US20040156416A1 - System comprising optical semiconductor waveguide device - Google Patents

System comprising optical semiconductor waveguide device Download PDF

Info

Publication number
US20040156416A1
US20040156416A1 US10/764,953 US76495304A US2004156416A1 US 20040156416 A1 US20040156416 A1 US 20040156416A1 US 76495304 A US76495304 A US 76495304A US 2004156416 A1 US2004156416 A1 US 2004156416A1
Authority
US
United States
Prior art keywords
gain medium
optical waveguide
laser
operated
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/764,953
Inventor
Yongqin Chen
William Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/764,953 priority Critical patent/US20040156416A1/en
Publication of US20040156416A1 publication Critical patent/US20040156416A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0286Coatings with a reflectivity that is not constant over the facets, e.g. apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis

Definitions

  • the invention relates to laser devices useful in optical communications systems, particularly wavelength division multiplexing systems.
  • WDM wavelength division multiplexing
  • various measures have been developed in an effort to stabilize emission of the desired source wavelength.
  • One such measure is use of a fiber Bragg grating coupled to a semiconductor laser, where the laser is operated only a gain medium and the grating constitutes one reflective facet of the laser.
  • This device is therefore typically referred to as an external cavity laser.
  • the grating generally reflects only a selected wavelength such that the device lases only at that wavelength.
  • a separate problem in optical communications is coupling a semiconductor device (e.g., a diode) to a communications fiber—this coupling is difficult and problematic. For example, a very small displacement of the fiber relative to the semiconductor device output can lead to loss of more than half the light directed at the fiber. For this reason, coupling is typically performed by providing coupling optics between the fiber and the device. These optics can take many forms, including a tapered or conical lens formed or spliced onto the fiber, or a variety of other lens configurations. (Again, see Verdiell et al., supra, at Col. 4, lines 23-54.) Such coupling optics, however, add more complexity, both to the device as well as the overall packaging scheme. And, more significantly, even with these optics, precise alignment is still required.
  • the invention provides an improved optical communication system, particularly suited for so-called short-haul applications, e.g., applications involving transmission over distances less than 100 km, such as metro applications.
  • the system uses an external cavity laser made up of a gain medium that comprises an active region, a beam expanding region, and an antireflective layer, an optical waveguide located adjacent the gain medium, and a Bragg grating integral with or coupled to the optical waveguide.
  • the medium and the optical waveguide due to the beam expanding region, exhibit a coupling efficiency of at least 40%, advantageously at least 50%, even in the absence of coupling optics, and the laser is configured and operated to emit at least two modes.
  • the system's several advantages and distinctions over existing external cavity laser systems include the following.
  • the laser of the invention avoids the need for such temperature compensation by configuring a short-cavity external cavity laser for multimode operation, generally by selecting a Bragg grating of sufficiently wide bandwidth. It was discovered that multimode operation—2 to 3 modes is typical —reduced the noise associated with temperature-induced mode-hopping, and thereby provided a more robust, temperature-independent system, with no need for complex temperature compensation. In fact, without any temperature compensation, bit error rates in the system are less than 10 ⁇ 9 , advantageously less than 10 ⁇ 12 .
  • This bit error rate includes a situation, for example, in which a transmitter of a system exhibits a bit error rate greater than 10 ⁇ 9 which is corrected to less than 10 ⁇ 9 by other hardware or software of the system, e.g., forward error correcting code.) And multimode emission is generally acceptable for short-haul applications, including short-haul applications employing WDM or dense WDM (DWDM).
  • WDM dense WDM
  • the process of coupling a gain medium to a fiber tends to be complex and difficult.
  • the gain medium of the invention's external cavity contains a beam expanding region, which allows attainment of a high coupling efficiency (at least 50%) between the medium and the optical waveguide, without the coupling optics that are conventionally used. For example, this high coupling efficiency is attainable even with nothing more than a small air gap between the gain medium and optical waveguide.
  • the system of the invention is not only more robust and temperature independent than existing systems, but is also simpler and less expensive to package.
  • FIGS. 1A and 1B show an embodiment of an external cavity laser of the system of the invention.
  • FIGS. 2A and 2B show an embodiment of a beam expanding region of an external cavity laser of the system of the invention.
  • FIGS. 3A and 3B show the benefits of the multimode operation of the system of the invention.
  • FIG. 4 shows the desirable wavelength selectivity of an external cavity laser of the system of the invention.
  • FIG. 5 shows the mode-hopping that occurs in an embodiment of the invention.
  • FIG. 6 shows the output of two embodiments of the invention.
  • FIGS. 7A and 7B show the bit error rate provided by an embodiment of the invention, as a function of temperature.
  • FIG. 8 shows the bit error rate under typical temperature variations in an embodiment of the invention.
  • the laser of the communication system of the invention contains three basic elements, as reflected in FIGS. 1 A and 1 B—a gain medium 12 , an optical waveguide 14 , and a Bragg grating 16 integral with or coupled to the waveguide 14 .
  • the gain medium 12 contains an active region 18 , a beam expander region 20 , and an antireflective layer 22 at the surface of the medium 12 adjacent the waveguide 14 .
  • One gain medium suitable for the invention is of the type disclosed in co-assigned U.S. Pat. No. 5,574,742 to Ben-Michael et al., the disclosure of which is hereby incorporated by reference.
  • Other suitable configurations are disclosed in co-assigned U.S. patent applications Ser. No. 09/378,032 filed Aug. 20, 1999 (our reference Eng 4-5-1-1-3) Ser. No. 09/228,218 filed Jan. 11, 1999 (our reference Johnson 6-19-8-1-3), and Ser. No. 09/561,148 filed Apr. 28, 2000 (our reference Alam 3-6-9-9-10-59), the disclosures of which are hereby incorporated by reference.
  • a short-cavity gain medium i.e., having a cavity length less than 1 cm is typically suitable.
  • FIGS. 2A and 2B show an embodiment of an active region 30 and beam expander region 31 suitable for use in the invention.
  • the active region e.g., a diode laser or optical amplifier
  • An upper cladding layer 32 is formed over the quantum well 33 .
  • Upper and lower guiding layers 35 and 37 are located below the well 33 , along with a bottom cladding layer 38 .
  • Etch stop layers illustrated by layers 34 and 36 in FIG. 2A, are typically present to assist the fabrication process.
  • FIG. 2B shows a top view of the active region 30 and beam expander region 31 . Variations on this structure are possible.
  • a useful material for the guiding layers 35 , 37 is indium gallium arsenide phosphite (InGaAsP), although a variety of other compound semiconductors, e.g., Group III-IV materials, are also possible.
  • the etch stop layers are typically formed from indium phosphite (InP), which is highly resistant to etchants that are useful with the InGaAsP.
  • the overall structure is capable of being formed by techniques such as molecular beam epitaxy, vapor phase epitaxy, or metal organic chemical vapor deposition (MOCVD), as discussed in the references cited above.
  • the beam expanding region 31 expands the size of a beam generated by the active region 30 in two possible ways. First, lateral broadening is possible by making the beam expanding region 31 wider than the active region, as reflected in FIG. 2B. Second, vertical broadening is achieved by the change from two guiding layers 35 , 37 to a single guiding layer 37 , as the light travels toward the end of the beam expanding region 31 .
  • the beam expansion makes coupling of the light beam to an adjacent optical waveguide less problematic, in that misalignment will have a much less significant effect on the coupling efficiency compared to conventional devices.
  • the gain medium 10 also contains an antireflective layer 22 .
  • the layer 22 prevents the laser chips from lasing off the facets, i.e., prevents Fabry-Perot operation, and thereby makes the gain medium simply an amplifier.
  • the antireflective layer also reduces reflection of the beam as the beam enters the optical waveguide 14 .
  • the waveguide is typically an optical fiber, although other waveguides, e.g., planar waveguides, are also possible.
  • the waveguide is placed adjacent to the gain medium, such that the light beam is directed from the beam expanding region, through the antireflective layer, and into the waveguide.
  • the beam expanding region it is possible to avoid any coupling optics, e.g., the beam can simply be directed into the polished end of the waveguide, and yet attain high coupling efficiencies, typically at least 40%, advantageously at least 50%.
  • the beam can simply be directed into the polished end of the waveguide, and yet attain high coupling efficiencies, typically at least 40%, advantageously at least 50%.
  • Various other coupling arrangements are suitable. It is also possible to place some index-matching material between the fiber and the gain medium to further reduce reflection and thereby enhance the coupling efficiency.
  • the optical waveguide is a fiber
  • the Bragg grating is formed in the fiber (i.e., is integral with the fiber), but alternative embodiments are possible, e.g., a planar waveguide having a Bragg grating formed therein, or a waveguide coupled to a separately-formed Bragg grating.
  • the Bragg grating 16 reflects a selected wavelength back toward the gain medium 12 , and, due to the presence of a highly reflective layer 24 at the far end of the gain medium, lasing occurs at that selected wavelength. Additional wavelength filters are therefore not needed.
  • the laser is generally operated at wavelengths ranging from 1.2 to 1.6 ⁇ m, which are of primary interest in short-haul applications. Other wavelengths are also possible, however.
  • the gain medium is generally operated by direct modulation, in which the current provided to the medium induces the desired bit rate. Typical bit rates for the system range from 100 MHz to 10 GHz.
  • the Bragg grating whether integral with the waveguide or coupled thereto is selected to provide a laser emission of at least two modes, generally several adjacent modes.
  • multimode emission is important to attainment of desirable properties in the overall system. Specifically, complex temperature-compensation apparatus is generally required to maintain a single mode emission, in order to avoid mode-hopping. Multimode emission, however, encounters much less noise due to mode-hopping, and thus allows operation of the external cavity laser without such complex temperature compensation. Specifically, the power fluctuations that occur with power transfers from one mode to another are substantially lessened, relative to single mode operation, because several modes are always lasing, i.e., the average or total power stays constant with the relative power between mode changes.
  • the multimode emission is generally suitable for transmission over distances less than 100 km.
  • Bragg grating configurations known in the art, are possible, e.g., chirped gratings or apodized gratings. Selection of a grating that provides sufficient bandwidth for emission of at least two modes, e.g., a few modes, is within the skill of an ordinary artisan, as is reflected, for example, in Example 1 below, and such gratings are readily available commercially.
  • the system of the invention useful in a variety of applications. As noted above, the system is particularly useful for short-haul metro applications.
  • Gain media having a cavity length of about 250 ⁇ m and containing a beam expanding region of the type discussed above were provided, and configured for direct modulation.
  • the media had a highly reflective coating on the rear facet and an anti-reflective coating having a reflectivity less than 10 ⁇ 4 on the front facet.
  • the gain media were mounted on test studs and butt-coupled to fiber Bragg gratings, with an air gap of about 5 ⁇ m.
  • the output of these external cavity devices was measured using a Rifocs 578L power meter and characterized using a Hewlett-Packard 7951B optical spectrum analyzer. RF response was measured with a Hewlett-Packard 8593E spectrum analyzer.
  • FIG. 3A shows a power vs. current plot of the single mode operation of the first modeled laser. The discontinuity due to a mode hop is apparent, and such a discontinuity would introduce significant bit errors in such devices.
  • FIG. 3B shows the power vs. current plot for the second, multimode device, which has a much smoother curve indicative of a more robust, temperature-insensitive device.
  • FIG. 4 shows the power vs. current plot for the device at 33° C. The relatively smooth transition from mode to mode, relative to what would be expected for single mode operation, is shown.
  • FIG. 5 shows the mode hops as a function of temperature and time. Specifically, as the temperature varied with time, the operative modes shifted while maintaining the multimode operation.
  • Two external cavity lasers were configured for multimode operation, by use of a Bragg grating having a FWHM of 90 GHz.
  • the first had a Bragg grating centered at a wavelength of 1309.3 with a ⁇ of 0.325 nm, and the second had a Bragg grating centered at a wavelength of 1316.3 with a ⁇ of 0.438 nm.
  • Each device emitted about 3 modes.
  • FIG. 6 shows the output of both devices when the gain medium was modulated at about 2.5 GHz at ambient temperature. The desirable suppression of non-desired Fabry-Perot modes is apparent.
  • FIG. 8 shows the BER during operation of the laser in an uncooled mode, i.e., with no applied temperature changes, over several days through 32 km of fiber, with the laser being run at about 2.5 GHz. It is apparent that the room temperature variations had very little effect on BER.

Abstract

An improved optical communication system is provided, the system particularly suited for so-called short-haul applications, e.g., applications involving transmission over distances less than 100 km, such as metro applications. The system uses an external cavity laser made up of a gain medium that comprises an active region, a beam expanding region, and an antireflective layer, an optical waveguide located adjacent the gain medium, and a Bragg grating integral with or coupled to the optical waveguide. The medium and the optical waveguide, due to the beam expanding region, exhibit a coupling efficiency of at least 40%, advantageously at least 50%, even in the absence of coupling optics, and the laser is configured and operated to emit at least two modes.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The invention relates to laser devices useful in optical communications systems, particularly wavelength division multiplexing systems. [0002]
  • 2. Discussion of the Related Art [0003]
  • As the use of optical communications continues to increase, the techniques for wavelength generation, selection, and maintenance have become more important. This is particularly the case for wavelength division multiplexing (WDM), in which precise and stable alignment of the source wavelength to a channel of the WDM system is necessary. However, because the emission wavelength of diode lasers tends to vary in response to temperature changes, various measures have been developed in an effort to stabilize emission of the desired source wavelength. One such measure is use of a fiber Bragg grating coupled to a semiconductor laser, where the laser is operated only a gain medium and the grating constitutes one reflective facet of the laser. This device is therefore typically referred to as an external cavity laser. The grating generally reflects only a selected wavelength such that the device lases only at that wavelength. Such an apparatus makes it possible to better ensure that the desired wavelength is emitted. [0004]
  • However, even these Bragg grating devices encounter a variety of stability issues, including thermal stability problems such as a mismatch between the thermal response of the diode versus the Bragg grating. These can significantly interfere with the operation of the laser, particularly where single mode output is desired. See, for example, U.S. Pat. No. 5,870,417 to Verdiell et al. (at Col. 2, lines 20-36). In response to these stability problems, Verdiell et al. present numerous—but complex—techniques that attempt to avoid or at least compensate for factors that lead to instability in the output wavelength of laser diode/grating devices, e.g., mode hopping. Simpler, and more commercially feasible, techniques would be preferred. [0005]
  • A separate problem in optical communications is coupling a semiconductor device (e.g., a diode) to a communications fiber—this coupling is difficult and problematic. For example, a very small displacement of the fiber relative to the semiconductor device output can lead to loss of more than half the light directed at the fiber. For this reason, coupling is typically performed by providing coupling optics between the fiber and the device. These optics can take many forms, including a tapered or conical lens formed or spliced onto the fiber, or a variety of other lens configurations. (Again, see Verdiell et al., supra, at Col. 4, lines 23-54.) Such coupling optics, however, add more complexity, both to the device as well as the overall packaging scheme. And, more significantly, even with these optics, precise alignment is still required. [0006]
  • Thus, improved techniques for overcoming these problems are desired. [0007]
  • SUMMARY OF THE INVENTION
  • The invention provides an improved optical communication system, particularly suited for so-called short-haul applications, e.g., applications involving transmission over distances less than 100 km, such as metro applications. The system uses an external cavity laser made up of a gain medium that comprises an active region, a beam expanding region, and an antireflective layer, an optical waveguide located adjacent the gain medium, and a Bragg grating integral with or coupled to the optical waveguide. The medium and the optical waveguide, due to the beam expanding region, exhibit a coupling efficiency of at least 40%, advantageously at least 50%, even in the absence of coupling optics, and the laser is configured and operated to emit at least two modes. The system's several advantages and distinctions over existing external cavity laser systems include the following. [0008]
  • First, existing external cavity systems must employ complex temperature compensating apparatus to maintain single mode operation in the face of potential mode-hopping, as discussed in Verdiell et al., supra. By contrast, the laser of the invention avoids the need for such temperature compensation by configuring a short-cavity external cavity laser for multimode operation, generally by selecting a Bragg grating of sufficiently wide bandwidth. It was discovered that multimode operation—2 to 3 modes is typical —reduced the noise associated with temperature-induced mode-hopping, and thereby provided a more robust, temperature-independent system, with no need for complex temperature compensation. In fact, without any temperature compensation, bit error rates in the system are less than 10[0009] −9, advantageously less than 10−12. (This bit error rate includes a situation, for example, in which a transmitter of a system exhibits a bit error rate greater than 10−9 which is corrected to less than 10−9 by other hardware or software of the system, e.g., forward error correcting code.) And multimode emission is generally acceptable for short-haul applications, including short-haul applications employing WDM or dense WDM (DWDM).
  • Second, as discussed above, the process of coupling a gain medium to a fiber tends to be complex and difficult. The gain medium of the invention's external cavity, however, contains a beam expanding region, which allows attainment of a high coupling efficiency (at least 50%) between the medium and the optical waveguide, without the coupling optics that are conventionally used. For example, this high coupling efficiency is attainable even with nothing more than a small air gap between the gain medium and optical waveguide. [0010]
  • Third, because complex and precise coupling optics are not required, packaging of the external cavity laser is relatively cheap and easy. For example, an optical fiber can simply be secured in a v-groove adjacent the gain medium. [0011]
  • Thus, the system of the invention is not only more robust and temperature independent than existing systems, but is also simpler and less expensive to package.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A and 1B show an embodiment of an external cavity laser of the system of the invention. [0013]
  • FIGS. 2A and 2B show an embodiment of a beam expanding region of an external cavity laser of the system of the invention. [0014]
  • FIGS. 3A and 3B show the benefits of the multimode operation of the system of the invention. [0015]
  • FIG. 4 shows the desirable wavelength selectivity of an external cavity laser of the system of the invention. [0016]
  • FIG. 5 shows the mode-hopping that occurs in an embodiment of the invention. [0017]
  • FIG. 6 shows the output of two embodiments of the invention. [0018]
  • FIGS. 7A and 7B show the bit error rate provided by an embodiment of the invention, as a function of temperature. [0019]
  • FIG. 8 shows the bit error rate under typical temperature variations in an embodiment of the invention.[0020]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one embodiment, the laser of the communication system of the invention contains three basic elements, as reflected in FIGS. [0021] 1A and 1B—a gain medium 12, an optical waveguide 14, and a Bragg grating 16 integral with or coupled to the waveguide 14.
  • The [0022] gain medium 12 contains an active region 18, a beam expander region 20, and an antireflective layer 22 at the surface of the medium 12 adjacent the waveguide 14. One gain medium suitable for the invention is of the type disclosed in co-assigned U.S. Pat. No. 5,574,742 to Ben-Michael et al., the disclosure of which is hereby incorporated by reference. Other suitable configurations are disclosed in co-assigned U.S. patent applications Ser. No. 09/378,032 filed Aug. 20, 1999 (our reference Eng 4-5-1-1-3) Ser. No. 09/228,218 filed Jan. 11, 1999 (our reference Johnson 6-19-8-1-3), and Ser. No. 09/561,148 filed Apr. 28, 2000 (our reference Alam 3-6-9-9-10-59), the disclosures of which are hereby incorporated by reference. A short-cavity gain medium, i.e., having a cavity length less than 1 cm is typically suitable.
  • FIGS. 2A and 2B show an embodiment of an [0023] active region 30 and beam expander region 31 suitable for use in the invention. As shown in the side view of FIG. 2A, the active region, e.g., a diode laser or optical amplifier, contains a quantum well 33 that generates light when excited or pumped by electrical current. An upper cladding layer 32 is formed over the quantum well 33. Upper and lower guiding layers 35 and 37 are located below the well 33, along with a bottom cladding layer 38. Etch stop layers, illustrated by layers 34 and 36 in FIG. 2A, are typically present to assist the fabrication process. FIG. 2B shows a top view of the active region 30 and beam expander region 31. Variations on this structure are possible. A useful material for the guiding layers 35, 37 is indium gallium arsenide phosphite (InGaAsP), although a variety of other compound semiconductors, e.g., Group III-IV materials, are also possible. When InGaAsP is used, the etch stop layers are typically formed from indium phosphite (InP), which is highly resistant to etchants that are useful with the InGaAsP. The overall structure is capable of being formed by techniques such as molecular beam epitaxy, vapor phase epitaxy, or metal organic chemical vapor deposition (MOCVD), as discussed in the references cited above.
  • The [0024] beam expanding region 31 expands the size of a beam generated by the active region 30 in two possible ways. First, lateral broadening is possible by making the beam expanding region 31 wider than the active region, as reflected in FIG. 2B. Second, vertical broadening is achieved by the change from two guiding layers 35, 37 to a single guiding layer 37, as the light travels toward the end of the beam expanding region 31. The beam expansion makes coupling of the light beam to an adjacent optical waveguide less problematic, in that misalignment will have a much less significant effect on the coupling efficiency compared to conventional devices.
  • As shown in FIGS. 1A and 1B, the [0025] gain medium 10 also contains an antireflective layer 22. The layer 22 prevents the laser chips from lasing off the facets, i.e., prevents Fabry-Perot operation, and thereby makes the gain medium simply an amplifier. The antireflective layer also reduces reflection of the beam as the beam enters the optical waveguide 14. The waveguide is typically an optical fiber, although other waveguides, e.g., planar waveguides, are also possible. The waveguide is placed adjacent to the gain medium, such that the light beam is directed from the beam expanding region, through the antireflective layer, and into the waveguide. As noted above, by using the beam expanding region, it is possible to avoid any coupling optics, e.g., the beam can simply be directed into the polished end of the waveguide, and yet attain high coupling efficiencies, typically at least 40%, advantageously at least 50%. For example, it is possible to simply place or glue an optical fiber into a v-groove adjacent the gain medium. Various other coupling arrangements are suitable. It is also possible to place some index-matching material between the fiber and the gain medium to further reduce reflection and thereby enhance the coupling efficiency.
  • Once the light enters the [0026] waveguide 14, the light is directed to a Bragg grating 16. Typically, the optical waveguide is a fiber, and the Bragg grating is formed in the fiber (i.e., is integral with the fiber), but alternative embodiments are possible, e.g., a planar waveguide having a Bragg grating formed therein, or a waveguide coupled to a separately-formed Bragg grating. The Bragg grating 16 reflects a selected wavelength back toward the gain medium 12, and, due to the presence of a highly reflective layer 24 at the far end of the gain medium, lasing occurs at that selected wavelength. Additional wavelength filters are therefore not needed.
  • The laser is generally operated at wavelengths ranging from 1.2 to 1.6 μm, which are of primary interest in short-haul applications. Other wavelengths are also possible, however. The gain medium is generally operated by direct modulation, in which the current provided to the medium induces the desired bit rate. Typical bit rates for the system range from 100 MHz to 10 GHz. [0027]
  • The Bragg grating, whether integral with the waveguide or coupled thereto is selected to provide a laser emission of at least two modes, generally several adjacent modes. As discussed above, multimode emission is important to attainment of desirable properties in the overall system. Specifically, complex temperature-compensation apparatus is generally required to maintain a single mode emission, in order to avoid mode-hopping. Multimode emission, however, encounters much less noise due to mode-hopping, and thus allows operation of the external cavity laser without such complex temperature compensation. Specifically, the power fluctuations that occur with power transfers from one mode to another are substantially lessened, relative to single mode operation, because several modes are always lasing, i.e., the average or total power stays constant with the relative power between mode changes. In fact, using this multimode operation, it is possible to achieve a bit error rate of less than 10[0028] −9, advantageously less than 10−12, when operating the gain medium without temperature compensation, e.g., at about 2.5 GHz. And the multimode emission is generally suitable for transmission over distances less than 100 km.
  • A variety of Bragg grating configurations, known in the art, are possible, e.g., chirped gratings or apodized gratings. Selection of a grating that provides sufficient bandwidth for emission of at least two modes, e.g., a few modes, is within the skill of an ordinary artisan, as is reflected, for example, in Example 1 below, and such gratings are readily available commercially. [0029]
  • The system of the invention useful in a variety of applications. As noted above, the system is particularly useful for short-haul metro applications. [0030]
  • The invention will be further clarified by the following examples, which are intended to be exemplary. [0031]
  • Experimental [0032]
  • Gain media having a cavity length of about 250 μm and containing a beam expanding region of the type discussed above were provided, and configured for direct modulation. The media had a highly reflective coating on the rear facet and an anti-reflective coating having a reflectivity less than 10[0033] −4 on the front facet. The gain media were mounted on test studs and butt-coupled to fiber Bragg gratings, with an air gap of about 5 μm. The output of these external cavity devices was measured using a Rifocs 578L power meter and characterized using a Hewlett-Packard 7951B optical spectrum analyzer. RF response was measured with a Hewlett-Packard 8593E spectrum analyzer.
  • EXAMPLE 1
  • A modeling experiment was done for two external cavity lasers—one having a grating with a bandwidth of 23 GHz and a second having a grating with a bandwidth of 90 GHz. Both gratings were nominally centered at 1310 nm. FIG. 3A shows a power vs. current plot of the single mode operation of the first modeled laser. The discontinuity due to a mode hop is apparent, and such a discontinuity would introduce significant bit errors in such devices. FIG. 3B shows the power vs. current plot for the second, multimode device, which has a much smoother curve indicative of a more robust, temperature-insensitive device. [0034]
  • EXAMPLE 2
  • An external cavity laser was configured for multimode operation by use of a Bragg grating having a FWHM of 90 GHz, again with the Bragg grating centered at a wavelength of 1310 nm. FIG. 4 shows the power vs. current plot for the device at 33° C. The relatively smooth transition from mode to mode, relative to what would be expected for single mode operation, is shown. [0035]
  • FIG. 5 shows the mode hops as a function of temperature and time. Specifically, as the temperature varied with time, the operative modes shifted while maintaining the multimode operation. [0036]
  • EXAMPLE 3
  • Two external cavity lasers were configured for multimode operation, by use of a Bragg grating having a FWHM of 90 GHz. The first had a Bragg grating centered at a wavelength of 1309.3 with a Δλ of 0.325 nm, and the second had a Bragg grating centered at a wavelength of 1316.3 with a Δλ of 0.438 nm. Each device emitted about 3 modes. FIG. 6 shows the output of both devices when the gain medium was modulated at about 2.5 GHz at ambient temperature. The desirable suppression of non-desired Fabry-Perot modes is apparent. [0037]
  • EXAMPLE 4
  • An experiment to determine the temperature sensitivity of a device of the invention, by monitoring bit error rate, was performed. The laser device was identical to that used in Example 2. High speed operation up to about 2.5 GHz was characterized by an Anritsu MP1662A digital data analyzer. The laser device was mounted on a thermal electric cooler, and the bit error rate (BER) through 32 km of fiber was measured as a function of temperature, using the cooler to make the desired temperature changes. The bias current was adjusted to maintain substantially constant power at the receiver for each temperature at which the BER was measured. The results are shown in FIG. 7A. FIG. 7B shows the same measurement, but over a smaller temperature scale. As can be seen from FIG. 7B, temperature variations of a few degrees had substantially no effect on BER. Note that this experiment reflects a worse-case measurement, given that only the chip was heated, while the remainder of the device remained at room temperature. [0038]
  • FIG. 8 shows the BER during operation of the laser in an uncooled mode, i.e., with no applied temperature changes, over several days through 32 km of fiber, with the laser being run at about 2.5 GHz. It is apparent that the room temperature variations had very little effect on BER. [0039]
  • Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. [0040]

Claims (15)

What is claimed is:
1. An optical communication system comprising an external cavity laser that comprises:
a gain medium comprising an active region, a beam expanding region, and an antireflective layer on a first surface of the gain medium.
an optical waveguide located adjacent the gain medium such that at least a portion of the electromagnetic energy generated by the active region passes through the beam expanding region and through the antireflective layer into the optical waveguide; and
a Bragg grating integral with or coupled to the optical waveguide,
wherein the medium and the optical waveguide exhibit a coupling efficiency of at least 40% with or without the presence of coupling optics located between the gain medium and the optical waveguide, and
wherein the laser is configured and operated to provide a multimode output of at least two modes.
2. The system of claim 1, wherein the coupling efficiency is at least 40% with or without the presence of coupling optics located between the gain medium and the optical waveguide.
3. The system of claim 1, wherein the gain medium comprises a cavity less than 1 cm in length.
4. The system of claim 1, wherein the length of the system is less than 100 km.
5. The system of claim 1, wherein the laser is operated by direct modulation.
6. The system of claim 1, wherein the bit error rate of the system is less than 10−9.
7. The system of claim 6, wherein the bit error rate of the system is less than 10−12.
8. The system of claim 1, wherein the laser is operated at 2.5 GHz or greater.
9. The system of claim 1, wherein the laser is operated in the absence of a temperature-compensating apparatus.
10. The system of claim 1, wherein the gain medium and optical waveguide are coupled in the absence of coupling optics.
11. An optical communication system comprising an external cavity laser that comprises:
a gain medium comprising an active region, a beam expanding region, and an antireflective layer on a first surface of the gain medium;
an optical waveguide located adjacent the gain medium such that at least a portion of the electromagnetic energy generated by the active region passes through the beam expanding region and through the antireflective layer into the optical waveguide; and
a Bragg grating integral with or coupled to the optical waveguide,
wherein the medium and the optical waveguide exhibit a coupling efficiency of at least 40% in the absence of coupling optics located between the gain medium and the optical waveguide,
wherein the laser is configured and operated to provide a multimode output of at least two modes,
wherein the laser is operated by direct modulation,
wherein the laser is operated in the absence of a temperature-compensating apparatus,
wherein the gain medium comprises a cavity less than 1 cm in length, and
wherein the length of the system is less than 100 km.
12. The system of claim 11, wherein the coupling efficiency is at least 40% with or without the presence of coupling optics located between the gain medium and the optical waveguide.
13. The system of claim 11, wherein the bit error rate of the system is less than 10−9.
14. The system of claim 13, wherein the bit error rate of the system is less than 10−12.
15. The system of claim 13, wherein the laser is operated at 2.5 GHz or greater
US10/764,953 2000-06-30 2004-01-26 System comprising optical semiconductor waveguide device Abandoned US20040156416A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/764,953 US20040156416A1 (en) 2000-06-30 2004-01-26 System comprising optical semiconductor waveguide device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/608,639 US6888863B1 (en) 2000-06-30 2000-06-30 System comprising optical semiconductor waveguide device
US10/764,953 US20040156416A1 (en) 2000-06-30 2004-01-26 System comprising optical semiconductor waveguide device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/608,639 Division US6888863B1 (en) 2000-06-30 2000-06-30 System comprising optical semiconductor waveguide device

Publications (1)

Publication Number Publication Date
US20040156416A1 true US20040156416A1 (en) 2004-08-12

Family

ID=24437358

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/608,639 Expired - Fee Related US6888863B1 (en) 2000-06-30 2000-06-30 System comprising optical semiconductor waveguide device
US10/764,953 Abandoned US20040156416A1 (en) 2000-06-30 2004-01-26 System comprising optical semiconductor waveguide device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/608,639 Expired - Fee Related US6888863B1 (en) 2000-06-30 2000-06-30 System comprising optical semiconductor waveguide device

Country Status (5)

Country Link
US (2) US6888863B1 (en)
EP (1) EP1182754A1 (en)
JP (1) JP2002072030A (en)
CN (1) CN100356720C (en)
CA (1) CA2344956A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155133B2 (en) * 2002-02-12 2006-12-26 Finisar Corporation Avalanche photodiode controller circuit for fiber optics transceiver
US20040114642A1 (en) * 2002-03-22 2004-06-17 Bullington Jeff A. Laser diode with output fiber feedback
US20090310634A1 (en) * 2004-04-27 2009-12-17 Oclaro Stabilized laser source with very high relative feedback and narrow bandwidth
US8594469B2 (en) * 2008-12-22 2013-11-26 Electronics And Telecommunications Research Institute Optical amplifier
EP2522057B1 (en) * 2010-01-08 2017-03-22 II-VI Laser Enterprise GmbH Laser system with highly linear output
DE102015105168A1 (en) * 2015-04-02 2016-10-06 Hella Kgaa Hueck & Co. Light guide for a lighting device
CN110429467B (en) * 2019-07-15 2021-07-06 中国科学院上海光学精密机械研究所 Mode-hopping-free frequency modulation control method of integrated external cavity semiconductor laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589684A (en) * 1994-06-28 1996-12-31 Sdl, Inc. Multiple diode lasers stabilized with a fiber grating
US5870417A (en) * 1996-12-20 1999-02-09 Sdl, Inc. Thermal compensators for waveguide DBR laser sources

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077816A (en) 1989-12-26 1991-12-31 United Technologies Corporation Fiber embedded grating frequency standard optical communication devices
CA2101411C (en) 1992-08-14 2003-06-10 Jean-Pierre Weber Tunable optical filter
US5537432A (en) 1993-01-07 1996-07-16 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US5574742A (en) 1994-05-31 1996-11-12 Lucent Technologies Inc. Tapered beam expander waveguide integrated with a diode laser
US5841797A (en) 1994-06-28 1998-11-24 Ventrudo; Brian F. Apparatus for stabilizing multiple laser sources and their application
US5485481A (en) * 1994-06-28 1996-01-16 Seastar Optics Inc. Fibre-grating-stabilized diode laser
CN1147041C (en) * 1995-03-07 2004-04-21 英国电讯公司 Laser device
JP3147141B2 (en) * 1995-08-30 2001-03-19 株式会社日立製作所 Light assembly
US5710650A (en) * 1996-03-14 1998-01-20 Alcatel Network Systems, Inc. Dispersion-reducing multiple wavelength division multiplexing optical fiber transceiver and methods for using and assembling same
JP3120828B2 (en) * 1996-04-08 2000-12-25 住友電気工業株式会社 Semiconductor laser module
US5936980A (en) 1996-09-26 1999-08-10 Lucent Technologies Inc. Internally modulated coupled cavity fiber lasers
US5943352A (en) 1997-03-25 1999-08-24 Mci Communication Corporation External cavity laser with optically switched tuning mechanism
US5930423A (en) 1997-07-15 1999-07-27 Lucent Technologies Inc. Semiconductor optical waveguide devices with integrated beam expander coupled to flat fibers
US6058131A (en) 1997-11-17 2000-05-02 E-Tek Dynamics, Inc. Wavelength stabilization of laser source using fiber Bragg grating feedback
US6091744A (en) 1998-01-14 2000-07-18 Hewlett-Packard Company Wavelength selectable source for wavelength division multiplexed applications
US6125222A (en) 1998-04-21 2000-09-26 Scientific-Atlanta, Inc. Fiber grating feedback stabilization of broad area laser diode
GB2325334B (en) 1998-07-10 1999-04-14 Bookham Technology Ltd External cavity laser
US6195485B1 (en) * 1998-10-26 2001-02-27 The Regents Of The University Of California Direct-coupled multimode WDM optical data links with monolithically-integrated multiple-channel VCSEL and photodetector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589684A (en) * 1994-06-28 1996-12-31 Sdl, Inc. Multiple diode lasers stabilized with a fiber grating
US5870417A (en) * 1996-12-20 1999-02-09 Sdl, Inc. Thermal compensators for waveguide DBR laser sources

Also Published As

Publication number Publication date
CN1330469A (en) 2002-01-09
CA2344956A1 (en) 2001-12-30
US6888863B1 (en) 2005-05-03
EP1182754A1 (en) 2002-02-27
JP2002072030A (en) 2002-03-12
CN100356720C (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US6295308B1 (en) Wavelength-locked external cavity lasers with an integrated modulator
US4914667A (en) Hybrid laser for optical communications, and transmitter, system, and method
US5870417A (en) Thermal compensators for waveguide DBR laser sources
Wesstrom et al. State-of-the-art performance of widely tunable modulated grating Y-branch lasers
CN113557643A (en) Wavelength control method of silicon photon external cavity tunable laser
US5978400A (en) Laser
WO2007029647A1 (en) Wavelength variable filter and wavelength variable laser
JP2007005594A (en) Semiconductor optical element and module using same
US9601903B2 (en) Horizontal cavity surface emitting laser device
JP5022015B2 (en) Semiconductor laser device and optical module using the same
Adachi et al. 100° C, 25 Gbit/s direct modulation of 1.3 µm surface emitting laser
US6888863B1 (en) System comprising optical semiconductor waveguide device
US7620081B2 (en) Semiconductor laser utilizing real-time linewidth reduction method
EP0495559B1 (en) Hybrid laser for optical communications
US6891870B2 (en) Distributed feedback laser for isolator-free operation
US7313159B2 (en) Apparatus and method for providing a single-mode grating-outcoupled surface emitting laser with detuned second-order outcoupler grating
CA2392008A1 (en) Mode-selective facet layer for pump laser
US7313158B2 (en) Integrated high speed modulator for grating-outcoupled surface emitting lasers
Gen‐ei et al. High coupled power 1.3 μm edge‐emitting light‐emitting diode with a rear window and an integrated absorber
Yoffe et al. Widely-tunable 30mW laser source with sub-500kHz linewidth using DFB array
Takagi et al. Fiber-grating external-cavity laser diode module for 2.5 Gb/s dense WDM transmission
GB2413697A (en) Uncooled semiconductor laser
Duraev et al. Bragg fibre grating semiconductor lasers with the narrow emission spectrum in the 1530—1560-nm region
Sahara et al. Isolator-free transmission at 2.5 Gbits/s over 100 km of single-mode fiber by a 1.55-/spl mu/m, AlGaInAs strained-multi-quantum-well, directly modulated distributed-feedback laser diode
JPH1187853A (en) Optical semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION