region. [0014]
  • In a fifth aspect of the invention, the dielectric plug described in reference to the fourth aspect of the invention is formed either by high density plasma chemical vapor deposition or sub-atmospheric chemical vapor deposition. [0015]
  • A further understanding of the nature and advantages of the inventions herein may be realized by reference to the remaining portions of the specification and the attached drawings.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cross-sectional view of a conventional trench DMOS transistor; [0017]
  • FIG. 2 shows a doping concentration profile, taken along a cross-section labeled “xx” in FIG. 1, of the trench DMOS transistor shown in FIG. 1; [0018]
  • FIG. 3 shows a cross-sectional view of an exemplary n-channel [0019] trench DMOS transistor 30 according to one embodiment of the present invention;
  • FIG. 4 shows an exemplary doping concentration profile, taken along a cross-section labeled “yy” in FIG. 3, of the trench DMOS transistor shown in FIG. 3; [0020]
  • FIG. 5 shows an exemplary process flow, according to another aspect of the invention, for fabricating the trench DMOS transistor shown in FIG. 3; and [0021]
  • FIGS. [0022] 6A-6K show cross-sectional views of the formation of the trench DMOS transistor according to the process flow shown in FIG. 5.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed at a trench MOSFET device, and its method of manufacture, that can be used in applications such as cellular phone power supplies, battery switching. The trench MOSFET of the present invention is defined by a structure having a low drain-to-source resistance, low gate charge and a method of fabrication that minimizes device-to-device variations in operating characteristics by controlling out-diffusion from the transistor substrate. [0023]
  • FIG. 3 shows a cross-sectional illustration of an exemplary n-channel [0024] trench DMOS transistor 30 according to one embodiment of the present invention. Trench DMOS transistor 30 includes an n-type substrate 300, which has a resistivity of, for example, 1-5 mΩ-cm, over which a substrate cap layer 301 is formed. Substrate cap layer 301 is heavily doped and has a resistivity of, for example, 1 mΩ-cm. Substrate cap layer 301 functions to provide a more constant resistivity range than what substrate vendors typically guarantee. For example, substrate vendors typically guarantee that the resistivity of an Arsenic n-type substrate be only somewhere within the range of 1-5 mΩ-cm. As explained below, the more precisely controlled resistivity of substrate cap layer 301, relative to substrate resistivities, ensures a more predictable and stable channel length.
  • A substrate out-[0025] diffusion layer 302 is formed over substrate cap layer 301. Substrate cap layer 301 functions to better control and reduce the channel length of trench DMOS transistor 30 by inhibiting substrate out-diffusion. Better control of the channel length leads to a more predictable and reproducible RDS(on), Qg and breakdown voltage. A p-type body 308 is formed over substrate out-diffusion layer 302. The thickness and resistivity of p-type body are, for example, 4 μm and 0.1 Ω-cm, respectively. One or more trenches 309 extend through the body layer 308, substrate out-diffusion layer 302, substrate cap layer 301 and, preferably, a portion of substrate 300. Gate oxide layer 304 lines the sidewalls and bottom of each trench 309 and a conductive material 306, for example, doped polysilicon, lines gate oxide layer 304 and fills each trench 309. The thickness of gate oxide layer 304 is preferably thicker at the bottom of each trench 309 than on the sidewalls of the trench 309.
  • [0026] N+ source regions 310 flank each trench 309 and extend a predetermined distance into body layer 308. Heavy body regions 312 are positioned within body layer 308, between source regions 310, and extend a predetermined distance into body layer 308. Finally, dielectric caps 314 cover the filled trenches 309 and also partially cover source regions 310.
  • [0027] Trench DMOS transistor 30 also includes one or more metal layers, which contact source regions 310, with adjacent metal layers separated by an insulating material. These metal layers are not shown in FIG. 3.
  • Comparing [0028] trench DMOS transistor 30 to the trench DMOS transistor 10 in FIG. 1 reveals some important distinctions. First, as was described above, it is preferred that the thickness of gate oxide layer 304 be larger at the bottoms of each trench 309 than on the sidewalls of each trench 309. The reason for this is that a thicker gate oxide at the bottom trenches 309 alleviates high electric fields in the vicinity of the bottom of trenches 309, thereby providing a higher breakdown voltage, BVdss. The relatively greater thickness also has the effect of reducing the drain overlap capacitance, so that the gate charge, Qg, is reduced.
  • Second, [0029] trench DMOS transistor 30 does not incorporate an n-type epitaxial layer as trench DMOS transistor 10 does (see, layer 102 in FIG. 1). The primary purpose of the epitaxial layer is to provide a region for depletion to avoid reach through. However, while not necessarily limited to, the trench DMOS transistor of the present invention is envisioned to be mainly for low voltage applications. A benefit of the absence of any n-type epitaxial layer in trench DMOS transistor 30 is that a reduced current path is realized so that RDS(on) is lowered. As explained above, a lower RDS(on) improves certain performance capabilities of the device, which are characterized by, for example, a higher transconductance, gm, and an improved frequency response.
  • Finally, [0030] body 308 is formed by epitaxial deposition, as compared to an implant/diffusion process as used in the manufacture of the trench DMOS transistor shown in FIG. 1. The diffusion step in the manufacture of a trench DMOS is typically performed at high temperature and operates to drive all junctions, including the substrate out-diffusion layer 102, for example, in the trench DMOS transistor shown in FIG. 1. A typical diffusion cycle used in the manufacture of the trench DMOS transistor 10 of FIG. 1 can result in a substrate out-diffusion layer thickness of over 2 μm. Because a diffusion cycle is not required for forming body 308 of trench DMOS transistor 30, the thickness of substrate out-diffusion layer 302 can be made much thinner, for example approximately less than or equal to 1 μm. Moreover, for a given channel length, channel 318 can hold more charge than that of a conventional trench DMOS transistor having a body formed using an implant/diffusion process. Because the channel 318 of trench DMOS transistor 30 can hold more charge, it is less likely that drain-to-source punch-through will occur. Hence, the channel length of channel 318 of trench DMOS 30 can be reduced. The reduction in length of channel 318 and substrate out-diffusion layer 302, reduce the overall distance of the drain/source path, so that a lower RDS(on) is realized.
  • Referring now to FIG. 4, there is shown an exemplary doping concentration profile, taken along a cross-section labeled “yy,” for the [0031] trench DMOS transistor 30 shown in FIG. 3. Comparing this doping profile to the doping profile of a conventional trench DMOS transistor, shows that (1) there is no n-type epitaxial layer used in the trench DMOS transistor 30 of the present invention; (2) the channel length of the trench DMOS transistor 30 of the present invention is shorter; and (3) the substrate out-diffusion layer is shorter and has a steeper concentration gradient for the trench DMOS transistor 30 of the present invention. All of these characteristics have the effect of reducing the overall drain to source current path, thereby making RDS(on) smaller.
  • Referring now to FIG. 5, there is shown an exemplary process flow, according to another aspect of the invention, for fabricating a trench DMOS transistor. This process flow can be used, for example, to fabricate the trench DMOS transistor shown in FIG. 3. The process flow shown in FIG. 5 will now be described in reference to FIGS. 6A through 6K. [0032]
  • The first step, [0033] 500, a substrate 300, having a resistivity of, for example 1 to 5 mΩ-cm is provided. This is shown in FIG. 6A. Next, in step 502, a substrate cap layer 301 is formed over the substrate 300. Substrate cap layer 301 has a resistivity of, for example less than or approximately equal to 1 mΩ-cm and a thickness of approximately 1 μm. The structure following step 502 is shown in FIG. 6B.
  • Following formation of [0034] cap layer 301 in step 502 a substrate out-diffusion layer 302 is formed over substrate cap layer 301. This is shown in FIG. 6C. In an alternative embodiment, an out-diffusion layer is formed coincidentally as various high-temperature processing steps (e.g. steps 530 and 532 in FIG. 5) performed later in the fabrication process. In step 504 a p-type body region 308 is formed over substrate out-diffusion layer 302. Body region is formed, for example, using an implant and drive in process, using boron as the dopant with a dose of about 1E12 to 1E15 cm-2. Following the drive in, body region 308 has a depth of approximately 4 μm. The structure following step 504 is shown in FIG. 6D. Next, in step 506 an initial oxide layer is formed over the p-type body region 308, over which an active area of transistor 30 is defined using, for example, standard photolithography.
  • After the active area has been defined, in [0035] step 508 trenches 309 are formed. Preferably, an anisotropic etch is used to create trenches 309. The anisotropic etch is in the form of a plasma, which is an almost neutral mixture of energetic molecules, ions and electrons that have been excited in a radio-frequency electric field. Different gases are used depending on the material to be etched. The principal consideration is that the reaction products must be volatile. For etching silicon, the reactants may be, for example, He:O2, NF3 and HBr the pressure may be, for example, 140 mTorr and the duration of the etch may be approximately 3 minutes. In this example, the trenches have a depth of approximately 2.5 μm. As shown in FIG. 6E, each trench 309 extends vertically downward from an exposed surface of body region 308, into and through body region 308, through substrate out-diffusion layer 302, through substrate cap layer 301 and partially into substrate 300.
  • Next in the process, an [0036] oxide plug 303 is formed at the bottom of each trench 309. These oxide plugs 303 can be formed in a variety of ways. In a first embodiment of the invention to this regard, in step 510, sub-atmospheric chemical vapor deposition (SA-CVD) is used to deposit oxide on the sidewalls, bottom and over the upper and lower corners of each trench 309. Then, in step 512, the oxide is etched back so that only an oxide plug 303 remains at the bottom of each trench 309. At this stage in the process a sacrificial oxide, having a thickness of about 500 Å may be deposited (step 514) and then stripped (step 516) to prepare the trench sidewalls for a gate oxide. These sacrificial oxide and strip steps are optional. The oxide plug 303 can be alternatively formed using a process known as high-density plasma chemical vapor deposition (HDP-CVD). Using this process, in step 520, oxide is deposited on the sidewalls, bottom and over the upper and lower corners of each trench 309. Then, in step 522, the oxide is etched back using a wet etch to leave an oxide plug 303 at the bottom of each trench 309. The structure following formation of oxide plugs 303 is shown in FIG. 6F.
  • Next, in [0037] optional step 526, the threshold voltage of the structure can be adjusted by administering a p-type implant having, for example, an energy and dose of 70 keV and 3E13 cm-2, respectively.
  • After [0038] trenches 309 are formed with the oxide plugs 303, a gate oxide 304 is formed on the sidewalls of trenches 309 as is shown in FIG. 6G. The thickness of gate oxide 304 in this example, is preferably about 200 Å. Following formation of gate oxide 304, in step 528, trenches 309 are lined and filled with polysilicon and then doped using, for example, an n-type implant or by administering a conventional POCL3 doping process. Doping can also be performed using an in-situ process, i.e., as the polysilicon is deposited. The structure following step 528 is shown in FIG. 6H.
  • Next in another [0039] optional step 530, a p+ heavy body region 312 can be formed between adjacent trenches 309. In this example, a surface through which heavy body region 312 is to be formed is defined using, for example, conventional photolithography. Through this surface, two separate p-type (e.g., boron) implants are performed, although in some applications a single implant may be sufficient. In this example, a first implant is performed at a dose and energy of, for example, 2E15 cm-2 and 135 keV, respectively and a second implant is performed at a dose and energy of 5E14 cm-2 and 70 keV, respectively. The primary purpose of the first implant is to bring the depth of heavy body region 312 as deep as is necessary to compensate for the n+ source region, which is formed later in the process. The second implant has a low energy but a high dose. The purpose of this implant is to extend high concentration of the p+ heavy body from the first implant to the surface so that an ohmic contact can be formed. The dose is made high enough to accomplish this but not so high as to overcompensate the n+ source region, which is formed later in the process. In an alternative embodiment, heavy body region can be formed following a contact defining step (step 536), which is performed later in the process.
  • In step [0040] 532 a source region 310 is formed. Similar to formation of heavy body region 312, in this example a double implant is used. In this example, a surface through which source region 310 is to be formed is defined using, for example, conventional photolithography. Through this surface, two separate n-type implants are performed, although in some applications a single implant may be sufficient. In this example, a first implant of arsenic is performed at a dose and energy of, for example, 8E15 cm-2 and 80 keV, respectively and a second implant of phosphorous is performed at a dose and energy of 5E15 cm-2 and 60 keV, respectively. The purpose of the first implant is to form a source region 310 and the purpose of the second implant is to extend source region 310 to the surface so that a source contact can be formed. The structure following formation of source region 310 is shown in FIG. 6J.
  • Whereas the above description described formation of [0041] heavy body region 312 prior to the formation of source region 310, in an alternative embodiment the source region could be formed before formation of the heavy body region.
  • Next, in [0042] step 534, an insulating layer, e.g., borophosphosilicate glass, having a thickness in the range of about 5 to 15 kÅ is deposited over the exposed surface of the entire structure. Then the insulating layer is densified or “flowed”.
  • In [0043] step 536, the insulating layer is patterned and etched using, for example, standard photolithography, to define electrical contact areas for the trench DMOS structure. As shown in FIG. 6K, the etch is controlled to preserve insulating caps 314 over trenches 309. Following step 536, metallization and passivation steps are performed, although they are not shown in the process diagramed in FIGS. 5 and 6. One skilled in the art would understand, however, what is necessary to perform these steps.
  • Although the invention has been described in terms of a specific process and structure, it will be obvious to those skilled in the art that many modifications and alterations may be made to the disclosed embodiment without departing from the invention. For example, one of skill in the art would understand that one could begin with a p-type substrate to manufacture a p-channel trench DMOS, which has silicon layer with complementary doping relative to the trench DMOS structure shown in FIG. 3. Also, all of the numbers provided for dimensions, temperatures, doping concentrations, etc. are for illustrative purposes only and may be varied to refine and/or enhance particular performance characteristics of the trench DMOS transistor. Hence, these modifications and alterations are intended to be within the spirit and scope of the invention as defined by the appended claims. [0044]

Claims (22)

What is claimed is:
1. A method of forming a field effect transistor, comprising:
providing a silicon substrate of a first conductivity type;
forming a substrate cap layer of the first conductivity type over the silicon substrate;
epitaxially forming a body layer of a second conductivity type over the substrate cap layer;
forming a trench extending through the body layer and the substrate cap layer, the trench having a bottom and sidewalls; and
forming a source region of the first conductivity type in the body layer adjacent the trench,
wherein a substrate out-diffusion region of the first conductivity type is formed between the substrate cap layer and the source regions such that a spacing between each source region and the substrate out-diffusion region defines a channel length of the field effect transistor.
2. The method of claim 1 further comprising:
lining the sidewalls and bottom of the trench with a dielectric material; and
lining the dielectric material with a conductive material and substantially filling the trench with the conductive material.
3. The method of claim 2 wherein a thickness of the dielectric material at the bottom of the trench is thicker than a thickness of the dielectric material on the sidewalls of the trench.
4. The method of claim 2 further comprising:
forming a dielectric plug at the bottom of each trench using high density plasma chemical vapor deposition.
5. The method of claim 2 further comprising:
forming a dielectric plug at the bottom of each trench using sub-atmospheric chemical vapor deposition.
6. The method of claim 2 wherein:
the trench extends through the substrate out-diffusion region, and
the conductive material in the trench extends through a substantial depth of the substrate out-diffusion region.
7. The method of claim 1 wherein the trench extends partially into the silicon substrate.
8. The method of claim 1 wherein the substrate out-diffusion region has a graded doping concentration decreasing from a surface of the substrate out-diffusion region at an interface between the substrate out-diffusion region and the substrate cap layer to an opposing surface of the substrate out-diffusion region.
9. The method of claim 1 wherein the substrate cap layer has a lower doping concentration than that of the silicon substrate.
10. The method of claim 1 wherein the channel length extends vertically along a sidewall of the trench.
11. The method of claim 1 further comprising:
administering a channel implant to change a threshold voltage of the field effect transistor.
12. A method of forming a field effect transistor, comprising:
providing a silicon substrate of a first conductivity type;
forming a substrate cap layer of the first conductivity type over the silicon substrate;
epitaxially forming a body layer of a second conductivity type over the substrate cap layer;
forming a plurality of trenches each extending through the body layer and the substrate cap layer, each trench having a bottom and sidewalls;
lining the sidewalls and bottom of each trench with a dielectric material;
lining the dielectric material with a conductive material and substantially filling each trench with the conductive material; and
forming a plurality of source regions of the first conductivity type in the body layer adjacent the plurality of trenches,
wherein a substrate out-diffusion region of the first conductivity type is formed such that a spacing between each source region and the substrate out-diffusion region defines a channel length of the field effect transistor, the channel length extending vertically along a sidewall of each trench.
13. The method of claim 12 wherein:
the plurality of trenches extend through the substrate out-diffusion region, and
the conductive material in each trench extends through a substantial depth of the substrate out-diffusion region.
14. The method of claim 12 wherein the dielectric material in each trench is thicker along the bottom of each trench than along the sidewalls of each trench.
15. The method of claim 12 further comprising:
forming a dielectric plug along the bottom of each trench so that each trench has a thicker dielectric material along its bottom than along its sidewalls.
16. The method of claim 15 wherein the dielectric plug in each trench is formed using high density plasma chemical vapor deposition.
17. The method of claim 16 wherein the dielectric plug in each trench is formed using sub-atmospheric chemical vapor deposition.
18. The method of claim 12 wherein the substrate out-diffusion region has a graded doping concentration decreasing from a surface of the substrate out-diffusion region at an interface between the substrate out-diffusion region and the substrate cap layer to an opposing surface of the substrate out-diffusion region.
19. The method of claim 18 wherein the substrate cap layer has a lower doping concentration than that of the silicon substrate.
20. The method of claim 12 wherein each trench extends partially into the silicon substrate.
21. The method of claim 12 wherein the substrate out-diffusion region has a thickness of less than or equal to one micrometer.
22. The method of claim 12 further comprising:
administering a channel implant to change a threshold voltage of the field. effect transistor.
US10/754,276 2000-08-16 2004-01-08 Method of forming vertical mosfet with ultra-low on-resistance and low gate charge Abandoned US20040142523A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/754,276 US20040142523A1 (en) 2000-08-16 2004-01-08 Method of forming vertical mosfet with ultra-low on-resistance and low gate charge
US10/997,818 US7745289B2 (en) 2000-08-16 2004-11-24 Method of forming a FET having ultra-low on-resistance and low gate charge
US12/821,590 US8101484B2 (en) 2000-08-16 2010-06-23 Method of forming a FET having ultra-low on-resistance and low gate charge
US13/344,269 US8710584B2 (en) 2000-08-16 2012-01-05 FET device having ultra-low on-resistance and low gate charge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/640,955 US6696726B1 (en) 2000-08-16 2000-08-16 Vertical MOSFET with ultra-low resistance and low gate charge
US10/754,276 US20040142523A1 (en) 2000-08-16 2004-01-08 Method of forming vertical mosfet with ultra-low on-resistance and low gate charge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/640,955 Division US6696726B1 (en) 2000-08-16 2000-08-16 Vertical MOSFET with ultra-low resistance and low gate charge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/997,818 Continuation-In-Part US7745289B2 (en) 2000-08-16 2004-11-24 Method of forming a FET having ultra-low on-resistance and low gate charge

Publications (1)

Publication Number Publication Date
US20040142523A1 true US20040142523A1 (en) 2004-07-22

Family

ID=31496211

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/640,955 Expired - Lifetime US6696726B1 (en) 2000-08-16 2000-08-16 Vertical MOSFET with ultra-low resistance and low gate charge
US10/754,276 Abandoned US20040142523A1 (en) 2000-08-16 2004-01-08 Method of forming vertical mosfet with ultra-low on-resistance and low gate charge

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/640,955 Expired - Lifetime US6696726B1 (en) 2000-08-16 2000-08-16 Vertical MOSFET with ultra-low resistance and low gate charge

Country Status (1)

Country Link
US (2) US6696726B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US20120018793A1 (en) * 2007-04-30 2012-01-26 Anup Bhalla Device structure and manufacturing method using HDP deposited using deposited source-body implant block
US20140070308A1 (en) * 2007-01-09 2014-03-13 Maxpower Semiconductor, Inc. Semiconductor device
US20150021623A1 (en) * 2013-07-17 2015-01-22 Cree, Inc. Enhanced gate dielectric for a field effect device with a trenched gate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853587B2 (en) * 2002-06-21 2005-02-08 Micron Technology, Inc. Vertical NROM having a storage density of 1 bit per 1F2
DE102004063946B4 (en) 2004-05-19 2018-03-22 Infineon Technologies Ag Transistor arrangements with an electrode arranged in a separation trench
JP5259920B2 (en) * 2004-08-04 2013-08-07 ローム株式会社 Semiconductor device and manufacturing method thereof
DE112006001516T5 (en) 2005-06-10 2008-04-17 Fairchild Semiconductor Corp. Field effect transistor with charge balance
US7821034B2 (en) * 2006-01-09 2010-10-26 International Rectifier Corporation Integrated III-nitride devices
US7667265B2 (en) * 2006-01-30 2010-02-23 Fairchild Semiconductor Corporation Varying mesa dimensions in high cell density trench MOSFET
US20090085107A1 (en) * 2007-09-28 2009-04-02 Force-Mos Technology Corp. Trench MOSFET with thick bottom oxide tub
US8809966B2 (en) 2008-03-12 2014-08-19 Infineon Technologies Ag Semiconductor device
US8866255B2 (en) 2008-03-12 2014-10-21 Infineon Technologies Austria Ag Semiconductor device with staggered oxide-filled trenches at edge region
US8174067B2 (en) * 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8304829B2 (en) 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8227855B2 (en) * 2009-02-09 2012-07-24 Fairchild Semiconductor Corporation Semiconductor devices with stable and controlled avalanche characteristics and methods of fabricating the same
US8148749B2 (en) * 2009-02-19 2012-04-03 Fairchild Semiconductor Corporation Trench-shielded semiconductor device
US8049276B2 (en) * 2009-06-12 2011-11-01 Fairchild Semiconductor Corporation Reduced process sensitivity of electrode-semiconductor rectifiers
US10026835B2 (en) 2009-10-28 2018-07-17 Vishay-Siliconix Field boosted metal-oxide-semiconductor field effect transistor
CN102945799B (en) * 2012-08-24 2015-04-29 电子科技大学 Method for manufacturing longitudinal power semiconductor device
US20150118810A1 (en) * 2013-10-24 2015-04-30 Madhur Bobde Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path
US10431661B2 (en) 2015-12-23 2019-10-01 Intel Corporation Transistor with inner-gate spacer
US20170373142A1 (en) * 2016-06-23 2017-12-28 Littelfuse, Inc. Semiconductor device having side-diffused trench plug
US10896885B2 (en) * 2017-09-13 2021-01-19 Polar Semiconductor, Llc High-voltage MOSFET structures
CN112802752A (en) * 2020-12-31 2021-05-14 广州粤芯半导体技术有限公司 Method for manufacturing semiconductor device

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497777A (en) * 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) * 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
US3660697A (en) * 1970-02-16 1972-05-02 Bell Telephone Labor Inc Monolithic semiconductor apparatus adapted for sequential charge transfer
US4003072A (en) * 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
US4002511A (en) * 1975-04-16 1977-01-11 Ibm Corporation Method for forming masks comprising silicon nitride and novel mask structures produced thereby
US4326332A (en) * 1980-07-28 1982-04-27 International Business Machines Corp. Method of making a high density V-MOS memory array
US4445202A (en) * 1980-11-12 1984-04-24 International Business Machines Corporation Electrically switchable permanent storage
US4579621A (en) * 1983-07-08 1986-04-01 Mitsubishi Denki Kabushiki Kaisha Selective epitaxial growth method
US4636281A (en) * 1984-06-14 1987-01-13 Commissariat A L'energie Atomique Process for the autopositioning of a local field oxide with respect to an insulating trench
US4638344A (en) * 1979-10-09 1987-01-20 Cardwell Jr Walter T Junction field-effect transistor controlled by merged depletion regions
US4639761A (en) * 1983-12-16 1987-01-27 North American Philips Corporation Combined bipolar-field effect transistor resurf devices
US4746630A (en) * 1986-09-17 1988-05-24 Hewlett-Packard Company Method for producing recessed field oxide with improved sidewall characteristics
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US4821095A (en) * 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
US4823176A (en) * 1987-04-03 1989-04-18 General Electric Company Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4990463A (en) * 1988-07-05 1991-02-05 Kabushiki Kaisha Toshiba Method of manufacturing capacitor
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US5079608A (en) * 1990-11-06 1992-01-07 Harris Corporation Power MOSFET transistor circuit with active clamp
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US5111253A (en) * 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5298761A (en) * 1991-06-17 1994-03-29 Nikon Corporation Method and apparatus for exposure process
US5298781A (en) * 1987-10-08 1994-03-29 Siliconix Incorporated Vertical current flow field effect transistor with thick insulator over non-channel areas
US5300447A (en) * 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
US5389815A (en) * 1992-04-28 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor diode with reduced recovery current
US5405794A (en) * 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
US5418376A (en) * 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
US5519245A (en) * 1989-08-31 1996-05-21 Nippondenso Co., Ltd. Insulated gate bipolar transistor with reverse conducting current
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5595927A (en) * 1995-03-17 1997-01-21 Taiwan Semiconductor Manufacturing Company Ltd. Method for making self-aligned source/drain mask ROM memory cell using trench etched channel
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5605852A (en) * 1992-07-23 1997-02-25 Siliconix Incorporated Method for fabricating high voltage transistor having trenched termination
US5616945A (en) * 1995-10-13 1997-04-01 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
US5623152A (en) * 1995-02-09 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
US5629543A (en) * 1995-08-21 1997-05-13 Siliconix Incorporated Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness
US5705409A (en) * 1995-09-28 1998-01-06 Motorola Inc. Method for forming trench transistor structure
US5710072A (en) * 1994-05-17 1998-01-20 Siemens Aktiengesellschaft Method of producing and arrangement containing self-amplifying dynamic MOS transistor memory cells
US5714781A (en) * 1995-04-27 1998-02-03 Nippondenso Co., Ltd. Semiconductor device having a gate electrode in a grove and a diffused region under the grove
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
US5879971A (en) * 1995-09-28 1999-03-09 Motorola Inc. Trench random access memory cell and method of formation
US5879994A (en) * 1997-04-15 1999-03-09 National Semiconductor Corporation Self-aligned method of fabricating terrace gate DMOS transistor
US5895952A (en) * 1994-12-30 1999-04-20 Siliconix Incorporated Trench MOSFET with multi-resistivity drain to provide low on-resistance
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US5897343A (en) * 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US5897360A (en) * 1996-10-21 1999-04-27 Nec Corporation Manufacturing method of semiconductor integrated circuit
US5900663A (en) * 1998-02-07 1999-05-04 Xemod, Inc. Quasi-mesh gate structure for lateral RF MOS devices
US5906680A (en) * 1986-09-12 1999-05-25 International Business Machines Corporation Method and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers
US6011298A (en) * 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
US6015727A (en) * 1998-06-08 2000-01-18 Wanlass; Frank M. Damascene formation of borderless contact MOS transistors
US6020250A (en) * 1994-08-11 2000-02-01 International Business Machines Corporation Stacked devices
US6034415A (en) * 1998-02-07 2000-03-07 Xemod, Inc. Lateral RF MOS device having a combined source structure
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
US6037628A (en) * 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
US6040600A (en) * 1997-02-10 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Trenched high breakdown voltage semiconductor device
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
US6057558A (en) * 1997-03-05 2000-05-02 Denson Corporation Silicon carbide semiconductor device and manufacturing method thereof
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6168996B1 (en) * 1997-08-28 2001-01-02 Hitachi, Ltd. Method of fabricating semiconductor device
US6171935B1 (en) * 1998-05-06 2001-01-09 Siemens Aktiengesellschaft Process for producing an epitaxial layer with laterally varying doping
US6174785B1 (en) * 1998-04-09 2001-01-16 Micron Technology, Inc. Method of forming trench isolation region for semiconductor device
US6174773B1 (en) * 1995-02-17 2001-01-16 Fuji Electric Co., Ltd. Method of manufacturing vertical trench misfet
US6184545B1 (en) * 1997-09-12 2001-02-06 Infineon Technologies Ag Semiconductor component with metal-semiconductor junction with low reverse current
US6184555B1 (en) * 1996-02-05 2001-02-06 Siemens Aktiengesellschaft Field effect-controlled semiconductor component
US6188104B1 (en) * 1997-03-27 2001-02-13 Samsung Electronics Co., Ltd Trench DMOS device having an amorphous silicon and polysilicon gate
US6188105B1 (en) * 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US6198127B1 (en) * 1999-05-19 2001-03-06 Intersil Corporation MOS-gated power device having extended trench and doping zone and process for forming same
US6201279B1 (en) * 1998-10-22 2001-03-13 Infineon Technologies Ag Semiconductor component having a small forward voltage and high blocking ability
US6201278B1 (en) * 1996-10-30 2001-03-13 Advanced Micro Devices, Inc. Trench transistor with insulative spacers
US6204097B1 (en) * 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6222233B1 (en) * 1999-10-04 2001-04-24 Xemod, Inc. Lateral RF MOS device with improved drain structure
US6337499B1 (en) * 1997-11-03 2002-01-08 Infineon Technologies Ag Semiconductor component
US20020009832A1 (en) * 2000-06-02 2002-01-24 Blanchard Richard A. Method of fabricating high voltage power mosfet having low on-resistance
US20020014658A1 (en) * 2000-06-02 2002-02-07 Blanchard Richard A. High voltage power mosfet having low on-resistance
US6346464B1 (en) * 1999-06-28 2002-02-12 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US6346469B1 (en) * 2000-01-03 2002-02-12 Motorola, Inc. Semiconductor device and a process for forming the semiconductor device
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6353252B1 (en) * 1999-07-29 2002-03-05 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device having trenched film connected to electrodes
US20020027243A1 (en) * 1997-11-12 2002-03-07 Zhiqiang Wu Methods of forming field effect transistors
US6359308B1 (en) * 1999-07-22 2002-03-19 U.S. Philips Corporation Cellular trench-gate field-effect transistors
US6362112B1 (en) * 2000-11-08 2002-03-26 Fabtech, Inc. Single step etched moat
US6362505B1 (en) * 1998-11-27 2002-03-26 Siemens Aktiengesellschaft MOS field-effect transistor with auxiliary electrode
US6365930B1 (en) * 1999-06-03 2002-04-02 Stmicroelectronics S.R.L. Edge termination of semiconductor devices for high voltages with resistive voltage divider
US6368921B1 (en) * 1999-09-28 2002-04-09 U.S. Philips Corporation Manufacture of trench-gate semiconductor devices
US6368920B1 (en) * 1996-04-10 2002-04-09 Fairchild Semiconductor Corporation Trench MOS gate device
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
US6376890B1 (en) * 1998-04-08 2002-04-23 Siemens Aktiengesellschaft High-voltage edge termination for planar structures
US6376314B1 (en) * 1997-11-07 2002-04-23 Zetex Plc. Method of semiconductor device fabrication
US20030060013A1 (en) * 1999-09-24 2003-03-27 Bruce D. Marchant Method of manufacturing trench field effect transistors with trenched heavy body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269562A (en) * 1985-09-20 1987-03-30 Mitsubishi Electric Corp Field effect transistor device and manufacture thereof
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
US4967245A (en) 1988-03-14 1990-10-30 Siliconix Incorporated Trench power MOSFET device
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5424231A (en) * 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
US5689128A (en) * 1995-08-21 1997-11-18 Siliconix Incorporated High density trenched DMOS transistor

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497777A (en) * 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) * 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
US3660697A (en) * 1970-02-16 1972-05-02 Bell Telephone Labor Inc Monolithic semiconductor apparatus adapted for sequential charge transfer
US4003072A (en) * 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
US4002511A (en) * 1975-04-16 1977-01-11 Ibm Corporation Method for forming masks comprising silicon nitride and novel mask structures produced thereby
US4638344A (en) * 1979-10-09 1987-01-20 Cardwell Jr Walter T Junction field-effect transistor controlled by merged depletion regions
US4326332A (en) * 1980-07-28 1982-04-27 International Business Machines Corp. Method of making a high density V-MOS memory array
US4445202A (en) * 1980-11-12 1984-04-24 International Business Machines Corporation Electrically switchable permanent storage
US4579621A (en) * 1983-07-08 1986-04-01 Mitsubishi Denki Kabushiki Kaisha Selective epitaxial growth method
US4639761A (en) * 1983-12-16 1987-01-27 North American Philips Corporation Combined bipolar-field effect transistor resurf devices
US4636281A (en) * 1984-06-14 1987-01-13 Commissariat A L'energie Atomique Process for the autopositioning of a local field oxide with respect to an insulating trench
US5906680A (en) * 1986-09-12 1999-05-25 International Business Machines Corporation Method and apparatus for low temperature, low pressure chemical vapor deposition of epitaxial silicon layers
US4746630A (en) * 1986-09-17 1988-05-24 Hewlett-Packard Company Method for producing recessed field oxide with improved sidewall characteristics
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4821095A (en) * 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US4823176A (en) * 1987-04-03 1989-04-18 General Electric Company Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area
US5298781A (en) * 1987-10-08 1994-03-29 Siliconix Incorporated Vertical current flow field effect transistor with thick insulator over non-channel areas
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4990463A (en) * 1988-07-05 1991-02-05 Kabushiki Kaisha Toshiba Method of manufacturing capacitor
US5111253A (en) * 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
US5519245A (en) * 1989-08-31 1996-05-21 Nippondenso Co., Ltd. Insulated gate bipolar transistor with reverse conducting current
US5079608A (en) * 1990-11-06 1992-01-07 Harris Corporation Power MOSFET transistor circuit with active clamp
US5298761A (en) * 1991-06-17 1994-03-29 Nikon Corporation Method and apparatus for exposure process
US5389815A (en) * 1992-04-28 1995-02-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor diode with reduced recovery current
US5605852A (en) * 1992-07-23 1997-02-25 Siliconix Incorporated Method for fabricating high voltage transistor having trenched termination
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5300447A (en) * 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5418376A (en) * 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
US5710072A (en) * 1994-05-17 1998-01-20 Siemens Aktiengesellschaft Method of producing and arrangement containing self-amplifying dynamic MOS transistor memory cells
US5405794A (en) * 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
US6020250A (en) * 1994-08-11 2000-02-01 International Business Machines Corporation Stacked devices
US5895952A (en) * 1994-12-30 1999-04-20 Siliconix Incorporated Trench MOSFET with multi-resistivity drain to provide low on-resistance
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5623152A (en) * 1995-02-09 1997-04-22 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
US6174773B1 (en) * 1995-02-17 2001-01-16 Fuji Electric Co., Ltd. Method of manufacturing vertical trench misfet
US5595927A (en) * 1995-03-17 1997-01-21 Taiwan Semiconductor Manufacturing Company Ltd. Method for making self-aligned source/drain mask ROM memory cell using trench etched channel
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5714781A (en) * 1995-04-27 1998-02-03 Nippondenso Co., Ltd. Semiconductor device having a gate electrode in a grove and a diffused region under the grove
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5629543A (en) * 1995-08-21 1997-05-13 Siliconix Incorporated Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness
US5705409A (en) * 1995-09-28 1998-01-06 Motorola Inc. Method for forming trench transistor structure
US5879971A (en) * 1995-09-28 1999-03-09 Motorola Inc. Trench random access memory cell and method of formation
US6037202A (en) * 1995-09-28 2000-03-14 Motorola, Inc. Method for growing an epitaxial layer of material using a high temperature initial growth phase and a low temperature bulk growth phase
US5616945A (en) * 1995-10-13 1997-04-01 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
US6184555B1 (en) * 1996-02-05 2001-02-06 Siemens Aktiengesellschaft Field effect-controlled semiconductor component
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US6368920B1 (en) * 1996-04-10 2002-04-09 Fairchild Semiconductor Corporation Trench MOS gate device
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5897360A (en) * 1996-10-21 1999-04-27 Nec Corporation Manufacturing method of semiconductor integrated circuit
US6201278B1 (en) * 1996-10-30 2001-03-13 Advanced Micro Devices, Inc. Trench transistor with insulative spacers
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6011298A (en) * 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
US6040600A (en) * 1997-02-10 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Trenched high breakdown voltage semiconductor device
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
US6057558A (en) * 1997-03-05 2000-05-02 Denson Corporation Silicon carbide semiconductor device and manufacturing method thereof
US6188104B1 (en) * 1997-03-27 2001-02-13 Samsung Electronics Co., Ltd Trench DMOS device having an amorphous silicon and polysilicon gate
US5879994A (en) * 1997-04-15 1999-03-09 National Semiconductor Corporation Self-aligned method of fabricating terrace gate DMOS transistor
US6037628A (en) * 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
US6168996B1 (en) * 1997-08-28 2001-01-02 Hitachi, Ltd. Method of fabricating semiconductor device
US6184545B1 (en) * 1997-09-12 2001-02-06 Infineon Technologies Ag Semiconductor component with metal-semiconductor junction with low reverse current
US6337499B1 (en) * 1997-11-03 2002-01-08 Infineon Technologies Ag Semiconductor component
US6376314B1 (en) * 1997-11-07 2002-04-23 Zetex Plc. Method of semiconductor device fabrication
US20020027243A1 (en) * 1997-11-12 2002-03-07 Zhiqiang Wu Methods of forming field effect transistors
US5900663A (en) * 1998-02-07 1999-05-04 Xemod, Inc. Quasi-mesh gate structure for lateral RF MOS devices
US6034415A (en) * 1998-02-07 2000-03-07 Xemod, Inc. Lateral RF MOS device having a combined source structure
US5897343A (en) * 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US6376890B1 (en) * 1998-04-08 2002-04-23 Siemens Aktiengesellschaft High-voltage edge termination for planar structures
US6174785B1 (en) * 1998-04-09 2001-01-16 Micron Technology, Inc. Method of forming trench isolation region for semiconductor device
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
US6190978B1 (en) * 1998-05-04 2001-02-20 Xemod, Inc. Method for fabricating lateral RF MOS devices with enhanced RF properties
US6171935B1 (en) * 1998-05-06 2001-01-09 Siemens Aktiengesellschaft Process for producing an epitaxial layer with laterally varying doping
US6015727A (en) * 1998-06-08 2000-01-18 Wanlass; Frank M. Damascene formation of borderless contact MOS transistors
US6201279B1 (en) * 1998-10-22 2001-03-13 Infineon Technologies Ag Semiconductor component having a small forward voltage and high blocking ability
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US6362505B1 (en) * 1998-11-27 2002-03-26 Siemens Aktiengesellschaft MOS field-effect transistor with auxiliary electrode
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6204097B1 (en) * 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6188105B1 (en) * 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
US6198127B1 (en) * 1999-05-19 2001-03-06 Intersil Corporation MOS-gated power device having extended trench and doping zone and process for forming same
US6365462B2 (en) * 1999-05-28 2002-04-02 Micro-Ohm Corporation Methods of forming power semiconductor devices having tapered trench-based insulating regions therein
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
US6365930B1 (en) * 1999-06-03 2002-04-02 Stmicroelectronics S.R.L. Edge termination of semiconductor devices for high voltages with resistive voltage divider
US6346464B1 (en) * 1999-06-28 2002-02-12 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
US6359308B1 (en) * 1999-07-22 2002-03-19 U.S. Philips Corporation Cellular trench-gate field-effect transistors
US6353252B1 (en) * 1999-07-29 2002-03-05 Kabushiki Kaisha Toshiba High breakdown voltage semiconductor device having trenched film connected to electrodes
US20030060013A1 (en) * 1999-09-24 2003-03-27 Bruce D. Marchant Method of manufacturing trench field effect transistors with trenched heavy body
US6368921B1 (en) * 1999-09-28 2002-04-09 U.S. Philips Corporation Manufacture of trench-gate semiconductor devices
US6222233B1 (en) * 1999-10-04 2001-04-24 Xemod, Inc. Lateral RF MOS device with improved drain structure
US6346469B1 (en) * 2000-01-03 2002-02-12 Motorola, Inc. Semiconductor device and a process for forming the semiconductor device
US6376878B1 (en) * 2000-02-11 2002-04-23 Fairchild Semiconductor Corporation MOS-gated devices with alternating zones of conductivity
US20020009832A1 (en) * 2000-06-02 2002-01-24 Blanchard Richard A. Method of fabricating high voltage power mosfet having low on-resistance
US20020014658A1 (en) * 2000-06-02 2002-02-07 Blanchard Richard A. High voltage power mosfet having low on-resistance
US6362112B1 (en) * 2000-11-08 2002-03-26 Fabtech, Inc. Single step etched moat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US20140070308A1 (en) * 2007-01-09 2014-03-13 Maxpower Semiconductor, Inc. Semiconductor device
US8907412B2 (en) * 2007-01-09 2014-12-09 Maxpower Semiconductor Inc. Semiconductor device
US20120018793A1 (en) * 2007-04-30 2012-01-26 Anup Bhalla Device structure and manufacturing method using HDP deposited using deposited source-body implant block
US8372708B2 (en) * 2007-04-30 2013-02-12 Anup Bhalla Device structure and manufacturing method using HDP deposited using deposited source-body implant block
US20150021623A1 (en) * 2013-07-17 2015-01-22 Cree, Inc. Enhanced gate dielectric for a field effect device with a trenched gate
US9570570B2 (en) * 2013-07-17 2017-02-14 Cree, Inc. Enhanced gate dielectric for a field effect device with a trenched gate

Also Published As

Publication number Publication date
US6696726B1 (en) 2004-02-24

Similar Documents

Publication Publication Date Title
US8101484B2 (en) Method of forming a FET having ultra-low on-resistance and low gate charge
US6696726B1 (en) Vertical MOSFET with ultra-low resistance and low gate charge
JP4028482B2 (en) Power MOSFET having trench gate electrode and manufacturing method thereof
US7595530B2 (en) Power semiconductor device with epitaxially-filled trenches
US7858478B2 (en) Method for producing an integrated circuit including a trench transistor and integrated circuit
KR100773380B1 (en) A power mosfet, a method of forming a power mosfet, and another power mosfet made by the method
CN101840934B (en) Bottom-drain LDMOS power MOSFET structure having a top drain strap and manufacture method thereof
US7943993B2 (en) Structure and method for forming field effect transistor with low resistance channel region
JP5334351B2 (en) Metal oxide semiconductor devices with improved performance and reliability
KR101324855B1 (en) Superjunction power mosfet
US20120094457A1 (en) Sti-aligned ldmos drift implant to enhance manufacturability while optimizing rdson and safe operating area
EP1269530B1 (en) Method of making a trench gate dmos transistor
US20130026563A1 (en) Structures and methods for forming high density trench field effect transistors
EP1577952B1 (en) Method of making a high voltage insulated gate field-effect transistor
WO2004061975A1 (en) Trench mis device having implanted drain-drift region and thick bottom oxide and process for manufacturing the same
JP2010505270A (en) Power MOSFET with recessed field plate
US20060249786A1 (en) Alignment of trench for MOS
JP2013225685A (en) Metal-oxide-semiconductor device including buried lightly-doped drain region
KR20030062236A (en) Trench mosfet with double-diffused body profile
JP2005286328A (en) Process for manufacturing terminal region of trench mis device, semiconductor die including mis device, and method for forming the same
JPH1126758A (en) Trench type mos semiconductor device and manufacture thereof
JPS61259575A (en) Hybrid extension drain construction for reducing effect of hot electron
US7018899B2 (en) Methods of fabricating lateral double-diffused metal oxide semiconductor devices
KR100880872B1 (en) Method of forming a double diffused field effect transistor having reduced on-resistance and such a double diffused field effect transistor
EP1162665A2 (en) Trench gate MIS device and method of fabricating the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:057694/0374

Effective date: 20210722