US20040152238A1 - Flip chip interconnection using no-clean flux - Google Patents

Flip chip interconnection using no-clean flux Download PDF

Info

Publication number
US20040152238A1
US20040152238A1 US10/762,013 US76201304A US2004152238A1 US 20040152238 A1 US20040152238 A1 US 20040152238A1 US 76201304 A US76201304 A US 76201304A US 2004152238 A1 US2004152238 A1 US 2004152238A1
Authority
US
United States
Prior art keywords
temperature
solder bumps
chip
substrate
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/762,013
Inventor
Michihisa Maeda
Kenji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/762,013 priority Critical patent/US20040152238A1/en
Publication of US20040152238A1 publication Critical patent/US20040152238A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces

Definitions

  • the invention relates generally to the field of semiconductor chip packaging. More particularly, the invention relates to the joining of the semi-conductor chip and a substrate using a flip chip process.
  • the process consists of applying solder bumps to pads on the substrate. A flux is applied to at least one of the surfaces to be joined to isolate the surface from the atmosphere and provide an adhesive force to hold the chip to the substrate during the process. The solder is then re-flowed. Finally, a wash and bake cycle may be used to clean the package.
  • An epoxy under-fill is applied between the active surface of the chip and the top surface of the substrate to surround and support the solder interconnects. Under-filling significantly increases the reliability and fatigue resistance of the package's interconnections.
  • the under-fill helps to more evenly distribute stress caused by thermally induced strains due to the differences in coefficients of thermal expansion (CTE) between the chip and substrate across the entire surface of the chip and substrate. If the gap between the interconnected chip and substrate were not under-filled, the stress would be carried by the relatively thin solder interconnects, often resulting in premature package failure. However, in order for the under-fill to perform properly, it must be well adhered to the chip and substrate surfaces.
  • TPT total throughput time
  • chemical defluxing may take minutes, while a post-bake to remove absorbed water from chip and substrate may take several hours.
  • Fluxes have been developed that completely volatilize at elevated temperature. However, because the flux is required in the C4 process to hold the chip and substrate together before re-flow, only those fluxes that have volatilization temperature at or above the solder melting point are suitable for use with the C4 process.
  • FIG. 1 is a prior art flow diagram illustrating the operations typically required to create a flip chip bond using a C4 joining process.
  • FIG. 2 is a flow diagram of one embodiment of a joining process.
  • FIG. 3 illustrates one embodiment a solder bump that has been applied to a bonding pad on a substrate and re-flowed, as well as a copper base metal bump that has been applied to a bonding pad on the top surface of a chip.
  • FIG. 4A-D illustrates embodiments of a chip and substrate during various operations during the interconnection process.
  • FIG. 5 illustrates one embodiment of a diagram for a joining cycle.
  • FIG. 6A is an illustration of one embodiment of a chip/substrate package.
  • FIG. 6B is a chart derived from experimentation indicating the temperatures observed at several locations on the chip and substrate during a chip interconnection process performed according to an embodiment of the present invention.
  • FIG. 7 illustrates a cross-sectional view of an interconnect joint.
  • a flip chip method for the interconnection of a chip to a substrate utilizing a no-clean flux having a low volatilization temperature is described.
  • a thermo-compression bonder or a similarly equipped apparatus that uses contact pressure to hold the chip and the associated substrate in general alignment prior to re-flow of the solder bumps, the need to use a flux that can adhesively hold the chip and substrate together until solder bump re-flow is eliminated.
  • a no-clean flux having a volatilization temperature below the melting temperature of the solder may be specified whereby most, if not substantially all, of the flux is volatilized during a brief hold at the solder re-flow temperature.
  • a short post-heat period may be utilized to ensure the no-clean flux has been completely volatilized.
  • the use of the low volatilization no-clean flux in conjunction with a thermo-compression bonder results in significantly reduced TPT's, as well as higher integrity bonds than is typical using conventional C4 processing.
  • a no-clean flux is one that includes constituents that completely volatilize at a specific temperature, leaving no solid residue.
  • FIG. 1 illustrates the C4 process.
  • solder bumps are typically applied to pads on the substrate using any number of suitable processes including printing (using solder paste for the C4 process), plating and vapor deposition. Generally, lead-tin solders having melting points below 200 degrees Celsius are used.
  • the solder bumps are re-flowed by heating the solder bumps to a temperature above the solder's melting point to fully wet the solder bumps to their respective pads.
  • metal bumps, or protrusions having a high lead content are deposited on the corresponding chip pads.
  • a flux is applied to at least one of the surfaces to be joined.
  • the flux includes a vehicle and an activator.
  • the flux vehicle acts to isolate the surface of the solder from the atmosphere during a second re-flow, minimizing the risks of oxidation while the solder is hot and/or molten.
  • the flux vehicle is generally tacky and provides an adhesive force to hold the chip and substrate together prior to the second re-flow.
  • the activator is typically an organic or inorganic acid that removes any oxides or surface films present on the solder, facilitating solder wetting of the metallic surfaces to be joined.
  • the flux bearing surfaces of the chip and substrate are placed in contact with each other in general alignment.
  • the second re-flow is performed by heating the chip and substrate package to a temperature above the solder's melting point.
  • the molten solder bumps wet the corresponding metal bumps and the surface tension of the molten solder causes the metal bumps to self-align with each of the corresponding substrate pads.
  • the newly formed interconnects are then cooled to solidify the solder.
  • Any flux or flux residue is removed from the chip and substrate package in a defluxing operation as indicated in processing block 130 .
  • This operation will typically include solvent washing the package to remove flux residue.
  • a post-interconnection bake cycle may also be specified to volatilize any remaining solvent or low boiling point flux constituents. Water-soluble fluxes are commonly used for C4 application and water is used for defluxing. The primary purpose of the bake cycle is to remove the water, which is absorbed into chip and substrate during defluxing, since such absorbed water would be the cause of voids during under-filling.
  • FIG. 2 is a flow diagram for one embodiment of a joining process utilized according to one embodiment of the present invention.
  • a solder is applied to bond pads on the top surface of the substrate.
  • the solder may be applied to bond pads on the chip (die) as well.
  • the solder may be applied to the bond pads using any number of suitable techniques known to those skilled in the art, including, but not limited to, printing, vapor deposition and electroplating.
  • the substrate is heated to beyond the solder's melting point to re-flow the solder as indicated in processing block 210 to facilitate complete wetting of the bond pads.
  • a 96.5% tin/3.5% silver eutectic solder with a melting point of around 221 degrees Celsius is specified, although any number of suitable solder compounds may be utilized. Ideally, lead-free solders are specified, eliminating the potential environmental problems caused by lead.
  • a metal bump is applied to the bond pads on the chip, although in alternative embodiments the bump metal pad may be applied to the substrate instead.
  • the bump metal pad may be applied to the bonding pad by any number of methods as would be known to one skilled in the art.
  • the bump metal has good electrical conductivity and reasonable resistance to oxidation at the elevated joining temperatures.
  • an oxidation-resistant, lead-based bump metal such as a 97% Pb/3% Sn alloy has been utilized in conventional C4 flip chip joining processes.
  • Lead-based bump metals, and solders for that matter provide necessary oxidation resistance during the furnace temperature ramp up and hold times utilized in a conventional C4 process.
  • the ramp up and hold times are relatively short (e.g.
  • FIG. 3 illustrates a solder bump 305 that has been applied to a bonding pad 310 on a substrate 315 and re-flowed, as well as a copper base metal bump 320 that has been applied to a bonding pad on the top surface of a chip 325 .
  • a no-clean flux is applied to the solder bumped surface of the substrate.
  • a solder bumped substrate 315 is illustrated in FIG. 4A with a no-clean flux 405 applied to its top surface, substantially encapsulating the solder bumps 305 .
  • the primary functions of the no-clean flux 405 is to remove oxide and other contaminants from the surface of the solder bumps 305 and the base metal bumps 320 , and prevent new oxide films from forming on the base metal and solder bumps during the interconnection process.
  • fluxes serve an additional purpose of adhesively holding the chip and substrate together until the re-flow temperature was reached during joining.
  • no-clean fluxes used in the C4 process have constituents that have boiling points above the melting points of the solder bumps. Since pressure applied by the thermo-compression bonder is used to hold the chip and substrate together prior to re-flow in the preferred embodiments of the invention, no-clean fluxes consisting entirely of constituents with boiling points of less than the melting point of the solder may be utilized. In one embodiment, a carboxylic acid no-clean flux is utilized having a boiling point of around 200 degrees Celsius.
  • the chip 320 is picked up by the head of the thermo-compression bonder and aligned with the substrate 315 .
  • the substrate 315 is typically placed on a heated platen 330 as shown in FIG. 4B.
  • the platen 330 is generally held at a constant temperature below the melting point of the solder 305 .
  • a temperature of around 135 degrees Celsius is specified.
  • the die head 335 may be maintained at an intermediate temperature, typically between 30 to 100 degrees Celsius.
  • the die head 335 may comprise an internal heating element or, as shown in FIG. 4B, a pulse heat tool 340 capable of very rapid heating (e.g., greater than 25 degrees Celsius@second) may be utilized.
  • the interconnection cycle is commenced.
  • the base metal bumps 325 of the chip 315 are brought into contact with corresponding solder bumps 305 on the substrate 315 and pressure is applied as the pulse heat tool 340 is rapidly heated to a temperature well in excess of the melting point of the solder bumps 305 .
  • the interconnection cycle is then ended.
  • FIG. 5 illustrates one embodiment of a joining.
  • Line 540 represents the temperature of the pulse heat tool 340 at a given time during the cycle.
  • Line 545 is a pressure curve indicating the amount of force applied to the interface between the metal bumps 325 and the solder bumps 305 at a given time.
  • the pulse heat tool is maintained at an intermediate temperature such as 30 degrees Celsius.
  • the chip is picked up by the thermo-compression bonder head at time 525 .
  • the chip and substrate are aligned and the chip is brought into contact with the substrate and pressure is applied at around time 530 .
  • a force of 2 to 5 kilograms is applied depending on the dimensions of the chip and the number of flip chip connections to be made.
  • the pulse heat tool is energized and rapidly heated to its hold temperature.
  • heat-up rates on the order of 100 degrees Celsius are specified.
  • the peak hold temperature 515 is typically on the order of 250 to 400 degrees Celsius depending on several factors, including the thickness of the chip, the thermal conductivity of the chip, and the melting point and desired re-flow temperature of the solder bumps 305 .
  • a temperature gradient will be established through the chip such that the temperature at the interface with the solder bumps 305 will be less than the temperature at the interface with the pulse heat tool 340 . Accordingly, the hold temperature 515 of the pulse heat tool will typically be greater than the re-flow temperature of the solder bumps 305 .
  • the pressure applied to the chip is nearly reduced to zero as indicated by pressure curve 545 .
  • the melting temperature of the solder is reached at the interface between the chip and the substrate and pressure is no longer required to hold the chip and substrate together. While the pulse heat tool is held at temperature 515 , the solder bumps melt and re-flow.
  • the pulse heat tool is maintained at temperature 515 for a short period of time, typically 1 to 5 seconds, after which the pulse heat tool 340 is de-energized and the solder solidifies shortly thereafter. Once the pulse heat tool has reached a temperature 510 , the bonded chip and substrate are removed from the thermo-compression bonder, freeing the bonder to perform another chip join.
  • the interface between the chip and substrate reaches a temperature in excess of the boiling point (or volatilization point) of the no-clean flux.
  • the no-clean flux of the preferred embodiment is comprised of carboxylic acid which boils at a temperature of 200 degrees Celsius. Ideally, substantially all of the flux volatilizes during the heat-up phase and is not present during the re-flow of the solder. A lack of flux to protect the solder and base metal from the oxidizing effects of elevated temperatures would normally be of concern. However, given the rapid heat-up rate of the pulse tool, the time in which the solder and base metal are unprotected prior to melting and re-flow is generally insignificant. Furthermore, the gaseous flux volatiles form a temporary protective cloud around the solder bumps substantially preventing oxygen molecules from impinging on the joining surfaces prior to melting and re-flow.
  • a 96.5% Sn 3.5% Ag solder is utilized to form the solder bumps.
  • This solder has a melting point of approximately 221 degrees Celsius and requires a re-flow temperature at least a few degrees greater than the melting point.
  • typical methods such as C4 utilize lead based solders (such as 37% lead 63% tin) that have melting points of less than 190 degrees Celsius.
  • the lower melting point solders are especially necessary when joining a chip to a pinned substrate using a C4 process since temperatures in excess of 210 degrees Celsius can cause softening of the pinning solder (typically, 95% tin 5% antimony which begins melting around 232 degrees Celsius), resulting in movement of the pins.
  • FIG. 6A is an illustration of a chip/substrate package wherein the substrate includes a pin grid array (PGA). The pins 620 of the PGA are held in place by pinning solder 620 .
  • FIG. 6B is a chart derived from experimentation indicating the temperatures observed at several locations on the chip and substrate during a chip join performed according to one embodiment.
  • the temperatures listed along the horizontal axis indicate the temperature at the center of the chip join region 605 . It is noted that the melt and re-flow of the preferred solder typically occurs at temperatures between 220 and 235 degrees Celsius.
  • the top line indicates the corresponding temperature at the center of the pin grid array side of the substrate.
  • the bottom line indicates the corresponding temperature at the edge of the pin grid array side of the substrate. As is indicated by FIG. 6B, the temperature on the pin grid array side of the substrate never exceeds 165 degrees Celsius, while the melt temperature of the solder bumps are reached and exceeded to facilitate re-flow and joining.
  • the gap between the chip and the substrate is typically under-filled with an epoxy resin to substantially increase the longevity, environmental resistance, and fatigue strength of the interconnects as indicated by block 240 .
  • the surfaces to be bonded should be free of flux or other residue. Accordingly, in certain embodiments, a post-heat operation may be performed to ensure that any residual flux that could negatively impact the subsequent under-fill bond is removed.
  • the interconnected chip and substrate may be heated in an oven for an appropriate period of time at or slightly above the volatilization temperature of the no-clean flux as indicated in block 235 .
  • a chip substrate package joined according to one embodiment where a carboxylic acid flux with a 200 degrees boiling point is used will be baked at least 200 degrees Celsius for 10 minutes.
  • the flux does not volatize below the re-flow temperature of the solder bumps, little or no time-consuming, solvent-based defluxing operations need be performed, significantly reducing the TPT.
  • the volatilization of the flux prior to melt and re-flow helps facilitate a low porosity bond with high integrity as shown in FIG. 7, a cross-sectional view of an interconnect joint.

Abstract

A flip chip method of joining a chip and a substrate is described. A thermo-compression bonder is utilized to align the chip and substrate and apply a contact force to hold solder bumps on the substrate against metal bumps on the chip. The chip is rapidly heated from its non-native side by a pulse heater in the head of the bonder until the re-flow temperature of the solder bumps is reached. Proximate with reaching the re-flow temperature at the solder bumps, the contact force is released. The solder is held above its re-flow temperature for several seconds to facilitate wetting of the substrate's metal protrusions and joining. A no-clean flux that has a volatilization temperature below the melting point of the solder bumps is utilized to minimize or eliminate the need for a post interconnection de-flux operation.

Description

    RELATED APPLICATION AND CLAIM OF PRIORITY
  • This is continuation of U.S. application Ser. No. 09/820,547, filed on Mar. 28, 2001, now allowed, and priority is claimed thereof.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The invention relates generally to the field of semiconductor chip packaging. More particularly, the invention relates to the joining of the semi-conductor chip and a substrate using a flip chip process. [0003]
  • 2. Description of the Related Art [0004]
  • Traditionally, semi-conductor chips have been electrically coupled to electrical traces on a substrate via wire interconnects that are soldered on one end to the top area of a chip and soldered to trace pads on the substrate that surround the chip on the other end. These types of interconnects are not particularly space efficient, requiring area for both the footprint of the chip and a trace pad perimeter. To more efficiently utilize the substrate surface and facilitate smaller chip packages, the flip chip interconnection process was developed. Essentially, the active surface of the semi-conductor chip is flipped over to face the substrate and the chip is soldered directly to trace pads located adjacent to the active surface. The result is a more compact and space efficient package. [0005]
  • One of the most successful and effective methods of electrically connecting a flipped chip to a substrate utilizes controlled-collapse chip connection technology (the C4 process developed by Intel Corporation of Santa Clara Calif.). Details of this process will be described below with reference to FIG. 1. Briefly, the process consists of applying solder bumps to pads on the substrate. A flux is applied to at least one of the surfaces to be joined to isolate the surface from the atmosphere and provide an adhesive force to hold the chip to the substrate during the process. The solder is then re-flowed. Finally, a wash and bake cycle may be used to clean the package. [0006]
  • An epoxy under-fill is applied between the active surface of the chip and the top surface of the substrate to surround and support the solder interconnects. Under-filling significantly increases the reliability and fatigue resistance of the package's interconnections. The under-fill helps to more evenly distribute stress caused by thermally induced strains due to the differences in coefficients of thermal expansion (CTE) between the chip and substrate across the entire surface of the chip and substrate. If the gap between the interconnected chip and substrate were not under-filled, the stress would be carried by the relatively thin solder interconnects, often resulting in premature package failure. However, in order for the under-fill to perform properly, it must be well adhered to the chip and substrate surfaces. Even a thin film of flux residue can cause premature delamination of a bonded surface, eventually resulting in failure in one or more of the interconnects. Accordingly, one of the great challenges using C4 technology has been to completely remove all flux residues from the package. This has become especially troublesome as the thickness of the gap between the chip and the substrate has decreased. [0007]
  • The total throughput time (TPT), or the time it takes to create a soldered chip, is affected significantly by the time required to remove absorbed water from chip and substrate which can be particularly time-consuming. For instance, chemical defluxing may take minutes, while a post-bake to remove absorbed water from chip and substrate may take several hours. Fluxes have been developed that completely volatilize at elevated temperature. However, because the flux is required in the C4 process to hold the chip and substrate together before re-flow, only those fluxes that have volatilization temperature at or above the solder melting point are suitable for use with the C4 process. The small thickness of the gap distance between the chip and the substrate coupled with the flux's high volatilization temperatures, however, make it difficult, if not impossible, to boil off all of the flux residues during the re-flow process or in a subsequent post-bake operation at a temperature slightly below solder melting temperature. The long post-bake times and defluxing operations required to volatize the flux eliminate any opportunity for significant TPT reductions. [0008]
  • BRIEF DESCRIPTION THE DRAWINGS
  • The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which: [0009]
  • FIG. 1 is a prior art flow diagram illustrating the operations typically required to create a flip chip bond using a C4 joining process. [0010]
  • FIG. 2 is a flow diagram of one embodiment of a joining process. [0011]
  • FIG. 3 illustrates one embodiment a solder bump that has been applied to a bonding pad on a substrate and re-flowed, as well as a copper base metal bump that has been applied to a bonding pad on the top surface of a chip. [0012]
  • FIG. 4A-D illustrates embodiments of a chip and substrate during various operations during the interconnection process. [0013]
  • FIG. 5 illustrates one embodiment of a diagram for a joining cycle. [0014]
  • FIG. 6A is an illustration of one embodiment of a chip/substrate package. [0015]
  • FIG. 6B is a chart derived from experimentation indicating the temperatures observed at several locations on the chip and substrate during a chip interconnection process performed according to an embodiment of the present invention. [0016]
  • FIG. 7 illustrates a cross-sectional view of an interconnect joint. [0017]
  • DETAILED DESCRIPTION
  • A flip chip method for the interconnection of a chip to a substrate utilizing a no-clean flux having a low volatilization temperature is described. Through the use of a thermo-compression bonder (or a similarly equipped apparatus) that uses contact pressure to hold the chip and the associated substrate in general alignment prior to re-flow of the solder bumps, the need to use a flux that can adhesively hold the chip and substrate together until solder bump re-flow is eliminated. Accordingly, a no-clean flux having a volatilization temperature below the melting temperature of the solder may be specified whereby most, if not substantially all, of the flux is volatilized during a brief hold at the solder re-flow temperature. In alternative embodiments, a short post-heat period may be utilized to ensure the no-clean flux has been completely volatilized. Advantageously, the use of the low volatilization no-clean flux in conjunction with a thermo-compression bonder results in significantly reduced TPT's, as well as higher integrity bonds than is typical using conventional C4 processing. For purposes of this disclosure, a no-clean flux is one that includes constituents that completely volatilize at a specific temperature, leaving no solid residue. [0018]
  • FIG. 1 illustrates the C4 process. First, as shown in [0019] processing block 105, solder bumps are typically applied to pads on the substrate using any number of suitable processes including printing (using solder paste for the C4 process), plating and vapor deposition. Generally, lead-tin solders having melting points below 200 degrees Celsius are used. Next, in processing block 110, the solder bumps are re-flowed by heating the solder bumps to a temperature above the solder's melting point to fully wet the solder bumps to their respective pads. Typically, metal bumps, or protrusions having a high lead content, are deposited on the corresponding chip pads.
  • In [0020] processing block 115, a flux is applied to at least one of the surfaces to be joined. Typically, the flux includes a vehicle and an activator. The flux vehicle acts to isolate the surface of the solder from the atmosphere during a second re-flow, minimizing the risks of oxidation while the solder is hot and/or molten. The flux vehicle is generally tacky and provides an adhesive force to hold the chip and substrate together prior to the second re-flow. The activator is typically an organic or inorganic acid that removes any oxides or surface films present on the solder, facilitating solder wetting of the metallic surfaces to be joined. In processing block 120, the flux bearing surfaces of the chip and substrate are placed in contact with each other in general alignment.
  • Next, as illustrated in [0021] processing block 125, the second re-flow is performed by heating the chip and substrate package to a temperature above the solder's melting point. The molten solder bumps wet the corresponding metal bumps and the surface tension of the molten solder causes the metal bumps to self-align with each of the corresponding substrate pads. The newly formed interconnects are then cooled to solidify the solder.
  • Any flux or flux residue is removed from the chip and substrate package in a defluxing operation as indicated in [0022] processing block 130. This operation will typically include solvent washing the package to remove flux residue. A post-interconnection bake cycle may also be specified to volatilize any remaining solvent or low boiling point flux constituents. Water-soluble fluxes are commonly used for C4 application and water is used for defluxing. The primary purpose of the bake cycle is to remove the water, which is absorbed into chip and substrate during defluxing, since such absorbed water would be the cause of voids during under-filling.
  • FIG. 2 is a flow diagram for one embodiment of a joining process utilized according to one embodiment of the present invention. First, as indicated in [0023] processing block 205, a solder is applied to bond pads on the top surface of the substrate. One of ordinary skill in the art will appreciate that in alternative embodiments the solder may be applied to bond pads on the chip (die) as well. The solder may be applied to the bond pads using any number of suitable techniques known to those skilled in the art, including, but not limited to, printing, vapor deposition and electroplating. After the solder is applied, the substrate is heated to beyond the solder's melting point to re-flow the solder as indicated in processing block 210 to facilitate complete wetting of the bond pads. In one embodiment, a 96.5% tin/3.5% silver eutectic solder with a melting point of around 221 degrees Celsius is specified, although any number of suitable solder compounds may be utilized. Ideally, lead-free solders are specified, eliminating the potential environmental problems caused by lead.
  • Typically, a metal bump is applied to the bond pads on the chip, although in alternative embodiments the bump metal pad may be applied to the substrate instead. The bump metal pad may be applied to the bonding pad by any number of methods as would be known to one skilled in the art. Ideally, the bump metal has good electrical conductivity and reasonable resistance to oxidation at the elevated joining temperatures. Traditionally, an oxidation-resistant, lead-based bump metal such as a 97% Pb/3% Sn alloy has been utilized in conventional C4 flip chip joining processes. Lead-based bump metals, and solders for that matter, provide necessary oxidation resistance during the furnace temperature ramp up and hold times utilized in a conventional C4 process. In embodiments of the present invention, the ramp up and hold times are relatively short (e.g. 100 degrees@second ramp and 1-5 second hold). Thus, the potential for significant oxidation is minimized and a more reactive base metal with superior electrical properties may be utilized in the metal bumps. In one embodiment, a copper base metal bump is specified. FIG. 3 illustrates a [0024] solder bump 305 that has been applied to a bonding pad 310 on a substrate 315 and re-flowed, as well as a copper base metal bump 320 that has been applied to a bonding pad on the top surface of a chip 325.
  • Referring back to FIG. 2, in processing block [0025] 215 a no-clean flux is applied to the solder bumped surface of the substrate. A solder bumped substrate 315 is illustrated in FIG. 4A with a no-clean flux 405 applied to its top surface, substantially encapsulating the solder bumps 305. The primary functions of the no-clean flux 405 is to remove oxide and other contaminants from the surface of the solder bumps 305 and the base metal bumps 320, and prevent new oxide films from forming on the base metal and solder bumps during the interconnection process. In typical C4 bonding processes, fluxes serve an additional purpose of adhesively holding the chip and substrate together until the re-flow temperature was reached during joining. Accordingly, even no-clean fluxes used in the C4 process have constituents that have boiling points above the melting points of the solder bumps. Since pressure applied by the thermo-compression bonder is used to hold the chip and substrate together prior to re-flow in the preferred embodiments of the invention, no-clean fluxes consisting entirely of constituents with boiling points of less than the melting point of the solder may be utilized. In one embodiment, a carboxylic acid no-clean flux is utilized having a boiling point of around 200 degrees Celsius.
  • Referring to processing block [0026] 220 of FIG. 2, the chip 320 is picked up by the head of the thermo-compression bonder and aligned with the substrate 315. The substrate 315 is typically placed on a heated platen 330 as shown in FIG. 4B. The platen 330 is generally held at a constant temperature below the melting point of the solder 305. In one embodiment, a temperature of around 135 degrees Celsius is specified. Likewise, the die head 335 may be maintained at an intermediate temperature, typically between 30 to 100 degrees Celsius. The die head 335 may comprise an internal heating element or, as shown in FIG. 4B, a pulse heat tool 340 capable of very rapid heating (e.g., greater than 25 degrees Celsius@second) may be utilized.
  • Next, in [0027] processing block 230, the interconnection cycle is commenced. First, as shown in FIG. 4C, the base metal bumps 325 of the chip 315 are brought into contact with corresponding solder bumps 305 on the substrate 315 and pressure is applied as the pulse heat tool 340 is rapidly heated to a temperature well in excess of the melting point of the solder bumps 305. As illustrated in FIG. 4D, the interconnection cycle is then ended.
  • FIG. 5 illustrates one embodiment of a joining. [0028] Line 540 represents the temperature of the pulse heat tool 340 at a given time during the cycle. Line 545 is a pressure curve indicating the amount of force applied to the interface between the metal bumps 325 and the solder bumps 305 at a given time. Initially, as discussed supra, the pulse heat tool is maintained at an intermediate temperature such as 30 degrees Celsius. The chip is picked up by the thermo-compression bonder head at time 525. The chip and substrate are aligned and the chip is brought into contact with the substrate and pressure is applied at around time 530. Typically, a force of 2 to 5 kilograms is applied depending on the dimensions of the chip and the number of flip chip connections to be made. Also at time 530, the pulse heat tool is energized and rapidly heated to its hold temperature. In one embodiment, heat-up rates on the order of 100 degrees Celsius are specified. The peak hold temperature 515 is typically on the order of 250 to 400 degrees Celsius depending on several factors, including the thickness of the chip, the thermal conductivity of the chip, and the melting point and desired re-flow temperature of the solder bumps 305.
  • Typically, a temperature gradient will be established through the chip such that the temperature at the interface with the solder bumps [0029] 305 will be less than the temperature at the interface with the pulse heat tool 340. Accordingly, the hold temperature 515 of the pulse heat tool will typically be greater than the re-flow temperature of the solder bumps 305. At about time 550 when the hold temperature 515 has been reached, the pressure applied to the chip is nearly reduced to zero as indicated by pressure curve 545. At about or just prior to time 550, the melting temperature of the solder is reached at the interface between the chip and the substrate and pressure is no longer required to hold the chip and substrate together. While the pulse heat tool is held at temperature 515, the solder bumps melt and re-flow. The pulse heat tool is maintained at temperature 515 for a short period of time, typically 1 to 5 seconds, after which the pulse heat tool 340 is de-energized and the solder solidifies shortly thereafter. Once the pulse heat tool has reached a temperature 510, the bonded chip and substrate are removed from the thermo-compression bonder, freeing the bonder to perform another chip join.
  • During the heat-up phase of the chip join, the interface between the chip and substrate reaches a temperature in excess of the boiling point (or volatilization point) of the no-clean flux. As discussed supra, the no-clean flux of the preferred embodiment is comprised of carboxylic acid which boils at a temperature of 200 degrees Celsius. Ideally, substantially all of the flux volatilizes during the heat-up phase and is not present during the re-flow of the solder. A lack of flux to protect the solder and base metal from the oxidizing effects of elevated temperatures would normally be of concern. However, given the rapid heat-up rate of the pulse tool, the time in which the solder and base metal are unprotected prior to melting and re-flow is generally insignificant. Furthermore, the gaseous flux volatiles form a temporary protective cloud around the solder bumps substantially preventing oxygen molecules from impinging on the joining surfaces prior to melting and re-flow. [0030]
  • In one embodiment, as mentioned supra, a 96.5% Sn 3.5% Ag solder is utilized to form the solder bumps. This solder has a melting point of approximately 221 degrees Celsius and requires a re-flow temperature at least a few degrees greater than the melting point. As discussed supra, typical methods such as C4 utilize lead based solders (such as 37% lead 63% tin) that have melting points of less than 190 degrees Celsius. The lower melting point solders are especially necessary when joining a chip to a pinned substrate using a C4 process since temperatures in excess of 210 degrees Celsius can cause softening of the pinning solder (typically, 95% tin 5% antimony which begins melting around 232 degrees Celsius), resulting in movement of the pins. In one embodiment using a 96.5% Sn 3.5% Ag solder, the temperature of the pinning solder does not exceed 200 degrees Celsius. The temperature gradient between the chip-to-pulse heat tool interface at the high end and the platen-to-substrate interface at the low end never has the opportunity to equalize in the short time the pulse heat tool is energized. FIG. 6A is an illustration of a chip/substrate package wherein the substrate includes a pin grid array (PGA). The [0031] pins 620 of the PGA are held in place by pinning solder 620. FIG. 6B is a chart derived from experimentation indicating the temperatures observed at several locations on the chip and substrate during a chip join performed according to one embodiment. The temperatures listed along the horizontal axis indicate the temperature at the center of the chip join region 605. It is noted that the melt and re-flow of the preferred solder typically occurs at temperatures between 220 and 235 degrees Celsius. The top line indicates the corresponding temperature at the center of the pin grid array side of the substrate. The bottom line indicates the corresponding temperature at the edge of the pin grid array side of the substrate. As is indicated by FIG. 6B, the temperature on the pin grid array side of the substrate never exceeds 165 degrees Celsius, while the melt temperature of the solder bumps are reached and exceeded to facilitate re-flow and joining.
  • Referring back to FIG. 2, the gap between the chip and the substrate is typically under-filled with an epoxy resin to substantially increase the longevity, environmental resistance, and fatigue strength of the interconnects as indicated by [0032] block 240. In order to obtain the maximum benefits from the under-filling operation, the surfaces to be bonded should be free of flux or other residue. Accordingly, in certain embodiments, a post-heat operation may be performed to ensure that any residual flux that could negatively impact the subsequent under-fill bond is removed. The interconnected chip and substrate may be heated in an oven for an appropriate period of time at or slightly above the volatilization temperature of the no-clean flux as indicated in block 235. For example, a chip substrate package joined according to one embodiment where a carboxylic acid flux with a 200 degrees boiling point is used will be baked at least 200 degrees Celsius for 10 minutes. Unlike with typical flip chip joining processes in which the flux does not volatize below the re-flow temperature of the solder bumps, little or no time-consuming, solvent-based defluxing operations need be performed, significantly reducing the TPT. Additionally, the volatilization of the flux prior to melt and re-flow helps facilitate a low porosity bond with high integrity as shown in FIG. 7, a cross-sectional view of an interconnect joint.
  • Testing has been performed of under-filled surfaces of a chip/substrate package in which a carboxylic having a boiling point of 235 degrees Celsius was used during interconnection. No solvent-based deflux operation was performed on the package prior to under-fill. After 168 hours in a steam atmosphere, nearly 13.6% of the under-fill bonds have delaminated due primarily to flux residue that was unable to volatilize during the re-flow process. A post-heat bake performed at the boiling point of the 235 degree carboxylic acid flux is not feasible as the flux's boiling point is above the melting point of the solder, not to mention the melting point of the pinning solder. Testing of the under-filled surfaces of a chip/substrate package has also been performed in which a carboxylic having a boiling point of 200 degrees Celsius was used during interconnection and a 10 minute post heat at 200 degrees Celsius was performed prior to under-filling. In these tests, almost no delamination (0.6%) is present after the 168 hours in a steam atmosphere, indicating very little, if any, flux residue was present during the under-fill operation. [0033]
  • Alternative Embodiments [0034]
  • In the foregoing description, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the present invention. The detailed description and embodiments discussed herein are not intended to limit the scope of the invention as claimed. To the contrary, embodiments of the claims have been contemplated that encompass the full breadth of the claim language. Accordingly, the present invention may be practiced without some of the specific detail provided herein. [0035]
  • For instance, the embodiments of the invention have been described above primarily in terms of a flip chip joining process using a thermo-compression bonder. It is conceivable that other apparatus may be used to accomplish the limitations of the claims as would be obvious to one of ordinary skill in the art. Likewise, although the process has been described in terms of an exemplary embodiment wherein a 96.5% tin/3.5% silver solder is used along with a carboxylic acid flux having a 200 degree boiling point, other suitable solder and flux combinations are contemplated. In one embodiment, the pressure applied to the chip against the substrate is removed once the solder bumps have begun to melt, however alternative embodiments are contemplated wherein at least some pressure is maintained against the chip throughout the interconnection process. [0036]

Claims (39)

What is claimed is:
1. A method, comprising:
applying a flux to a first surface of a substrate, the first surface of the substrate having attached thereto solder bumps, the solder bumps having a melting temperature, and the flux substantially comprising ingredients that have a volatilization temperature less than the melting temperature;
generally aligning the solder bumps with corresponding metal bumps, the metal bumps being attached to a first surface of a chip;
bringing the solder bumps into contact with the corresponding metal bumps; and
heating the solder bumps to a first temperature, the first temperature being equal to or greater than the melting temperature.
2. The method of claim 1, wherein the first surface of the chip comprises copper.
3. The method of claim 1, wherein the bringing of the solder bumps into contact with the corresponding metal bumps, further includes applying a contact force.
4. The method of claim 3, wherein the contact force is removed just after the solder bumps have been heated to at least the melting temperature.
5. The method of claim 1, wherein the solder bumps are comprised of a 96.5% tin, 3.5% silver solder.
6. The method of claim 1, wherein the flux includes a carboxylic acid and has a volatilization temperature of approximately 200 degrees Celsius.
7. The method of claim 1, further comprising:
joining the solder bumps to the metal bumps by cooling the solder bumps to a temperature below the melting temperature;
heating the first surfaces of the chip and substrate to within a temperature range, the temperature range being equal to or greater than the volatilization temperature but less than or equal to the melting temperature; and
maintaining the chip and substrate first surfaces within the temperature range for a first period of time.
8. The method of claim 1, wherein the heating of the solder bumps comprises heating the solder bumps through a second surface of the chip, the second surface of the chip being opposite the first surface of the chip.
9. The method of claim 8, wherein the heating of the solder bumps to a first temperature further includes rapidly increasing the temperature of the second surface to a second temperature, the second temperature being greater than the first temperature, wherein a temperature gradient is established through the chip from the second surface at the second temperature to the first surface of the chip at the first temperature.
10. The method of claim 8, wherein the heating of the solder bumps to the first temperature comprises providing a heater in contact with the second surface.
11. The method of claim 9, wherein a third temperature at a second substrate surface opposite the first substrate surface is significantly below the first temperature, when the first surface of the chip is at the first temperature.
12. The method of claim 9, further comprises maintaining the second surface at the second temperature for a period of time.
13. The method of claim 12, wherein the period of time is approximately 1 to 5 seconds.
14. An apparatus, comprising:
a substrate placed against a first fixture,
the substrate having deposited thereon a plurality of solder bumps and a flux, each of the plurality of solder bumps having a melting point at a first temperature, and the flux having a volatilization temperature at which substantially all of the constituents of the flux volatilize, the volatilization temperature being less than or equal to the first temperature,
the first fixture being maintained at a second temperature below the first temperature;
a chip placed against a second fixture,
the chip having affixed thereto a plurality of metal protrusions,
the second fixture coupled with a heater, the heater being maintained at a third temperature, the third temperature being less than the first temperature;
the plurality of solder bumps placed into contact with the plurality of metal protrusions by moving one or both of the first and second fixtures towards each other;
the heater having a temperature rapidly increased from a third temperature to a fourth temperature, the fourth temperature being higher than the first temperature; and
a pulse heat tool held approximately at or above the fourth temperature until the plurality of solder bumps have melted and wetted the plurality of metal protrusions.
15. The apparatus of claim 14, wherein the substrate has deposited thereon the plurality of solder bumps, and the chip has affixed thereto a plurality of metal protrusions.
16. The apparatus of claim 14, wherein the second temperature is approximately within a range of 100 to 170 degrees Celsius.
17. The apparatus of claim 14, wherein the third temperature is approximately between 30 to 100 degrees Celsius, and the fourth temperature is approximately between 250 to 400 degrees Celsius.
18. The apparatus of claim 14, wherein the temperature is rapidly increased from the third to fourth temperature at a rate of 50 degrees Celsius per second or faster.
19. The apparatus of claim 14, wherein the plurality of solder bumps and the plurality of bump metal protrusions are placed in contact with each other by applying a contact force.
20. The apparatus of claim 19, wherein the contact force is removed once the plurality of solder bumps reach the first temperature.
21. The apparatus of claim 14, wherein the first and second fixtures and the heater comprise a thermo-compression bonder.
22. A system for interconnecting a chip and a substrate, comprising:
metal protrusions applied to electrical interconnect pads on an active surface of the chip, the chip also having second surface opposite the active surface;
solder bumps applied to electrical interconnect pads on a top surface of the substrate, the substrate also having a bottom surface, the solder bumps having a melting temperature;
the solder bumps coated with a no-clean flux, the no-clean flux comprised primarily of constituents having volatilization temperatures that are less than the melting temperature;
the bottom surface of the substrate placed on a platen of a thermo-compression bonder, the platen being maintained at a first temperature that is less than the volatilization and melting temperatures;
the second surface of the chip affixed to a head of the thermo-compression bonder, the head including a heater;
the solder bumps generally aligned with corresponding metal protrusions;
the head is lowered or the platen is raised to bring the solder bumps into contact with the metal protrusions;
a contact force applied to hold the solder bumps and corresponding metal protrusions together;
the heater having a temperature increased until the second surface of the substrate reaches a second temperature, the second temperature being greater than the melting temperature; and
the second surface held at the second temperature for a period of time until the solder bumps have melted.
23 The system of claim 22, wherein the contact force is removed once the solder bumps begin to melt.
24. The system of claim 22, wherein the temperature of the heater is increased at a heat-up rate in excess of 30 degree Celsius a second.
25. The system of claim 22, wherein the heater is a pulse heat tool.
26. A method, comprising:
providing a chip, the chip having an active surface comprised of a plurality of chip pads;
providing a substrate, the substrate having a top surface comprised of a plurality of substrate pads corresponding to the plurality of chip pads;
applying a first plurality of solder bumps or a first plurality of metal bumps to the plurality of chip pads;
applying a second plurality of solder bumps or a second plurality of metal bumps to the plurality of substrate pads, wherein the corresponding pluralities of chip and substrate pads do not both have a plurality metal bumps attached thereto;
substantially covering the solder bumps with a no-clean flux, the no-clean flux substantially consisting of components having volatilization temperatures below a melting temperature;
generally aligning the plurality of chip pads and the plurality of substrate pads;
bringing the first plurality of solder bumps into contact with the second plurality of metal bumps, and applying a contact force; and
heating the first plurality of solder bumps to a first temperature in excess of the melting temperature.
27. The method of claim 26, wherein the first plurality of metal bumps are applied to the plurality of chip pads, and the second plurality of solder bumps are applied to the plurality of substrate pads.
28. The method of claim 26, wherein the first plurality of solder bumps are applied to the plurality of chip pads, and the second plurality of solder bumps are applied to the plurality of substrate pads.
29. The method of claim 26, wherein the first plurality of solder bumps are applied to the plurality of chip pads, and the second plurality of metal bumps are applied to the plurality of substrate pads.
30. The method of claim 26, further comprises heating the first plurality of solder bumps to the melting temperature at a rate in excess of 50 degrees Celsius per second.
31. The method of claim 26, further comprises heating the second plurality of solder bumps to the melting temperature at a rate in excess of 50 degrees Celsius per second.
32. An apparatus, comprising:
a first surface of a substrate, the first surface of the substrate having attached thereto solder bumps, the solder bumps having a melting temperature;
a flux applied to the first surface of the substrate, the flux substantially comprising ingredients that have a volatilization temperature less than the melting temperature; and
metal bumps having aligned with the solder bumps, bringing the solder bumps into contact with the corresponding metal bumps.
33. The apparatus of claim 32, further comprises a first surface of a chip, wherein the metal bumps being attached to the first surface of the chip.
34. The apparatus of claim 33, wherein the first surface of the chip comprises copper.
35. The apparatus of claim 32, wherein the solder bumps are heated to a first temperature, the first temperature being equal to or greater than the melting temperature.
36. A system, comprising:
a first surface of a substrate, the first surface of the substrate having attached thereto solder bumps, the solder bumps having a melting temperature;
a flux applied to the first surface of the substrate, the flux substantially comprising ingredients that have a volatilization temperature less than the melting temperature;
metal bumps having aligned with the solder bumps, bringing the solder bumps into contact with the corresponding metal bumps; and
a first surface of a chip, wherein the metal bumps being attached to the first surface of the chip.
37. The system of claim 36, wherein the solder bumps are heated to a first temperature, the first temperature being equal to or greater than the melting temperature.
38. The system of claim 36, wherein the solder bumps are comprised of a 96.5% tin, 3.5% silver solder.
39. The system of claim 36, wherein the flux comprises a carboxylic acid and has a volatilization temperature of approximately 200 degrees Celsius.
US10/762,013 2001-03-28 2004-01-21 Flip chip interconnection using no-clean flux Abandoned US20040152238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/762,013 US20040152238A1 (en) 2001-03-28 2004-01-21 Flip chip interconnection using no-clean flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/820,547 US6713318B2 (en) 2001-03-28 2001-03-28 Flip chip interconnection using no-clean flux
US10/762,013 US20040152238A1 (en) 2001-03-28 2004-01-21 Flip chip interconnection using no-clean flux

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/820,547 Continuation US6713318B2 (en) 2001-03-28 2001-03-28 Flip chip interconnection using no-clean flux

Publications (1)

Publication Number Publication Date
US20040152238A1 true US20040152238A1 (en) 2004-08-05

Family

ID=25231108

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/820,547 Expired - Lifetime US6713318B2 (en) 2001-03-28 2001-03-28 Flip chip interconnection using no-clean flux
US10/762,013 Abandoned US20040152238A1 (en) 2001-03-28 2004-01-21 Flip chip interconnection using no-clean flux

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/820,547 Expired - Lifetime US6713318B2 (en) 2001-03-28 2001-03-28 Flip chip interconnection using no-clean flux

Country Status (11)

Country Link
US (2) US6713318B2 (en)
EP (1) EP1374297B1 (en)
JP (1) JP2005509269A (en)
KR (1) KR100555395B1 (en)
CN (1) CN1295771C (en)
AT (1) ATE403231T1 (en)
AU (1) AU2002248684A1 (en)
DE (1) DE60227926D1 (en)
HK (1) HK1060938A1 (en)
MY (1) MY122890A (en)
WO (1) WO2002080263A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134830A1 (en) * 2004-12-21 2006-06-22 Frutschy Kris J Method and system for performing die attach using a flame
US20100015762A1 (en) * 2008-07-15 2010-01-21 Mohammad Khan Solder Interconnect
US20100326726A1 (en) * 2009-06-24 2010-12-30 Fujitsu Limited Solder joint structure, electronic device using the same, and solder bonding method
US20120217287A1 (en) * 2011-02-28 2012-08-30 International Business Machines Corporation Flip chip assembly method employing post-contact differential heating
CN102956603A (en) * 2011-08-17 2013-03-06 索尼公司 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
US20130270230A1 (en) * 2012-04-17 2013-10-17 Yiu Ming Cheung Thermal compression bonding of semiconductor chips
US9623726B2 (en) 2011-01-14 2017-04-18 Asahi Glass Company, Limited Windowpane for vehicles and method for producing same
WO2019170211A1 (en) 2018-03-05 2019-09-12 Heraeus Deutschland GmbH & Co. KG Method for producing a sandwich arrangement
TWI682512B (en) * 2014-06-30 2020-01-11 美商庫利克和索夫工業公司 Thermocompression bonders, methods of operating thermocompression bonders, and interconnect methods for fine pitch flip chip assembly
US10593850B2 (en) * 2015-07-15 2020-03-17 Seoul Viosys Co., Ltd. Method for manufacturing light emitting diode package
US11107787B2 (en) 2016-01-15 2021-08-31 Fuji Electric Co., Ltd. Member for semiconductor device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023093B2 (en) * 2001-01-18 2007-12-19 松下電器産業株式会社 How to fix electronic components
US6713318B2 (en) * 2001-03-28 2004-03-30 Intel Corporation Flip chip interconnection using no-clean flux
US7115998B2 (en) * 2002-08-29 2006-10-03 Micron Technology, Inc. Multi-component integrated circuit contacts
US20050029675A1 (en) * 2003-03-31 2005-02-10 Fay Hua Tin/indium lead-free solders for low stress chip attachment
US20040187976A1 (en) * 2003-03-31 2004-09-30 Fay Hua Phase change lead-free super plastic solders
US7037805B2 (en) * 2003-05-07 2006-05-02 Honeywell International Inc. Methods and apparatus for attaching a die to a substrate
US6969638B2 (en) * 2003-06-27 2005-11-29 Texas Instruments Incorporated Low cost substrate for an integrated circuit device with bondpads free of plated gold
TWI230989B (en) * 2004-05-05 2005-04-11 Megic Corp Chip bonding method
US7405093B2 (en) * 2004-08-18 2008-07-29 Cree, Inc. Methods of assembly for a semiconductor light emitting device package
US7790484B2 (en) * 2005-06-08 2010-09-07 Sharp Kabushiki Kaisha Method for manufacturing laser devices
CN101194541A (en) * 2005-06-16 2008-06-04 千住金属工业株式会社 Method for soldering module substrate
US7215030B2 (en) * 2005-06-27 2007-05-08 Advanced Micro Devices, Inc. Lead-free semiconductor package
JP2007189210A (en) * 2005-12-13 2007-07-26 Shin Etsu Chem Co Ltd Method of assembling flip-chip-type semiconductor device and semiconductor device produced by method
US20070134844A1 (en) * 2005-12-13 2007-06-14 Shin-Etsu Chemical Co., Ltd. Process for producing flip-chip type semiconductor device and semiconductor device produced by the process
US7871860B1 (en) * 2009-11-17 2011-01-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method of semiconductor packaging
TWI430421B (en) * 2011-11-07 2014-03-11 矽品精密工業股份有限公司 Flip-chip bonding method
CN102723427B (en) * 2012-05-30 2015-09-02 惠州市大亚湾永昶电子工业有限公司 LED wafer eutectic welding procedure
CN103920956B (en) * 2013-01-11 2016-05-11 无锡华润安盛科技有限公司 A kind of reflux technique welding method
US20150014852A1 (en) * 2013-07-12 2015-01-15 Yueli Liu Package assembly configurations for multiple dies and associated techniques
CN104752596A (en) * 2013-12-30 2015-07-01 江西省晶瑞光电有限公司 LED flip chip die attach method
CN104916554A (en) * 2014-03-11 2015-09-16 东莞高伟光学电子有限公司 Method and apparatus for directly soldering semiconductor device or component to substrate
US9385060B1 (en) * 2014-07-25 2016-07-05 Altera Corporation Integrated circuit package with enhanced thermal conduction
KR101619460B1 (en) * 2014-11-18 2016-05-11 주식회사 프로텍 Apparatus for Manufacturing Package On Package
JP6042956B1 (en) 2015-09-30 2016-12-14 オリジン電気株式会社 Method for manufacturing soldered products
US20170173745A1 (en) 2015-12-22 2017-06-22 International Business Machines Corporation No clean flux composition and methods for use thereof
EP3208028B1 (en) 2016-02-19 2021-04-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A method and device for reversibly attaching a phase changing metal to an object
US10160066B2 (en) * 2016-11-01 2018-12-25 GM Global Technology Operations LLC Methods and systems for reinforced adhesive bonding using solder elements and flux
CN108620764B (en) * 2017-03-24 2022-03-08 苏州昭舜物联科技有限公司 Soldering paste for low-temperature soldering and preparation method thereof
US10750614B2 (en) * 2017-06-12 2020-08-18 Invensas Corporation Deformable electrical contacts with conformable target pads
US20190364669A1 (en) * 2018-05-25 2019-11-28 Nichia Corporation Method for manufacturing light emitting module
CN109712899A (en) * 2018-12-27 2019-05-03 通富微电子股份有限公司 A kind of method for packaging semiconductor and semiconductor packing device
JP2021034502A (en) * 2019-08-22 2021-03-01 スタンレー電気株式会社 Light-emitting device and manufacturing method thereof
CN111653494B (en) * 2020-06-16 2021-10-15 中国电子科技集团公司第二十四研究所 Non-contact heating flip-chip welding process method
US11824037B2 (en) * 2020-12-31 2023-11-21 International Business Machines Corporation Assembly of a chip to a substrate
CN113644237A (en) * 2021-07-26 2021-11-12 江苏超威电源有限公司 Online pretreatment method for lead mesh grid on-coating line

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019673A (en) * 1990-08-22 1991-05-28 Motorola, Inc. Flip-chip package for integrated circuits
US5111279A (en) * 1989-08-28 1992-05-05 Lsi Logic Corp. Apparatus for isolation of flux materials in "flip-chip" manufacturing
US5150274A (en) * 1990-07-11 1992-09-22 Hitachi, Ltd. Multi-chip-module
US5299730A (en) * 1989-08-28 1994-04-05 Lsi Logic Corporation Method and apparatus for isolation of flux materials in flip-chip manufacturing
US5438477A (en) * 1993-08-12 1995-08-01 Lsi Logic Corporation Die-attach technique for flip-chip style mounting of semiconductor dies
US5508561A (en) * 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
US5704116A (en) * 1996-05-03 1998-01-06 Motorola, Inc. Method of holding a component using an anhydride fluxing agent
US5710071A (en) * 1995-12-04 1998-01-20 Motorola, Inc. Process for underfilling a flip-chip semiconductor device
US5744869A (en) * 1995-12-05 1998-04-28 Motorola, Inc. Apparatus for mounting a flip-chip semiconductor device
US5778913A (en) * 1997-02-20 1998-07-14 Lucent Technologies Inc. Cleaning solder-bonded flip-chip assemblies
US5785234A (en) * 1995-03-31 1998-07-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of surface-contacting electronic components
US5784780A (en) * 1995-10-04 1998-07-28 Lsi Logic Corporation Method of mounting a flip-chip
US5816478A (en) * 1995-06-05 1998-10-06 Motorola, Inc. Fluxless flip-chip bond and a method for making
US5942798A (en) * 1997-11-24 1999-08-24 Stmicroelectronics, Inc. Apparatus and method for automating the underfill of flip-chip devices
US6011312A (en) * 1996-07-30 2000-01-04 Kabushiki Kaisha Toshiba Flip-chip semiconductor package
US6013572A (en) * 1997-05-27 2000-01-11 Samsung Electronics Co., Ltd. Methods of fabricating and testing silver-tin alloy solder bumps
US6051889A (en) * 1997-12-02 2000-04-18 Fujitsu Limited Semiconductor device having a flip-chip structure
US6057168A (en) * 1998-04-10 2000-05-02 Fujitsu Limited Method for forming bumps using dummy wafer
US6087732A (en) * 1998-09-28 2000-07-11 Lucent Technologies, Inc. Bond pad for a flip-chip package
US6103549A (en) * 1998-03-17 2000-08-15 Advanced Micro Devices, Inc. No clean flux for flip chip assembly
US6111317A (en) * 1996-01-18 2000-08-29 Kabushiki Kaisha Toshiba Flip-chip connection type semiconductor integrated circuit device
US6109507A (en) * 1997-11-11 2000-08-29 Fujitsu Limited Method of forming solder bumps and method of forming preformed solder bumps
US6121689A (en) * 1997-07-21 2000-09-19 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
US6163463A (en) * 1996-12-06 2000-12-19 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection
US6217671B1 (en) * 1999-12-14 2001-04-17 International Business Machines Corporation Composition for increasing activity of a no-clean flux
US6271671B1 (en) * 1998-10-14 2001-08-07 The Johns Hopkins University Multi-chip module testability using poled-polymer interlayer dielectrics
US6400034B1 (en) * 1999-07-12 2002-06-04 Nec Corporation Semiconductor device
US6713318B2 (en) * 2001-03-28 2004-03-30 Intel Corporation Flip chip interconnection using no-clean flux

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634652A (en) 1986-06-25 1988-01-09 Hitachi Ltd Semiconductor device
JPH0777227B2 (en) * 1986-12-16 1995-08-16 松下電器産業株式会社 Method for manufacturing semiconductor device
JPS63208251A (en) 1987-02-25 1988-08-29 Nec Corp Package structure of integrated circuit
US5074920A (en) 1990-09-24 1991-12-24 Mobil Solar Energy Corporation Photovoltaic cells with improved thermal stability
US6059894A (en) 1998-04-08 2000-05-09 Hewlett-Packard Company High temperature flip chip joining flux that obviates the cleaning process

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111279A (en) * 1989-08-28 1992-05-05 Lsi Logic Corp. Apparatus for isolation of flux materials in "flip-chip" manufacturing
US5299730A (en) * 1989-08-28 1994-04-05 Lsi Logic Corporation Method and apparatus for isolation of flux materials in flip-chip manufacturing
US5410805A (en) * 1989-08-28 1995-05-02 Lsi Logic Corporation Method and apparatus for isolation of flux materials in "flip-chip" manufacturing
US5150274A (en) * 1990-07-11 1992-09-22 Hitachi, Ltd. Multi-chip-module
US5019673A (en) * 1990-08-22 1991-05-28 Motorola, Inc. Flip-chip package for integrated circuits
US5438477A (en) * 1993-08-12 1995-08-01 Lsi Logic Corporation Die-attach technique for flip-chip style mounting of semiconductor dies
US5508561A (en) * 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
US5785234A (en) * 1995-03-31 1998-07-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of surface-contacting electronic components
US5816478A (en) * 1995-06-05 1998-10-06 Motorola, Inc. Fluxless flip-chip bond and a method for making
US5784780A (en) * 1995-10-04 1998-07-28 Lsi Logic Corporation Method of mounting a flip-chip
US5710071A (en) * 1995-12-04 1998-01-20 Motorola, Inc. Process for underfilling a flip-chip semiconductor device
US5744869A (en) * 1995-12-05 1998-04-28 Motorola, Inc. Apparatus for mounting a flip-chip semiconductor device
US6111317A (en) * 1996-01-18 2000-08-29 Kabushiki Kaisha Toshiba Flip-chip connection type semiconductor integrated circuit device
US5704116A (en) * 1996-05-03 1998-01-06 Motorola, Inc. Method of holding a component using an anhydride fluxing agent
US6011312A (en) * 1996-07-30 2000-01-04 Kabushiki Kaisha Toshiba Flip-chip semiconductor package
US6163463A (en) * 1996-12-06 2000-12-19 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection
US5778913A (en) * 1997-02-20 1998-07-14 Lucent Technologies Inc. Cleaning solder-bonded flip-chip assemblies
US6013572A (en) * 1997-05-27 2000-01-11 Samsung Electronics Co., Ltd. Methods of fabricating and testing silver-tin alloy solder bumps
US6121689A (en) * 1997-07-21 2000-09-19 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
US6109507A (en) * 1997-11-11 2000-08-29 Fujitsu Limited Method of forming solder bumps and method of forming preformed solder bumps
US5942798A (en) * 1997-11-24 1999-08-24 Stmicroelectronics, Inc. Apparatus and method for automating the underfill of flip-chip devices
US6051889A (en) * 1997-12-02 2000-04-18 Fujitsu Limited Semiconductor device having a flip-chip structure
US6103549A (en) * 1998-03-17 2000-08-15 Advanced Micro Devices, Inc. No clean flux for flip chip assembly
US6057168A (en) * 1998-04-10 2000-05-02 Fujitsu Limited Method for forming bumps using dummy wafer
US6087732A (en) * 1998-09-28 2000-07-11 Lucent Technologies, Inc. Bond pad for a flip-chip package
US6271671B1 (en) * 1998-10-14 2001-08-07 The Johns Hopkins University Multi-chip module testability using poled-polymer interlayer dielectrics
US6400034B1 (en) * 1999-07-12 2002-06-04 Nec Corporation Semiconductor device
US6217671B1 (en) * 1999-12-14 2001-04-17 International Business Machines Corporation Composition for increasing activity of a no-clean flux
US6713318B2 (en) * 2001-03-28 2004-03-30 Intel Corporation Flip chip interconnection using no-clean flux

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288472B2 (en) * 2004-12-21 2007-10-30 Intel Corporation Method and system for performing die attach using a flame
US20060134830A1 (en) * 2004-12-21 2006-06-22 Frutschy Kris J Method and system for performing die attach using a flame
US20100015762A1 (en) * 2008-07-15 2010-01-21 Mohammad Khan Solder Interconnect
US20100326726A1 (en) * 2009-06-24 2010-12-30 Fujitsu Limited Solder joint structure, electronic device using the same, and solder bonding method
US9623726B2 (en) 2011-01-14 2017-04-18 Asahi Glass Company, Limited Windowpane for vehicles and method for producing same
US20120217287A1 (en) * 2011-02-28 2012-08-30 International Business Machines Corporation Flip chip assembly method employing post-contact differential heating
US8381966B2 (en) * 2011-02-28 2013-02-26 International Business Machines Corporation Flip chip assembly method employing post-contact differential heating
CN102956603A (en) * 2011-08-17 2013-03-06 索尼公司 Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
US20150303167A1 (en) * 2011-08-17 2015-10-22 C/O Sony Corporation Semiconductor apparatus, method of manufacturing semiconductor apparatus, and electronic apparatus
US8967452B2 (en) * 2012-04-17 2015-03-03 Asm Technology Singapore Pte Ltd Thermal compression bonding of semiconductor chips
US20130270230A1 (en) * 2012-04-17 2013-10-17 Yiu Ming Cheung Thermal compression bonding of semiconductor chips
TWI682512B (en) * 2014-06-30 2020-01-11 美商庫利克和索夫工業公司 Thermocompression bonders, methods of operating thermocompression bonders, and interconnect methods for fine pitch flip chip assembly
US10593850B2 (en) * 2015-07-15 2020-03-17 Seoul Viosys Co., Ltd. Method for manufacturing light emitting diode package
US11107787B2 (en) 2016-01-15 2021-08-31 Fuji Electric Co., Ltd. Member for semiconductor device
WO2019170211A1 (en) 2018-03-05 2019-09-12 Heraeus Deutschland GmbH & Co. KG Method for producing a sandwich arrangement

Also Published As

Publication number Publication date
JP2005509269A (en) 2005-04-07
WO2002080263A3 (en) 2003-09-04
CN1295771C (en) 2007-01-17
US6713318B2 (en) 2004-03-30
EP1374297A2 (en) 2004-01-02
WO2002080263A2 (en) 2002-10-10
MY122890A (en) 2006-05-31
AU2002248684A1 (en) 2002-10-15
KR20030092026A (en) 2003-12-03
ATE403231T1 (en) 2008-08-15
KR100555395B1 (en) 2006-02-24
CN1537327A (en) 2004-10-13
DE60227926D1 (en) 2008-09-11
EP1374297B1 (en) 2008-07-30
HK1060938A1 (en) 2004-08-27
US20020142517A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US6713318B2 (en) Flip chip interconnection using no-clean flux
US6495397B2 (en) Fluxless flip chip interconnection
US5873512A (en) Application of low temperature metallurgical paste to form a bond structure to attach an electronic component to a carrier
US7332424B2 (en) Fluxless solder transfer and reflow process
JP3905100B2 (en) Semiconductor device and manufacturing method thereof
US6265776B1 (en) Flip chip with integrated flux and underfill
US10350713B2 (en) No clean flux composition and methods for use thereof
JPH1197480A (en) Interconnection structure with conductive adhesive
Mannan et al. Materials and processes for implementing high-temperature liquid interconnects
US20070202632A1 (en) Capacitor attachment method
JP2009009994A (en) Semiconductor device, and manufacturing method thereof
Zama et al. Flip chip interconnect systems using wire stud bumps and lead free solder
JP3198555B2 (en) Semiconductor device mounting method
JP4200090B2 (en) Manufacturing method of semiconductor device
US20240063171A1 (en) Assembly of a chip to a substrate
US20070166875A1 (en) Method of forming a microelectronic package and microelectronic package formed according to the method
JPH05218136A (en) Bonding method for flip chip
JP2022105279A (en) Method and device (assembly of chip and substrate)
JP3344254B2 (en) Semiconductor device manufacturing method
JP2022550753A (en) Alignment carrier for assembly of interconnection bridges
Chang et al. Rework of Multi‐chip Modules: Device Removal

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION