US20040155325A1 - Die-in heat spreader microelectronic package - Google Patents

Die-in heat spreader microelectronic package Download PDF

Info

Publication number
US20040155325A1
US20040155325A1 US10/774,952 US77495204A US2004155325A1 US 20040155325 A1 US20040155325 A1 US 20040155325A1 US 77495204 A US77495204 A US 77495204A US 2004155325 A1 US2004155325 A1 US 2004155325A1
Authority
US
United States
Prior art keywords
microelectronic
heat spreader
microelectronic die
recess
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/774,952
Inventor
Qing Ma
Harry Fujimoto
Steven Towle
John Evert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to US10/774,952 priority Critical patent/US20040155325A1/en
Publication of US20040155325A1 publication Critical patent/US20040155325A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/5448Located on chip prior to dicing and remaining on chip after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to apparatus and processes for packaging microelectronic dice.
  • the present invention relates to a packaging technology that encapsulates a microelectronic die within a heat spreader.
  • CSP chip scale packaging
  • true CSP would involve fabricating build-up layers directly on an active surface 204 of a microelectronic die 202 .
  • the build-up layers may include a dielectric layer 206 disposed on the active surface 204 and conductive traces 208 may be formed on the dielectric layer 206 , wherein a portion of each conductive trace 208 contacts at least one contact 212 on the active surface 204 .
  • External contacts such as solder balls or pins for contacting an external devices (not shown), may be fabricated to contact at least one conductive trace 208 .
  • FIG. 27 illustrates the external contacts as solder balls 214 which are surrounded by a solder mask material 216 on the dielectric layer 206 .
  • the surface area provided by the active surface 204 generally does not provide enough surface for all of the external contacts needed to contact the external device (not shown) for certain types of microelectronic dice (e.g., logic).
  • FIG. 28 illustrates a substrate interposer 222 having a microelectronic die 224 attached to and in electrical contact with a first surface 226 of the substrate interposer 222 through solder balls 228 .
  • the solder balls 228 extend between contacts 232 on the microelectronic die 224 and conductive traces 234 on the substrate interposer first surface 226 .
  • the conductive traces 234 are in discrete electrical contact with bond pads 236 on a second surface 238 of the substrate interposer 222 through vias 242 that extend through the substrate interposer 222 .
  • External contacts 244 are formed on bond pads 236 .
  • the external contacts 244 are utilized to achieve electrical communication between the microelectronic die 224 and an external electrical system (not shown).
  • the use of the substrate interposer 222 requires number of processing steps which increase the cost of the package. Additionally, the use of the small solder balls 228 presents crowding problems which can result in shorting between the small solder balls 228 and can present difficulties in inserting underfill material between the microelectronic die 224 and the substrate interposer 222 to prevent contamination and provide mechanical stability. Furthermore, the necessity of having two sets of solder balls (i.e., small solder balls 228 and external contacts 244 ) to achieve connection between the microelectronic die 224 and the external electrical system decreases the overall performance of the package.
  • Another problem arising from the fabrication of a smaller microelectronic die is that the density of power consumption of the integrated circuit components in the microelectronic die has increased, which, in turn, increases the average junction temperature of the die. If the temperature of the microelectronic die becomes too high, the integrated circuits of the semiconductor die may be damaged or destroyed. Furthermore, for microelectronic dice of equivalent size, the overall power increases which presents the same problem of increased power density.
  • FIG. 29 illustrates an assembly 250 comprising a microelectronic die 252 physically and electrically attached to a substrate carrier 254 by a plurality of solder balls 256 .
  • a heat sink 258 is attached to a back surface 262 of the microelectronic die 252 by a thermally conductive adhesive 264 .
  • the heat sink 258 is usually a slug constructed from a thermally conductive material, such as copper, copper alloys, aluminum, aluminum alloys, and the like.
  • Heat generated by the microelectronic die 252 is conductively drawn into the slug-type heat sink 258 (following the path of least thermal resistance) and convectively dissipated from the slug-type heat sink 258 into the air surrounding the heat sink assembly 250 .
  • the contact area between the micro-electronic die 252 and the heat sink 258 decreases, which reduces the area available for conductive heat transfer.
  • heat dissipation from a slug-type heat sink 258 becomes less efficient.
  • FIG. 1 is an oblique view of a heat spreader having multiple recesses, according to the present invention
  • FIG. 2 is a side cross-sectional view of a heat spreader having recesses with substantially vertical sidewalls, according to the present invention
  • FIG. 3 is a side cross-sectional view of the heat spreader of FIG. 2 having a plurality of microelectronic dice residing within corresponding recesses, according to the present invention
  • FIG. 4- 12 is a side cross-sectional views of a method of forming build-up layers on the microelectronic die and heat spreader, according to the present invention.
  • FIG. 13 is a side cross-sectional view of the assembly of FIG. 3 having build-up layers and solder balls positioned thereon, according to the present invention
  • FIG. 14 is a side cross-sectional view of a singulated device, according to the present invention.
  • FIG. 15 is a side cross-sectional view of the singulated device having a heat dissipation device attached to the heat spreader, according to the present invention.
  • FIG. 16 is a side cross-sectional view of a heat spreader having recesses with substantially sloped sidewalls, according to the present invention.
  • FIG. 17 is a semiconductor wafer having a plurality of solder bumps on a bottom surface thereof, according to the present invention.
  • FIG. 18 is a side cross-sectional view of the heat spreader of FIG. 16 having a plurality of solder bumps on a bottom surface thereof, according to the present invention
  • FIG. 19 is a side cross-sectional view of a diced microelectronic die from the semiconductor wafer of FIG. 17 placed in the recess of the heat spreader of FIG. 16, according to the present invention
  • FIG. 20 is a side cross-sectional view of the assembly of FIG. 19 having a platen abutting an active surface of the microelectronic die, according to the present invention
  • FIG. 21 is a side cross-sectional view of the heat spreader having the microelectronic die attached to the bottom surface of the heat spreader with solder, according to the present invention.
  • FIG. 22 is a side cross-sectional view of build-up layers on the heat spreader and microelectronic die of FIG. 18, according to the present invention.
  • FIG. 23 is a side cross-sectional view of the heat spreader and microelectronic die of FIG. 21 having a filler material between the recess sidewall and the microelectronic die, according to the present invention
  • FIG. 24 is a side cross-sectional view of the microelectronic die and heat spreader having a channel therein to inject the filler material between the recess sidewall and the microelectronic die, according to the present invention
  • FIG. 25 is a side cross-sectional view of build-up layers on the heater spreader, filler material, and microelectronic die of FIG. 23, according to the present invention.
  • FIG. 26 is a side cross-sectional view of an alternate embodiment of a heat spreader which can be utilized in the present invention.
  • FIG. 27 is a side cross-sectional view of a true CSP of a microelectronic device, as known in the art
  • FIG. 28 is a side cross-sectional view of a CSP of a microelectronic device utilizing a substrate interposer, as known in the art.
  • FIG. 29 is a side cross-sectional view of a slug-type heat dissipation device attached to a semiconductor die, as known in the art.
  • FIGS. 1 - 26 illustrate various views of the present invention, these figures are not meant to portray microelectronic assemblies in precise detail. Rather, these figures illustrate microelectronic assemblies in a manner to more clearly convey the concepts of the present invention. Additionally, elements common between the figures retain the same numeric designation.
  • the present invention includes a packaging technology that places at least one microelectronic dice within at least one recess in a heat spreader and secures the microelectronic die/dice within the recesses with an adhesive material. Build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulant material, and the heat spreader to form a microelectronic package.
  • the technical advantage of this invention is that the present invention enables the microelectronic package to be built around the microelectronic die. This provides sufficient surface area to position external contacts, while eliminating the need for a substrate interposer, as discussed above.
  • the elimination of the substrate interposer increases the performance of the microelectronic package by eliminating one set of solder connections. Furthermore, the elimination of the substrate interposer increases power delivery performance by bringing the circuitry within the microelectronic die closer to power delivery components (such as decoupling capacitors, etc.) of the external electrical system to which the microelectronic package is attached.
  • microelectronic die within a heat spreader allows the heat spreader to absorb heat from the sides of a microelectronic die as well as the back surface of the microelectronic die. This results in more efficient removal of heat from the microelectronic die.
  • the configurations of the present invention allow for direct bumpless build-up layer techniques to be used which allows the package to be scaleable. The configurations also result in a thinner form factors, as no additional heat spreader is needed for the package.
  • FIG. 1 illustrates a heat spreader 102 used to fabricate a microelectronic package.
  • the heat spreader 102 preferably comprises a substantially planar, highly thermally conductive material.
  • the material used to fabricate the heat spreader 102 may include, but is not limited to, metals, such as copper, copper alloys, molybdenum, molybdenum alloys, aluminum, aluminum alloys, and the like.
  • the material used to fabricate the heat spreader may also include, but is not limited to, thermally conductive ceramic materials, such as AlSiC, AlN, and the like. It is further understood that the heat spreader 102 could be a more complex device such as a heat pipe.
  • the heat spreader 102 has at least one recess 104 extending into the heat spreader 102 from a first surface 106 thereof.
  • FIG. 2 illustrates a side cross-sectional view of the heat spreader 102 .
  • Each recess 104 is defined by at least one sidewall 108 and a substantially planar bottom surface 112 .
  • FIG. 3 illustrates microelectronic dice 114 , each having an active surface 116 and a back surface 118 , placed in corresponding heat spreader recesses 104 (see FIG. 2), wherein the recesses 104 are appropriately sized and shaped to receive the microelectronic dice 114 .
  • the size of each heat spreader recess 104 is slightly larger than the size of its corresponding microelectronic die 114 for easy placement and alignment. Fiducial marks (not shown) on both microelectronic die 114 and heat spreader 102 may be used for alignment.
  • a depth 110 (see FIG. 2) of the heat spreader recesses 104 is preferably approximately the same dimension as a thickness 120 of the microelectronic die 114 (shown slightly thicker than the depth 110 of the heat spreader recesses 104 in FIG. 3).
  • the spacing between the heat spreader recesses 104 is, of course, determined by the targeted microelectronic die package size.
  • the microelectronic dice 114 are attached to the bottom surface 112 of each of the recesses 104 with a thermally conductive adhesive material 122 .
  • the adhesive material 122 may comprise a resin or epoxy material filled with thermally conductive particulate material, such as silver or aluminum nitride.
  • the adhesive material 122 may also comprise metal and metal alloys having low melting temperature (e.g., solder materials), and the like.
  • FIG. 4 illustrates a view of a single microelectronic die 114 attached with the adhesive material 122 within the heat spreader 102 .
  • the microelectronic die 114 includes a plurality of electrical contacts 124 located on the microelectronic die active surface 116 .
  • the electrical contacts 124 are electrically connected to circuitry (not shown) within the microelectronic die 114 . Only four electrical contacts 124 are shown for sake of simplicity and clarity.
  • a first dielectric layer 126 such as epoxy resin, polyimide, bisbenzocyclobutene, and the like, is disposed over the microelectronic die active surface 116 (including the electrical contacts 124 ) and the heat spreader first surface 106 .
  • the dielectric layers of the present invention are preferably filled epoxy resins available from Ibiden U.S.A. Corp., Santa Clara, Calif., U.S.A. and Ajinomoto U.S.A., Inc., Paramus, N.J., U.S.A.
  • the first dielectric layer 126 flows into gaps 128 (see FIG.
  • first dielectric layer 126 may be achieved by any known process, including but not limited to lamination, roll-coating and spray-on deposition.
  • an exposed surface 130 of the first dielectric layer 126 is substantially planar. If the first dielectric layer exposed surface 130 is not sufficiently planar, any known planarization technique, such as chemical mechanical polishing, etching, and the like, may be employed.
  • a plurality of vias 134 are then formed through the first dielectric layer 126 .
  • the plurality of vias 134 may be formed any method known in the art, including but not limited to laser drilling, photolithography, and, if the first dielectric layer 126 is photoactive, forming the plurality of vias 134 in the same manner that a photoresist mask is made in a photolithographic process, as known in the art.
  • a plurality of conductive traces 136 is formed on the first dielectric layer 126 , as shown in FIG. 7, wherein a portion of each of the plurality of conductive traces 136 extends into at least one of said plurality of vias 134 (see FIG. 6) to make electrical contact with the electrical contacts 124 .
  • the plurality of conductive traces 136 may be made of any applicable conductive material, such as copper, aluminum, and alloys thereof.
  • the plurality of conductive traces 136 may be formed by any known, technique, including but not limited to semi-additive plating and photolithographic techniques.
  • An exemplary semi-additive plating technique can involve depositing a seed layer, such as sputter-deposited or electroless-deposited metal on the first dielectric layer 126 .
  • a resist layer is then patterned on the seed layer, such as a titanium/copper alloy, followed by electrolytic plating of a layer of metal, such as copper, on the seed layer exposed by open areas in the patterned resist layer.
  • the patterned resist layer is stripped and portions of the seed layer not having the layer of metal plated thereon is etched away.
  • Other methods of forming the plurality of conductive traces 136 will be apparent to those skilled in the art.
  • a second dielectric layer 138 is disposed over the plurality of conductive traces 136 and the first dielectric layer 126 .
  • the formation of second dielectric layer 138 may be achieved by any known process, including but not limited to roll-coating and spray-on deposition.
  • a plurality of second vias 140 are then formed through the second dielectric layer 138 .
  • the plurality of second vias 140 may be formed any method known in the art, including but not limited to laser drilling and, if the second dielectric layer 138 is photoactive, forming the plurality of second vias 140 in the same manner that a photoresist mask is made in a photolithographic process, as known in the art.
  • the plurality of conductive traces 136 is not capable of placing the plurality of second vias 140 in an appropriate position, then other portions of the conductive traces are formed in the plurality of second vias 140 and on the second dielectric layer 138 , another dielectric layer formed thereon, and another plurality of vias is formed in the dielectric layer, such as described in FIGS. 7 - 9 .
  • the layering of dielectric layers and the formation of conductive traces can be repeated until the vias are in an appropriate position.
  • portions of a single conductive trace be formed from multiple portions thereof and can reside on different dielectric layers. Additional dielectric layers and conductive layers may be included in order to provide power and ground planes which ensure adequate power distribution and control impedance.
  • a second plurality of conductive traces 142 may be formed, wherein a portion of each of the second plurality of conductive traces 142 extends into at least one of said plurality of second vias 140 (see FIG. 9).
  • the second plurality of conductive traces 142 each include a landing pad 144 (an enlarged area on the traces demarcated by a dashed line 146 ), as shown in FIG. 10.
  • the second plurality of conductive traces 142 and landing pads 144 can be used in the formation of conductive interconnects, such as solder bumps, solder balls, pins, and the like, for communication with external components (not shown).
  • a solder mask material 148 can be disposed over the second dielectric layer 138 and the second plurality of conductive traces 142 and landing pads 144 .
  • a plurality of vias 150 is then formed in the solder mask material 148 to expose at least a portion of each of the landing pads 134 , as shown in FIG. 11.
  • a plurality of conductive bumps 152 can be formed, such as by screen printing solder paste followed by a reflow process or by known plating techniques, on the exposed portion of each of the landing pads 144 , as shown in FIG. 12.
  • FIG. 13 illustrates a plurality of microelectronic dice 114 residing within the heat spreader 102 . At least one build-up layer is formed on the microelectronic dice active surfaces 116 and the heat spreader first surface 106 . The layer(s) of dielectric material and conductive traces comprising the build-up layer is simply designated together as build-up layer 154 in FIG. 13. The individual microelectronic dice 114 are then singulated (cut) along lines 156 through the build-up layer 154 and the heat spreader 102 to form at least one singulated microelectronic die package 160 , as shown in FIG. 14.
  • the heat spreader 102 adequately removes the heat from the microelectronic die 114 .
  • a conductive heat sink 162 may be attached to the heat spreader 102 , as shown in FIG. 15 .
  • the material used to fabricate the heat sink 162 may include, but is not limited to, metals (copper, molybdenum, aluminum, alloy thereof, and the like), ceramics (AlSiC, AlN, and the like), or a heat pipe.
  • FIGS. 1 - 15 illustrate the heat spreader recesses 104 having substantially vertical recess sidewalls 108 , it is understood that the recess sidewalls 108 may be sloped to assist in the alignment of the microelectronic die 114 in the heat spreader recesses 104 .
  • FIG. 16 illustrates a heat spreader 102 having sloped recess sidewalls 108 .
  • FIGS. 17 - 21 illustrate a self-aligning solder embodiment of the present invention to simply and accurately place the microelectronic dice in the heat spreader recess 104 while providing thermal conduction between the microelectronic die 114 and the heat spreader 102 .
  • the first plurality of solder bumps 174 preferably highly thermally conductive material such as a lead, tin, indium, gallium, bismuth, cadmium, zinc, copper, gold, silver, antimony, germanium, and alloys thereof, most preferably indium-based and tin-based solder, is formed across an entire wafer 170 before the microelectronic die 114 is diced therefrom.
  • the first plurality of solder bumps 174 may be aligned with a feature, as a fiducial marker (not shown), on the front side of the wafer.
  • the solder bumps 174 may be formed by first applying a wetting layer 171 , such as a seed layer as known in the art, to the back surface of the wafer corresponding to the microelectronic die back surface 118 .
  • a removable solder dam 171 such as a photoresist, is patterned over the wetting layer 171 to prevent the solder of the solder bumps 174 prematurely wetting across the wetting layer 171 .
  • the solder bumps 174 may be formed by a plating technique or by screen printing a paste into opening in the photoresist and reflowing the paste to form solder bumps.
  • a second plurality of solder bumps 172 may be disposed on the bottom surface 112 of the heat spreader recess 104 , with a wetting layer 175 and a removable solder dam 177 , using the technique described above.
  • the second plurality of solder bumps 172 may be made from materials such as/described for the first plurality of solder bumps 174 .
  • the second plurality of solder bumps 172 may be aligned with a feature, such as a fiducial marker (not shown) on the heat spreader 102 . As shown in FIG.
  • the microelectronic die 114 (after dicing) is placed within the heat spreader recess 104 wherein the first plurality of solder bumps 174 and the second plurality of solder bumps 172 align the microelectronic die 114 into a desired position.
  • the first plurality of solder balls 174 and the second plurality of solder balls 172 may be of differing sizes and composition for initial alignment and final thermal contact. It is, of course, understood that one could apply solder bumps to either the microelectronic die 114 or the heat spreader recess 104 alone.
  • the heat spreader 102 is heated to or above the melting point of the first plurality of solder bumps 174 and the second plurality of solder bumps 172 to reflow the same, wherein capillary action between the bumps aligns the microelectronic die 114 .
  • the microelectronic die removable solder dam 173 and the heat spreader removable solder dam 177 are then removed, such as by a photoresist strip process as known in the art. Next, as shown in FIG.
  • a platen 176 is placed against the microelectronic die active surface 116 to hold the microelectronic die 114 in place horizontally while compressing vertically and heating under a vacuum or partial vacuum to again reflow the solder of the first plurality of solder balls 172 and the second plurality of solder balls 174 .
  • any relative horizontal movement should be avoided by pressing vertically in direction 180 .
  • the pressure is not released until after the solder has cooled below its melting temperature.
  • the vacuum or partial vacuum help prevent or eliminate the presence of air bubbles within the substantially continuous thermal contact solder layer 178 .
  • the use of the platen 176 also results in the heat spreader top surface 106 and the microelectronic die active surface 116 being substantially coplanar, as also shown in FIG. 21.
  • build-up layers (illustrated as a dielectric layer 126 and conductive traces 136 ) may then formed on the microelectronic die active surface 116 and the heat spreader first surface 106 , as shown in FIG. 22.
  • a filler material 182 such as plastics, resins, epoxies, and the like, may be disposed into any remaining gap between the microelectronic die 114 and the recess sidewalls 108 to form a planar surface 184 between the microelectronic die active surface 116 and the heat spreader first surface 106 , as shown in FIG. 23.
  • This may be achieved by placing a tape film 186 over the microelectronic die active surface 116 and the heat spreader first surface 106 , as shown in FIG. 24.
  • the tape film 104 is preferably a substantially flexible material, such as Kapton® polyimide film (E.I.
  • the filler material 182 (not shown) is injected through at least one channel 188 extending from a heat spreader second surface 192 to the recess sidewall 108 .
  • build-up layers may then formed on the microelectronic die active surface 116 , the filler material planar surface 184 , and the heat spreader first surface 106 , as shown in FIG. 25.
  • a planar heat spreader 194 may be utilized, wherein the microelectronic dice 114 are attached to the planar heat spreader 194 .
  • the attachment may be achieved by an adhesive or the self-aligning solder embodiment discussed above.
  • a tape film 186 is attached to the microelectronic die active surfaces 116 and a filler material 182 (not shown) is injected through at least one channel 196 extending through the planar heat spreader 194 . After which build-up layers may be formed on the microelectronic die active surfaces 116 and the filler material 182 (not shown), as previously discussed.

Abstract

Microelectronic packages including a microelectronic die disposed within a recess in a heat spreader and build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die and the heat spreader to form the microelectronic package, and methods for the fabrication of the same, including methods to align the microelectronic die within the heat spreader. In another embodiment, a microelectronic die is disposed on a heat spreader which has a filler material disposed therearound and build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die and the filler material to form the microelectronic package, and methods for the fabrication of the same, including methods to align the microelectronic die on the heat spreader.

Description

    RELATED APPLICATIONS
  • The application is a divisional of U.S. patent application Ser. No. 09/679,733, filed Oct. 4, 2000, which is incorporated herein by reference.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to apparatus and processes for packaging microelectronic dice. In particular, the present invention relates to a packaging technology that encapsulates a microelectronic die within a heat spreader. [0003]
  • 2. State of the Art [0004]
  • Higher performance, lower cost, increased miniaturization of integrated circuit components, and greater packaging density of integrated circuits are ongoing goals of the computer industry. As these goals are achieved, microelectronic dice become smaller. Of course, the goal of greater packaging density requires that the entire microelectronic die package be equal to or only slightly larger (about 10% to 30%) than the size of the microelectronic die itself. Such microelectronic die packaging is called a “chip scale packaging” or “CSP”. [0005]
  • As shown in FIG. 27, true CSP would involve fabricating build-up layers directly on an [0006] active surface 204 of a microelectronic die 202. The build-up layers may include a dielectric layer 206 disposed on the active surface 204 and conductive traces 208 may be formed on the dielectric layer 206, wherein a portion of each conductive trace 208 contacts at least one contact 212 on the active surface 204. External contacts, such as solder balls or pins for contacting an external devices (not shown), may be fabricated to contact at least one conductive trace 208. FIG. 27 illustrates the external contacts as solder balls 214 which are surrounded by a solder mask material 216 on the dielectric layer 206. However, the surface area provided by the active surface 204 generally does not provide enough surface for all of the external contacts needed to contact the external device (not shown) for certain types of microelectronic dice (e.g., logic).
  • Additional surface area can be provided with the use of an interposer, such as a substantially rigid material or a substantially flexible material. FIG. 28 illustrates a substrate interposer [0007] 222 having a microelectronic die 224 attached to and in electrical contact with a first surface 226 of the substrate interposer 222 through solder balls 228. The solder balls 228 extend between contacts 232 on the microelectronic die 224 and conductive traces 234 on the substrate interposer first surface 226. The conductive traces 234 are in discrete electrical contact with bond pads 236 on a second surface 238 of the substrate interposer 222 through vias 242 that extend through the substrate interposer 222. External contacts 244 are formed on bond pads 236. The external contacts 244 are utilized to achieve electrical communication between the microelectronic die 224 and an external electrical system (not shown).
  • The use of the substrate interposer [0008] 222 requires number of processing steps which increase the cost of the package. Additionally, the use of the small solder balls 228 presents crowding problems which can result in shorting between the small solder balls 228 and can present difficulties in inserting underfill material between the microelectronic die 224 and the substrate interposer 222 to prevent contamination and provide mechanical stability. Furthermore, the necessity of having two sets of solder balls (i.e., small solder balls 228 and external contacts 244) to achieve connection between the microelectronic die 224 and the external electrical system decreases the overall performance of the package.
  • Another problem arising from the fabrication of a smaller microelectronic die is that the density of power consumption of the integrated circuit components in the microelectronic die has increased, which, in turn, increases the average junction temperature of the die. If the temperature of the microelectronic die becomes too high, the integrated circuits of the semiconductor die may be damaged or destroyed. Furthermore, for microelectronic dice of equivalent size, the overall power increases which presents the same problem of increased power density. [0009]
  • Various apparatus and techniques have been used for removing heat from microelectronic dice. One such heat dissipation technique involves the attachment of a heat sink to a microelectronic die. FIG. 29 illustrates an [0010] assembly 250 comprising a microelectronic die 252 physically and electrically attached to a substrate carrier 254 by a plurality of solder balls 256. A heat sink 258 is attached to a back surface 262 of the microelectronic die 252 by a thermally conductive adhesive 264. The heat sink 258 is usually a slug constructed from a thermally conductive material, such as copper, copper alloys, aluminum, aluminum alloys, and the like. Heat generated by the microelectronic die 252 is conductively drawn into the slug-type heat sink 258 (following the path of least thermal resistance) and convectively dissipated from the slug-type heat sink 258 into the air surrounding the heat sink assembly 250. Thus, as the size or “footprint” of microelectronic dice decreases, the contact area between the micro-electronic die 252 and the heat sink 258 decreases, which reduces the area available for conductive heat transfer. Thus, with a decrease of the size in the microelectronic die 252, heat dissipation from a slug-type heat sink 258 becomes less efficient.
  • Therefore, it would be advantageous to develop new apparatus and techniques to provide additional surface area to form traces for use in CSP applications, eliminate the necessity of the substrate interposer, and provide improved heat dissipation.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which: [0012]
  • FIG. 1 is an oblique view of a heat spreader having multiple recesses, according to the present invention; [0013]
  • FIG. 2 is a side cross-sectional view of a heat spreader having recesses with substantially vertical sidewalls, according to the present invention; [0014]
  • FIG. 3 is a side cross-sectional view of the heat spreader of FIG. 2 having a plurality of microelectronic dice residing within corresponding recesses, according to the present invention; [0015]
  • FIG. 4-[0016] 12 is a side cross-sectional views of a method of forming build-up layers on the microelectronic die and heat spreader, according to the present invention;
  • FIG. 13 is a side cross-sectional view of the assembly of FIG. 3 having build-up layers and solder balls positioned thereon, according to the present invention; [0017]
  • FIG. 14 is a side cross-sectional view of a singulated device, according to the present invention; [0018]
  • FIG. 15 is a side cross-sectional view of the singulated device having a heat dissipation device attached to the heat spreader, according to the present invention; [0019]
  • FIG. 16 is a side cross-sectional view of a heat spreader having recesses with substantially sloped sidewalls, according to the present invention; [0020]
  • FIG. 17 is a semiconductor wafer having a plurality of solder bumps on a bottom surface thereof, according to the present invention; [0021]
  • FIG. 18 is a side cross-sectional view of the heat spreader of FIG. 16 having a plurality of solder bumps on a bottom surface thereof, according to the present invention; [0022]
  • FIG. 19 is a side cross-sectional view of a diced microelectronic die from the semiconductor wafer of FIG. 17 placed in the recess of the heat spreader of FIG. 16, according to the present invention; [0023]
  • FIG. 20 is a side cross-sectional view of the assembly of FIG. 19 having a platen abutting an active surface of the microelectronic die, according to the present invention; [0024]
  • FIG. 21 is a side cross-sectional view of the heat spreader having the microelectronic die attached to the bottom surface of the heat spreader with solder, according to the present invention; [0025]
  • FIG. 22 is a side cross-sectional view of build-up layers on the heat spreader and microelectronic die of FIG. 18, according to the present invention; [0026]
  • FIG. 23 is a side cross-sectional view of the heat spreader and microelectronic die of FIG. 21 having a filler material between the recess sidewall and the microelectronic die, according to the present invention; [0027]
  • FIG. 24 is a side cross-sectional view of the microelectronic die and heat spreader having a channel therein to inject the filler material between the recess sidewall and the microelectronic die, according to the present invention; [0028]
  • FIG. 25 is a side cross-sectional view of build-up layers on the heater spreader, filler material, and microelectronic die of FIG. 23, according to the present invention; [0029]
  • FIG. 26 is a side cross-sectional view of an alternate embodiment of a heat spreader which can be utilized in the present invention; [0030]
  • FIG. 27 is a side cross-sectional view of a true CSP of a microelectronic device, as known in the art; [0031]
  • FIG. 28 is a side cross-sectional view of a CSP of a microelectronic device utilizing a substrate interposer, as known in the art; and [0032]
  • FIG. 29 is a side cross-sectional view of a slug-type heat dissipation device attached to a semiconductor die, as known in the art.[0033]
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
  • Although FIGS. [0034] 1-26 illustrate various views of the present invention, these figures are not meant to portray microelectronic assemblies in precise detail. Rather, these figures illustrate microelectronic assemblies in a manner to more clearly convey the concepts of the present invention. Additionally, elements common between the figures retain the same numeric designation.
  • The present invention includes a packaging technology that places at least one microelectronic dice within at least one recess in a heat spreader and secures the microelectronic die/dice within the recesses with an adhesive material. Build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulant material, and the heat spreader to form a microelectronic package. [0035]
  • The technical advantage of this invention is that the present invention enables the microelectronic package to be built around the microelectronic die. This provides sufficient surface area to position external contacts, while eliminating the need for a substrate interposer, as discussed above. The elimination of the substrate interposer increases the performance of the microelectronic package by eliminating one set of solder connections. Furthermore, the elimination of the substrate interposer increases power delivery performance by bringing the circuitry within the microelectronic die closer to power delivery components (such as decoupling capacitors, etc.) of the external electrical system to which the microelectronic package is attached. Moreover, having the microelectronic die within a heat spreader allows the heat spreader to absorb heat from the sides of a microelectronic die as well as the back surface of the microelectronic die. This results in more efficient removal of heat from the microelectronic die. Yet further, the configurations of the present invention allow for direct bumpless build-up layer techniques to be used which allows the package to be scaleable. The configurations also result in a thinner form factors, as no additional heat spreader is needed for the package. [0036]
  • FIG. 1 illustrates a [0037] heat spreader 102 used to fabricate a microelectronic package. The heat spreader 102 preferably comprises a substantially planar, highly thermally conductive material. The material used to fabricate the heat spreader 102 may include, but is not limited to, metals, such as copper, copper alloys, molybdenum, molybdenum alloys, aluminum, aluminum alloys, and the like. The material used to fabricate the heat spreader may also include, but is not limited to, thermally conductive ceramic materials, such as AlSiC, AlN, and the like. It is further understood that the heat spreader 102 could be a more complex device such as a heat pipe. The heat spreader 102 has at least one recess 104 extending into the heat spreader 102 from a first surface 106 thereof. FIG. 2 illustrates a side cross-sectional view of the heat spreader 102. Each recess 104 is defined by at least one sidewall 108 and a substantially planar bottom surface 112.
  • FIG. 3 illustrates [0038] microelectronic dice 114, each having an active surface 116 and a back surface 118, placed in corresponding heat spreader recesses 104 (see FIG. 2), wherein the recesses 104 are appropriately sized and shaped to receive the microelectronic dice 114. Preferably, the size of each heat spreader recess 104 is slightly larger than the size of its corresponding microelectronic die 114 for easy placement and alignment. Fiducial marks (not shown) on both microelectronic die 114 and heat spreader 102 may be used for alignment.
  • A depth [0039] 110 (see FIG. 2) of the heat spreader recesses 104 is preferably approximately the same dimension as a thickness 120 of the microelectronic die 114 (shown slightly thicker than the depth 110 of the heat spreader recesses 104 in FIG. 3). The spacing between the heat spreader recesses 104 is, of course, determined by the targeted microelectronic die package size.
  • The [0040] microelectronic dice 114 are attached to the bottom surface 112 of each of the recesses 104 with a thermally conductive adhesive material 122. The adhesive material 122 may comprise a resin or epoxy material filled with thermally conductive particulate material, such as silver or aluminum nitride. The adhesive material 122 may also comprise metal and metal alloys having low melting temperature (e.g., solder materials), and the like. Although the following description relates to a bumpless, built-up layer technique for the formation of build-up layers, the method of fabrication is not so limited. The build-up layers may be fabricated by a variety of techniques known in the art.
  • FIG. 4 illustrates a view of a single [0041] microelectronic die 114 attached with the adhesive material 122 within the heat spreader 102. The microelectronic die 114, of course, includes a plurality of electrical contacts 124 located on the microelectronic die active surface 116. The electrical contacts 124 are electrically connected to circuitry (not shown) within the microelectronic die 114. Only four electrical contacts 124 are shown for sake of simplicity and clarity.
  • As shown in FIG. 5, a first [0042] dielectric layer 126, such as epoxy resin, polyimide, bisbenzocyclobutene, and the like, is disposed over the microelectronic die active surface 116 (including the electrical contacts 124) and the heat spreader first surface 106. The dielectric layers of the present invention are preferably filled epoxy resins available from Ibiden U.S.A. Corp., Santa Clara, Calif., U.S.A. and Ajinomoto U.S.A., Inc., Paramus, N.J., U.S.A. Preferably, the first dielectric layer 126 flows into gaps 128 (see FIG. 4) between the recess sidewall 108 and sides 132 of microelectronic dice 114. The formation of the first dielectric layer 126 may be achieved by any known process, including but not limited to lamination, roll-coating and spray-on deposition. Preferably, an exposed surface 130 of the first dielectric layer 126 is substantially planar. If the first dielectric layer exposed surface 130 is not sufficiently planar, any known planarization technique, such as chemical mechanical polishing, etching, and the like, may be employed.
  • As shown in FIG. 6, a plurality of [0043] vias 134 are then formed through the first dielectric layer 126. The plurality of vias 134 may be formed any method known in the art, including but not limited to laser drilling, photolithography, and, if the first dielectric layer 126 is photoactive, forming the plurality of vias 134 in the same manner that a photoresist mask is made in a photolithographic process, as known in the art.
  • A plurality of [0044] conductive traces 136 is formed on the first dielectric layer 126, as shown in FIG. 7, wherein a portion of each of the plurality of conductive traces 136 extends into at least one of said plurality of vias 134 (see FIG. 6) to make electrical contact with the electrical contacts 124. The plurality of conductive traces 136 may be made of any applicable conductive material, such as copper, aluminum, and alloys thereof.
  • The plurality of [0045] conductive traces 136 may be formed by any known, technique, including but not limited to semi-additive plating and photolithographic techniques. An exemplary semi-additive plating technique can involve depositing a seed layer, such as sputter-deposited or electroless-deposited metal on the first dielectric layer 126. A resist layer is then patterned on the seed layer, such as a titanium/copper alloy, followed by electrolytic plating of a layer of metal, such as copper, on the seed layer exposed by open areas in the patterned resist layer. The patterned resist layer is stripped and portions of the seed layer not having the layer of metal plated thereon is etched away. Other methods of forming the plurality of conductive traces 136 will be apparent to those skilled in the art.
  • As shown in FIG. 8, a [0046] second dielectric layer 138 is disposed over the plurality of conductive traces 136 and the first dielectric layer 126. The formation of second dielectric layer 138 may be achieved by any known process, including but not limited to roll-coating and spray-on deposition.
  • As shown in FIG. 9, a plurality of [0047] second vias 140 are then formed through the second dielectric layer 138. The plurality of second vias 140 may be formed any method known in the art, including but not limited to laser drilling and, if the second dielectric layer 138 is photoactive, forming the plurality of second vias 140 in the same manner that a photoresist mask is made in a photolithographic process, as known in the art.
  • If the plurality of [0048] conductive traces 136 is not capable of placing the plurality of second vias 140 in an appropriate position, then other portions of the conductive traces are formed in the plurality of second vias 140 and on the second dielectric layer 138, another dielectric layer formed thereon, and another plurality of vias is formed in the dielectric layer, such as described in FIGS. 7-9. The layering of dielectric layers and the formation of conductive traces can be repeated until the vias are in an appropriate position. Thus, portions of a single conductive trace be formed from multiple portions thereof and can reside on different dielectric layers. Additional dielectric layers and conductive layers may be included in order to provide power and ground planes which ensure adequate power distribution and control impedance.
  • A second plurality of [0049] conductive traces 142 may be formed, wherein a portion of each of the second plurality of conductive traces 142 extends into at least one of said plurality of second vias 140 (see FIG. 9). The second plurality of conductive traces 142 each include a landing pad 144 (an enlarged area on the traces demarcated by a dashed line 146), as shown in FIG. 10.
  • Once the second plurality of [0050] conductive traces 142 and landing pads 144 are formed, they can be used in the formation of conductive interconnects, such as solder bumps, solder balls, pins, and the like, for communication with external components (not shown). For example, a solder mask material 148 can be disposed over the second dielectric layer 138 and the second plurality of conductive traces 142 and landing pads 144. A plurality of vias 150 is then formed in the solder mask material 148 to expose at least a portion of each of the landing pads 134, as shown in FIG. 11. A plurality of conductive bumps 152, such as solder bumps, can be formed, such as by screen printing solder paste followed by a reflow process or by known plating techniques, on the exposed portion of each of the landing pads 144, as shown in FIG. 12.
  • FIG. 13 illustrates a plurality of [0051] microelectronic dice 114 residing within the heat spreader 102. At least one build-up layer is formed on the microelectronic dice active surfaces 116 and the heat spreader first surface 106. The layer(s) of dielectric material and conductive traces comprising the build-up layer is simply designated together as build-up layer 154 in FIG. 13. The individual microelectronic dice 114 are then singulated (cut) along lines 156 through the build-up layer 154 and the heat spreader 102 to form at least one singulated microelectronic die package 160, as shown in FIG. 14.
  • Preferably, the [0052] heat spreader 102 adequately removes the heat from the microelectronic die 114. However, if the heat spreader 102 does not do so, a conductive heat sink 162 may be attached to the heat spreader 102, as shown in FIG. 15. The material used to fabricate the heat sink 162 may include, but is not limited to, metals (copper, molybdenum, aluminum, alloy thereof, and the like), ceramics (AlSiC, AlN, and the like), or a heat pipe.
  • Although FIGS. [0053] 1-15 illustrate the heat spreader recesses 104 having substantially vertical recess sidewalls 108, it is understood that the recess sidewalls 108 may be sloped to assist in the alignment of the microelectronic die 114 in the heat spreader recesses 104. FIG. 16 illustrates a heat spreader 102 having sloped recess sidewalls 108.
  • FIGS. [0054] 17-21 illustrate a self-aligning solder embodiment of the present invention to simply and accurately place the microelectronic dice in the heat spreader recess 104 while providing thermal conduction between the microelectronic die 114 and the heat spreader 102. As shown in FIG. 17, the first plurality of solder bumps 174, preferably highly thermally conductive material such as a lead, tin, indium, gallium, bismuth, cadmium, zinc, copper, gold, silver, antimony, germanium, and alloys thereof, most preferably indium-based and tin-based solder, is formed across an entire wafer 170 before the microelectronic die 114 is diced therefrom. This ensures that the first plurality of solder bumps 174 are positioned the same on all microelectronic dice 114 and to reduce cost. The first plurality of solder bumps 174 may be aligned with a feature, as a fiducial marker (not shown), on the front side of the wafer.
  • The solder bumps [0055] 174 may be formed by first applying a wetting layer 171, such as a seed layer as known in the art, to the back surface of the wafer corresponding to the microelectronic die back surface 118. A removable solder dam 171, such as a photoresist, is patterned over the wetting layer 171 to prevent the solder of the solder bumps 174 prematurely wetting across the wetting layer 171. The solder bumps 174 may be formed by a plating technique or by screen printing a paste into opening in the photoresist and reflowing the paste to form solder bumps.
  • As shown in FIG. 18, a second plurality of solder bumps [0056] 172 may be disposed on the bottom surface 112 of the heat spreader recess 104, with a wetting layer 175 and a removable solder dam 177, using the technique described above. The second plurality of solder bumps 172 may be made from materials such as/described for the first plurality of solder bumps 174. The second plurality of solder bumps 172 may be aligned with a feature, such as a fiducial marker (not shown) on the heat spreader 102. As shown in FIG. 19, the microelectronic die 114 (after dicing) is placed within the heat spreader recess 104 wherein the first plurality of solder bumps 174 and the second plurality of solder bumps 172 align the microelectronic die 114 into a desired position. The first plurality of solder balls 174 and the second plurality of solder balls 172 may be of differing sizes and composition for initial alignment and final thermal contact. It is, of course, understood that one could apply solder bumps to either the microelectronic die 114 or the heat spreader recess 104 alone.
  • The [0057] heat spreader 102 is heated to or above the melting point of the first plurality of solder bumps 174 and the second plurality of solder bumps 172 to reflow the same, wherein capillary action between the bumps aligns the microelectronic die 114. The microelectronic die removable solder dam 173 and the heat spreader removable solder dam 177 are then removed, such as by a photoresist strip process as known in the art. Next, as shown in FIG. 20, a platen 176 is placed against the microelectronic die active surface 116 to hold the microelectronic die 114 in place horizontally while compressing vertically and heating under a vacuum or partial vacuum to again reflow the solder of the first plurality of solder balls 172 and the second plurality of solder balls 174. In this process, any relative horizontal movement should be avoided by pressing vertically in direction 180. The pressure is not released until after the solder has cooled below its melting temperature. This results in a substantially continuous thermal contact solder layer 178 between the microelectronic die back surface 118 and the recess bottom surface 112, as shown in FIG. 21. The vacuum or partial vacuum help prevent or eliminate the presence of air bubbles within the substantially continuous thermal contact solder layer 178. The use of the platen 176 (see FIG. 20) also results in the heat spreader top surface 106 and the microelectronic die active surface 116 being substantially coplanar, as also shown in FIG. 21.
  • As previously discussed, build-up layers (illustrated as a [0058] dielectric layer 126 and conductive traces 136) may then formed on the microelectronic die active surface 116 and the heat spreader first surface 106, as shown in FIG. 22.
  • In an alternate embodiment, a [0059] filler material 182, such as plastics, resins, epoxies, and the like, may be disposed into any remaining gap between the microelectronic die 114 and the recess sidewalls 108 to form a planar surface 184 between the microelectronic die active surface 116 and the heat spreader first surface 106, as shown in FIG. 23. This may be achieved by placing a tape film 186 over the microelectronic die active surface 116 and the heat spreader first surface 106, as shown in FIG. 24. The tape film 104 is preferably a substantially flexible material, such as Kapton® polyimide film (E.I. du Pont de Nemours and Company, Wilmington, Del.), but may be made of any appropriate material, including metallic films, having an adhesive, such as silicone, disposed thereon. The filler material 182 (not shown) is injected through at least one channel 188 extending from a heat spreader second surface 192 to the recess sidewall 108.
  • As previously discussed, build-up layers (illustrated as a [0060] dielectric layer 126 and conductive traces 136) may then formed on the microelectronic die active surface 116, the filler material planar surface 184, and the heat spreader first surface 106, as shown in FIG. 25.
  • In another embodiment of the present invention as shown in FIG. 26, a [0061] planar heat spreader 194 may be utilized, wherein the microelectronic dice 114 are attached to the planar heat spreader 194. The attachment may be achieved by an adhesive or the self-aligning solder embodiment discussed above. A tape film 186 is attached to the microelectronic die active surfaces 116 and a filler material 182 (not shown) is injected through at least one channel 196 extending through the planar heat spreader 194. After which build-up layers may be formed on the microelectronic die active surfaces 116 and the filler material 182 (not shown), as previously discussed.
  • It is, of course, understood that individual packages may be formed by cutting through the heat spreader and portions of the build-up layers, as previously discussed and illustrated. [0062]
  • Having thus described in detail embodiments of the present invention, it is understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description, as many apparent variations thereof are possible without departing from the spirit or scope thereof. [0063]

Claims (22)

What is claimed is:
1. A microelectronic package, comprising:
a heat spreader having a first surface, said heat spreader having at least one recess defined therein by at least one sidewall extending from said heat spreader first surface to a recess bottom surface;
at least one microelectronic die disposed within said at least one recess, said at least one microelectronic die having an active surface, a back surface, and at least one side; and
a thermally conductive material adhering said at least one microelectronic die back surface to said recess bottom surface.
2. The microelectronic package of claim 1, further including build-up layers disposed on said microelectronic die active surface and said heat spreader first surface.
3. The microelectronic package of claim 2, wherein said build-up layers comprise at least one dielectric layer abutting said at least one microelectronic die active surface and said heat spreader first surface and at least one conductive trace disposed on said at least one dielectric layer.
4. The microelectronic package of claim 3, wherein said at least one dielectric layer is disposed within gaps between said at least one recess sidewall and said at least one microelectronic die side.
5. The microelectronic package of claim 1, further including a filler material disposed in gaps between said at least one recess sidewall and said at least one microelectronic dice side.
6. The microelectronic package of claim 1, wherein said thermally conductive material is selected from the group consisting of resin, epoxy, metal and metal alloys.
7. The microelectronic package of claim 1, wherein said at least one recess sidewall is sloped.
8. A microelectronic package, comprising:
a heat spreader having a first surface, said heat spreader having at least one recess defined therein by at least one sidewall extending from said heat spreader first surface to a recess bottom surface;
at least one microelectronic die disposed within said at least one recess, said at least one microelectronic die having an active surface, a back surface, and at least one side;
a first plurality of solder bumps disposed upon the microelectronic die back surface; and
a second plurality of solder bumps disposed in the heat spreader at least one recess, wherein the first plurality and the second plurality are each aligned such that the microelectronic die is aligned into a position within the at least one recess.
9. The microelectronic package of claim 8, further including:
a wetting layer disposed between the first plurality of solder bumps and the microelectronic die back surface.
10. The microelectronic package of claim 8, further including:
a wetting layer disposed between the second plurality of solder bumps and the recess bottom surface.
11. A microelectronic package, comprising:
a heat spreader having a first surface, said heat spreader having at least one recess defined therein by at least one sidewall extending from said heat spreader first surface to a recess bottom surface;
at least one microelectronic die disposed within said at least one recess, said at least one microelectronic die having an active surface, a back surface, and at least one side; and
build-up layers disposed on said microelectronic die active surface and said heat spreader first surface, wherein said build-up layers comprise at least one dielectric layer abutting said at least one microelectronic die active surface and said heat spreader first surface and at least one conductive trace disposed on said at least one dielectric layer.
12. The microelectronic package of claim 11, wherein said at least one dielectric layer is disposed within gaps between said at least one recess sidewall and said at least one microelectronic die side.
13. The microelectronic package of claim 11, further including a filler material disposed in gaps between said at least one recess sidewall and said at least one microelectronic dice side.
14. A method of fabricating a microelectronic package, comprising:
providing a heat spreader having a first surface, said heat spreader having at least one recess defined therein by at least one sidewall extending from said heat spreader first surface to a recess bottom surface;
disposing at least one microelectronic die within said at least one recess, said at least one microelectronic die having an active surface, a back surface, and at least one side; and
adhering said at least one microelectronic die back surface to said recess bottom surface.
15. The method of claim 14, further including:
forming at least one dielectric material layer on at least a portion of said microelectronic die active surface and said heat spreader first surface;
forming at least one via through said at least one dielectric material layer to expose a portion of said microelectronic die active surface; and
forming at least one conductive trace on said at least one dielectric material layer which extends into said at least one via to electrically contact said microelectronic die active surface.
16. The method of claim 14, further including disposing a filler material in gaps between said at least one recess sidewall and said at least one microelectronic die side.
17. The method of claim 14, wherein adhering said at least one microelectronic die back surface to said recess bottom surface comprises adhering said at least one microelectronic die back surface to said bottom surface with a thermally conductive material selected from the group consisting of resin material filled with thermally conductive particulate material and epoxy material filled with thermally conductive particulate material.
18. The method of claim 14, wherein adhering said at least one microelectronic die back surface to said recess bottom surface comprises adhering said at least one microelectronic die back surface to said bottom surface with a thermally conductive material selected from the group consisting of metal and metal alloys.
19. The method of claim 11, wherein adhering said at least one microelectronic die back surface to said recess bottom surface comprises:
disposing a plurality of first solder bumps on said at least one microelectronic die back surface;
disposing a plurality of second solder bumps on said recess bottom surface; and
forming a substantially continuous solder layer between said at least one microelectronic die back surface to said recess bottom surface by reflowing said plurality of first solder bumps and said second plurality of solder bumps.
20. A method of fabricating a microelectronic package, comprising:
providing a heat spreader having a first surface, said heat spreader having a plurality of recesses defined therein by a plurality of sidewalls extending from said heat spreader first surface to recess bottom surfaces of said plurality of recesses;
disposing at least one of a plurality of microelectronic dice within each of said plurality of recesses, each of said plurality of microelectronic dice having an active surface, a back surface, and at least one side;
adhering at least one of said plurality of microelectronic die back surfaces of said plurality of microelectronic dice to at least one corresponding recess bottom surface of said plurality of recesses; and
singulating said plurality of microelectronic dice by cutting through said heat spreader.
21. The method of claim 20, further including:
forming at least one dielectric material layer on at least a portion of said microelectronic die active surface of said plurality of microelectronic dice and said heat spreader first surface;
forming at least one via through said at least one dielectric material layer to expose a portion of said microelectronic die active surfaces of said plurality of microelectronic dice; and
forming at least one conductive trace on said at least one dielectric material layer which extends into said at least one via to electrically contact at least one of said microelectronic die active surfaces of said plurality of microelectronic dice.
22. The method of claim 20, wherein forming at least one dielectric material layer on at least a portion of said microelectronic die active surface of said plurality of microelectronic dice and said heat spreader first surface comprises flowing at least one dielectric layer into gaps between said at least one of said plurality of recess sidewalls and said at least one microelectronic dice side of said plurality of microelectronic dice.
US10/774,952 2000-10-04 2004-02-09 Die-in heat spreader microelectronic package Abandoned US20040155325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/774,952 US20040155325A1 (en) 2000-10-04 2004-02-09 Die-in heat spreader microelectronic package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/679,733 US6709898B1 (en) 2000-10-04 2000-10-04 Die-in-heat spreader microelectronic package
US10/774,952 US20040155325A1 (en) 2000-10-04 2004-02-09 Die-in heat spreader microelectronic package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/679,733 Division US6709898B1 (en) 2000-10-04 2000-10-04 Die-in-heat spreader microelectronic package

Publications (1)

Publication Number Publication Date
US20040155325A1 true US20040155325A1 (en) 2004-08-12

Family

ID=31978986

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/679,733 Expired - Lifetime US6709898B1 (en) 2000-10-04 2000-10-04 Die-in-heat spreader microelectronic package
US10/774,952 Abandoned US20040155325A1 (en) 2000-10-04 2004-02-09 Die-in heat spreader microelectronic package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/679,733 Expired - Lifetime US6709898B1 (en) 2000-10-04 2000-10-04 Die-in-heat spreader microelectronic package

Country Status (1)

Country Link
US (2) US6709898B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140533A1 (en) * 2002-11-06 2004-07-22 Stern Jonathan Michael Method for creating neo-wafers from singulated integrated circuit die and a device made according to the method
US20050127503A1 (en) * 2003-11-29 2005-06-16 Semikron Elektronik Gmbh Power semiconductor module and method for producing it
US20070284704A1 (en) * 2006-06-09 2007-12-13 Leal George R Methods and apparatus for a semiconductor device package with improved thermal performance
US20080150164A1 (en) * 2006-12-20 2008-06-26 Phoenix Precision Technology Corporation Carrier structure embedded with semiconductor chips and method for manufacturing the same
WO2009016041A1 (en) * 2007-07-31 2009-02-05 Siemens Aktiengesellschaft Method for producing an electronic component and electronic component
US20090168380A1 (en) * 2007-12-31 2009-07-02 Phoenix Precision Technology Corporation Package substrate embedded with semiconductor component
US20100148357A1 (en) * 2008-12-16 2010-06-17 Freescale Semiconductor, Inc. Method of packaging integrated circuit dies with thermal dissipation capability
US20100320588A1 (en) * 2009-06-22 2010-12-23 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Prefabricated Heat Spreader Frame with Embedded Semiconductor Die
CN102496609A (en) * 2011-12-22 2012-06-13 日月光半导体制造股份有限公司 Embedded crystal grain packaging structure and manufacturing method thereof
US20120168932A1 (en) * 2007-07-12 2012-07-05 Vishay General Semiconductor Llc Semiconductor assembly that includes a power semiconductor die located on a cell defined by first and second patterned polymer layers
US20120207426A1 (en) * 2011-02-16 2012-08-16 International Business Machines Corporation Flip-chip packaging for dense hybrid integration of electrical and photonic integrated circuits
US8901576B2 (en) 2012-01-18 2014-12-02 International Business Machines Corporation Silicon photonics wafer using standard silicon-on-insulator processes through substrate removal or transfer
US20150249037A1 (en) * 2010-07-23 2015-09-03 Tessera, Inc. Microelectronic elements with post-assembly planarization
CN105702658A (en) * 2014-11-12 2016-06-22 矽品精密工业股份有限公司 Semiconductor package and fabrication method thereof
US20180108639A1 (en) * 2016-10-19 2018-04-19 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor package
US10121768B2 (en) 2015-05-27 2018-11-06 Bridge Semiconductor Corporation Thermally enhanced face-to-face semiconductor assembly with built-in heat spreader and method of making the same
US11291146B2 (en) 2014-03-07 2022-03-29 Bridge Semiconductor Corp. Leadframe substrate having modulator and crack inhibiting structure and flip chip assembly using the same

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW586208B (en) * 2002-02-26 2004-05-01 Advanced Semiconductor Eng Wafer-level packaging structure
JP2004055965A (en) * 2002-07-23 2004-02-19 Seiko Epson Corp Wiring board, semiconductor device, manufacturing method of them, circuit board, and electronic apparatus
US6964881B2 (en) * 2002-08-27 2005-11-15 Micron Technology, Inc. Multi-chip wafer level system packages and methods of forming same
DE10239866B3 (en) * 2002-08-29 2004-04-08 Infineon Technologies Ag Production of a semiconductor component used in circuit boards comprises forming electrical contact surfaces together within a smaller contacting region as the whole surface of the front side of the chip and further processing
JP3617647B2 (en) * 2002-11-08 2005-02-09 沖電気工業株式会社 Semiconductor device and manufacturing method thereof
US6969909B2 (en) * 2002-12-20 2005-11-29 Vlt, Inc. Flip chip FET device
US7135780B2 (en) 2003-02-12 2006-11-14 Micron Technology, Inc. Semiconductor substrate for build-up packages
JP4094982B2 (en) * 2003-04-15 2008-06-04 ハリマ化成株式会社 Solder deposition method and solder bump formation method
US7312101B2 (en) * 2003-04-22 2007-12-25 Micron Technology, Inc. Packaged microelectronic devices and methods for packaging microelectronic devices
JP3813945B2 (en) * 2003-05-07 2006-08-23 任天堂株式会社 GAME DEVICE AND GAME PROGRAM
US6934065B2 (en) * 2003-09-18 2005-08-23 Micron Technology, Inc. Microelectronic devices and methods for packaging microelectronic devices
US7223629B2 (en) * 2003-12-11 2007-05-29 Intel Corporation Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
US7098544B2 (en) * 2004-01-06 2006-08-29 International Business Machines Corporation Edge seal for integrated circuit chips
US7362580B2 (en) * 2004-06-18 2008-04-22 Intel Corporation Electronic assembly having an indium wetting layer on a thermally conductive body
TWI229433B (en) * 2004-07-02 2005-03-11 Phoenix Prec Technology Corp Direct connection multi-chip semiconductor element structure
US7364934B2 (en) * 2004-08-10 2008-04-29 Micron Technology, Inc. Microelectronic imaging units and methods of manufacturing microelectronic imaging units
US7713839B2 (en) * 2004-10-06 2010-05-11 Intel Corporation Diamond substrate formation for electronic assemblies
TWI237885B (en) * 2004-10-22 2005-08-11 Phoenix Prec Technology Corp Semiconductor device having carrier embedded with chip and method for fabricating the same
TWI245388B (en) * 2005-01-06 2005-12-11 Phoenix Prec Technology Corp Three dimensional package structure of semiconductor chip embedded in substrate and method for fabricating the same
TWI269423B (en) * 2005-02-02 2006-12-21 Phoenix Prec Technology Corp Substrate assembly with direct electrical connection as a semiconductor package
TWI283050B (en) * 2005-02-04 2007-06-21 Phoenix Prec Technology Corp Substrate structure embedded method with semiconductor chip and the method for making the same
TWI264094B (en) * 2005-02-22 2006-10-11 Phoenix Prec Technology Corp Package structure with chip embedded in substrate
US20070004216A1 (en) * 2005-06-30 2007-01-04 Chuan Hu Formation of assemblies with a diamond heat spreader
US7358615B2 (en) * 2005-09-30 2008-04-15 Intel Corporation Microelectronic package having multiple conductive paths through an opening in a support substrate
US9633951B2 (en) * 2005-11-10 2017-04-25 Infineon Technologies Americas Corp. Semiconductor package including a semiconductor die having redistributed pads
CN100411123C (en) * 2005-11-25 2008-08-13 全懋精密科技股份有限公司 Semiconductor buried base plate structure and its manufacturing method
CN100424863C (en) * 2005-11-25 2008-10-08 全懋精密科技股份有限公司 Chip buried base plate encapsulation structure
US7723164B2 (en) * 2006-09-01 2010-05-25 Intel Corporation Dual heat spreader panel assembly method for bumpless die-attach packages, packages containing same, and systems containing same
US7659143B2 (en) * 2006-09-29 2010-02-09 Intel Corporation Dual-chip integrated heat spreader assembly, packages containing same, and systems containing same
DE102007002156A1 (en) * 2007-01-15 2008-07-17 Infineon Technologies Ag Semiconductor arrangement, comprises heat sink body, which is provided for dissipating heat from semiconductor component, where heat sink has electric conductive body with recess for receiving semiconductor component
US7834449B2 (en) * 2007-04-30 2010-11-16 Broadcom Corporation Highly reliable low cost structure for wafer-level ball grid array packaging
US7872347B2 (en) * 2007-08-09 2011-01-18 Broadcom Corporation Larger than die size wafer-level redistribution packaging process
TWI338939B (en) * 2007-08-15 2011-03-11 Via Tech Inc Package module and electronic device
US20090072382A1 (en) * 2007-09-18 2009-03-19 Guzek John S Microelectronic package and method of forming same
US9941245B2 (en) * 2007-09-25 2018-04-10 Intel Corporation Integrated circuit packages including high density bump-less build up layers and a lesser density core or coreless substrate
US7851905B2 (en) 2007-09-26 2010-12-14 Intel Corporation Microelectronic package and method of cooling an interconnect feature in same
KR100948163B1 (en) * 2007-10-17 2010-03-17 삼성전기주식회사 Semiconductor package and method for manufacturing thereof
TWI360207B (en) * 2007-10-22 2012-03-11 Advanced Semiconductor Eng Chip package structure and method of manufacturing
EP2083443A1 (en) * 2008-01-28 2009-07-29 Phoenix Precision Technology Corporation Carrier board structure with embedded semiconductor chip and fabrication method thereof
TW200937541A (en) * 2008-02-20 2009-09-01 Harvatek Corp Semiconductor chip package structure for achieving electrical connection without using wire-bonding process and manufacturing method thereof
US8035216B2 (en) * 2008-02-22 2011-10-11 Intel Corporation Integrated circuit package and method of manufacturing same
US8136244B2 (en) * 2008-03-11 2012-03-20 Intel Corporation Integrated heat spreader and method of fabrication
US20090230554A1 (en) * 2008-03-13 2009-09-17 Broadcom Corporation Wafer-level redistribution packaging with die-containing openings
US8093704B2 (en) 2008-06-03 2012-01-10 Intel Corporation Package on package using a bump-less build up layer (BBUL) package
TW201003870A (en) * 2008-07-11 2010-01-16 Phoenix Prec Technology Corp Printed circuit board having semiconductor component embeded therein and method of fabricating the same
TWI363411B (en) 2008-07-22 2012-05-01 Advanced Semiconductor Eng Embedded chip substrate and fabrication method thereof
US20100073894A1 (en) * 2008-09-22 2010-03-25 Russell Mortensen Coreless substrate, method of manufacturing same, and package for microelectronic device incorporating same
JP2010263080A (en) * 2009-05-07 2010-11-18 Denso Corp Semiconductor device
US8643164B2 (en) * 2009-06-11 2014-02-04 Broadcom Corporation Package-on-package technology for fan-out wafer-level packaging
KR101170878B1 (en) * 2009-06-29 2012-08-02 삼성전기주식회사 Semiconductor chip package and method for manufacturing the same
US20110108999A1 (en) * 2009-11-06 2011-05-12 Nalla Ravi K Microelectronic package and method of manufacturing same
US8742561B2 (en) 2009-12-29 2014-06-03 Intel Corporation Recessed and embedded die coreless package
US8901724B2 (en) 2009-12-29 2014-12-02 Intel Corporation Semiconductor package with embedded die and its methods of fabrication
US8569894B2 (en) 2010-01-13 2013-10-29 Advanced Semiconductor Engineering, Inc. Semiconductor package with single sided substrate design and manufacturing methods thereof
TWI411075B (en) 2010-03-22 2013-10-01 Advanced Semiconductor Eng Semiconductor package and manufacturing method thereof
US8535989B2 (en) 2010-04-02 2013-09-17 Intel Corporation Embedded semiconductive chips in reconstituted wafers, and systems containing same
US20130088841A1 (en) * 2010-04-06 2013-04-11 Nec Corporation Substrate with built-in functional element
US8319318B2 (en) 2010-04-06 2012-11-27 Intel Corporation Forming metal filled die back-side film for electromagnetic interference shielding with coreless packages
US8618652B2 (en) 2010-04-16 2013-12-31 Intel Corporation Forming functionalized carrier structures with coreless packages
US9847308B2 (en) 2010-04-28 2017-12-19 Intel Corporation Magnetic intermetallic compound interconnect
US8939347B2 (en) 2010-04-28 2015-01-27 Intel Corporation Magnetic intermetallic compound interconnect
US8434668B2 (en) 2010-05-12 2013-05-07 Intel Corporation Magnetic attachment structure
US8313958B2 (en) 2010-05-12 2012-11-20 Intel Corporation Magnetic microelectronic device attachment
US8609532B2 (en) 2010-05-26 2013-12-17 Intel Corporation Magnetically sintered conductive via
US20120001339A1 (en) 2010-06-30 2012-01-05 Pramod Malatkar Bumpless build-up layer package design with an interposer
US8372666B2 (en) 2010-07-06 2013-02-12 Intel Corporation Misalignment correction for embedded microelectronic die applications
CN102332408B (en) * 2010-07-13 2015-05-13 矽品精密工业股份有限公司 Chip scale package and production method thereof
US8754516B2 (en) 2010-08-26 2014-06-17 Intel Corporation Bumpless build-up layer package with pre-stacked microelectronic devices
US8502372B2 (en) * 2010-08-26 2013-08-06 Lsi Corporation Low-cost 3D face-to-face out assembly
US8304913B2 (en) 2010-09-24 2012-11-06 Intel Corporation Methods of forming fully embedded bumpless build-up layer packages and structures formed thereby
US9406658B2 (en) 2010-12-17 2016-08-02 Advanced Semiconductor Engineering, Inc. Embedded component device and manufacturing methods thereof
US8937382B2 (en) 2011-06-27 2015-01-20 Intel Corporation Secondary device integration into coreless microelectronic device packages
US8848380B2 (en) 2011-06-30 2014-09-30 Intel Corporation Bumpless build-up layer package warpage reduction
CN102324407A (en) * 2011-09-22 2012-01-18 日月光半导体制造股份有限公司 Semiconductor packaging piece and manufacturing method thereof
US20130154106A1 (en) 2011-12-14 2013-06-20 Broadcom Corporation Stacked Packaging Using Reconstituted Wafers
US9548251B2 (en) 2012-01-12 2017-01-17 Broadcom Corporation Semiconductor interposer having a cavity for intra-interposer die
TWI446501B (en) * 2012-01-20 2014-07-21 矽品精密工業股份有限公司 Carrier board, semiconductor package and method of forming same
US20130187284A1 (en) * 2012-01-24 2013-07-25 Broadcom Corporation Low Cost and High Performance Flip Chip Package
US8558395B2 (en) 2012-02-21 2013-10-15 Broadcom Corporation Organic interface substrate having interposer with through-semiconductor vias
US8587132B2 (en) 2012-02-21 2013-11-19 Broadcom Corporation Semiconductor package including an organic substrate and interposer having through-semiconductor vias
US8749072B2 (en) 2012-02-24 2014-06-10 Broadcom Corporation Semiconductor package with integrated selectively conductive film interposer
US8872321B2 (en) 2012-02-24 2014-10-28 Broadcom Corporation Semiconductor packages with integrated heat spreaders
US9275976B2 (en) 2012-02-24 2016-03-01 Broadcom Corporation System-in-package with integrated socket
US8928128B2 (en) 2012-02-27 2015-01-06 Broadcom Corporation Semiconductor package with integrated electromagnetic shielding
US8901755B2 (en) * 2012-03-20 2014-12-02 Stats Chippac, Ltd. Semiconductor device and method of forming conductive layer over metal substrate for electrical interconnect of semiconductor die
US9257368B2 (en) 2012-05-14 2016-02-09 Intel Corporation Microelectric package utilizing multiple bumpless build-up structures and through-silicon vias
CN104321864B (en) 2012-06-08 2017-06-20 英特尔公司 Microelectronics Packaging with the non-coplanar, microelectronic component of encapsulating and solderless buildup layer
US9087847B2 (en) 2012-08-14 2015-07-21 Bridge Semiconductor Corporation Thermally enhanced interconnect substrate with embedded semiconductor device and built-in stopper and method of making the same
WO2015043495A1 (en) * 2013-09-30 2015-04-02 南通富士通微电子股份有限公司 Wafer packaging structure and method
GB2520952A (en) 2013-12-04 2015-06-10 Ibm Flip-chip electronic device with carrier having heat dissipation elements free of solder mask
US9443921B2 (en) 2015-02-10 2016-09-13 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and semiconductor manufacturing process
US10083888B2 (en) * 2015-11-19 2018-09-25 Advanced Semiconductor Engineering, Inc. Semiconductor device package
CN108780785A (en) 2016-03-30 2018-11-09 英特尔公司 Mix microelectronic substation
US11189576B2 (en) 2016-08-24 2021-11-30 Advanced Semiconductor Engineering, Inc. Semiconductor device package and a method of manufacturing the same
US20180166356A1 (en) * 2016-12-13 2018-06-14 Globalfoundries Inc. Fan-out circuit packaging with integrated lid
CN107331627A (en) * 2017-07-03 2017-11-07 京东方科技集团股份有限公司 A kind of chip packaging method and chip-packaging structure
US10804254B2 (en) * 2018-06-29 2020-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out package with cavity substrate
US20200161206A1 (en) * 2018-11-20 2020-05-21 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and semiconductor manufacturing process
KR102595864B1 (en) * 2018-12-07 2023-10-30 삼성전자주식회사 Semiconductor package
EP3809805A1 (en) * 2019-10-14 2021-04-21 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier and method of manufacturing the same
TWI715261B (en) * 2019-10-23 2021-01-01 強茂股份有限公司 Chip size packaging structure and manufacturing method thereof
US11049781B1 (en) 2020-02-13 2021-06-29 Panjit International Inc. Chip-scale package device
US11387203B2 (en) * 2020-09-08 2022-07-12 Panjit International Inc. Side wettable package

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400870A (en) * 1980-10-06 1983-08-30 Texas Instruments Incorporated Method of hermetically encapsulating a semiconductor device by laser irradiation
US5157589A (en) * 1990-07-02 1992-10-20 General Electric Company Mutliple lamination high density interconnect process and structure employing thermoplastic adhesives having sequentially decreasing TG 's
US5168926A (en) * 1991-09-25 1992-12-08 Intel Corporation Heat sink design integrating interface material
US5255431A (en) * 1992-06-26 1993-10-26 General Electric Company Method of using frozen epoxy for placing pin-mounted components in a circuit module
US5353498A (en) * 1993-02-08 1994-10-11 General Electric Company Method for fabricating an integrated circuit module
US5409865A (en) * 1993-09-03 1995-04-25 Advanced Semiconductor Assembly Technology Process for assembling a TAB grid array package for an integrated circuit
US5422513A (en) * 1992-10-16 1995-06-06 Martin Marietta Corporation Integrated circuit chip placement in a high density interconnect structure
US5434751A (en) * 1994-04-11 1995-07-18 Martin Marietta Corporation Reworkable high density interconnect structure incorporating a release layer
US5527741A (en) * 1994-10-11 1996-06-18 Martin Marietta Corporation Fabrication and structures of circuit modules with flexible interconnect layers
US5602059A (en) * 1994-09-08 1997-02-11 Shinko Electric Industries Co., Ltd. Semiconductor device and method for manufacturing same
US5703400A (en) * 1995-12-04 1997-12-30 General Electric Company Fabrication and structures of two-sided molded circuit modules with flexible interconnect layers
US5728606A (en) * 1995-01-25 1998-03-17 International Business Machines Corporation Electronic Package
US5745984A (en) * 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
US5805427A (en) * 1996-02-14 1998-09-08 Olin Corporation Ball grid array electronic package standoff design
US6271469B1 (en) * 1999-11-12 2001-08-07 Intel Corporation Direct build-up layer on an encapsulated die package
US6274391B1 (en) * 1992-10-26 2001-08-14 Texas Instruments Incorporated HDI land grid array packaged device having electrical and optical interconnects
US6380615B1 (en) * 1999-06-29 2002-04-30 Hyundai Electronics Industries Co., Ltd. Chip size stack package, memory module having the same, and method of fabricating the module
US6396136B2 (en) * 1998-12-31 2002-05-28 Texas Instruments Incorporated Ball grid package with multiple power/ground planes
US6423570B1 (en) * 2000-10-18 2002-07-23 Intel Corporation Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby
US6461891B1 (en) * 1999-09-13 2002-10-08 Intel Corporation Method of constructing an electronic assembly having an indium thermal couple and an electronic assembly having an indium thermal couple
US6544812B1 (en) * 2000-11-06 2003-04-08 St Assembly Test Service Ltd. Single unit automated assembly of flex enhanced ball grid array packages
US6563212B2 (en) * 1995-11-28 2003-05-13 Hitachi, Ltd. Semiconductor device
US20030134455A1 (en) * 2002-01-15 2003-07-17 Jao-Chin Cheng Method of forming IC package having upward-facing chip cavity
US6723584B2 (en) * 1994-09-20 2004-04-20 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US6794223B2 (en) * 2000-09-28 2004-09-21 Intel Corporation Structure and process for reducing die corner and edge stresses in microelectronic packages

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051700B2 (en) 1997-07-28 2000-06-12 京セラ株式会社 Method of manufacturing multilayer wiring board with built-in element
JP3236818B2 (en) 1998-04-28 2001-12-10 京セラ株式会社 Method for manufacturing multilayer wiring board with built-in element

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400870A (en) * 1980-10-06 1983-08-30 Texas Instruments Incorporated Method of hermetically encapsulating a semiconductor device by laser irradiation
US5157589A (en) * 1990-07-02 1992-10-20 General Electric Company Mutliple lamination high density interconnect process and structure employing thermoplastic adhesives having sequentially decreasing TG 's
US5168926A (en) * 1991-09-25 1992-12-08 Intel Corporation Heat sink design integrating interface material
US5255431A (en) * 1992-06-26 1993-10-26 General Electric Company Method of using frozen epoxy for placing pin-mounted components in a circuit module
US5422513A (en) * 1992-10-16 1995-06-06 Martin Marietta Corporation Integrated circuit chip placement in a high density interconnect structure
US6274391B1 (en) * 1992-10-26 2001-08-14 Texas Instruments Incorporated HDI land grid array packaged device having electrical and optical interconnects
US5497033A (en) * 1993-02-08 1996-03-05 Martin Marietta Corporation Embedded substrate for integrated circuit modules
US5353498A (en) * 1993-02-08 1994-10-11 General Electric Company Method for fabricating an integrated circuit module
US5409865A (en) * 1993-09-03 1995-04-25 Advanced Semiconductor Assembly Technology Process for assembling a TAB grid array package for an integrated circuit
US5434751A (en) * 1994-04-11 1995-07-18 Martin Marietta Corporation Reworkable high density interconnect structure incorporating a release layer
US5602059A (en) * 1994-09-08 1997-02-11 Shinko Electric Industries Co., Ltd. Semiconductor device and method for manufacturing same
US6723584B2 (en) * 1994-09-20 2004-04-20 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US5527741A (en) * 1994-10-11 1996-06-18 Martin Marietta Corporation Fabrication and structures of circuit modules with flexible interconnect layers
US5728606A (en) * 1995-01-25 1998-03-17 International Business Machines Corporation Electronic Package
US5745984A (en) * 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
US6563212B2 (en) * 1995-11-28 2003-05-13 Hitachi, Ltd. Semiconductor device
US5703400A (en) * 1995-12-04 1997-12-30 General Electric Company Fabrication and structures of two-sided molded circuit modules with flexible interconnect layers
US5805427A (en) * 1996-02-14 1998-09-08 Olin Corporation Ball grid array electronic package standoff design
US6396136B2 (en) * 1998-12-31 2002-05-28 Texas Instruments Incorporated Ball grid package with multiple power/ground planes
US6380615B1 (en) * 1999-06-29 2002-04-30 Hyundai Electronics Industries Co., Ltd. Chip size stack package, memory module having the same, and method of fabricating the module
US6461891B1 (en) * 1999-09-13 2002-10-08 Intel Corporation Method of constructing an electronic assembly having an indium thermal couple and an electronic assembly having an indium thermal couple
US6271469B1 (en) * 1999-11-12 2001-08-07 Intel Corporation Direct build-up layer on an encapsulated die package
US6794223B2 (en) * 2000-09-28 2004-09-21 Intel Corporation Structure and process for reducing die corner and edge stresses in microelectronic packages
US6423570B1 (en) * 2000-10-18 2002-07-23 Intel Corporation Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby
US6544812B1 (en) * 2000-11-06 2003-04-08 St Assembly Test Service Ltd. Single unit automated assembly of flex enhanced ball grid array packages
US20030134455A1 (en) * 2002-01-15 2003-07-17 Jao-Chin Cheng Method of forming IC package having upward-facing chip cavity

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998328B2 (en) * 2002-11-06 2006-02-14 Irvine Sensors Corp. Method for creating neo-wafers from singulated integrated circuit die and a device made according to the method
US20060094240A1 (en) * 2002-11-06 2006-05-04 Stern Jonathan Neo-wafer device comprised of multiple singulated integrated circuit die
US20040140533A1 (en) * 2002-11-06 2004-07-22 Stern Jonathan Michael Method for creating neo-wafers from singulated integrated circuit die and a device made according to the method
US20050127503A1 (en) * 2003-11-29 2005-06-16 Semikron Elektronik Gmbh Power semiconductor module and method for producing it
US7042074B2 (en) * 2003-11-29 2006-05-09 Semikron Elektronik Gmbh & Co., Kg Power semiconductor module and method for producing it
US20070284704A1 (en) * 2006-06-09 2007-12-13 Leal George R Methods and apparatus for a semiconductor device package with improved thermal performance
US7892882B2 (en) * 2006-06-09 2011-02-22 Freescale Semiconductor, Inc. Methods and apparatus for a semiconductor device package with improved thermal performance
US7829987B2 (en) * 2006-12-20 2010-11-09 Unimicron Technology Corp. Carrier structure embedded with semiconductor chips and method for manufacturing the same
US20080150164A1 (en) * 2006-12-20 2008-06-26 Phoenix Precision Technology Corporation Carrier structure embedded with semiconductor chips and method for manufacturing the same
US20120168932A1 (en) * 2007-07-12 2012-07-05 Vishay General Semiconductor Llc Semiconductor assembly that includes a power semiconductor die located on a cell defined by first and second patterned polymer layers
US8796840B2 (en) * 2007-07-12 2014-08-05 Vishay General Semiconductor Llc Semiconductor assembly that includes a power semiconductor die located on a cell defined by first and second patterned polymer layers
US20100133577A1 (en) * 2007-07-31 2010-06-03 Werner Hoffmann Method for producing electronic component and electronic component
WO2009016041A1 (en) * 2007-07-31 2009-02-05 Siemens Aktiengesellschaft Method for producing an electronic component and electronic component
US20090168380A1 (en) * 2007-12-31 2009-07-02 Phoenix Precision Technology Corporation Package substrate embedded with semiconductor component
US20100148357A1 (en) * 2008-12-16 2010-06-17 Freescale Semiconductor, Inc. Method of packaging integrated circuit dies with thermal dissipation capability
US20100320588A1 (en) * 2009-06-22 2010-12-23 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Prefabricated Heat Spreader Frame with Embedded Semiconductor Die
US9666540B2 (en) 2009-06-22 2017-05-30 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming prefabricated heat spreader frame with embedded semiconductor die
US9257357B2 (en) * 2009-06-22 2016-02-09 Stats Chippac, Ltd. Semiconductor device and method of forming prefabricated heat spreader frame with embedded semiconductor die
US8518749B2 (en) * 2009-06-22 2013-08-27 Stats Chippac, Ltd. Semiconductor device and method of forming prefabricated heat spreader frame with embedded semiconductor die
US20130256866A1 (en) * 2009-06-22 2013-10-03 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Prefabricated Heat Spreader Frame with Embedded Semiconductor Die
US9659812B2 (en) * 2010-07-23 2017-05-23 Tessera, Inc. Microelectronic elements with post-assembly planarization
US20150249037A1 (en) * 2010-07-23 2015-09-03 Tessera, Inc. Microelectronic elements with post-assembly planarization
US10559494B2 (en) 2010-07-23 2020-02-11 Tessera, Inc. Microelectronic elements with post-assembly planarization
US9966303B2 (en) 2010-07-23 2018-05-08 Tessera, Inc. Microelectronic elements with post-assembly planarization
US20120207426A1 (en) * 2011-02-16 2012-08-16 International Business Machines Corporation Flip-chip packaging for dense hybrid integration of electrical and photonic integrated circuits
CN102496609A (en) * 2011-12-22 2012-06-13 日月光半导体制造股份有限公司 Embedded crystal grain packaging structure and manufacturing method thereof
US8901576B2 (en) 2012-01-18 2014-12-02 International Business Machines Corporation Silicon photonics wafer using standard silicon-on-insulator processes through substrate removal or transfer
US11291146B2 (en) 2014-03-07 2022-03-29 Bridge Semiconductor Corp. Leadframe substrate having modulator and crack inhibiting structure and flip chip assembly using the same
CN105702658A (en) * 2014-11-12 2016-06-22 矽品精密工业股份有限公司 Semiconductor package and fabrication method thereof
TWI650846B (en) * 2015-05-27 2019-02-11 鈺橋半導體股份有限公司 Heat dissipation gain type face-facing semiconductor assembly with built-in heat sink and manufacturing method thereof
US10121768B2 (en) 2015-05-27 2018-11-06 Bridge Semiconductor Corporation Thermally enhanced face-to-face semiconductor assembly with built-in heat spreader and method of making the same
US10325882B2 (en) * 2016-10-19 2019-06-18 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor package
KR20180043071A (en) * 2016-10-19 2018-04-27 삼성전자주식회사 Method for manufacturing semiconductor package
US20180108639A1 (en) * 2016-10-19 2018-04-19 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor package
KR102537528B1 (en) * 2016-10-19 2023-05-26 삼성전자 주식회사 Method for manufacturing semiconductor package

Also Published As

Publication number Publication date
US6709898B1 (en) 2004-03-23

Similar Documents

Publication Publication Date Title
US6709898B1 (en) Die-in-heat spreader microelectronic package
US6841413B2 (en) Thinned die integrated circuit package
EP1354351B1 (en) Direct build-up layer on an encapsulated die package
US6902950B2 (en) Method to protect an encapsulated die package during back grinding with a solder metallization layer and devices formed thereby
US7067356B2 (en) Method of fabricating microelectronic package having a bumpless laminated interconnection layer
US10157900B2 (en) Semiconductor structure and manufacturing method thereof
US20020070443A1 (en) Microelectronic package having an integrated heat sink and build-up layers
US20070111398A1 (en) Micro-electronic package structure and method for fabricating the same
US20060035416A1 (en) Integrated circuits and packaging substrates with cavities, and attachment methods including insertion of protruding contact pads into cavities
US20030068852A1 (en) Protective film for the fabrication of direct build-up layers on an encapsulated die package
US20050133930A1 (en) Packaging substrates for integrated circuits and soldering methods
US11830866B2 (en) Semiconductor package with thermal relaxation block and manufacturing method thereof
US20220384355A1 (en) Semiconductor Devices and Methods of Manufacture
CN115132675A (en) Integrated circuit package and method
CN220774343U (en) Semiconductor package

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION