US20040153157A1 - System for intervertebral disk prostheses - Google Patents

System for intervertebral disk prostheses Download PDF

Info

Publication number
US20040153157A1
US20040153157A1 US10/473,998 US47399804A US2004153157A1 US 20040153157 A1 US20040153157 A1 US 20040153157A1 US 47399804 A US47399804 A US 47399804A US 2004153157 A1 US2004153157 A1 US 2004153157A1
Authority
US
United States
Prior art keywords
corrective
core
prostheses
cover plates
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/473,998
Inventor
Arnold Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DePuy Spine LLC
DePuy Synthes Products Inc
Link Spine Group Inc
Original Assignee
Link Spine Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Link Spine Group Inc filed Critical Link Spine Group Inc
Assigned to LINK SPINE GROUP, INC. reassignment LINK SPINE GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELLER, ARNOLD
Publication of US20040153157A1 publication Critical patent/US20040153157A1/en
Priority to US11/936,510 priority Critical patent/US8303661B2/en
Assigned to DEPUY SPINE, LLC reassignment DEPUY SPINE, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DEPUY SPINE, INC.
Assigned to HAND INNOVATIONS LLC reassignment HAND INNOVATIONS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEPUY SPINE, LLC
Assigned to DePuy Synthes Products, LLC reassignment DePuy Synthes Products, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HAND INNOVATIONS LLC
Assigned to DePuy Synthes Products, Inc. reassignment DePuy Synthes Products, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DePuy Synthes Products, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • A61F2002/30616Sets comprising a plurality of prosthetic parts of different sizes or orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30621Features concerning the anatomical functioning or articulation of the prosthetic joint
    • A61F2002/30649Ball-and-socket joints
    • A61F2002/30662Ball-and-socket joints with rotation-limiting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • A61F2/4425Intervertebral or spinal discs, e.g. resilient made of articulated components
    • A61F2002/443Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures

Definitions

  • the desired spatial relationship to the vertebral bodies is achieved only if the anatomical conditions correspond to the normal conditions assumed upon construction of the prosthesis. If, however, for example for anatomical reasons, a centre of articulation is by way of exception to have another position, the prosthesis in question or a cover plate of this prosthesis must be implanted so as to deviate from the normal spatial relationship to the vertebral body, which is difficult and risky.
  • a system of intervertebral disc prostheses is assumed which includes standard prostheses and corrective prostheses.
  • the standard prostheses in each size category are identical to each other.
  • a plurality of size categories are normally available, although this is not absolutely necessary.
  • the prostheses consist of a prosthesis core and of at least one cover plate.
  • the prosthesis core cooperates with at least one cover plate via articulation surfaces.
  • the prosthesis core preferably has two articulation surfaces on opposite sides via which it cooperates with complementary articulation surfaces of two cover plates.
  • Articulation surfaces and retaining surfaces are combined below and in the claims under the term core-matching surfaces.
  • the cover plates have a contact surface to adjoin a vertebral body.
  • the invention provides for the corrective prostheses to have at least one corrective cover plate whose core-matching surface is offset ventrodorsally relative to the contact surface by comparison with the standard prostheses.
  • the centre of articulation of a prosthesis relative to the vertebral body on whose side the corrective cover plate is fitted is offset ventrodorsally compared to the standard prostheses.
  • the offset can be in the ventral direction or the dorsal direction depending on the type and direction of insertion of the cover plate. If the contact surfaces of the corrective cover plates are of symmetrical configuration in relation to their mediolateral centre line, they can either be used with the centre offset in the ventral direction or in the dorsal direction.
  • an essential embodiment of the corrective rective plate according to the invention is distinguished by the fact that the centre of articulation is offset dorsally, provided that the dorsal side can be distinguished on the cover plate.
  • the use of the invention is particularly advantageous in this type of prosthesis because the corrective plates make it possible to arrange the centre of articulation of one cover plate so that it is displaced relative to the centre of articulation of the other cover plate, as a result of which said offset is compensated.
  • the diameter of the articulation surfaces can be chosen as large as possible within the limits of the cover plate in order to keep the surface pressure low.
  • the articulation surface formed on the cover surface has an only slightly smaller ventrodorsal extent than the cover plate. In these cases the offset of the articulation surface relative to the contact surface can take place only under the proviso that a smaller diameter is chosen for the articulation surface. If the radius of curvature of the articulation surface is left unchanged, the depth of the articulation surface provided in the cover plate decreases as the diameter decreases and thus its ability to transmit forces acting laterally (parallel to the plane of the cover plate). This may be acceptable in some cases, so that this embodiment of the invention is not excluded.
  • the diameter and the radius of curvature of the articulation surface of the corrective cover plate are chosen to complement the articulation surfaces which belong to another, smaller size category.
  • the smaller size category not only is the diameter of the articulation surfaces chosen smaller, but also the radius of curvature.
  • the depth of these smaller articulation surfaces is therefore greater than the depth of an articulation surface of the larger size category, in which only the diameter was reduced, but not the radius of curvature.
  • prosthesis core is preferably in all cases a standard prosthesis core.
  • the second cover plate belonging to the prosthesis is likewise preferably a standard cover plate.
  • the second cover plate can also be a corrective cover plate, which is, however, rotated though 180° in relation to the first one so that the offset amounts of both plates are added to each other. It is only if, for some reason, the centre of articulation of the prosthesis is to be displaced ventrally or dorsally in relation to both adjacent vertebrae that corrective cover plates are used in the same orientation on both sides.
  • FIG. 1 shows a medial section through a standard prosthesis of a first size category
  • FIG. 2 shows a view of the inside of a cover plate of a standard prosthesis of the first size category
  • FIG. 3 shows a medial section through a standard prosthesis of a second size category
  • FIG. 4 shows a view of the inside of a cover plate of the standard prosthesis according to FIG. 3,
  • FIG. 5 shows a first embodiment of a corrective prosthesis in medial section
  • FIG. 6 shows a view of the inside of the associated corrective cover plate
  • FIG. 7 shows a second embodiment of the corrective prosthesis in medial section
  • FIGS. 8, 9 show medial sections through standard prostheses of different size categories in a modified embodiment
  • FIGS. 10, 11 show two corrective prostheses for the modified embodiment.
  • the standard prostheses according to FIGS. 1 to 4 consist of a lower cover plate 1 , an upper cover plate 2 and a prosthesis core 3 .
  • the cover plates form spherical, concave articulation surfaces 4
  • the prosthesis core 3 forms two identical convex, spherical articulation surfaces 5 which lie opposite each other and which are designed to complement those of the cover plates. All dimensions of the first size category (FIGS. 1 and 2) are greater than those of the second size category (FIGS. 3 and 4). In addition to the two size categories shown, further size categories can be present within the system.
  • the components of the prosthesis can be made of materials which have proven suitable for endoprostheses, for example metal, ceramic, polyethylene, with the cover plates 1 , 2 preferably being made of rigid material (for example metal) and the prosthesis core preferably being made of polyethylene.
  • the cover plates 1 , 2 have a contact surface 7 which is intended for connection to the end face of a vertebral body. It can be equipped with means (not shown) for fixed connection to the bone, for example teeth. It is more extensive in the mediolateral direction, which is indicated by the line 10 in FIG. 2, than it is in the ventrodorsal direction 11 .
  • the diameter 12 of the. articulation surface 4 in the standard prostheses is as large as is permitted by the dimension of the cover plate in the direction 11 .
  • such prostheses are able to transmit from vertebra to vertebra the forces extending in the direction of the spinal column, and to a certain extent also the forces extending transverse to the latter, and at the same time they permit swivel movements. If they are implanted between vertebrae between which strong transverse forces act, or between which a substantial directional change takes place, as is often the case for example between the last lumbar vertebra and the sacrum, a displacement of the cover plates and of the vertebrae may occur. This can be compensated for by using a corrective prosthesis 14 . It is constructed, for example, as is shown in FIG. 5 or FIG. 7.
  • the corrective prosthesis has an upper cover plate 15 which is designed as a corrective cover plate.
  • the external dimensions of its contact surface 7 and thus the overall surface dimensions are equal to those of the standard cover plate 2 of the first size category.
  • the centre 16 of the articulation surface 4 ′ provided on its inside is displaced dorsally in relation to the centre line 10 by an amount 17 . If one were to use the articulation surface 4 of the standard cover plate for this, it would assume the position 4 ′′ indicated by the broken line in FIG. 2. As this is partially extending out beyond the edge of the standard prosthesis, the latter would have to be provided at this location with a projection or a widening, or the articulation surface would have to be shortened to correspond to the standard edge contour.
  • FIG. 6 is thus preferred, in which use is made of that articulation surface 4 ′ of the second size category whose diameter 12 ′ is correspondingly smaller and can therefore be accommodated within the edge of the standard format of the corrective cover plate 15 .
  • the corrective cover plate 15 is combined with a prosthesis core 3 ′ and a lower cover plate 1 ′ of the second size category, as is indicated in FIG. 5.
  • a corrective cover plate 15 turned through 180° can also be used as lower cover plate in the corrective prosthesis (FIG. 7).
  • the offset 17 obtained on the lower cover plate is added to the offset 17 on the upper cover plate with the result that the corrective prosthesis according to FIG. 7 provides twice the offset of that according to FIG. 5.
  • FIGS. 8 and 9 show medial sections through prostheses of different size categories. They consist of a lower cover plate 21 , 21 ′, an upper cover plate 22 , 22 ′ and a prosthesis core 23 , 23 ′.
  • the upper cover plate 22 , 22 ′ and the top of the prosthesis core 23 , 23 ′ are identical to those of the illustrative embodiment discussed above. They afford a possibility of articulated movement along the pair of articulation surfaces 24 , 25 .
  • the underside of the prosthesis core 23 is made flat.
  • the lower cover plate 21 , 21 ′ and its core-matching surface 26 with edge 27 is designed solely to hold the prosthesis core 23 , 23 ′.
  • the upper cover plate 20 is designed as a corrective cover plate according to the explanations given for FIGS. 5 and 6. It belongs to the first, larger size category. It is combined with a prosthesis core 23 ′ and a lower cover plate 21 ′ of the second, smaller size category.
  • the lower cover plate 29 belongs to the first size category and is combined with a prosthesis core 23 ′ and an upper cover plate 22 ′ of the second size category. As in the examples discussed above, this therefore results in an offset 17 of the centre of articulation relative to the contact surface of the corrective cover plate.
  • the edge strip 30 of the corrective cover plate 15 is not needed for accommodating the articulation surface 4 ′. If it is also not needed with respect to a desired size of the contact surface 7 , it can be dispensed with.
  • the cover plate 15 and its contact surface 7 are then delimited for example according to the broken line 31 .

Abstract

System of intervertebral disc prostheses which includes standard prostheses and corrective prostheses. The corrective prostheses serve to compensate for a ventro-dorsal offset. They are characterized in that, on one of their cover plates (15), the surface (4′) via which it cooperates in a matching manner with the prosthesis core (3′) is offset ventrodorsally relative to the contact surface (7) by comparison with the standard prostheses.

Description

  • It is known to replace damaged intervertebral discs with prostheses which consist of two cover plates, each to be connected to an adjacent vertebral body, and of a prosthesis core, said prosthesis core cooperating with one or both cover plates via complementary spherical surfaces of articulation (EP-B 298 233). The cover plates have contact surfaces by means of which they are connected to the adjacent vertebral bodies. It is desired that the centre of articulation of the prostheses be arranged in such a way that the movements permitted by the prosthesis are as far as possible identical to the natural ones and that forces can be transmitted uniformly between the vertebral bodies and the prosthesis. In known prostheses, this objective is approached by arranging the centre of articulation in a predetermined spatial relationship to the contact surfaces of the cover plates and by providing the cover plates with an edge which bears on the ventral margin of the associated vertebral body and thereby determines the relative position of the cover plate to the vertebral body (EP-B 560 140), or by using an implantation instrument which has a limit stop on the vertebral body (EP-B 333 990). This ensures an at all times identical position of the centre of articulation of the prosthesis in relation to the ventral edge of the vertebral bodies. It is also known (EP-A 955 021), in a system of intervertebral disc prostheses including several categories of different sizes, to provide corrective prostheses which belong on one side to one size category and on the other side to another size category. [0001]
  • By means of the abovementioned predetermined spatial relationship of the centre of articulation to the contact surfaces of the prostheses, the desired spatial relationship to the vertebral bodies is achieved only if the anatomical conditions correspond to the normal conditions assumed upon construction of the prosthesis. If, however, for example for anatomical reasons, a centre of articulation is by way of exception to have another position, the prosthesis in question or a cover plate of this prosthesis must be implanted so as to deviate from the normal spatial relationship to the vertebral body, which is difficult and risky. [0002]
  • Starting from the prior art last mentioned above, it is therefore an object of the invention to make the implantation of the prosthesis easier and safer for these cases. This is achieved by the features of [0003] claim 1 and preferably by the features of the subclaims.
  • A system of intervertebral disc prostheses is assumed which includes standard prostheses and corrective prostheses. The standard prostheses in each size category are identical to each other. A plurality of size categories are normally available, although this is not absolutely necessary. The prostheses consist of a prosthesis core and of at least one cover plate. The prosthesis core cooperates with at least one cover plate via articulation surfaces. The prosthesis core preferably has two articulation surfaces on opposite sides via which it cooperates with complementary articulation surfaces of two cover plates. However, it is also possible for one of the cover plates to cooperate in a non-articulating manner with the prosthesis core via retaining surfaces. Articulation surfaces and retaining surfaces are combined below and in the claims under the term core-matching surfaces. The cover plates have a contact surface to adjoin a vertebral body. In this connection, the invention provides for the corrective prostheses to have at least one corrective cover plate whose core-matching surface is offset ventrodorsally relative to the contact surface by comparison with the standard prostheses. [0004]
  • In this way, it is ensured that the centre of articulation of a prosthesis relative to the vertebral body on whose side the corrective cover plate is fitted is offset ventrodorsally compared to the standard prostheses. The offset can be in the ventral direction or the dorsal direction depending on the type and direction of insertion of the cover plate. If the contact surfaces of the corrective cover plates are of symmetrical configuration in relation to their mediolateral centre line, they can either be used with the centre offset in the ventral direction or in the dorsal direction. Since the offset in question is predominantly in the dorsal direction, an essential embodiment of the corrective rective plate according to the invention is distinguished by the fact that the centre of articulation is offset dorsally, provided that the dorsal side can be distinguished on the cover plate. [0005]
  • Cases arise in which the intervertebral disc prosthesis tends to be offset in an undesired manner because of considerable curvature of the spinal column or because of high ventrodorsal forces acting between the vertebrae concerned. This is true in particular of those prostheses in which the prosthesis core cooperates with both cover plates via spherical articulation surfaces. In this type of prosthesis, the cover plates are able to move slightly in translation relative to each other in an angular position of the prosthesis core under relative lateral forces. The use of the invention is particularly advantageous in this type of prosthesis because the corrective plates make it possible to arrange the centre of articulation of one cover plate so that it is displaced relative to the centre of articulation of the other cover plate, as a result of which said offset is compensated. [0006]
  • The diameter of the articulation surfaces can be chosen as large as possible within the limits of the cover plate in order to keep the surface pressure low. In known prostheses, the articulation surface formed on the cover surface has an only slightly smaller ventrodorsal extent than the cover plate. In these cases the offset of the articulation surface relative to the contact surface can take place only under the proviso that a smaller diameter is chosen for the articulation surface. If the radius of curvature of the articulation surface is left unchanged, the depth of the articulation surface provided in the cover plate decreases as the diameter decreases and thus its ability to transmit forces acting laterally (parallel to the plane of the cover plate). This may be acceptable in some cases, so that this embodiment of the invention is not excluded. However, an embodiment is preferred in which the diameter and the radius of curvature of the articulation surface of the corrective cover plate are chosen to complement the articulation surfaces which belong to another, smaller size category. In the smaller size category, not only is the diameter of the articulation surfaces chosen smaller, but also the radius of curvature. The depth of these smaller articulation surfaces is therefore greater than the depth of an articulation surface of the larger size category, in which only the diameter was reduced, but not the radius of curvature. [0007]
  • Choosing an articulation surface (or other core-matching surface) admittedly rules out using the corrective cover plate together with prosthesis parts which belong to the same size category. However, instead of this, prosthesis parts can be used which belong to the smaller size category, on whose basis the articulation surface of the corrective cover plate was chosen. The prosthesis core is preferably in all cases a standard prosthesis core. The second cover plate belonging to the prosthesis is likewise preferably a standard cover plate. However, if a particularly large offset of the two contact surfaces of the prostheses relative to each other is wanted, the second cover plate can also be a corrective cover plate, which is, however, rotated though 180° in relation to the first one so that the offset amounts of both plates are added to each other. It is only if, for some reason, the centre of articulation of the prosthesis is to be displaced ventrally or dorsally in relation to both adjacent vertebrae that corrective cover plates are used in the same orientation on both sides. [0008]
  • In the case of the corrective cover plates, as a result of the offset arrangement of the core-matching surface relative to the contact surface, on one side of the core-matching surface there is a distance between this and the plate edge. If this part of the surface is not needed in order to make available as large a contact surface as possible, the plate can be shortened on this side. The contact surface is then the same width in the mediolateral direction as the standard cover plates of the same size category, but its dimension in the ventrodorsal direction is smaller and can correspond to the smaller size category. This can afford advantages in terms of adjustment in cases where the vertebral bodies are wider in the mediolateral direction and narrower in the ventrodorsal direction.[0009]
  • The invention is explained in more detail below with reference to the drawing which depicts advantageous illustrative embodiments and in which: [0010]
  • FIG. 1 shows a medial section through a standard prosthesis of a first size category, [0011]
  • FIG. 2 shows a view of the inside of a cover plate of a standard prosthesis of the first size category, [0012]
  • FIG. 3 shows a medial section through a standard prosthesis of a second size category, [0013]
  • FIG. 4 shows a view of the inside of a cover plate of the standard prosthesis according to FIG. 3, [0014]
  • FIG. 5 shows a first embodiment of a corrective prosthesis in medial section, [0015]
  • FIG. 6 shows a view of the inside of the associated corrective cover plate, [0016]
  • FIG. 7 shows a second embodiment of the corrective prosthesis in medial section, [0017]
  • FIGS. 8, 9 show medial sections through standard prostheses of different size categories in a modified embodiment, and [0018]
  • FIGS. 10, 11 show two corrective prostheses for the modified embodiment.[0019]
  • The standard prostheses according to FIGS. [0020] 1 to 4 consist of a lower cover plate 1, an upper cover plate 2 and a prosthesis core 3. The cover plates form spherical, concave articulation surfaces 4, and the prosthesis core 3 forms two identical convex, spherical articulation surfaces 5 which lie opposite each other and which are designed to complement those of the cover plates. All dimensions of the first size category (FIGS. 1 and 2) are greater than those of the second size category (FIGS. 3 and 4). In addition to the two size categories shown, further size categories can be present within the system.
  • The components of the prosthesis can be made of materials which have proven suitable for endoprostheses, for example metal, ceramic, polyethylene, with the [0021] cover plates 1, 2 preferably being made of rigid material (for example metal) and the prosthesis core preferably being made of polyethylene.
  • The [0022] cover plates 1, 2 have a contact surface 7 which is intended for connection to the end face of a vertebral body. It can be equipped with means (not shown) for fixed connection to the bone, for example teeth. It is more extensive in the mediolateral direction, which is indicated by the line 10 in FIG. 2, than it is in the ventrodorsal direction 11. The diameter 12 of the. articulation surface 4 in the standard prostheses is as large as is permitted by the dimension of the cover plate in the direction 11. These explanations concerning FIGS. 1 and 2 apply likewise to the second size category according to FIGS. 3 and 4.
  • As is known, such prostheses are able to transmit from vertebra to vertebra the forces extending in the direction of the spinal column, and to a certain extent also the forces extending transverse to the latter, and at the same time they permit swivel movements. If they are implanted between vertebrae between which strong transverse forces act, or between which a substantial directional change takes place, as is often the case for example between the last lumbar vertebra and the sacrum, a displacement of the cover plates and of the vertebrae may occur. This can be compensated for by using a corrective prosthesis [0023] 14. It is constructed, for example, as is shown in FIG. 5 or FIG. 7.
  • According to FIG. 5, the corrective prosthesis has an [0024] upper cover plate 15 which is designed as a corrective cover plate. The external dimensions of its contact surface 7 and thus the overall surface dimensions are equal to those of the standard cover plate 2 of the first size category. The centre 16 of the articulation surface 4′ provided on its inside is displaced dorsally in relation to the centre line 10 by an amount 17. If one were to use the articulation surface 4 of the standard cover plate for this, it would assume the position 4″ indicated by the broken line in FIG. 2. As this is partially extending out beyond the edge of the standard prosthesis, the latter would have to be provided at this location with a projection or a widening, or the articulation surface would have to be shortened to correspond to the standard edge contour. Both of these options are within the scope of the invention but are not generally expedient. The embodiment according to FIG. 6 is thus preferred, in which use is made of that articulation surface 4′ of the second size category whose diameter 12′ is correspondingly smaller and can therefore be accommodated within the edge of the standard format of the corrective cover plate 15. Matching this articulation surface 4′, the corrective cover plate 15 is combined with a prosthesis core 3′ and a lower cover plate 1′ of the second size category, as is indicated in FIG. 5. If, in this corrective prosthesis, the position of the articulation centre line 16 is compared with the position of the contact surface 7 of the corrective cover plate 15, it can be seen that, unlike in the standard prosthesis, these do not coincide but instead are offset in relation to one another by the amount 17.
  • Instead of being connected to a [0025] standard cover plate 1′ of the second size category (FIG. 5), a corrective cover plate 15 turned through 180° can also be used as lower cover plate in the corrective prosthesis (FIG. 7). The offset 17 obtained on the lower cover plate is added to the offset 17 on the upper cover plate with the result that the corrective prosthesis according to FIG. 7 provides twice the offset of that according to FIG. 5.
  • As has been stated, the invention is especially suitable for the prosthesis type shown in FIGS. [0026] 1 to 7 in which the prosthesis core 3 has two articulation surfaces 5 opposite each other. However, the invention can also be used in prostheses of the prosthesis type shown in FIGS. 8 to 11. FIGS. 8 and 9 show medial sections through prostheses of different size categories. They consist of a lower cover plate 21, 21′, an upper cover plate 22, 22′ and a prosthesis core 23, 23′. The upper cover plate 22, 22′ and the top of the prosthesis core 23, 23′ are identical to those of the illustrative embodiment discussed above. They afford a possibility of articulated movement along the pair of articulation surfaces 24, 25. The underside of the prosthesis core 23 is made flat. The lower cover plate 21, 21′ and its core-matching surface 26 with edge 27 is designed solely to hold the prosthesis core 23, 23′.
  • According to FIG. 10, the [0027] upper cover plate 20 is designed as a corrective cover plate according to the explanations given for FIGS. 5 and 6. It belongs to the first, larger size category. It is combined with a prosthesis core 23′ and a lower cover plate 21′ of the second, smaller size category.
  • Instead of this, it is also possible according to FIG. 11 to use the [0028] lower cover plate 29 as corrective plate. It belongs to the first size category and is combined with a prosthesis core 23′ and an upper cover plate 22′ of the second size category. As in the examples discussed above, this therefore results in an offset 17 of the centre of articulation relative to the contact surface of the corrective cover plate.
  • For the sake of simplicity, the offset mentioned in the explanations has been described relative to the contact surface's centre point which, in the standard prostheses, coincides with the centre of articulation of the prosthesis. It goes without saying, however, that the offset can be determined relative to any desired point of the contact surface, in which case its relative position to the articulation centre is to be compared, on the one hand, in a standard cover plate and, on the other hand, upon use of a corrective cover plate. [0029]
  • As can be seen in FIG. 6, the [0030] edge strip 30 of the corrective cover plate 15 is not needed for accommodating the articulation surface 4′. If it is also not needed with respect to a desired size of the contact surface 7, it can be dispensed with. The cover plate 15 and its contact surface 7 are then delimited for example according to the broken line 31.

Claims (7)

1. System of intervertebral disc prostheses which includes standard prostheses and corrective prostheses, the standard prostheses in at least one size category being identical to each other and consisting of a prosthesis core (3, 3′, 23, 23′) and of at least one cover plate (1, 1′, 2, 2′, 21, 21′, 22, 22′) which has a core-matching surface (4, 4′, 24, 26) cooperating with the prosthesis core (3, 3′, 23, 23′) and a contact surface (7) intended to adjoin a vertebral body (9), characterized in that the corrective prostheses (14) have a corrective cover plate (15, 20, 29) whose core-matching surface (4′, 28, 26) is offset ventrodorsally relative to the contact surface (7) by comparison with the standard prostheses.
2. System according to claim 1, characterized in that a dorsal side is distinguishable on the corrective cover plates (15, 20, 29), and the core-matching surface (4′, 26, 28) is offset dorsally relative to the contact surface (7).
3. System according to claim 1 or 2, characterized in that the diameter (12′) of the core-matching surface (4′, 26, 28) of the corrective cover plates (15, 20, 29) is smaller than that of the standard cover plates.
4. System according to claim 3, characterized in that it includes a first size category with standard cover plates (1, 2, 21, 22) whose core-matching surfaces (4, 24) have a first diameter (12), and a second size category with standard cover plates (1′, 2′, 21′, 22′) whose core-matching surfaces (4′, 24′, 26) have a second diameter (12′) which is smaller than the first diameter (12), and in that the first size category includes corrective cover plates (15, 20, 29) whose core-matching surface diameters (12′) are identical to the core-matching surface diameter (12′) of the standard cover plates (1′, 2′, 21′, 22′) of the second size category.
5. System according to one of claims 1 to 4, characterized in that it includes corrective prostheses which consist of two corrective cover plates (15), arranged in opposite directions relative to each other, and of a prosthesis core (3′).
6. System according to one of claims 1 to 5, characterized in that the core-matching surfaces (4, 24, 4′, 24′) are spherical articulation surfaces.
7. System according to one of claims 4 to 6, characterized in that it includes corrective cover plates (15) whose width in the mediolateral direction (10) is equal to the width of the standard cover plates (1, 2, 21, 22) in the same size category and whose dimension in the ventrodorsal direction (11) is smaller than that of the standard cover plates (1, 2, 21, 22) in the same size category.
US10/473,998 2001-04-05 2002-03-20 System for intervertebral disk prostheses Abandoned US20040153157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/936,510 US8303661B2 (en) 2001-04-05 2007-11-07 System for intervertebral disk prostheses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01108607A EP1250898A1 (en) 2001-04-05 2001-04-05 Intervertebral disc prosthesis system
EP01108607.1 2001-04-05
PCT/EP2002/003132 WO2002080818A1 (en) 2001-04-05 2002-03-20 System for intervertebral disk prostheses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/936,510 Continuation US8303661B2 (en) 2001-04-05 2007-11-07 System for intervertebral disk prostheses

Publications (1)

Publication Number Publication Date
US20040153157A1 true US20040153157A1 (en) 2004-08-05

Family

ID=8177058

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/473,998 Abandoned US20040153157A1 (en) 2001-04-05 2002-03-20 System for intervertebral disk prostheses
US11/936,510 Active 2025-05-29 US8303661B2 (en) 2001-04-05 2007-11-07 System for intervertebral disk prostheses

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/936,510 Active 2025-05-29 US8303661B2 (en) 2001-04-05 2007-11-07 System for intervertebral disk prostheses

Country Status (6)

Country Link
US (2) US20040153157A1 (en)
EP (2) EP1250898A1 (en)
JP (1) JP2004538045A (en)
AR (1) AR033694A1 (en)
TW (1) TW553739B (en)
WO (1) WO2002080818A1 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040117021A1 (en) * 2002-09-12 2004-06-17 Lutz Biedermann Invertebral disk prosthesis
US20040172135A1 (en) * 2002-10-29 2004-09-02 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US20050004572A1 (en) * 2002-09-12 2005-01-06 Lutz Biedermann Space keeper for vertebrae or intervertebral disks
US20050033437A1 (en) * 2002-05-23 2005-02-10 Pioneer Laboratories, Inc. Artificial disc device
US20050043800A1 (en) * 2003-07-31 2005-02-24 Paul David C. Prosthetic spinal disc replacement
US20050085911A1 (en) * 2003-10-20 2005-04-21 Cervitech, Inc. Cervical intervertebral prosthesis system
US20050256577A1 (en) * 2002-09-18 2005-11-17 Mathys Medizinaltechnik Ag Implant comprising a two-piece joint
US20050256581A1 (en) * 2002-05-23 2005-11-17 Pioneer Laboratories, Inc. Artificial disc device
US20050261772A1 (en) * 2004-05-18 2005-11-24 Zimmer Gmbh Intervertebral disk implant
WO2006004848A1 (en) * 2004-06-30 2006-01-12 Synergy Disc Replacement, Inc. Artificial spinal disc
US20060069437A1 (en) * 2004-09-30 2006-03-30 Helmut Weber Intervertebral prosthesis
US20060223639A1 (en) * 2004-12-20 2006-10-05 Aruze Corp. Game chip
US20070088441A1 (en) * 2004-06-30 2007-04-19 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US20070173936A1 (en) * 2006-01-23 2007-07-26 Depuy Spine, Inc. Intervertebral disc prosthesis
US20070233244A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US20070233261A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US20070260316A1 (en) * 2004-12-09 2007-11-08 Aesculap Ag & Co. Kg Kit for an intervertebral implant and intervertebral implant
US20080215156A1 (en) * 2004-06-30 2008-09-04 Synergy Disc Replacement Joint Prostheses
US20090076616A1 (en) * 2004-06-30 2009-03-19 Synergy Disc Systems and Methods for Vertebral Disc Replacement
US20090228108A1 (en) * 2001-04-05 2009-09-10 Link Spine Group, Inc. System for intervertebral disk prostheses
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7713304B2 (en) 2003-07-31 2010-05-11 Globus Medical, Inc. Transforaminal prosthetic spinal disc replacement
US7811329B2 (en) 2003-07-31 2010-10-12 Globus Medical Transforaminal prosthetic spinal disc replacement and methods thereof
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US7842088B2 (en) * 2005-09-23 2010-11-30 Ldr Medical Intervertebral disc prosthesis
US20110137421A1 (en) * 2009-12-07 2011-06-09 Noah Hansell Transforaminal Prosthetic Spinal Disc Apparatus
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US8282641B2 (en) 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8715352B2 (en) 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US20150045896A1 (en) * 2005-07-28 2015-02-12 Nuvasive, Inc. Total disc replacement system and related methods
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US9017410B2 (en) 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US20150173912A1 (en) * 2011-02-23 2015-06-25 Globus Medical, Inc. Six degree spine stabilization devices and methods
US9173745B2 (en) 2009-12-31 2015-11-03 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US9198770B2 (en) 2013-07-31 2015-12-01 Globus Medical, Inc. Artificial disc devices and related methods of use
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831049B1 (en) 2001-10-18 2004-08-13 Ldr Medical PLATE FOR OSTEOSYNTHESIS DEVICE AND PRE-ASSEMBLY METHOD
FR2831048B1 (en) 2001-10-18 2004-09-17 Ldr Medical PROGRESSIVE APPROACH OSTEOSYNTHESIS DEVICE AND PRE-ASSEMBLY PROCESS
EP2002805A3 (en) 2002-09-19 2009-01-07 Malan De Villiers Intervertebral prosthesis
DE10247762A1 (en) * 2002-10-14 2004-04-22 Waldemar Link (Gmbh & Co.) Intervertebral prosthesis
EP2329778A3 (en) 2003-01-31 2012-06-20 Spinalmotion, Inc. Spinal midline indicator
WO2004066884A1 (en) 2003-01-31 2004-08-12 Spinalmotion, Inc. Intervertebral prosthesis placement instrument
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
US7105024B2 (en) 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
WO2004105638A2 (en) 2003-05-27 2004-12-09 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
DE10330698B4 (en) * 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
DE20313183U1 (en) * 2003-08-22 2003-10-16 Aesculap Ag & Co Kg Intervertebral implant
EP1706076B1 (en) * 2004-01-07 2012-06-13 Scient'x Intervertebral discal prosthesis
FR2864763B1 (en) * 2004-01-07 2006-11-24 Scient X PROSTHETIC DISCALE FOR VERTEBRATES
DE102004016032B4 (en) 2004-03-30 2006-07-13 Hjs Gelenk System Gmbh Artificial intervertebral disc
DE102004028967B4 (en) * 2004-06-16 2006-05-24 Aesculap Ag & Co. Kg Intervertebral implant
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
FR2887762B1 (en) 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
US7927373B2 (en) 2005-10-31 2011-04-19 Depuy Spine, Inc. Intervertebral disc prosthesis
US7708777B2 (en) 2006-02-03 2010-05-04 Depuy Spine, Inc. Modular intervertebral disc replacements
US8734519B2 (en) 2006-04-12 2014-05-27 Spinalmotion, Inc. Posterior spinal device and method
EP2085056A3 (en) 2006-04-28 2009-08-19 Concept Matrix, LLC Dual composition vertebral fixation device
US20080051901A1 (en) 2006-07-28 2008-02-28 Spinalmotion, Inc. Spinal Prosthesis with Multiple Pillar Anchors
US20080161921A1 (en) * 2006-12-29 2008-07-03 Warsaw Orthopedic, Inc. Spinal Prosthesis Systems
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
US8758441B2 (en) 2007-10-22 2014-06-24 Spinalmotion, Inc. Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
KR20110009216A (en) 2008-05-05 2011-01-27 스피날모우션, 인코포레이티드 Polyaryletherketone artificial intervertebral disc
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
EP2299941A1 (en) 2008-07-18 2011-03-30 Spinalmotion Inc. Posterior prosthetic intervertebral disc
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
RU2550973C2 (en) 2011-03-11 2015-05-20 Фбс Девайс Апс Vertebral implant, instrument for manufacturing and application method
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
DE3809793A1 (en) 1988-03-23 1989-10-05 Link Waldemar Gmbh Co SURGICAL INSTRUMENT SET
GB9125798D0 (en) * 1991-12-04 1992-02-05 Customflex Limited Improvements in or relating to spinal vertebrae implants
DE4208115A1 (en) * 1992-03-13 1993-09-16 Link Waldemar Gmbh Co DISC ENDOPROTHESIS
EP0955021B1 (en) * 1998-03-13 2001-09-19 Waldemar Link (GmbH & Co.) Set of intervertebral disc endoprostheses
EP1250898A1 (en) * 2001-04-05 2002-10-23 Waldemar Link (GmbH & Co.) Intervertebral disc prosthesis system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368350B1 (en) * 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090228108A1 (en) * 2001-04-05 2009-09-10 Link Spine Group, Inc. System for intervertebral disk prostheses
US8303661B2 (en) 2001-04-05 2012-11-06 Depuy Spine, Inc. System for intervertebral disk prostheses
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9351852B2 (en) 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
US8262731B2 (en) 2002-05-23 2012-09-11 Pioneer Surgical Technology, Inc. Artificial disc device
US8388684B2 (en) 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
US20050033437A1 (en) * 2002-05-23 2005-02-10 Pioneer Laboratories, Inc. Artificial disc device
US8241360B2 (en) 2002-05-23 2012-08-14 Pioneer Surgical Technology, Inc. Artificial disc device
US20050256581A1 (en) * 2002-05-23 2005-11-17 Pioneer Laboratories, Inc. Artificial disc device
US20040117021A1 (en) * 2002-09-12 2004-06-17 Lutz Biedermann Invertebral disk prosthesis
US20110196498A1 (en) * 2002-09-12 2011-08-11 Biedermann Motech Gmbh Intervertebral disk prosthesis
US7963994B2 (en) 2002-09-12 2011-06-21 Biedermann Motech Gmbh Intervertebral disk prosthesis
US8821576B2 (en) 2002-09-12 2014-09-02 Biedermann Technologies Gmbh & Co. Kg Intervertebral disk prosthesis
US7828846B2 (en) 2002-09-12 2010-11-09 Biedermann Motech Gmbh Space keeper for vertebrae or intervertebral disks
US8613768B2 (en) 2002-09-12 2013-12-24 Biedermann Technologies Gmbh & Co. Kg Space keeper for vertebrae or intervertebral disks
US20050004572A1 (en) * 2002-09-12 2005-01-06 Lutz Biedermann Space keeper for vertebrae or intervertebral disks
US20110040385A1 (en) * 2002-09-12 2011-02-17 Biedermann Motech Gmbh Space keeper for vertebrae or intervertebral disks
US7537614B2 (en) * 2002-09-18 2009-05-26 Synthes Usa, Llc Implant comprising a two-piece joint
US20050256577A1 (en) * 2002-09-18 2005-11-17 Mathys Medizinaltechnik Ag Implant comprising a two-piece joint
US8092540B2 (en) 2002-09-18 2012-01-10 Synthes Usa, Llc Implant comprising a two-piece joint
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US20040172135A1 (en) * 2002-10-29 2004-09-02 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US7621956B2 (en) 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US20060036325A1 (en) * 2003-07-31 2006-02-16 Globus Medical Inc. Anterior prosthetic spinal disc replacement
US7892262B2 (en) 2003-07-31 2011-02-22 GlobusMedical Posterior prosthetic spinal disc replacement and methods thereof
US20050043800A1 (en) * 2003-07-31 2005-02-24 Paul David C. Prosthetic spinal disc replacement
US7641666B2 (en) 2003-07-31 2010-01-05 Globus Medical, Inc. Prosthetic spinal disc replacement
US8167948B2 (en) 2003-07-31 2012-05-01 Globus Medical, Inc. Anterior prosthetic spinal disc replacement
US20070010826A1 (en) * 2003-07-31 2007-01-11 Rhoda William S Posterior prosthetic spinal disc replacement and methods thereof
US7713304B2 (en) 2003-07-31 2010-05-11 Globus Medical, Inc. Transforaminal prosthetic spinal disc replacement
US7811329B2 (en) 2003-07-31 2010-10-12 Globus Medical Transforaminal prosthetic spinal disc replacement and methods thereof
US8062369B2 (en) 2003-10-20 2011-11-22 Cervitech, Inc. Cervical intervertebral prosthesis system
US20050085911A1 (en) * 2003-10-20 2005-04-21 Cervitech, Inc. Cervical intervertebral prosthesis system
US20080269905A1 (en) * 2003-10-20 2008-10-30 Cervitech, Inc. Cervical intervertebral prosthesis system
US7628813B2 (en) 2003-10-20 2009-12-08 Cervitech, Inc. Cervical intervertebral prosthesis system
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7691146B2 (en) 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US20180235770A1 (en) * 2004-04-28 2018-08-23 Ldr Medical Intervertebral Disc Prosthesis
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US20170071754A1 (en) * 2004-04-28 2017-03-16 Ldr Medical Intervertebral Disc Prosthesis
US9889017B2 (en) * 2004-04-28 2018-02-13 Ldr Medical Intervertebral disc prosthesis
US7959678B2 (en) 2004-05-18 2011-06-14 Zimmer Gmbh Intervertebral disk implant
US20050261772A1 (en) * 2004-05-18 2005-11-24 Zimmer Gmbh Intervertebral disk implant
US8968407B2 (en) 2004-05-18 2015-03-03 Zimmer Gmbh Intervertebral disk implant
US20110238185A1 (en) * 2004-05-18 2011-09-29 Zimmer Gmbh Intervertebral disk implant
US10064739B2 (en) 2004-06-30 2018-09-04 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US20110082556A1 (en) * 2004-06-30 2011-04-07 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US20090043393A1 (en) * 2004-06-30 2009-02-12 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US8100974B2 (en) 2004-06-30 2012-01-24 Synergy Disc Replacement, Inc. Artificial spinal disc
US8852193B2 (en) 2004-06-30 2014-10-07 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US20080215156A1 (en) * 2004-06-30 2008-09-04 Synergy Disc Replacement Joint Prostheses
US8172904B2 (en) 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US8231677B2 (en) 2004-06-30 2012-07-31 Synergy Disc Replacement, Inc. Artificial spinal disc
US20080133013A1 (en) * 2004-06-30 2008-06-05 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US20090076616A1 (en) * 2004-06-30 2009-03-19 Synergy Disc Systems and Methods for Vertebral Disc Replacement
US7927374B2 (en) 2004-06-30 2011-04-19 Synergy Disc Replacement, Inc. Artificial spinal disc
US20090043392A1 (en) * 2004-06-30 2009-02-12 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US8038716B2 (en) 2004-06-30 2011-10-18 Synergy Disc Replacement, Inc Artificial spinal disc
WO2006004848A1 (en) * 2004-06-30 2006-01-12 Synergy Disc Replacement, Inc. Artificial spinal disc
US10786362B2 (en) 2004-06-30 2020-09-29 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US9237958B2 (en) 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
US9125754B2 (en) 2004-06-30 2015-09-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US8894709B2 (en) 2004-06-30 2014-11-25 Synergy Disc Replacement, Inc. Systems and methods for vertebral disc replacement
US8454699B2 (en) 2004-06-30 2013-06-04 Synergy Disc Replacement, Inc Systems and methods for vertebral disc replacement
US20090069894A1 (en) * 2004-06-30 2009-03-12 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US20070088441A1 (en) * 2004-06-30 2007-04-19 Synergy Disc Replacement, Inc. Artificial Spinal Disc
US7582115B2 (en) 2004-09-30 2009-09-01 Helmut Weber Intervertebral prosthesis
US20060069437A1 (en) * 2004-09-30 2006-03-30 Helmut Weber Intervertebral prosthesis
US20070260316A1 (en) * 2004-12-09 2007-11-08 Aesculap Ag & Co. Kg Kit for an intervertebral implant and intervertebral implant
US20060223639A1 (en) * 2004-12-20 2006-10-05 Aruze Corp. Game chip
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US9168149B2 (en) * 2005-07-28 2015-10-27 NaVasive, Inc. Total disc replacement system and related methods
US20150045896A1 (en) * 2005-07-28 2015-02-12 Nuvasive, Inc. Total disc replacement system and related methods
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US7842088B2 (en) * 2005-09-23 2010-11-30 Ldr Medical Intervertebral disc prosthesis
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
CN101296671B (en) * 2005-09-23 2012-12-26 Ldr医疗公司 Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US20070173936A1 (en) * 2006-01-23 2007-07-26 Depuy Spine, Inc. Intervertebral disc prosthesis
US7867279B2 (en) 2006-01-23 2011-01-11 Depuy Spine, Inc. Intervertebral disc prosthesis
US20070233261A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US20070233244A1 (en) * 2006-03-28 2007-10-04 Depuy Spine, Inc. Artificial Disc Replacement Using Posterior Approach
US8282641B2 (en) 2006-03-28 2012-10-09 Depuy Spine, Inc. Methods and instrumentation for disc replacement
US8137404B2 (en) 2006-03-28 2012-03-20 Depuy Spine, Inc. Artificial disc replacement using posterior approach
US9693872B2 (en) 2006-09-15 2017-07-04 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US10080667B2 (en) 2006-09-15 2018-09-25 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US8715352B2 (en) 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US10398574B2 (en) 2007-02-16 2019-09-03 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8685103B2 (en) 2009-12-07 2014-04-01 Globus Medical, Inc. Transforaminal prosthetic spinal disc apparatus
US20110137421A1 (en) * 2009-12-07 2011-06-09 Noah Hansell Transforaminal Prosthetic Spinal Disc Apparatus
US8277509B2 (en) 2009-12-07 2012-10-02 Globus Medical, Inc. Transforaminal prosthetic spinal disc apparatus
US9173745B2 (en) 2009-12-31 2015-11-03 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9452060B2 (en) * 2011-02-23 2016-09-27 Globus Medical, Inc. Six degree spine stabilization devices and methods
US10092411B2 (en) * 2011-02-23 2018-10-09 Globus Medical Inc Six degree spine stabilization devices and methods
US11857433B2 (en) * 2011-02-23 2024-01-02 Globus Medical, Inc. Six degree spine stabilization devices and methods
US10687958B2 (en) * 2011-02-23 2020-06-23 Globus Medical, Inc. Six degree spine stabilization devices and methods
US20220273457A1 (en) * 2011-02-23 2022-09-01 Globus Medical, Inc. Six degree spine stabilization devices and methods
US20150173912A1 (en) * 2011-02-23 2015-06-25 Globus Medical, Inc. Six degree spine stabilization devices and methods
US11357639B2 (en) * 2011-02-23 2022-06-14 Globus Medical, Inc. Six degree spine stabilization devices and methods
US9017410B2 (en) 2011-10-26 2015-04-28 Globus Medical, Inc. Artificial discs
US10980575B2 (en) 2011-12-23 2021-04-20 Pioneer Surgical Technology, Inc. Instrument for inserting a spinal device
US10159514B2 (en) 2011-12-23 2018-12-25 Pioneer Surgical Technology, Inc. Method of implanting a bone plate
US11696786B2 (en) 2011-12-23 2023-07-11 Pioneer Surgical Technology, Inc. Instrument for inserting a spinal device
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US9198770B2 (en) 2013-07-31 2015-12-01 Globus Medical, Inc. Artificial disc devices and related methods of use
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant

Also Published As

Publication number Publication date
JP2004538045A (en) 2004-12-24
TW553739B (en) 2003-09-21
EP1250898A1 (en) 2002-10-23
US20090228108A1 (en) 2009-09-10
AR033694A1 (en) 2004-01-07
EP1389982A1 (en) 2004-02-25
US8303661B2 (en) 2012-11-06
WO2002080818A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
US8303661B2 (en) System for intervertebral disk prostheses
US9572679B2 (en) Artificial disc replacements with natural kinematics
US8100974B2 (en) Artificial spinal disc
US8172904B2 (en) Artificial spinal disc
US20090012619A1 (en) Motion restoring intervertebral prosthesis with limited angular displacement
US20100036497A1 (en) Total disc replacement device

Legal Events

Date Code Title Description
AS Assignment

Owner name: LINK SPINE GROUP, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KELLER, ARNOLD;REEL/FRAME:015276/0315

Effective date: 20040107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: DEPUY SPINE, LLC, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:DEPUY SPINE, INC.;REEL/FRAME:030352/0673

Effective date: 20121230

Owner name: DEPUY SYNTHES PRODUCTS, LLC, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:HAND INNOVATIONS LLC;REEL/FRAME:030352/0722

Effective date: 20121231

Owner name: HAND INNOVATIONS LLC, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEPUY SPINE, LLC;REEL/FRAME:030352/0709

Effective date: 20121230

AS Assignment

Owner name: DEPUY SYNTHES PRODUCTS, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:DEPUY SYNTHES PRODUCTS, LLC;REEL/FRAME:035074/0647

Effective date: 20141219