US20040143165A1 - Intervertebral disc repair methods and apparatus - Google Patents

Intervertebral disc repair methods and apparatus Download PDF

Info

Publication number
US20040143165A1
US20040143165A1 US10/753,229 US75322904A US2004143165A1 US 20040143165 A1 US20040143165 A1 US 20040143165A1 US 75322904 A US75322904 A US 75322904A US 2004143165 A1 US2004143165 A1 US 2004143165A1
Authority
US
United States
Prior art keywords
retractor
disc
cannula
fissure
annulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/753,229
Inventor
Neville Alleyne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/753,229 priority Critical patent/US20040143165A1/en
Publication of US20040143165A1 publication Critical patent/US20040143165A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy

Definitions

  • Spinal discs comprise a central region called the nucleus pulposus surrounded by a second region known as the annulus fibrosis.
  • the annulus portion comprises collagen fibers which may weaken, rupture, or tear, which limits annular confinement of the nucleus, producing disc bulges, herniations and other disc pathologies that cause nerve irritation or damage with resultant back pain and/or weakness and pain in the extremities.
  • the invention comprises methods of repairing intervertebral disc tears and fissures in a minimally invasive manner.
  • one or more expanding cannulas are used to access the desired disc so as to achieve direct visualization of the disc pathology.
  • Fiber optics may be used to illuminate the field.
  • a method according to the invention comprises applying heat to a disc fissure while adjacent structures such as the nerve root and thecal sac are retracted away from the site. This minimizes thermal damage to tissues adjacent to the disc during the heating process.
  • the disc at the fissure is heated by placing a light absorbing dye such as indigo carmen or methylene blue in and around the fissure.
  • Directing light from, for example, a laser light source, to the dye selectively heats the dye and thus the region of the fissure without affecting or damaging other parts of the disc such as the cartilaginous end plate.
  • a laser light source to the dye selectively heats the dye and thus the region of the fissure without affecting or damaging other parts of the disc such as the cartilaginous end plate.
  • Instrumentation for performing these methods is also provided.
  • a high speed burr with a non-conductive foot plate for retraction can be guided to the site through the cannula and used to perform an internal laminoplasty, foraminotomy, or partial fasciectomy.
  • Other instrumentation includes a nerve root retractor which is expandable in a cephalad and caudal direction by using a trigger on the handle.
  • the retractor may have an angulating tip and an anchoring spike for hands free retraction.
  • the retractor may also be provided with a lumen for suction and/or a lumen for fiber optic illumination.
  • the retractor is preferably provided with a thermally and electrically non-conducting tip to avoid heat or electrical energy transfer from the fissure site to retracted tissues during the process of heating an annular fissure.
  • FIG. 1 illustrates the tip of a nerve root retractor which may advantageously be used in performing minimally invasive disc repair.
  • a minimally invasive disc repair using a posterior approach may include the following operations.
  • the cannula is anchored when the tip is over the lamina and is expanded to 1.5 to 2 times its initial circumference.
  • Additional expansion can be achieved by introducing a second expandable cannula that has an original circumference just under that of the expanded first cannula. Expanding the second cannula may produce a total expansion of approximately double or more of the circumference of the originally introduced un-expanded first cannula with myofascial soft tissue tension and the direct pressure of the expanding cannula.
  • expandable cannulas may be utilized.
  • suitable expandable cannulas are described in U.S. Pat. Nos. 5,961,499 and 3,788,318. The entire disclosures of these patents is hereby incorporated by reference in their entireties.
  • the cannula includes integral fiber optics to assist in illuminating the surgical field. A clear visualization of the lamina will be available through the second expanded cannula, and a partial laminotomy can be performed.
  • the retractor 10 incorporates an angulating tip 12 which is made from non-conducting material, preferably non-conductive of both electricity and heat. This helps prevent thermal or electrical injury to the thecal sac and nerve root during procedures involving the application of electrical energy and/or heat such as RF coagulation and/or resection.
  • the retractor advantageously includes an internal lumen 14 for fiber optic illumination and imaging, as well as a lumen 16 for suction.
  • Some embodiments of retractors with integral fiber optic illumination are described in U.S. Pat. Nos. 5,035,232 and 5,520,611, the entire disclosures of which are hereby incorporated by reference in their entireties.
  • the capabilities of the retractor for expansion, suction, illumination, and retraction can be accessed with triggers on the retractor handle.
  • the retractor 10 is also provided with an anchoring spike so that the retractor can be fixed to the posterior vertebral body or adjacent soft tissues and allow for hands free retraction.
  • extruded disc fragments will be identified.
  • the fragment can be removed with a standard pituitary rongeur.
  • the located fissure in the annulus can be repaired.
  • this involves the application of heat to the fissure region to shrink the collagen of the annulus and close the fissure.
  • Many different techniques may be used to apply heat to the fissure to shrink the collagen.
  • an endoscopically introduced thermal energy application device is described in U.S. Pat. No. 5,569,242 to Lax et al., the disclosure of which is hereby incorporated by reference in its entirety.
  • devices of this type may be introduced through the operating cannula to the fissure for the purpose of applying thermal energy thereto.
  • these probes may include integral imaging components for accurate probe placement directly on an annular tear or other pathology.
  • imaging components may include ultrasound imaging devices, as well as optical coherence tomography and/or electrical coherence tomography apparatus. These devices may be used to accurately position the a thermal energy application probe to the location of the fissure, tear, or nuclear protrusion of a disk, minimizing thermal damage to adjacent tissues.
  • a light absorbing dye is introduced into the fissure opening through the operating cannula.
  • Two possible dyes suitable for this use are indigo carmen and methylene blue. Another possibility is indosidin green.
  • illumination applied to the fissure area will selectively heat the dye to a greater extent than other areas of the disc. This will be especially true if the illumination is primarily in a wavelength band which is preferentially absorbed by the dye. As the dye heats, thermal energy will be transferred to the disc to heat and shrink the collagen as desired.
  • Laser light is one advantageous method of illumination, although non-coherent light sources could also be utilized.
  • Glycoadhesive proteins may be added to the dye to further help seal an annular tear or fissure during this process.
  • the fragment can be removed, and instead of taking out nuclear material, the extruded fragment of fragments could be combined with glycoadhesive proteins and light absorbing dye to create a sealant for the annulus.
  • the sealant may be applied to the disk with a probe, guided, if necessary, by the imaging methods described above, and laser light may heat the sealant to repair the disk.
  • burr may be provided with a moveable protective flap which covers the burr tip.
  • the flap may be used for retraction to remove the thecal sac and nerve root from the area of resection.
  • the burr may also be provided with integral lumens for either or both fiber optic illumination/imaging and suction.
  • the high speed burr is capable of performing an internal laminoplasty or foraminoplasty.
  • the device is placed through the expanding cannula into an interspinous region where the supraspinatus and infraspinatus ligament may have been removed, entering into the region between the spinal laminar junction and the ligamentum Clavum.
  • an internal laminoplasty as if performing a subacromial decompression using an arthroscope.
  • the high speed bur is then manually moved from right to left and it slowly resects the bone on the inner surface of the lamina, spinous process and facet joint.
  • the high speed bur which has a nerve root and thecal sac retractor, resection may be performed without damaging other tissues.
  • the burs may also be attached with an irrigation system and suction that will allow the bone material and ligamentous detritus to be suctioned out of the operative portal.
  • Such a high speed burr may also be attached to an operative table and the handle attached to an arm that is controlled by a computer, or by a robot, to meticulously resect appropriate amounts of bone in order to increase the cross sectional diameter at the stenotic level.
  • optical coherence tomography In order to obtain accurate measurements of the thickness of the lamina at various regions, optical coherence tomography, electrical coherence tomography or ultrasound can be utilized to assess the thickness of the resection.
  • This minimally invasive spinal decompression for stenosis can also be performed with the burr entering into the neuroforamen since the nerve root retractor is also attached and can deflect the nerve root out of the way while the roof of the foramen is being decompressed adequately.
  • the movements of the high speed bur can be monitored under direct fluoroscopy or by direct fiberoptic visualization, using standard arthroscopy camera equipment. What can then be achieved is a single level or multi-level decompressive laminectomy and/or foramenotomy through very small mid-line incisions and having the patient go home within 48 hours, with x-rays showing a nearly intact spinous process and lamina at each level. This insures and minimizes the risks for iontogenic instability and will most likely decrease the need for lengthy posterior fusions with pedicel screws.
  • the above described techniques thus allow for disc fissure repairs without risk of damage to neighboring structures and tissues, and further allow for the surgical treatment of pathologies such as spinal stenosis, congenital spinal stenosis, neural foraminal stenosis, and ligamentum flavum hypertrophy.
  • pathologies such as spinal stenosis, congenital spinal stenosis, neural foraminal stenosis, and ligamentum flavum hypertrophy.
  • disc herniations ranging from a subligamentous bulge to an extruded free fragment, annulus fissures, and central or neural foramninal stenosis can be addressed with the above techniques at the same time with minimally invasive surgery.

Abstract

Minimally invasive spinal surgery techniques include expanding an incision with an expanding cannula, inserting a retractor for retracting a nerve root, and inserting a thermal probe for repairing the annulus. A light absorbing dye may be applied to the annulus for localized heating.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. patent application Ser. No. 09/767,022, filed Jan. 22, 2001, which is hereby incorporated by reference.[0001]
  • DESCRIPTION OF THE RELATED ART
  • Spinal discs comprise a central region called the nucleus pulposus surrounded by a second region known as the annulus fibrosis. The annulus portion comprises collagen fibers which may weaken, rupture, or tear, which limits annular confinement of the nucleus, producing disc bulges, herniations and other disc pathologies that cause nerve irritation or damage with resultant back pain and/or weakness and pain in the extremities. [0002]
  • In some open surgical treatment protocols, disc repair is attempted by removal of all or part of the damaged disc. Disc pathologies have also been treated with the application of heat to the disc. One such method is described in U.S. Pat. No. 5,433,739 to Sluijter et al. The method described in this document attempts to destroy or alter nerves at the disc surface by application of RF or direct current electrical energy to the center of the disc so as to heat the entire disc. Other approaches to heat based disc repair involve the heat induced shrinkage of the annulus fibrosis collagen. One instrument for performing such a treatment is described in U.S. Pat. Nos. 5,569,242 and 5,458,596 to Lax et al. [0003]
  • Existing methods of disc repair either ignore pathologies which are the true cause of patient pain and discomfort, or are apt to cause damage to the disc itself and/or adjacent structures. Improvements in disc repair methods and apparatus are thus needed. [0004]
  • SUMMARY
  • The invention comprises methods of repairing intervertebral disc tears and fissures in a minimally invasive manner. In one embodiment, one or more expanding cannulas are used to access the desired disc so as to achieve direct visualization of the disc pathology. Fiber optics may be used to illuminate the field. In one emobdiment, a method according to the invention comprises applying heat to a disc fissure while adjacent structures such as the nerve root and thecal sac are retracted away from the site. This minimizes thermal damage to tissues adjacent to the disc during the heating process. In an especially advantageous embodiment, the disc at the fissure is heated by placing a light absorbing dye such as indigo carmen or methylene blue in and around the fissure. Directing light from, for example, a laser light source, to the dye selectively heats the dye and thus the region of the fissure without affecting or damaging other parts of the disc such as the cartilaginous end plate. With direct visualization of the area, not only disc pathologies but bony and ligamentous pathologies can be addressed at the same time. [0005]
  • Although the posterior approach with fiber optic illumination is advantageous because the posterior section of the disc is the site of tears or fissures for most disc pathologies, visualization of fissures can also be obtained in an anterior or retroperitoneal approach with ultrasound imaging or imaging with optical coherence tomography. [0006]
  • Instrumentation for performing these methods is also provided. A high speed burr with a non-conductive foot plate for retraction can be guided to the site through the cannula and used to perform an internal laminoplasty, foraminotomy, or partial fasciectomy. Other instrumentation includes a nerve root retractor which is expandable in a cephalad and caudal direction by using a trigger on the handle. The retractor may have an angulating tip and an anchoring spike for hands free retraction. The retractor may also be provided with a lumen for suction and/or a lumen for fiber optic illumination. The retractor is preferably provided with a thermally and electrically non-conducting tip to avoid heat or electrical energy transfer from the fissure site to retracted tissues during the process of heating an annular fissure.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates the tip of a nerve root retractor which may advantageously be used in performing minimally invasive disc repair. [0008]
  • DETAILED DESCRIPTION
  • Embodiments of the invention will now be described with reference to the accompanying Figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described. [0009]
  • A minimally invasive disc repair using a posterior approach may include the following operations. A standard laminotomy incision, no more than 12 mm in length and the introduction of an expandable cannula down to the lamina of the involved disc pathology. The cannula is anchored when the tip is over the lamina and is expanded to 1.5 to 2 times its initial circumference. Additional expansion can be achieved by introducing a second expandable cannula that has an original circumference just under that of the expanded first cannula. Expanding the second cannula may produce a total expansion of approximately double or more of the circumference of the originally introduced un-expanded first cannula with myofascial soft tissue tension and the direct pressure of the expanding cannula. Various forms of expandable cannulas may be utilized. For example, suitable expandable cannulas are described in U.S. Pat. Nos. 5,961,499 and 3,788,318. The entire disclosures of these patents is hereby incorporated by reference in their entireties. [0010]
  • In one embodiment, the cannula includes integral fiber optics to assist in illuminating the surgical field. A clear visualization of the lamina will be available through the second expanded cannula, and a partial laminotomy can be performed. [0011]
  • After removing bone and ligament, the nerve root and thecal sac will be exposed. Using a flexible retractor, the tip of which is illustrated in FIG. 1, the thecal sac and nerve root can be retracted over. As shown in FIG. 1, the [0012] retractor 10 incorporates an angulating tip 12 which is made from non-conducting material, preferably non-conductive of both electricity and heat. This helps prevent thermal or electrical injury to the thecal sac and nerve root during procedures involving the application of electrical energy and/or heat such as RF coagulation and/or resection.
  • The retractor advantageously includes an [0013] internal lumen 14 for fiber optic illumination and imaging, as well as a lumen 16 for suction. Some embodiments of retractors with integral fiber optic illumination are described in U.S. Pat. Nos. 5,035,232 and 5,520,611, the entire disclosures of which are hereby incorporated by reference in their entireties. It is advantageous for the tip of the retractor 10 to also be expandable similar to the cannula so that maximum retraction can be achieved after the retractor is adjacent to the nerve root. The capabilities of the retractor for expansion, suction, illumination, and retraction can be accessed with triggers on the retractor handle. In those disk herniations in which the fragment may be between the nerve root and the thecal sac in its axilla, such retraction may prove to be beneficial for an abnormal anatomy such as a conjoint root, and the retractor described above would serve as a much more versatile means of obtaining operative visualization and retrieval of disk material in a safe manner.
  • With the fiber optic illumination, the disc space can be directly visualized, and disc pathologies identified and precisely located. In some advantageous embodiments, the [0014] retractor 10 is also provided with an anchoring spike so that the retractor can be fixed to the posterior vertebral body or adjacent soft tissues and allow for hands free retraction.
  • It will be appreciated that in some cases, extruded disc fragments will be identified. In these cases, the fragment can be removed with a standard pituitary rongeur. Following this procedure, the located fissure in the annulus can be repaired. In advantageous embodiments, this involves the application of heat to the fissure region to shrink the collagen of the annulus and close the fissure. Many different techniques may be used to apply heat to the fissure to shrink the collagen. For example, an endoscopically introduced thermal energy application device is described in U.S. Pat. No. 5,569,242 to Lax et al., the disclosure of which is hereby incorporated by reference in its entirety. In some cases, devices of this type may be introduced through the operating cannula to the fissure for the purpose of applying thermal energy thereto. [0015]
  • In some embodiments, these probes may include integral imaging components for accurate probe placement directly on an annular tear or other pathology. These imaging components may include ultrasound imaging devices, as well as optical coherence tomography and/or electrical coherence tomography apparatus. These devices may be used to accurately position the a thermal energy application probe to the location of the fissure, tear, or nuclear protrusion of a disk, minimizing thermal damage to adjacent tissues. [0016]
  • In an especially advantageous embodiment, a light absorbing dye is introduced into the fissure opening through the operating cannula. Two possible dyes suitable for this use are indigo carmen and methylene blue. Another possibility is indosidin green. After application of the dye, illumination applied to the fissure area will selectively heat the dye to a greater extent than other areas of the disc. This will be especially true if the illumination is primarily in a wavelength band which is preferentially absorbed by the dye. As the dye heats, thermal energy will be transferred to the disc to heat and shrink the collagen as desired. Laser light is one advantageous method of illumination, although non-coherent light sources could also be utilized. Glycoadhesive proteins may be added to the dye to further help seal an annular tear or fissure during this process. In the case of a disk herniation or extruded fragment, the fragment can be removed, and instead of taking out nuclear material, the extruded fragment of fragments could be combined with glycoadhesive proteins and light absorbing dye to create a sealant for the annulus. The sealant may be applied to the disk with a probe, guided, if necessary, by the imaging methods described above, and laser light may heat the sealant to repair the disk. [0017]
  • It will also be appreciated that with the operating cannula in place, other beneficial procedures may be performed in addition to the fissure repair described above. Using a high speed burr, an internal laminoplasty, partial medial fasciectomy or foramenotomy may be performed prior to or after fissure repair. The burr may be provided with a moveable protective flap which covers the burr tip. The flap may be used for retraction to remove the thecal sac and nerve root from the area of resection. The burr may also be provided with integral lumens for either or both fiber optic illumination/imaging and suction. [0018]
  • The high speed burr is capable of performing an internal laminoplasty or foraminoplasty. In this technique, the device is placed through the expanding cannula into an interspinous region where the supraspinatus and infraspinatus ligament may have been removed, entering into the region between the spinal laminar junction and the ligamentum Clavum. What is then performed is an internal laminoplasty as if performing a subacromial decompression using an arthroscope. The high speed bur is then manually moved from right to left and it slowly resects the bone on the inner surface of the lamina, spinous process and facet joint. [0019]
  • Because of the embodiment of the high speed bur, which has a nerve root and thecal sac retractor, resection may be performed without damaging other tissues. The burs may also be attached with an irrigation system and suction that will allow the bone material and ligamentous detritus to be suctioned out of the operative portal. Such a high speed burr may also be attached to an operative table and the handle attached to an arm that is controlled by a computer, or by a robot, to meticulously resect appropriate amounts of bone in order to increase the cross sectional diameter at the stenotic level. [0020]
  • In order to obtain accurate measurements of the thickness of the lamina at various regions, optical coherence tomography, electrical coherence tomography or ultrasound can be utilized to assess the thickness of the resection. This minimally invasive spinal decompression for stenosis can also be performed with the burr entering into the neuroforamen since the nerve root retractor is also attached and can deflect the nerve root out of the way while the roof of the foramen is being decompressed adequately. [0021]
  • If desired, the movements of the high speed bur can be monitored under direct fluoroscopy or by direct fiberoptic visualization, using standard arthroscopy camera equipment. What can then be achieved is a single level or multi-level decompressive laminectomy and/or foramenotomy through very small mid-line incisions and having the patient go home within 48 hours, with x-rays showing a nearly intact spinous process and lamina at each level. This insures and minimizes the risks for iontogenic instability and will most likely decrease the need for lengthy posterior fusions with pedicel screws. [0022]
  • The above described techniques thus allow for disc fissure repairs without risk of damage to neighboring structures and tissues, and further allow for the surgical treatment of pathologies such as spinal stenosis, congenital spinal stenosis, neural foraminal stenosis, and ligamentum flavum hypertrophy. Thus, disc herniations ranging from a subligamentous bulge to an extruded free fragment, annulus fissures, and central or neural foramninal stenosis can be addressed with the above techniques at the same time with minimally invasive surgery. [0023]
  • The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof. [0024]

Claims (3)

What is claimed is:
1. An apparatus for treating a disc pathology comprising:
a retractor including an electrically and thermally non-conductive angulating tip, the retractor being configured to be inserted into a cannula and to retract a portion of a nerve.
2. The apparatus of claim 1, wherein the retractor further includes an anchoring spike which allows the retractor to be fixed to a posterior vertebral body or adjacent soft tissues and allows for hands free retraction.
3. The apparatus of claim 1, wherein the retractor is expandable.
US10/753,229 2000-01-21 2004-01-07 Intervertebral disc repair methods and apparatus Abandoned US20040143165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/753,229 US20040143165A1 (en) 2000-01-21 2004-01-07 Intervertebral disc repair methods and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17752500P 2000-01-21 2000-01-21
US09/767,022 US6684886B1 (en) 2000-01-21 2001-01-22 Intervertebral disc repair methods and apparatus
US10/753,229 US20040143165A1 (en) 2000-01-21 2004-01-07 Intervertebral disc repair methods and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/767,022 Continuation US6684886B1 (en) 2000-01-21 2001-01-22 Intervertebral disc repair methods and apparatus

Publications (1)

Publication Number Publication Date
US20040143165A1 true US20040143165A1 (en) 2004-07-22

Family

ID=30447987

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/767,022 Expired - Fee Related US6684886B1 (en) 2000-01-21 2001-01-22 Intervertebral disc repair methods and apparatus
US10/753,229 Abandoned US20040143165A1 (en) 2000-01-21 2004-01-07 Intervertebral disc repair methods and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/767,022 Expired - Fee Related US6684886B1 (en) 2000-01-21 2001-01-22 Intervertebral disc repair methods and apparatus

Country Status (1)

Country Link
US (2) US6684886B1 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107671A1 (en) * 2003-11-17 2005-05-19 Mckinley Laurence M. Nerve root retractor and sucker
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7738968B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US7918849B2 (en) 2004-10-15 2011-04-05 Baxano, Inc. Devices and methods for tissue access
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8109958B1 (en) 2006-06-01 2012-02-07 Neville Alleyne Method and apparatus for spinal osteoligamentous resection
US20120046526A1 (en) * 2010-08-21 2012-02-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Instruments for use in femoroacetabular impingement procedures
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8419653B2 (en) 2005-05-16 2013-04-16 Baxano, Inc. Spinal access and neural localization
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8568416B2 (en) 2004-10-15 2013-10-29 Baxano Surgical, Inc. Access and tissue modification systems and methods
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US8845639B2 (en) 2008-07-14 2014-09-30 Baxano Surgical, Inc. Tissue modification devices
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
WO2017040873A1 (en) * 2015-09-04 2017-03-09 DePuy Synthes Products, Inc. Multi-shield spinal access system
US9924979B2 (en) 2014-09-09 2018-03-27 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US9980737B2 (en) 2014-08-04 2018-05-29 Medos International Sarl Flexible transport auger
US10111712B2 (en) 2014-09-09 2018-10-30 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10264959B2 (en) 2014-09-09 2019-04-23 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10299838B2 (en) 2016-02-05 2019-05-28 Medos International Sarl Method and instruments for interbody fusion and posterior fixation through a single incision
US10786264B2 (en) 2015-03-31 2020-09-29 Medos International Sarl Percutaneous disc clearing device
USRE48534E1 (en) 2012-04-16 2021-04-27 DePuy Synthes Products, Inc. Detachable dilator blade
US11013530B2 (en) 2019-03-08 2021-05-25 Medos International Sarl Surface features for device retention
US11045324B2 (en) 2006-12-08 2021-06-29 DePuy Synthes Products, Inc. Method of implanting a curable implant material
US11051862B2 (en) 2001-11-03 2021-07-06 DePuy Synthes Products, Inc. Device for straightening and stabilizing the vertebral column
US11129727B2 (en) 2019-03-29 2021-09-28 Medos International Sari Inflatable non-distracting intervertebral implants and related methods
US11134987B2 (en) 2011-10-27 2021-10-05 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11219439B2 (en) 2012-09-26 2022-01-11 DePuy Synthes Products, Inc. NIR/RED light for lateral neuroprotection
US11241252B2 (en) 2019-03-22 2022-02-08 Medos International Sarl Skin foundation access portal
US11439380B2 (en) 2015-09-04 2022-09-13 Medos International Sarl Surgical instrument connectors and related methods
US11559328B2 (en) 2015-09-04 2023-01-24 Medos International Sarl Multi-shield spinal access system
US11660082B2 (en) 2011-11-01 2023-05-30 DePuy Synthes Products, Inc. Dilation system
US11672562B2 (en) 2015-09-04 2023-06-13 Medos International Sarl Multi-shield spinal access system
US11737743B2 (en) 2007-10-05 2023-08-29 DePuy Synthes Products, Inc. Dilation system and method of using the same
US11744447B2 (en) 2015-09-04 2023-09-05 Medos International Surgical visualization systems and related methods
US11759192B2 (en) 2020-01-24 2023-09-19 Snj Patents, Llc Nerve retractor tool
US11771517B2 (en) 2021-03-12 2023-10-03 Medos International Sarl Camera position indication systems and methods
US11813026B2 (en) 2019-04-05 2023-11-14 Medos International Sarl Systems, devices, and methods for providing surgical trajectory guidance

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7052516B2 (en) 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US20030153976A1 (en) * 1999-10-20 2003-08-14 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7615076B2 (en) * 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8632590B2 (en) * 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US20020123807A1 (en) * 1999-10-20 2002-09-05 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7951201B2 (en) * 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7004970B2 (en) 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US6402750B1 (en) * 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US20040024291A1 (en) * 2002-08-01 2004-02-05 Zinkel John L. Method and apparatus for spinal surgery
GB0410250D0 (en) * 2004-05-10 2004-06-09 Endospine Kinetics Ltd Surgical instrument and method
WO2007016368A2 (en) * 2005-07-28 2007-02-08 Blackstone Medical, Inc. Nerve protection system
WO2007108001A2 (en) * 2006-03-22 2007-09-27 Haim Dror Blecher Ligament remodeling
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
CN102231968A (en) * 2008-10-14 2011-11-02 脊柱建筑师公司 Rearchitecting the spine
US8652153B2 (en) 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
EP2948068A4 (en) 2013-01-28 2016-09-28 Cartiva Inc Systems and methods for orthopedic repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
WO2017019832A1 (en) * 2015-07-29 2017-02-02 Medivation Technologies, Inc. Methods and compositions using repair cells and cationic dyes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769963A (en) * 1972-03-31 1973-11-06 L Goldman Instrument for performing laser micro-surgery and diagnostic transillumination of living human tissue
US3788318A (en) * 1972-06-12 1974-01-29 S Kim Expandable cannular, especially for medical purposes
US4738248A (en) * 1986-07-17 1988-04-19 Cedar Development Corp. Surgical retractors
US5035232A (en) * 1987-10-24 1991-07-30 Aesculap Ag Retractor
US5293863A (en) * 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US5520611A (en) * 1993-12-16 1996-05-28 Rao; Shekar Illuminated retractor
US5552452A (en) * 1993-03-15 1996-09-03 Arch Development Corp. Organic tissue glue for closure of wounds
US5902231A (en) * 1996-03-22 1999-05-11 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5904681A (en) * 1997-02-10 1999-05-18 Hugh S. West, Jr. Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy
US5961499A (en) * 1993-02-04 1999-10-05 Peter M. Bonutti Expandable cannula

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769963A (en) * 1972-03-31 1973-11-06 L Goldman Instrument for performing laser micro-surgery and diagnostic transillumination of living human tissue
US3788318A (en) * 1972-06-12 1974-01-29 S Kim Expandable cannular, especially for medical purposes
US4738248A (en) * 1986-07-17 1988-04-19 Cedar Development Corp. Surgical retractors
US5035232A (en) * 1987-10-24 1991-07-30 Aesculap Ag Retractor
US5293863A (en) * 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US5961499A (en) * 1993-02-04 1999-10-05 Peter M. Bonutti Expandable cannula
US5552452A (en) * 1993-03-15 1996-09-03 Arch Development Corp. Organic tissue glue for closure of wounds
US5520611A (en) * 1993-12-16 1996-05-28 Rao; Shekar Illuminated retractor
US5902231A (en) * 1996-03-22 1999-05-11 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5904681A (en) * 1997-02-10 1999-05-18 Hugh S. West, Jr. Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7905923B2 (en) 2000-04-04 2011-03-15 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US11051862B2 (en) 2001-11-03 2021-07-06 DePuy Synthes Products, Inc. Device for straightening and stabilizing the vertebral column
US7226413B2 (en) * 2003-11-17 2007-06-05 Aeolin Llc Nerve root retractor and sucker
US20050107671A1 (en) * 2003-11-17 2005-05-19 Mckinley Laurence M. Nerve root retractor and sucker
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7740631B2 (en) 2004-10-15 2010-06-22 Baxano, Inc. Devices and methods for tissue modification
US7918849B2 (en) 2004-10-15 2011-04-05 Baxano, Inc. Devices and methods for tissue access
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US9345491B2 (en) 2004-10-15 2016-05-24 Amendia, Inc. Flexible tissue rasp
US7963915B2 (en) 2004-10-15 2011-06-21 Baxano, Inc. Devices and methods for tissue access
US9463041B2 (en) 2004-10-15 2016-10-11 Amendia, Inc. Devices and methods for tissue access
US9320618B2 (en) 2004-10-15 2016-04-26 Amendia, Inc. Access and tissue modification systems and methods
US8568416B2 (en) 2004-10-15 2013-10-29 Baxano Surgical, Inc. Access and tissue modification systems and methods
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US10052116B2 (en) 2004-10-15 2018-08-21 Amendia, Inc. Devices and methods for treating tissue
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US8192435B2 (en) 2004-10-15 2012-06-05 Baxano, Inc. Devices and methods for tissue modification
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8652138B2 (en) 2004-10-15 2014-02-18 Baxano Surgical, Inc. Flexible tissue rasp
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US11382647B2 (en) 2004-10-15 2022-07-12 Spinal Elements, Inc. Devices and methods for treating tissue
US7738968B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8419653B2 (en) 2005-05-16 2013-04-16 Baxano, Inc. Spinal access and neural localization
US9492151B2 (en) 2005-10-15 2016-11-15 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US9125682B2 (en) 2005-10-15 2015-09-08 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US9351741B2 (en) 2006-05-04 2016-05-31 Amendia, Inc. Flexible tissue removal devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US8585704B2 (en) 2006-05-04 2013-11-19 Baxano Surgical, Inc. Flexible tissue removal devices and methods
US8109958B1 (en) 2006-06-01 2012-02-07 Neville Alleyne Method and apparatus for spinal osteoligamentous resection
US8551097B2 (en) 2006-08-29 2013-10-08 Baxano Surgical, Inc. Tissue access guidewire system and method
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US8845637B2 (en) 2006-08-29 2014-09-30 Baxano Surgical, Inc. Tissue access guidewire system and method
US11045324B2 (en) 2006-12-08 2021-06-29 DePuy Synthes Products, Inc. Method of implanting a curable implant material
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US8303516B2 (en) 2007-09-06 2012-11-06 Baxano, Inc. Method, system and apparatus for neural localization
US11737743B2 (en) 2007-10-05 2023-08-29 DePuy Synthes Products, Inc. Dilation system and method of using the same
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US8663228B2 (en) 2007-12-07 2014-03-04 Baxano Surgical, Inc. Tissue modification devices
US9463029B2 (en) 2007-12-07 2016-10-11 Amendia, Inc. Tissue modification devices
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8845639B2 (en) 2008-07-14 2014-09-30 Baxano Surgical, Inc. Tissue modification devices
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20120046526A1 (en) * 2010-08-21 2012-02-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Instruments for use in femoroacetabular impingement procedures
US9119644B2 (en) * 2010-08-21 2015-09-01 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Instruments for use in femoroacetabular impingement procedures
US9750491B2 (en) 2010-08-21 2017-09-05 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Instruments for use in femoroacetabular impingement procedures
US11911017B2 (en) 2011-10-27 2024-02-27 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11278323B2 (en) 2011-10-27 2022-03-22 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11241255B2 (en) 2011-10-27 2022-02-08 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11234736B2 (en) 2011-10-27 2022-02-01 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11134987B2 (en) 2011-10-27 2021-10-05 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
US11660082B2 (en) 2011-11-01 2023-05-30 DePuy Synthes Products, Inc. Dilation system
USRE48534E1 (en) 2012-04-16 2021-04-27 DePuy Synthes Products, Inc. Detachable dilator blade
US11559295B2 (en) 2012-09-26 2023-01-24 DePuy Synthes Products, Inc. NIR/red light for lateral neuroprotection
US11219439B2 (en) 2012-09-26 2022-01-11 DePuy Synthes Products, Inc. NIR/RED light for lateral neuroprotection
US10863994B2 (en) 2014-08-04 2020-12-15 Medos International Sàrl Flexible transport auger
US11712252B2 (en) 2014-08-04 2023-08-01 Medos International Sarl Flexible transport auger
US9980737B2 (en) 2014-08-04 2018-05-29 Medos International Sarl Flexible transport auger
US11213196B2 (en) 2014-09-09 2022-01-04 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10786330B2 (en) 2014-09-09 2020-09-29 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US9924979B2 (en) 2014-09-09 2018-03-27 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10111712B2 (en) 2014-09-09 2018-10-30 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10264959B2 (en) 2014-09-09 2019-04-23 Medos International Sarl Proximal-end securement of a minimally invasive working channel
US10786264B2 (en) 2015-03-31 2020-09-29 Medos International Sarl Percutaneous disc clearing device
US11464523B2 (en) 2015-03-31 2022-10-11 Medos International Sarl Percutaneous disc clearing device
US11559328B2 (en) 2015-09-04 2023-01-24 Medos International Sarl Multi-shield spinal access system
US11744447B2 (en) 2015-09-04 2023-09-05 Medos International Surgical visualization systems and related methods
US11000312B2 (en) 2015-09-04 2021-05-11 Medos International Sarl Multi-shield spinal access system
US10779810B2 (en) 2015-09-04 2020-09-22 Medos International Sarl Devices and methods for surgical retraction
US10758220B2 (en) 2015-09-04 2020-09-01 Medos International Sarl Devices and methods for providing surgical access
US10987129B2 (en) 2015-09-04 2021-04-27 Medos International Sarl Multi-shield spinal access system
US10682130B2 (en) 2015-09-04 2020-06-16 Medos International Sarl Surgical access port stabilization
US11331090B2 (en) 2015-09-04 2022-05-17 Medos International Sarl Surgical visualization systems and related methods
US11344190B2 (en) 2015-09-04 2022-05-31 Medos International Sarl Surgical visualization systems and related methods
US11883064B2 (en) 2015-09-04 2024-01-30 Medos International Sarl Multi-shield spinal access system
US11439380B2 (en) 2015-09-04 2022-09-13 Medos International Sarl Surgical instrument connectors and related methods
US10869659B2 (en) 2015-09-04 2020-12-22 Medos International Sarl Surgical instrument connectors and related methods
WO2017040873A1 (en) * 2015-09-04 2017-03-09 DePuy Synthes Products, Inc. Multi-shield spinal access system
US11806043B2 (en) 2015-09-04 2023-11-07 Medos International Sarl Devices and methods for providing surgical access
US11801070B2 (en) 2015-09-04 2023-10-31 Medos International Sarl Surgical access port stabilization
US11672562B2 (en) 2015-09-04 2023-06-13 Medos International Sarl Multi-shield spinal access system
US11712264B2 (en) 2015-09-04 2023-08-01 Medos International Sarl Multi-shield spinal access system
CN108135440A (en) * 2015-09-04 2018-06-08 美多斯国际有限公司 More shield backbones enter system
US11793546B2 (en) 2015-09-04 2023-10-24 Medos International Sarl Surgical visualization systems and related methods
US10874425B2 (en) 2015-09-04 2020-12-29 Medos International Sarl Multi-shield spinal access system
US11020153B2 (en) 2016-02-05 2021-06-01 Medos International Sarl Method and instruments for interbody fusion and posterior fixation through a single incision
US10299838B2 (en) 2016-02-05 2019-05-28 Medos International Sarl Method and instruments for interbody fusion and posterior fixation through a single incision
US11013530B2 (en) 2019-03-08 2021-05-25 Medos International Sarl Surface features for device retention
US11241252B2 (en) 2019-03-22 2022-02-08 Medos International Sarl Skin foundation access portal
US11129727B2 (en) 2019-03-29 2021-09-28 Medos International Sari Inflatable non-distracting intervertebral implants and related methods
US11813026B2 (en) 2019-04-05 2023-11-14 Medos International Sarl Systems, devices, and methods for providing surgical trajectory guidance
US11759192B2 (en) 2020-01-24 2023-09-19 Snj Patents, Llc Nerve retractor tool
US11771517B2 (en) 2021-03-12 2023-10-03 Medos International Sarl Camera position indication systems and methods

Also Published As

Publication number Publication date
US6684886B1 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US6684886B1 (en) Intervertebral disc repair methods and apparatus
US8870760B2 (en) Surgical dilator, retractor and mounting pad
US11272912B2 (en) Surgical dilator, retractor and mounting pad
US5437661A (en) Method for removal of prolapsed nucleus pulposus material on an intervertebral disc using a laser
US9675334B2 (en) Surgical dilator, retractor and mounting pad
CA2273925C (en) Mechanical and electrical endoscopic surgical instrument
US20070213584A1 (en) Percutaneous access and visualization of the spine
US20070213583A1 (en) Percutaneous access and visualization of the spine
US20060206118A1 (en) Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
JP2003522586A (en) Device for performing discectomy through a transsacral axial hole in the vertebra of the spine
US8377087B2 (en) Method and apparatus for spinal osteoligamentous resection
EP1993428A2 (en) Percutaneous access and visualization of the spine
Gu et al. Working cannula-based endoscopic foraminoplasty: a technical note
Mulhern et al. Endoscopic removal of periorbital lesions
US20210267622A1 (en) Spinal surgery method
Tawes et al. Endoscopic technique for subfascial perforating vein interruption
US20200281621A1 (en) Image guided spinal decompression with contralateral oblique view
WO2017040275A1 (en) Surgical dilator, retractor and mounting pad
CN213606268U (en) Protective sheath for intervertebral foramen mirror
Hasan et al. 5 Endoscopic Instruments
Lee et al. Transforaminal Endoscopic Thoracic Discectomy for Migrated Herniation
Yeung Transforaminal Access During Lumbar Endoscopy
Kavi Foraminoplasty
Lee Transforaminal Discoplasty with Endoscopy
CA3214969A1 (en) Set of surgical tools for spinal facet therapy

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION