US20040182564A1 - Heat exchange system chip temperature sensor - Google Patents

Heat exchange system chip temperature sensor Download PDF

Info

Publication number
US20040182564A1
US20040182564A1 US10/669,736 US66973603A US2004182564A1 US 20040182564 A1 US20040182564 A1 US 20040182564A1 US 66973603 A US66973603 A US 66973603A US 2004182564 A1 US2004182564 A1 US 2004182564A1
Authority
US
United States
Prior art keywords
heat sink
chip
temperature
rtd
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/669,736
Inventor
Tom Tremmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Control Co
Original Assignee
Micro Control Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/322,001 external-priority patent/US7114556B2/en
Application filed by Micro Control Co filed Critical Micro Control Co
Priority to US10/669,736 priority Critical patent/US20040182564A1/en
Assigned to MICRO CONTROL COMPANY reassignment MICRO CONTROL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TREMMEL, TOM A.
Publication of US20040182564A1 publication Critical patent/US20040182564A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2862Chambers or ovens; Tanks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature

Definitions

  • the present invention relates generally to devices for controlling or conditioning the temperature of electronic components which are being temperature stressed in “burn-in” ovens, or the like, to determine characteristics of the electronic components. More particularly, the present invention relates to a chip temperature sensor for use in a heat exchange system.
  • burn-in boards are used to support a number of electronic components inside a burn-in oven.
  • Burn-in ovens are typically large enough to hold several racks of burn-in boards with each burn-in board holding several integrated circuit chips.
  • the chips are powered and exposed to heat stress over an extended period of time.
  • heat exchange systems are employed to maintain the chips within a desired temperature range to prevent overheating of the chips, which can damage properly functioning chips.
  • Heat exchange systems such as that described in U.S. Pat. No. 6,288,371 (Hamilton et al.), which is assigned to the Assignee of the present invention, utilize a heat sink that contacts the chip being temperature stressed.
  • a helium layer is provided between the heat sink and the chip to decrease thermal resistance and increase thermal conductivity there between.
  • the heat exchange system of Hamilton et al. is more effective at maintaining the desired chip temperature than would be possible without the helium layer since the heat generated by the chip can be exchanged with the heat exchange system at a higher rate.
  • Heat exchange systems can also include a chip temperature sensor for detecting the temperature of the chip being stressed.
  • Such temperature sensors typically utilize a thermocouple due to its compact size.
  • thermocouples produce voltage signals that must be converted into a form that indicates the temperature of the chip being sensed. This is generally accomplished using a cold junction compensator and an amplifier.
  • highly efficient couplings such as gold pins and other special connectors, must be used when relaying the voltage signals from the thermocouple to prevent signal losses.
  • the present invention is generally directed to a heat exchange chip temperature sensor and a heat exchange system that includes the chip temperature sensor.
  • the chip temperature sensor generally includes a support member, a resistance temperature detector (RTD), and signal leads.
  • the support member is slidably mountable within a heat sink bore of a burn-in oven heat exchange system and includes first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends.
  • the RTD is seated in the socket and includes a chip contact surface that is raised relative to the first end.
  • the RTD is configured to produce a temperature signal that is indicative of a temperature at the chip contact surface.
  • the signal leads are attached to the RTD and extend through the bore of the support member and out the second end of the support member.
  • the heat exchange system includes the chip temperature sensor and the heat sink described above.
  • the heat sink includes a chip engaging surface that is adapted to engage a surface of the chip being stressed.
  • a liquid layer fills a heat exchange gap between the surface of the chip and the chip engaging surface of the heat sink.
  • the liquid layer provides a low thermal resistance path between the chip engaging surface of the heat sink and the surface of the chip, which allows for greater heat transfer there between for greater control of the chip temperature.
  • FIG. 1 is a schematic perspective view of a burn-in oven having a rack supporting heat exchange systems made in accordance with the present invention above burn-in boards.
  • FIG. 2 is a fragmentary schematic front view of a rack supporting a thermal board having heat exchange systems made in accordance with the present invention installed thereon, shown underlying a burn-in board supporting integrated circuit chips that are associated with the heat exchange systems with an inset perspective view of a cam drive used for moving thermal boards into contact with an associated burn-in board.
  • FIG. 3 is a top plan view of a typical thermal board having heat exchange systems and mounting made according to the present invention.
  • FIG. 4 is a bottom perspective view of a heat exchange system and support cup in accordance with the present invention.
  • FIG. 5 is a top plan view of the heat exchange system and cup of FIG. 4.
  • FIG. 6 is an end view of the heat exchange system and cup of FIG. 5.
  • FIG. 7 is a sectional view taken on line 7 - 7 in FIG. 6.
  • FIG. 8 is a sectional view taken on line 8 - 8 in FIG. 6.
  • FIG. 9 is a side view of the heat exchange system and cup from a side opposite from that shown in FIG. 4.
  • FIG. 10 is a sectional view taken on line 10 - 10 of FIG. 5.
  • FIG. 11 is a simplified sectional view of a chip engaging surface of a heat sink and a chip temperature sensor of the heat exchange system of the present invention in contact with a surface of an integrated circuit chip.
  • FIG. 12 is a magnified sectional view illustrating a heat exchange gap between a chip engaging surface of a heat sink of the heat exchange system of the present invention and a surface of an integrated circuit chip.
  • FIG. 13 is a sectional view taken on line 13 - 13 of FIG. 6.
  • FIG. 14 is a schematic diagram of a control system of a burn-in oven for controlling a heat exchange system that provides a liquid flow to the heat exchange gap illustrated in partial cross-section, in accordance with embodiments of the invention.
  • FIG. 15 is a partial top perspective view of a heat sink in accordance with an embodiment of the invention.
  • FIG. 16 is a perspective view of a support member of a chip temperature sensor in accordance with an embodiment of the invention.
  • FIG. 17 is a simplified cross-sectional view of a chip temperature sensor in accordance with an embodiment of the invention.
  • FIG. 18 is a front end view of a chip temperature sensor in accordance with an embodiment of the invention.
  • a burn-in oven that is shown only fragmentarily in FIG. 1 at 10 is used to perform burn-in temperature stressing of integrated circuit chips 12 on burn-in boards 14 .
  • a rack 15 supports the boards 14 in the oven on tracks 15 A.
  • the burn-in boards 14 generally, in the form shown, mount several (typically four or more) chips 12 having circuits, and each of these chips 12 is mounted in a chip mount 13 along the plane of the burn-in board 14 .
  • the circuits on the chips 12 are connected with suitable connectors to external control circuitry 12 A (FIG. 2) for operating the circuits and carrying out conventional burn-in temperature stressing of the chips 12 .
  • the chips 12 have upper plane surfaces 16 that are to be contacted with a heat exchange system of the present invention for removing excess heat generated in response to the power consumption of the circuits to maintain the chips 12 within a desired temperature range during burn-in temperature stressing.
  • a thermal board assembly shown at 20 in FIGS. 1, 2 and 3 is mounted on movable frames 21 on each side of the rack 15 that slide vertically, and include uprights 21 A that are slideably mounted relative to fixed frame uprights 15 B on which burn-in board tracks 15 A are supported.
  • the rack 15 includes eight burn-in boards 14 and eight thermal boards 20 , however the rack 15 can be configured to handle more or fewer burn-in and thermal boards.
  • the slidable frames 21 are provided on each side of the rack 15 .
  • Thermal board support tracks 21 C are mounted on the vertically movable uprights 21 A and have grooves 21 D to receive flanges 20 E on the thermal boards (see FIG. 2).
  • the frames 21 are vertically slidable to move thermal board assemblies 20 toward and away from the chips 12 on the overlying burn-in board 14 .
  • the side flanges 20 A on the thermal boards 20 slide into the grooves 21 D on the tracks 21 C.
  • the thermal board assemblies are supported parallel to the respective burn-in board 14 .
  • the movement of the thermal board assemblies 20 can be accomplished in any desired manner, so the structure for supporting and moving it is shown only schematically.
  • the movable frames 21 in addition to the tracks 15 A, that are bolted to and hold the vertical uprights 21 A together and lower and upper cross plates 22 and 22 A also join the uprights 21 A (see FIGS. 1 and 2).
  • the lower cross plate 22 on each movable frame 21 has a cam follower pin 22 B mounted thereon and protruding out to the side.
  • the cam follower pin serves as a drive for vertically reciprocating the frame 21 .
  • a cam and drive assembly 25 B is mounted onto a fixed cross plate 25 A mounted to the uprights 15 B of the rack supporting the burn-in boards and thermal boards.
  • the cam and drive assembly 25 B includes a gear box 25 C that is driven from a motor 25 D (see also FIG.
  • Motors 25 D are stepper motors, which are synchronized and operated by a controller 25 H shown schematically in FIG. 2.
  • the spiral cam member will rotate when the motor is running, and has a spiral groove 25 G that receives the cam follower pin 22 B so that when the cam motor 25 D is driven and the gear box 25 C drives the spiral cam 25 C, the pin 22 B, which is in the groove 25 G, will be moved relative to the central axis of the shaft 25 E.
  • the movement of the pin 22 B will reciprocate the frames 21 so that the movement of the thermal board assemblies 20 is accomplished to move the thermal boards toward or away from the burn-in boards, as shown in FIG. 2.
  • extractor handles 15 H are shown. These are used for extracting the burn-in boards.
  • the thermal board assemblies 20 include metal heat conductive plates 23 , on which heat exchange systems 26 of the present invention are mounted, as shown in FIGS. 2 and 3.
  • Each chip 12 has a corresponding heat exchange system 26 , with which it is aligned.
  • Each heat exchange system 26 includes a central heat sink block 29 that has an end boss 27 having a chip engaging surface 28 that will contact a surface 16 of one of the chips 21 that is being temperature stressed on the burn-in board 14 .
  • FIG. 10 and other cross-sectional views of heat exchange system 26 show the central block or heat sink 29 .
  • the block 29 has a plurality of longitudinal passageways 30 bored therethrough, with end cross passages that connect the passageways so that water from a water input connector and line 32 , shown in FIGS. 3-7, will enter a first passageway 34 A, and the water then will be circulated through additional passageways 34 B, 34 C, 34 D, 34 E, 34 F, 34 G and 34 H in sequence.
  • the waste water or water that has been used for cooling comes through the last passageway 34 H and is discharged through a connector and line 36 and sent to a drain.
  • FIG. 7 shows a connecting passageway 35 A that connects passageways 34 D and 34 E and FIG.
  • FIG. 10 shows a passageway 35 B connects passageways 34 F and a passageway 35 C that connects passageway 34 G and 34 H.
  • the connecting passageways are made in the ends of the block.
  • End caps are made in a conventional manner and are soldered or otherwise sealed on the ends of block 29 to enclose the passageways cut therein. The end caps are soldered in place so the central block becomes unitary as is generally shown in the cross-sectional views of FIGS. 7, 8 and 10 .
  • the heat sink block 29 has a central passageway 40 that is bored into the block 29 at the boss 27 .
  • a shoulder 31 surrounds an opening 43 in boss 27 .
  • the passageway 40 has an axis that is at right angles to the plane of the block and plate 23 and at right angles to the axes of passageways 30 .
  • the through passageway 40 extends upwardly, and a cap 42 has a threaded neck that threads into the end of passageway 40 and seals it.
  • the cap 42 also has a flange 42 A that bears upon a cover plate 42 B that covers a layer of insulation 42 C that, in turn, overlies a heater 44 sandwiched between the insulation layer 42 B and an upper surface 46 of the central block 29 .
  • the neck of cap 42 has a passageway 42 D that aligns with passageway 40 and is of smaller diameter. The threads on the neck of the cap seal the passageway 40 along its edge and the heater 44 and insulation layer 42 C form a gas and liquid tight seal.
  • a clamp plate 54 is used for holding the cover plate in position on top of the cap 42 .
  • the gaskets 50 and 52 have central holes aligning with passageway 42 D and clamp plate 54 closes off the holes the passageway 42 D.
  • the clamp plate 54 is held with screws 55 threaded into flange 42 A.
  • a chip temperature sensor 60 is slidably mounted in the end of the heat sink bore 40 , as shown in FIG. 7.
  • Sensor 60 generally includes a support member 61 , a resistance temperature detector (RTD) 62 , and signal leads 63 .
  • RTD resistance temperature detector
  • Support member 61 is preferably a cylindrical member that includes first and second ends 64 and 65 , a socket 66 formed in first end 64 , and a bore 67 extending from socket 66 through second end 65 , as shown in the perspective view of FIG. 16.
  • Support member 61 also includes an annular flange 68 that is positioned between first and second ends 64 and 65 .
  • Heat sink bore 40 includes a shoulder 41 at the lower end, which engages flange 68 to retain sensor 60 within the bore 40 .
  • the flange 68 slides in the larger part of the bore 40 .
  • RTD 62 is received by socket 66 of support member 61 .
  • Socket 66 is preferably shaped to conform to the RTD 62 , which can be secured therein using an adhesive, by swaging the preferably plastic support member 61 against RTD 62 , or using other methods.
  • socket 66 is rectangular to receive a rectangular RTD 62 .
  • socket 66 can take on other conforming shapes including those that pre-set the orientation of RTD 62 relative to support member 61 .
  • RTD 62 includes a chip contact surface 70 , at which RTD 62 is configured to detect a temperature of the surface 16 of the chip 12 when in contact therewith.
  • Chip contact surface 70 is preferably raised relative to the first end 64 to ensure good contact with chip surface 16 of chip 12 .
  • a current is conducted through signal leads 63 , shown in FIG. 17, and through RTD 62 .
  • the chip temperature signal produced by RTD 62 is in the form of a voltage drop across RTD 62 that is measured at signal leads 63 by a voltage detector, which can be a component of the control electronics for the heat exchange system or burn-in oven.
  • support member 61 insulates RTD 62 from the cool heat sink 29 , the chip temperature indicated by RTD 62 is preferably compensated to account for the cool surroundings.
  • signal leads 63 extend from bottom 73 that opposes the chip contact surface 70 , through the bore 67 , and out the second end 65 to communicate the chip temperature signal to appropriate control circuitry (not shown) of the heat exchange system 26 or burn-in oven 10 .
  • This configuration reduces the size of the RTD 62 as compared to typical RTD's having signal leads extending from the side.
  • first end 64 of support member can be made smaller than would otherwise be possible.
  • the bottom extending signal leads 63 of RTD 62 are protected from potentially damaging wear that could occur if they extended from a side of the RTD as a result of sliding engagement with bore 40 .
  • RTD 62 provides advantages over other temperature detectors, such as thermocouples.
  • the temperature detected by the RTD can be directly determined through measurement of a voltage drop across the RTD 62 at signal leads 63 .
  • Thermocouples produce a voltage signal that must be transformed into something that represents the temperature sensed by the thermocouple using a cold junction compensator and an amplifier.
  • highly efficient couplings such as gold pins and other special connectors, must be used when relaying the voltage signal of a thermocouple to prevent signal losses, something which is unnecessary for RTD's.
  • a low force coil spring 75 is mounted in bore 40 and bears against the flange 68 and is held in the bore 40 by cap 42 .
  • the spring 75 directs the support member 61 along with RTD 62 outwardly such that flange 68 contacts shoulder 41 and end 64 extends through opening 43 of bore 40 .
  • the cross-sectional view of FIG. 7, shows the support member 61 retracted slightly from heat sink 29 . It can be seen in FIG. 11 that the low force spring 75 will hold RTD 62 in engagement with the chip surface 16 under spring load, but the spring 75 will yield to permit the chip and RTD 62 at end 64 of support member 61 to be in intimate contact when the chip engaging surface 28 of heat sink 29 contacts the surface 16 of the chip 12 .
  • thermal resistance between heat sink 29 and the chip 12 is decreased through an introduction of a liquid layer 71 there between, as shown in FIG. 12.
  • Liquid layer 71 is preferably formed of distilled water, but other suitable liquids can be used. Liquid layer 71 has a high thermal conductivity relative to air, or even helium, resulting in a significant reduction to the thermal resistance between heat sink 29 and chip 12 .
  • thermal resistance between a heat sink 29 with an eighteen by eighteen millimeter chip engaging surface 28 and a chip 12 can drop from approximately 0.3° C./Watt when helium fills the heat exchange gap 78 , to approximately 0.06° C./Watt when the liquid layer 71 formed by distilled water is used to fill the heat exchange gap 78 .
  • This configuration allows for the temperature stressing of high performance chips through application of high power (e.g., 625 watts) while maintaining the temperature of the chips within the desired stressing range (e.g., typically 120-140° C.).
  • Liquid layer 71 can be formed of a small volume of liquid, (such as 0.05 cubic centimeters) in order to fill the heat exchange gap 78 that is formed between the non-contacting surfaces of heat sink 29 and the chip 12 being temperature stressed.
  • Liquid layer 71 can be formed as a fixed volume of liquid, or can be formed by a liquid flow that is injected into heat exchange gap 78 .
  • Liquid layer 71 can be formed of a cooled liquid to provide further cooling of an integrated circuit chip 12 under stress. The flow rate of the liquid flow can be adjusted to provide additional heat transfer from the chip 12 being temperature stressed.
  • heat exchange system 26 includes a liquid source 74 that is fluidically coupled to the heat exchange gap 78 to provide the liquid layer 71 , as shown in FIGS. 6 and 7.
  • the liquid source 74 is coupled to at least one inlet port 120 , which is in fluid communication with the heat exchange gap.
  • the inlet ports 120 are formed in heat sink 29 and open to the heat exchange gap 78 through chip engaging surface 28 , as illustrated in FIGS. 4, 12 and 13 .
  • an input line and connector 122 is connected to a hose barb 72 that in turn is connected to liquid source 74 through a valve 76 .
  • Valve 76 is preferably a solenoid valve that can be manually operated, operated by a controller, or operated in some other desired manner.
  • Input line 122 is connected to a connecting passageway 124 that in turn is connected to a horizontal passageways 126 and 128 that are fluidically coupled to inlets 120 through vertical passageways 130 , as shown in FIGS. 7, 10 and 13 . Additional inlets 120 can be provided as desired.
  • burn-in oven 10 can purge the moist air in the burn-in chamber 132 , in which the thermal and burn-in boards are mounted, with air purging system 134 , shown in FIG. 1.
  • Air purging system 134 includes a source of compressed gas 136 , that is fluidically coupled to the burn-in chamber 132 by an air duct 138 .
  • a valve 140 is positioned in line with the air duct 138 and is configured to control an airflow (indicated by arrow 142 ) from the source of compressed gas 136 into the burn-in chamber 132 .
  • Source of compressed gas 136 includes compressed dry air, nitrogen, or other gas, which replaces the moist air within chamber 132 as airflow 142 is introduced therein.
  • the air purging system 134 can provide additional cooling of the burn-in boards.
  • a dehumidifier can also be included in the system to remove moisture from the air.
  • Liquid runoff from heat exchange gap 78 can be accommodated by the formation of a moat 160 surrounding chip engaging surface 28 of heat sink 29 , as illustrated in FIG. 15.
  • the moat 160 is defined by channel sections 162 , 164 , 166 , and 168 that are formed in heat sink 29 and surround chip engaging surface 28 .
  • the moat 160 is sized to contain liquid overflow from the heat exchange gap 78 to prevent liquid from accumulating on the thermal board 20 to which heat sink 29 is mounted or contacting other components there below.
  • One or more drains 169 are formed at the base of one of the channel sections. Drain 169 is preferably fluidically coupled to a vacuum system that sucks the liquid overflow from moat 160 into drain 169 . The drained liquid overflow can then be delivered to waste or recovered for reuse.
  • the heat exchanger 26 is mounted in an outer cage or housing called a “cup” 77 that has a flange 79 around the periphery thereof that bolts or fastens in a suitable manner with fasteners to the metal thermal plate 23 .
  • the cup 77 has an opening 80 at the top and side walls 82 on two spaced sides with inwardly turning flanges 84 at the lower ends.
  • the sides of the cup at right angles to walls 82 form openings 88 and 90 , but there are internal flanges 84 A, which, together with edges 84 , surround a central opening 86 through which the end portion 29 A of the thermal block extends with some clearance.
  • the heat sink block 29 has a larger upper portion that forms a shoulder 29 B that rests on the flange 84 when the portion 29 A extends through the opening 86 , as shown in FIGS. 7, 8 and 10 .
  • the openings 88 and 90 are at right angles to the main depending walls 82 , to permit connections for water, and for the electrical connections to extend to the heat sink block.
  • the portion 29 A is encircled by the flanges 84 and 84 A and the shoulder 29 B is contained and rests thereon.
  • a resilient member 90 depicted as a compression coil spring, is mounted in a cavity 92 formed in the clamp plate 54 .
  • the resilient member 90 bears against the underside of the thermal plate 23 , as shown in the cross-sectional views to provide a spring load urging the shoulder 29 B down against the flanges or bottom edge walls 84 and 84 A.
  • the heat sink block 29 is spaced from the side walls 82 , and the partial side walls forming the end openings 88 and 90 , so that the block 29 can move up to displace the shoulders 29 B from the wall flanges 84 and 84 A under pressures applied when the thermal plate assembly 20 is moved down against an aligned burn-in board 14 .
  • the block 29 can cock slightly because the opening 86 is made slightly larger than the end portion 29 A that extends through it. This permits the block 29 to generally align with the surface of the chip that it is moved against, so that the chip engaging surface 28 of the boss 27 of the heat sink will come into as close to continuous contact as possible as shown in FIG. 11. Additionally, the chip temperature sensor 60 will retract, as permitted by the spring 75 .
  • the spring 90 will also retract and yield so that the heat sink 29 can move upwardly and self-aligning because the cup 77 will positively capture the heat sink and yet permit it to retract and move for self-alignment.
  • the chip temperature sensor 60 is spring loaded with a light spring, and the entire heat sink block is spring loaded with at least a second spring 90 of different strength.
  • the structure permits the signal leads indicated 63 to pass upwardly through the bore 40 , and through the bore 42 D, and through the center opening in the gasket 50 , and then laterally out sandwiches between the gaskets 50 and 52 , as shown in FIGS. 7 and 10. This eliminates the need for providing a groove or opening for the sensor wires and yet keeps the passageway 40 sealed.
  • the heater 44 also has wires or leads 98 that pass out along the top plate 42 B, and are supported thereby.
  • the temperature of the heat sink block 29 also is sensed and controlled with a suitable heat sink temperature sensor 100 that is installed in a bore in the block portion 29 A as shown in FIG. 7.
  • Suitable leads 101 can be used for sensor 100 , which could be a thermocouple or other suitable temperature sensor.
  • manifolds indicated at 102 are provided for the water connections, and are shown schematically, and solenoid valves shown schematically at 104 can be used for providing water to each of the individual heat sinks.
  • a controller 106 shown schematically receives the signals from chip temperature sensor 60 and will provide signals to the individual solenoid valves 104 in a suitable manner to open them if cooling is needed and close them if the chip temperature is in the desired range. Controller 106 also can receive a signal from the heat sink temperature sensor 100 for overall temperature control and will provide output signals to the leads 98 for the heater, when that is needed. Control of the sensors 60 and 100 can be through suitable connectors and circuitry shown schematically on a circuit board 108 in FIG. 3.
  • FIG. 14 is a schematic diagram of the control system of the heat exchange system 26 that is used to control the liquid flow between liquid source 74 and the heat exchange gap 78 .
  • controller 106 can receive a chip temperature output signal (depicted as arrow 150 ) from chip temperature sensor 60 , and a heat sink temperature output signal (depicted as arrow 152 ) from heat sink temperature sensor 100 .
  • the chip temperature output signal 150 is indicative of a temperature of the chip 12 being stressed.
  • the heat sink temperature output signal 152 is indicative of a temperature of the heat sink 29 .
  • Controller 106 can control the liquid flow (depicted as arrow 154 ) traveling to the heat exchange gap 78 in response to the temperature output signals.
  • the liquid flow 154 can be triggered when the temperature of the chip 12 exceeds a threshold value. Accordingly, burn-in temperature stressing of chip 12 can be conducted without the formation of liquid layer 71 in the heat exchange gap 78 until the temperature of the chip 12 , as indicated by chip temperature output signal 150 , exceeds the threshold value, at which time controller 106 can open valve 76 to introduce the liquid layer 71 in the heat exchange gap 78 and thereby decrease the thermal resistance between heat sink 29 and chip 12 and increase the thermal transfer therebetween to cool chip 12 below the threshold value.
  • controller 106 is adapted to calculate a thermal resistance between heat sink 29 and chip 12 using the chip temperature output signal 150 and the heat sink temperature output signal 152 from sensors 60 and 100 , respectively.
  • the thermal resistance can be calculated in accordance with the following equation:
  • controller 106 introduces the liquid layer 71 in the heat exchange gap 78 when the thermal resistance (Q) rises above a threshold value. In the event that the thermal resistance (Q) exceeds the threshold value, the introduction of the liquid layer 71 to the heat exchange gap 78 by controller 106 will decrease the thermal resistance between heat sink 29 and the chip 12 being stressed to prevent the overheating of the chip.
  • the threshold value of the thermal resistance (Q) can be selected to provide a sufficient safety factor that ensures that the system will not overheat.
  • the heater 44 can be used where the chip being stressed has circuits that do not consume much power, and the temperature has to be maintained at a particular level requiring the addition of heat. Of course, during that time, the water cooling would not be used, but heat would be added through the thermal block, and the heat conducting layer of liquid can also be provided at that time for conducting heat to a chip.

Abstract

A chip temperature sensor includes a support member, a resistance temperature detector (RTD), and signal leads. The support member is slidably mountable within a heat sink bore of a burn-in oven heat exchange system and includes first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends. The RTD is seated in the socket and includes a chip contact surface that is raised relative to the first end. The RTD is configured to produce a temperature signal that is indicative of a temperature at the chip contact surface. The signal leads are attached to the RTD and extend through the bore of the support member and out the second end of the support member. A heat exchange system that includes the above-described chip temperature sensor.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 10/322,001, filed Dec. 17, 2002, the content of which is hereby incorporated by reference in its entirety.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to devices for controlling or conditioning the temperature of electronic components which are being temperature stressed in “burn-in” ovens, or the like, to determine characteristics of the electronic components. More particularly, the present invention relates to a chip temperature sensor for use in a heat exchange system. [0002]
  • BACKGROUND OF THE INVENTION
  • Electronic components, such as silicon integrated circuit chips or other semiconductor devices, are subject to early failure during their life cycle. Thus, producers of these electronic components have found it cost-effective to rigorously temperature stress electronic components prior to their inclusion in electronic products. By conducting such temperature stressing, and by the elimination of under-performing electronic components that fail during the temperature stressing, the reliability of the electronic components that make it to market by passing the temperature stressing is greatly enhanced. [0003]
  • During such “burn-in” temperature stressing, burn-in boards are used to support a number of electronic components inside a burn-in oven. Burn-in ovens are typically large enough to hold several racks of burn-in boards with each burn-in board holding several integrated circuit chips. The chips are powered and exposed to heat stress over an extended period of time. During burn-in temperature stressing of the chips, heat exchange systems are employed to maintain the chips within a desired temperature range to prevent overheating of the chips, which can damage properly functioning chips. [0004]
  • Heat exchange systems, such as that described in U.S. Pat. No. 6,288,371 (Hamilton et al.), which is assigned to the Assignee of the present invention, utilize a heat sink that contacts the chip being temperature stressed. A helium layer is provided between the heat sink and the chip to decrease thermal resistance and increase thermal conductivity there between. Thus, the heat exchange system of Hamilton et al. is more effective at maintaining the desired chip temperature than would be possible without the helium layer since the heat generated by the chip can be exchanged with the heat exchange system at a higher rate. [0005]
  • Heat exchange systems can also include a chip temperature sensor for detecting the temperature of the chip being stressed. Such temperature sensors typically utilize a thermocouple due to its compact size. Unfortunately, thermocouples produce voltage signals that must be converted into a form that indicates the temperature of the chip being sensed. This is generally accomplished using a cold junction compensator and an amplifier. Additionally, highly efficient couplings, such as gold pins and other special connectors, must be used when relaying the voltage signals from the thermocouple to prevent signal losses. [0006]
  • There is a continuing need for improvements to heat exchange systems, including improvements to the temperature sensors used by such systems and the thermal conductance between the heat sink and the chip being stressed. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention is generally directed to a heat exchange chip temperature sensor and a heat exchange system that includes the chip temperature sensor. The chip temperature sensor generally includes a support member, a resistance temperature detector (RTD), and signal leads. The support member is slidably mountable within a heat sink bore of a burn-in oven heat exchange system and includes first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends. The RTD is seated in the socket and includes a chip contact surface that is raised relative to the first end. The RTD is configured to produce a temperature signal that is indicative of a temperature at the chip contact surface. The signal leads are attached to the RTD and extend through the bore of the support member and out the second end of the support member. [0008]
  • The heat exchange system includes the chip temperature sensor and the heat sink described above. The heat sink includes a chip engaging surface that is adapted to engage a surface of the chip being stressed. A liquid layer fills a heat exchange gap between the surface of the chip and the chip engaging surface of the heat sink. The liquid layer provides a low thermal resistance path between the chip engaging surface of the heat sink and the surface of the chip, which allows for greater heat transfer there between for greater control of the chip temperature.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic perspective view of a burn-in oven having a rack supporting heat exchange systems made in accordance with the present invention above burn-in boards. [0010]
  • FIG. 2 is a fragmentary schematic front view of a rack supporting a thermal board having heat exchange systems made in accordance with the present invention installed thereon, shown underlying a burn-in board supporting integrated circuit chips that are associated with the heat exchange systems with an inset perspective view of a cam drive used for moving thermal boards into contact with an associated burn-in board. [0011]
  • FIG. 3 is a top plan view of a typical thermal board having heat exchange systems and mounting made according to the present invention. [0012]
  • FIG. 4 is a bottom perspective view of a heat exchange system and support cup in accordance with the present invention. [0013]
  • FIG. 5 is a top plan view of the heat exchange system and cup of FIG. 4. [0014]
  • FIG. 6 is an end view of the heat exchange system and cup of FIG. 5. [0015]
  • FIG. 7 is a sectional view taken on line [0016] 7-7 in FIG. 6.
  • FIG. 8 is a sectional view taken on line [0017] 8-8 in FIG. 6.
  • FIG. 9 is a side view of the heat exchange system and cup from a side opposite from that shown in FIG. 4. [0018]
  • FIG. 10 is a sectional view taken on line [0019] 10-10 of FIG. 5.
  • FIG. 11 is a simplified sectional view of a chip engaging surface of a heat sink and a chip temperature sensor of the heat exchange system of the present invention in contact with a surface of an integrated circuit chip. [0020]
  • FIG. 12 is a magnified sectional view illustrating a heat exchange gap between a chip engaging surface of a heat sink of the heat exchange system of the present invention and a surface of an integrated circuit chip. [0021]
  • FIG. 13 is a sectional view taken on line [0022] 13-13 of FIG. 6.
  • FIG. 14 is a schematic diagram of a control system of a burn-in oven for controlling a heat exchange system that provides a liquid flow to the heat exchange gap illustrated in partial cross-section, in accordance with embodiments of the invention. [0023]
  • FIG. 15 is a partial top perspective view of a heat sink in accordance with an embodiment of the invention. [0024]
  • FIG. 16 is a perspective view of a support member of a chip temperature sensor in accordance with an embodiment of the invention. [0025]
  • FIG. 17 is a simplified cross-sectional view of a chip temperature sensor in accordance with an embodiment of the invention. [0026]
  • FIG. 18 is a front end view of a chip temperature sensor in accordance with an embodiment of the invention.[0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A burn-in oven that is shown only fragmentarily in FIG. 1 at [0028] 10 is used to perform burn-in temperature stressing of integrated circuit chips 12 on burn-in boards 14. A rack 15 supports the boards 14 in the oven on tracks 15A. The burn-in boards 14 generally, in the form shown, mount several (typically four or more) chips 12 having circuits, and each of these chips 12 is mounted in a chip mount 13 along the plane of the burn-in board 14. The circuits on the chips 12 are connected with suitable connectors to external control circuitry 12A (FIG. 2) for operating the circuits and carrying out conventional burn-in temperature stressing of the chips 12. The chips 12 have upper plane surfaces 16 that are to be contacted with a heat exchange system of the present invention for removing excess heat generated in response to the power consumption of the circuits to maintain the chips 12 within a desired temperature range during burn-in temperature stressing.
  • A thermal board assembly shown at [0029] 20 in FIGS. 1, 2 and 3, is mounted on movable frames 21 on each side of the rack 15 that slide vertically, and include uprights 21A that are slideably mounted relative to fixed frame uprights 15B on which burn-in board tracks 15A are supported. As shown in FIG. 1, the rack 15 includes eight burn-in boards 14 and eight thermal boards 20, however the rack 15 can be configured to handle more or fewer burn-in and thermal boards. The slidable frames 21 are provided on each side of the rack 15. Thermal board support tracks 21C are mounted on the vertically movable uprights 21A and have grooves 21D to receive flanges 20E on the thermal boards (see FIG. 2). The frames 21 are vertically slidable to move thermal board assemblies 20 toward and away from the chips 12 on the overlying burn-in board 14. The side flanges 20A on the thermal boards 20 slide into the grooves 21D on the tracks 21C. The thermal board assemblies are supported parallel to the respective burn-in board 14. The movement of the thermal board assemblies 20 can be accomplished in any desired manner, so the structure for supporting and moving it is shown only schematically.
  • The [0030] movable frames 21, in addition to the tracks 15A, that are bolted to and hold the vertical uprights 21A together and lower and upper cross plates 22 and 22A also join the uprights 21A (see FIGS. 1 and 2). The lower cross plate 22 on each movable frame 21 has a cam follower pin 22B mounted thereon and protruding out to the side. The cam follower pin serves as a drive for vertically reciprocating the frame 21. A cam and drive assembly 25B is mounted onto a fixed cross plate 25A mounted to the uprights 15B of the rack supporting the burn-in boards and thermal boards. The cam and drive assembly 25B includes a gear box 25C that is driven from a motor 25D (see also FIG. 2) that includes an output shaft 25E that extends through the fixed plate 25A and has a spiral cam member 25F mounted on the shaft. Motors 25D are stepper motors, which are synchronized and operated by a controller 25H shown schematically in FIG. 2. The spiral cam member will rotate when the motor is running, and has a spiral groove 25G that receives the cam follower pin 22B so that when the cam motor 25D is driven and the gear box 25C drives the spiral cam 25C, the pin 22B, which is in the groove 25G, will be moved relative to the central axis of the shaft 25E. The movement of the pin 22B will reciprocate the frames 21 so that the movement of the thermal board assemblies 20 is accomplished to move the thermal boards toward or away from the burn-in boards, as shown in FIG. 2. There are guide pins 23D on the thermal board assembles that mate with guide tubes 14E on the burn-in boards for alignment. Also, extractor handles 15H are shown. These are used for extracting the burn-in boards.
  • The [0031] thermal board assemblies 20 include metal heat conductive plates 23, on which heat exchange systems 26 of the present invention are mounted, as shown in FIGS. 2 and 3. Each chip 12 has a corresponding heat exchange system 26, with which it is aligned. Each heat exchange system 26 includes a central heat sink block 29 that has an end boss 27 having a chip engaging surface 28 that will contact a surface 16 of one of the chips 21 that is being temperature stressed on the burn-in board 14.
  • FIG. 10 and other cross-sectional views of [0032] heat exchange system 26 show the central block or heat sink 29. As shown, the block 29 has a plurality of longitudinal passageways 30 bored therethrough, with end cross passages that connect the passageways so that water from a water input connector and line 32, shown in FIGS. 3-7, will enter a first passageway 34A, and the water then will be circulated through additional passageways 34B, 34C, 34D, 34E, 34F, 34G and 34H in sequence. The waste water or water that has been used for cooling, comes through the last passageway 34H and is discharged through a connector and line 36 and sent to a drain. FIG. 7 shows a connecting passageway 35A that connects passageways 34D and 34E and FIG. 10 shows a passageway 35B connects passageways 34F and a passageway 35C that connects passageway 34G and 34H. The connecting passageways are made in the ends of the block. End caps are made in a conventional manner and are soldered or otherwise sealed on the ends of block 29 to enclose the passageways cut therein. The end caps are soldered in place so the central block becomes unitary as is generally shown in the cross-sectional views of FIGS. 7, 8 and 10.
  • The [0033] heat sink block 29 has a central passageway 40 that is bored into the block 29 at the boss 27. A shoulder 31 surrounds an opening 43 in boss 27. The passageway 40 has an axis that is at right angles to the plane of the block and plate 23 and at right angles to the axes of passageways 30. The through passageway 40 extends upwardly, and a cap 42 has a threaded neck that threads into the end of passageway 40 and seals it. The cap 42 also has a flange 42A that bears upon a cover plate 42B that covers a layer of insulation 42C that, in turn, overlies a heater 44 sandwiched between the insulation layer 42B and an upper surface 46 of the central block 29. The neck of cap 42 has a passageway 42D that aligns with passageway 40 and is of smaller diameter. The threads on the neck of the cap seal the passageway 40 along its edge and the heater 44 and insulation layer 42C form a gas and liquid tight seal.
  • There are two [0034] stacked gaskets 50 and 52 on top of the flanges 42A. A clamp plate 54 is used for holding the cover plate in position on top of the cap 42. The gaskets 50 and 52 have central holes aligning with passageway 42D and clamp plate 54 closes off the holes the passageway 42D. The clamp plate 54 is held with screws 55 threaded into flange 42A.
  • A [0035] chip temperature sensor 60 is slidably mounted in the end of the heat sink bore 40, as shown in FIG. 7. Sensor 60 generally includes a support member 61, a resistance temperature detector (RTD) 62, and signal leads 63. One embodiment of sensor 60 is illustrated schematically in FIGS. 16-17. Support member 61 is preferably a cylindrical member that includes first and second ends 64 and 65, a socket 66 formed in first end 64, and a bore 67 extending from socket 66 through second end 65, as shown in the perspective view of FIG. 16. Support member 61 also includes an annular flange 68 that is positioned between first and second ends 64 and 65. Heat sink bore 40 includes a shoulder 41 at the lower end, which engages flange 68 to retain sensor 60 within the bore 40. The flange 68 slides in the larger part of the bore 40. There is a small space or clearance between the periphery of the bore 40 and the flange 68 and also between cylindrical portion 69 and the surface defining opening 43, which allow chip temperature sensor 60 to slide within bore 40 and extend first end 64 through heat sink bore opening 43.
  • [0036] RTD 62 is received by socket 66 of support member 61. Socket 66 is preferably shaped to conform to the RTD 62, which can be secured therein using an adhesive, by swaging the preferably plastic support member 61 against RTD 62, or using other methods. In accordance with one embodiment of the invention, socket 66 is rectangular to receive a rectangular RTD 62. However, socket 66 can take on other conforming shapes including those that pre-set the orientation of RTD 62 relative to support member 61.
  • [0037] RTD 62 includes a chip contact surface 70, at which RTD 62 is configured to detect a temperature of the surface 16 of the chip 12 when in contact therewith. Chip contact surface 70 is preferably raised relative to the first end 64 to ensure good contact with chip surface 16 of chip 12. A current is conducted through signal leads 63, shown in FIG. 17, and through RTD 62. The chip temperature signal produced by RTD 62 is in the form of a voltage drop across RTD 62 that is measured at signal leads 63 by a voltage detector, which can be a component of the control electronics for the heat exchange system or burn-in oven. Although support member 61 insulates RTD 62 from the cool heat sink 29, the chip temperature indicated by RTD 62 is preferably compensated to account for the cool surroundings.
  • In accordance with one embodiment of [0038] RTD 62, signal leads 63 extend from bottom 73 that opposes the chip contact surface 70, through the bore 67, and out the second end 65 to communicate the chip temperature signal to appropriate control circuitry (not shown) of the heat exchange system 26 or burn-in oven 10. This configuration reduces the size of the RTD 62 as compared to typical RTD's having signal leads extending from the side. As a result, first end 64 of support member can be made smaller than would otherwise be possible. Additionally, the bottom extending signal leads 63 of RTD 62 are protected from potentially damaging wear that could occur if they extended from a side of the RTD as a result of sliding engagement with bore 40.
  • [0039] RTD 62 provides advantages over other temperature detectors, such as thermocouples. For example, the temperature detected by the RTD can be directly determined through measurement of a voltage drop across the RTD 62 at signal leads 63. Thermocouples, on the other hand, produce a voltage signal that must be transformed into something that represents the temperature sensed by the thermocouple using a cold junction compensator and an amplifier. Additionally, highly efficient couplings, such as gold pins and other special connectors, must be used when relaying the voltage signal of a thermocouple to prevent signal losses, something which is unnecessary for RTD's.
  • A low force coil spring [0040] 75 is mounted in bore 40 and bears against the flange 68 and is held in the bore 40 by cap 42. When unrestrained, the spring 75 directs the support member 61 along with RTD 62 outwardly such that flange 68 contacts shoulder 41 and end 64 extends through opening 43 of bore 40. The cross-sectional view of FIG. 7, shows the support member 61 retracted slightly from heat sink 29. It can be seen in FIG. 11 that the low force spring 75 will hold RTD 62 in engagement with the chip surface 16 under spring load, but the spring 75 will yield to permit the chip and RTD 62 at end 64 of support member 61 to be in intimate contact when the chip engaging surface 28 of heat sink 29 contacts the surface 16 of the chip 12.
  • Even though good contact is established between [0041] chip engaging surface 28 and surface 16 of chip 12, the thermal resistance between heat sink 29 and chip 12 limits the rate of heat transfer between heat sink 29 and chip 12, which, in turn, limits the amount of power that can be applied to the chip during burn-in temperature stressing. The primary reason for the high thermal resistance is due to incongruities between the chip engaging surface 28 of heat sink 29 and the surface 16 of chip 12, that results in the formation of a heat exchange gap 78 between non-contacting portions of the surfaces 16 and 28, as shown in FIG. 12. When the heat exchange gap 78 is filled with air, the thermal resistance between chip engaging surface 28 and chip surface 16 is increased due to the low thermal conductivity of air.
  • In accordance with one aspect of the present invention, thermal resistance between [0042] heat sink 29 and the chip 12 is decreased through an introduction of a liquid layer 71 there between, as shown in FIG. 12. Liquid layer 71 is preferably formed of distilled water, but other suitable liquids can be used. Liquid layer 71 has a high thermal conductivity relative to air, or even helium, resulting in a significant reduction to the thermal resistance between heat sink 29 and chip 12. Estimates indicate that the thermal resistance between a heat sink 29 with an eighteen by eighteen millimeter chip engaging surface 28 and a chip 12, can drop from approximately 0.3° C./Watt when helium fills the heat exchange gap 78, to approximately 0.06° C./Watt when the liquid layer 71 formed by distilled water is used to fill the heat exchange gap 78. This configuration allows for the temperature stressing of high performance chips through application of high power (e.g., 625 watts) while maintaining the temperature of the chips within the desired stressing range (e.g., typically 120-140° C.).
  • [0043] Liquid layer 71 can be formed of a small volume of liquid, (such as 0.05 cubic centimeters) in order to fill the heat exchange gap 78 that is formed between the non-contacting surfaces of heat sink 29 and the chip 12 being temperature stressed. Liquid layer 71 can be formed as a fixed volume of liquid, or can be formed by a liquid flow that is injected into heat exchange gap 78. Liquid layer 71 can be formed of a cooled liquid to provide further cooling of an integrated circuit chip 12 under stress. The flow rate of the liquid flow can be adjusted to provide additional heat transfer from the chip 12 being temperature stressed.
  • In accordance with one embodiment of the invention, [0044] heat exchange system 26 includes a liquid source 74 that is fluidically coupled to the heat exchange gap 78 to provide the liquid layer 71, as shown in FIGS. 6 and 7. In accordance with one embodiment, the liquid source 74 is coupled to at least one inlet port 120, which is in fluid communication with the heat exchange gap. In accordance with one embodiment, the inlet ports 120 are formed in heat sink 29 and open to the heat exchange gap 78 through chip engaging surface 28, as illustrated in FIGS. 4, 12 and 13. As shown in FIG. 7, it can be seen that an input line and connector 122 is connected to a hose barb 72 that in turn is connected to liquid source 74 through a valve 76. Valve 76 is preferably a solenoid valve that can be manually operated, operated by a controller, or operated in some other desired manner. Input line 122 is connected to a connecting passageway 124 that in turn is connected to a horizontal passageways 126 and 128 that are fluidically coupled to inlets 120 through vertical passageways 130, as shown in FIGS. 7, 10 and 13. Additional inlets 120 can be provided as desired.
  • During burn-in temperature stressing, the liquid layer may runoff, evaporate, or be converted into steam. The liquid layer in the heat exchange gap can be replenished by the liquid flow from [0045] liquid source 74. In accordance with one embodiment of the invention, burn-in oven 10 can purge the moist air in the burn-in chamber 132, in which the thermal and burn-in boards are mounted, with air purging system 134, shown in FIG. 1. Air purging system 134 includes a source of compressed gas 136, that is fluidically coupled to the burn-in chamber 132 by an air duct 138. A valve 140 is positioned in line with the air duct 138 and is configured to control an airflow (indicated by arrow 142) from the source of compressed gas 136 into the burn-in chamber 132. Source of compressed gas 136 includes compressed dry air, nitrogen, or other gas, which replaces the moist air within chamber 132 as airflow 142 is introduced therein. In addition to exhausting the moist air in the burn-in chamber 132, the air purging system 134 can provide additional cooling of the burn-in boards. A dehumidifier can also be included in the system to remove moisture from the air.
  • Liquid runoff from [0046] heat exchange gap 78 can be accommodated by the formation of a moat 160 surrounding chip engaging surface 28 of heat sink 29, as illustrated in FIG. 15. The moat 160 is defined by channel sections 162, 164, 166, and 168 that are formed in heat sink 29 and surround chip engaging surface 28. The moat 160 is sized to contain liquid overflow from the heat exchange gap 78 to prevent liquid from accumulating on the thermal board 20 to which heat sink 29 is mounted or contacting other components there below. One or more drains 169 are formed at the base of one of the channel sections. Drain 169 is preferably fluidically coupled to a vacuum system that sucks the liquid overflow from moat 160 into drain 169. The drained liquid overflow can then be delivered to waste or recovered for reuse.
  • The [0047] heat exchanger 26 is mounted in an outer cage or housing called a “cup” 77 that has a flange 79 around the periphery thereof that bolts or fastens in a suitable manner with fasteners to the metal thermal plate 23. The cup 77 has an opening 80 at the top and side walls 82 on two spaced sides with inwardly turning flanges 84 at the lower ends. The sides of the cup at right angles to walls 82 form openings 88 and 90, but there are internal flanges 84A, which, together with edges 84, surround a central opening 86 through which the end portion 29A of the thermal block extends with some clearance. The heat sink block 29 has a larger upper portion that forms a shoulder 29B that rests on the flange 84 when the portion 29A extends through the opening 86, as shown in FIGS. 7, 8 and 10. The openings 88 and 90 are at right angles to the main depending walls 82, to permit connections for water, and for the electrical connections to extend to the heat sink block. The portion 29A is encircled by the flanges 84 and 84A and the shoulder 29B is contained and rests thereon.
  • A [0048] resilient member 90, depicted as a compression coil spring, is mounted in a cavity 92 formed in the clamp plate 54. The resilient member 90 bears against the underside of the thermal plate 23, as shown in the cross-sectional views to provide a spring load urging the shoulder 29B down against the flanges or bottom edge walls 84 and 84A.
  • It should also be noted that the [0049] heat sink block 29 is spaced from the side walls 82, and the partial side walls forming the end openings 88 and 90, so that the block 29 can move up to displace the shoulders 29B from the wall flanges 84 and 84A under pressures applied when the thermal plate assembly 20 is moved down against an aligned burn-in board 14. The block 29 can cock slightly because the opening 86 is made slightly larger than the end portion 29A that extends through it. This permits the block 29 to generally align with the surface of the chip that it is moved against, so that the chip engaging surface 28 of the boss 27 of the heat sink will come into as close to continuous contact as possible as shown in FIG. 11. Additionally, the chip temperature sensor 60 will retract, as permitted by the spring 75.
  • The [0050] spring 90 will also retract and yield so that the heat sink 29 can move upwardly and self-aligning because the cup 77 will positively capture the heat sink and yet permit it to retract and move for self-alignment.
  • Thus, the [0051] chip temperature sensor 60 is spring loaded with a light spring, and the entire heat sink block is spring loaded with at least a second spring 90 of different strength. The structure permits the signal leads indicated 63 to pass upwardly through the bore 40, and through the bore 42D, and through the center opening in the gasket 50, and then laterally out sandwiches between the gaskets 50 and 52, as shown in FIGS. 7 and 10. This eliminates the need for providing a groove or opening for the sensor wires and yet keeps the passageway 40 sealed.
  • The [0052] heater 44 also has wires or leads 98 that pass out along the top plate 42B, and are supported thereby.
  • The temperature of the [0053] heat sink block 29 also is sensed and controlled with a suitable heat sink temperature sensor 100 that is installed in a bore in the block portion 29A as shown in FIG. 7. Suitable leads 101 can be used for sensor 100, which could be a thermocouple or other suitable temperature sensor.
  • As shown in FIG. 3, manifolds indicated at [0054] 102 are provided for the water connections, and are shown schematically, and solenoid valves shown schematically at 104 can be used for providing water to each of the individual heat sinks. A controller 106 shown schematically receives the signals from chip temperature sensor 60 and will provide signals to the individual solenoid valves 104 in a suitable manner to open them if cooling is needed and close them if the chip temperature is in the desired range. Controller 106 also can receive a signal from the heat sink temperature sensor 100 for overall temperature control and will provide output signals to the leads 98 for the heater, when that is needed. Control of the sensors 60 and 100 can be through suitable connectors and circuitry shown schematically on a circuit board 108 in FIG. 3. Other suitable connectors can be used for carrying the power to the solenoids 104, and the overall arrangement can be made so that the controller 106 is not on the thermal board, but is kept separate. By regulating the flow of water using individual solenoid valves for each of the heat sinks that are used with a burn-in board assembly (four in the situation shown) the temperature of the chips can be maintained in a desired stressing range, and again, the introduction of the liquid layer 71 to the heat exchange gap 78 provides good thermal coupling between the heat sink blocks and the associated chip on the burn-in board to accommodate irregularities in the surfaces that mate.
  • FIG. 14 is a schematic diagram of the control system of the [0055] heat exchange system 26 that is used to control the liquid flow between liquid source 74 and the heat exchange gap 78. As illustrated, controller 106 can receive a chip temperature output signal (depicted as arrow 150) from chip temperature sensor 60, and a heat sink temperature output signal (depicted as arrow 152) from heat sink temperature sensor 100. The chip temperature output signal 150 is indicative of a temperature of the chip 12 being stressed. The heat sink temperature output signal 152 is indicative of a temperature of the heat sink 29. Controller 106 can control the liquid flow (depicted as arrow 154) traveling to the heat exchange gap 78 in response to the temperature output signals.
  • In general, the [0056] liquid flow 154 can be triggered when the temperature of the chip 12 exceeds a threshold value. Accordingly, burn-in temperature stressing of chip 12 can be conducted without the formation of liquid layer 71 in the heat exchange gap 78 until the temperature of the chip 12, as indicated by chip temperature output signal 150, exceeds the threshold value, at which time controller 106 can open valve 76 to introduce the liquid layer 71 in the heat exchange gap 78 and thereby decrease the thermal resistance between heat sink 29 and chip 12 and increase the thermal transfer therebetween to cool chip 12 below the threshold value.
  • In accordance with another embodiment of the invention, [0057] controller 106 is adapted to calculate a thermal resistance between heat sink 29 and chip 12 using the chip temperature output signal 150 and the heat sink temperature output signal 152 from sensors 60 and 100, respectively. The thermal resistance can be calculated in accordance with the following equation:
  • Q=[T chip −T heat sink]/power
  • where Q is the thermal resistance, T[0058] chip is the temperature of the chip being temperature stressed, and Theat sink is the temperature of heat sink 29. In accordance with this embodiment, controller 106 introduces the liquid layer 71 in the heat exchange gap 78 when the thermal resistance (Q) rises above a threshold value. In the event that the thermal resistance (Q) exceeds the threshold value, the introduction of the liquid layer 71 to the heat exchange gap 78 by controller 106 will decrease the thermal resistance between heat sink 29 and the chip 12 being stressed to prevent the overheating of the chip. The threshold value of the thermal resistance (Q) can be selected to provide a sufficient safety factor that ensures that the system will not overheat.
  • The [0059] heater 44 can be used where the chip being stressed has circuits that do not consume much power, and the temperature has to be maintained at a particular level requiring the addition of heat. Of course, during that time, the water cooling would not be used, but heat would be added through the thermal block, and the heat conducting layer of liquid can also be provided at that time for conducting heat to a chip.
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. [0060]

Claims (28)

What is claimed is:
1. A temperature sensor configured for slidable mounting within a heat sink bore of a heat sink of a burn-in of a heat exchange system, the temperature sensor comprising:
a support member slidably mountable within the heat sink bore and having first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends;
a resistance temperature detector (RTD) seated in the socket and having a chip contact surface that is raised relative to the first end, the RTD configured to produce a temperature signal that is indicative of a temperature at the chip contact surface; and
signal leads attached to the RTD and extending through the bore of the support member and out the second end of the support member.
2. The temperature sensor of claim 1, wherein the socket is rectangular.
3. The temperature sensor of claim 1, wherein the signal leads extend from a bottom of the RTD, which opposes the chip contact surface.
4. A heat exchange system for controlling a temperature of an integrated circuit chip mounted in a burn-in oven, the system comprising:
a heat sink having a chip engaging surface that is positionable to engage a surface of a chip, a heat sink bore extending through the chip engaging surface, and a shoulder formed within the heat sink bore;
a temperature sensor including:
a support member slidably mounted in the heat sink bore and having first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends, wherein movement of the support member within the heat sink bore is limited by engagement of the shoulder by the flange;
a resistance temperature detector (RTD) seated in the socket and having a chip contact surface that is raised relative to the first end, the RTD configured to produce a temperature signal that is indicative of a temperature at the chip contact surface; and
signal leads attached to the RTD and extending through the bore of the support member and out the second end of the support member; and
a resilient member configured to urge the first end of the temperature sensor through the chip-engaging surface of the heat sink.
5. The system of claim 4, wherein the socket is rectangular.
6. The system of claim 4, wherein the signal leads extend from a bottom of the RTD, which opposes the chip contact surface.
7. The system of claim 4, wherein the resilient member is a spring that engages the flange on a side that is opposite the RTD.
8. The system of claim 4 including:
a liquid source;
an inlet port fluidically coupled to the liquid source and in fluid communication with a heat exchange gap between the surface of the chip and the chip engaging surface of the heat sink; and
a liquid flow travelling from the liquid source through the inlet port, and into the heat exchange gap to thereby form a liquid layer.
9. The system of claim 8, wherein the heat exchange gap is defined by non-contacting portions of the chip engaging surface of the heat sink and the surface of the chip.
10. The system of claim 8, wherein the heat sink includes a plurality of passageways in fluid communication with a source of heat exchanging fluid.
11. The system of claim 8, including a cup member for supporting the heat sink, the cup member having a wall portion encircling the heat sink and providing an opening through which a boss of the heat sink extends.
12. The system of claim 11, including at least one resilient member for urging the chip engaging surface of the heat sink against the surface of the chip.
13. The system of claim 8, wherein the liquid flow has a flow rate that is controlled in response to the temperature signal.
14. The system of claim 8, including:
a heat sink temperature sensor having a heat sink temperature output signal that is indicative of a temperature of the heat sink; and
a liquid controller for controlling the liquid flow in response to the heat sink temperate output signal from the heat sink temperature sensor and the temperature signal from the RTD.
15. The system of claim 14, wherein the liquid controller controls the liquid flow in response to a thermal resistance between the chip engaging surface of the heat sink and the surface of the chip using the heat sink temperature output signal and the temperature signal from the RTD.
16. The system of claim 8, wherein the liquid source contains distilled water.
17. The system of claim 8, wherein the heat sink includes a moat surrounding the chip-engaging surface.
18. A heat exchange system for controlling a temperature of an integrated circuit chip during burn-in temperature stressing of the chip, the system comprising:
a chip mount for supporting a chip;
a liquid source;
a heat sink having a chip engaging surface facing the chip mount, and having a plurality of inlet ports each fluidically couple to the liquid source, a heat sink bore extending through the chip engaging surface, and a shoulder formed within the heat sink bore; and
a temperature sensor including:
a support member slidably mounted in the heat sink bore and having first and second ends, a socket formed in the first end, a bore extending from the socket through the second end, and a flange positioned between the first and second ends, wherein movement of the support member within the heat sink bore is limited by engagement of the shoulder by the flange;
a resistance temperature detector (RTD) seated in the socket and having a chip contact surface that is raised relative to the first end, the RTD configured to produce a temperature signal that is indicative of a temperature at the chip contact surface; and
signal leads attached to the RTD and extending through the bore of the support member and out the second end of the support member;
a resilient member configured to urge the first end of the temperature sensor through the chip engaging surface of the heat sink; and
a liquid flow controller for controlling a liquid flow travelling from the liquid source through the inlet ports.
19. The system of claim 18, wherein the socket is rectangular.
20. The system of claim 18, wherein the signal leads extend from a bottom of the RTD, which opposes the chip contact surface.
21. The system of claim 18, wherein the liquid flow is controlled by the liquid flow controller based upon the temperature signal from the RTD.
22. The system of claim 18 including a heat sink temperature sensor having a heat sink temperature output signal that is indicative of a temperature of the heat sink.
23. The system of claim 22, wherein the liquid flow controller controls the liquid flow in response to the heat sink temperature output signal from the heat sink temperature sensor and the temperature signal from the RTD.
24. The system of claim 22, wherein the liquid flow controller controls the liquid flow in response to a thermal resistance between the chip engaging surface and a surface of a chip being temperature stressed, wherein the thermal resistance is calculated using the heat sink temperature output signal and the temperature signal from the RTD.
25. The system of claim 18 including a cup member for supporting the heat sink, the cup member having a wall portion encircling the heat sink and providing an opening through which a boss of the heat sink extends.
26. The system of claim 18, including at least one resilient member for urging the chip-engaging surface of the heat sink toward the chip mount.
27. The system of claim 18, wherein the liquid source comprises distilled water.
28. The system of claim 18, wherein the heat sink includes a moat surrounding the chip-engaging surface.
US10/669,736 2002-12-17 2003-09-24 Heat exchange system chip temperature sensor Abandoned US20040182564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/669,736 US20040182564A1 (en) 2002-12-17 2003-09-24 Heat exchange system chip temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/322,001 US7114556B2 (en) 2002-12-17 2002-12-17 Burn-in oven heat exchanger having improved thermal conduction
US10/669,736 US20040182564A1 (en) 2002-12-17 2003-09-24 Heat exchange system chip temperature sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/322,001 Continuation-In-Part US7114556B2 (en) 2002-12-17 2002-12-17 Burn-in oven heat exchanger having improved thermal conduction

Publications (1)

Publication Number Publication Date
US20040182564A1 true US20040182564A1 (en) 2004-09-23

Family

ID=46300024

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/669,736 Abandoned US20040182564A1 (en) 2002-12-17 2003-09-24 Heat exchange system chip temperature sensor

Country Status (1)

Country Link
US (1) US20040182564A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023424A1 (en) * 2004-07-30 2006-02-02 Espec Corp. Cooling apparatus
US20060032627A1 (en) * 2004-07-30 2006-02-16 Espec Corp. Burn-in apparatus
US20090024345A1 (en) * 2005-03-22 2009-01-22 Harald Prautzsch Device and Method for Determining the Temperature of a Heat Sink
US20090281761A1 (en) * 2008-05-09 2009-11-12 International Business Machines Corporation Detecting An Increase In Thermal Resistance Of A Heat Sink In A Computer System
WO2019103744A1 (en) * 2017-11-22 2019-05-31 Hewlett-Packard Development Company, L.P. Temperature-cycling microfluidic devices

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2484585A (en) * 1948-12-02 1949-10-11 Gen Electric Thermal responsive resistance device
US4381032A (en) * 1981-04-23 1983-04-26 Cutchaw John M Apparatus for cooling high-density integrated circuit packages
US4626643A (en) * 1984-04-04 1986-12-02 Valeo Heat sensor for measuring the temperature of a product heated in a microwave oven
US4791364A (en) * 1985-08-20 1988-12-13 Thermonics Incorporated Thermal fixture for testing integrated circuits
US4900948A (en) * 1988-03-16 1990-02-13 Micro Control Company Apparatus providing signals for burn-in of integrated circuits
US4969511A (en) * 1989-07-03 1990-11-13 Person George A Substrate thermal interface employing helium gap
US4982153A (en) * 1989-02-06 1991-01-01 Cray Research, Inc. Method and apparatus for cooling an integrated circuit chip during testing
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
US5086269A (en) * 1991-03-08 1992-02-04 Hewlett-Packard Company Burn-in process and apparatus
US5151574A (en) * 1989-10-18 1992-09-29 Cooper Industries, Inc. Electric soldering iron with plug-in tip temperature sensor
US5164661A (en) * 1991-05-31 1992-11-17 Ej Systems, Inc. Thermal control system for a semi-conductor burn-in
US5198753A (en) * 1990-06-29 1993-03-30 Digital Equipment Corporation Integrated circuit test fixture and method
US5198752A (en) * 1987-09-02 1993-03-30 Tokyo Electron Limited Electric probing-test machine having a cooling system
US5414370A (en) * 1991-07-19 1995-05-09 Sumitomo Electric Industries, Ltd. Burn-in apparatus and method which individually controls the temperature of a plurality of semiconductor devices
US5449234A (en) * 1993-11-29 1995-09-12 Caterpillar Inc. Air temperature sensor
US5582235A (en) * 1994-08-11 1996-12-10 Micro Control Company Temperature regulator for burn-in board components
US5722772A (en) * 1996-01-11 1998-03-03 Keil; Gary D. Quench cooling effectiveness apparatus for continous monitoring
US5911897A (en) * 1997-01-13 1999-06-15 Micro Control Company Temperature control for high power burn-in for integrated circuits
US5977785A (en) * 1996-05-28 1999-11-02 Burward-Hoy; Trevor Method and apparatus for rapidly varying the operating temperature of a semiconductor device in a testing environment
US6288371B1 (en) * 1999-07-13 2001-09-11 Micro Control Company Temperature controlled high power burn-in board heat sinks
US6496118B1 (en) * 2001-09-11 2002-12-17 Warren L. Smith Computer chip heat protection apparatus
US20040112581A1 (en) * 2002-12-17 2004-06-17 Hamilton Harold E. Burn-in oven heat exchanger having improved thermal conduction

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2484585A (en) * 1948-12-02 1949-10-11 Gen Electric Thermal responsive resistance device
US4381032A (en) * 1981-04-23 1983-04-26 Cutchaw John M Apparatus for cooling high-density integrated circuit packages
US4626643A (en) * 1984-04-04 1986-12-02 Valeo Heat sensor for measuring the temperature of a product heated in a microwave oven
US4791364A (en) * 1985-08-20 1988-12-13 Thermonics Incorporated Thermal fixture for testing integrated circuits
US5198752A (en) * 1987-09-02 1993-03-30 Tokyo Electron Limited Electric probing-test machine having a cooling system
US4900948A (en) * 1988-03-16 1990-02-13 Micro Control Company Apparatus providing signals for burn-in of integrated circuits
US4982153A (en) * 1989-02-06 1991-01-01 Cray Research, Inc. Method and apparatus for cooling an integrated circuit chip during testing
US4969511A (en) * 1989-07-03 1990-11-13 Person George A Substrate thermal interface employing helium gap
US5151574A (en) * 1989-10-18 1992-09-29 Cooper Industries, Inc. Electric soldering iron with plug-in tip temperature sensor
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
US5198753A (en) * 1990-06-29 1993-03-30 Digital Equipment Corporation Integrated circuit test fixture and method
US5086269A (en) * 1991-03-08 1992-02-04 Hewlett-Packard Company Burn-in process and apparatus
US5164661A (en) * 1991-05-31 1992-11-17 Ej Systems, Inc. Thermal control system for a semi-conductor burn-in
US5414370A (en) * 1991-07-19 1995-05-09 Sumitomo Electric Industries, Ltd. Burn-in apparatus and method which individually controls the temperature of a plurality of semiconductor devices
US5449234A (en) * 1993-11-29 1995-09-12 Caterpillar Inc. Air temperature sensor
US5582235A (en) * 1994-08-11 1996-12-10 Micro Control Company Temperature regulator for burn-in board components
US5722772A (en) * 1996-01-11 1998-03-03 Keil; Gary D. Quench cooling effectiveness apparatus for continous monitoring
US5977785A (en) * 1996-05-28 1999-11-02 Burward-Hoy; Trevor Method and apparatus for rapidly varying the operating temperature of a semiconductor device in a testing environment
US5911897A (en) * 1997-01-13 1999-06-15 Micro Control Company Temperature control for high power burn-in for integrated circuits
US6288371B1 (en) * 1999-07-13 2001-09-11 Micro Control Company Temperature controlled high power burn-in board heat sinks
US6496118B1 (en) * 2001-09-11 2002-12-17 Warren L. Smith Computer chip heat protection apparatus
US20040112581A1 (en) * 2002-12-17 2004-06-17 Hamilton Harold E. Burn-in oven heat exchanger having improved thermal conduction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023424A1 (en) * 2004-07-30 2006-02-02 Espec Corp. Cooling apparatus
US20060032627A1 (en) * 2004-07-30 2006-02-16 Espec Corp. Burn-in apparatus
US7498830B2 (en) 2004-07-30 2009-03-03 Espec Corp. Burn-in apparatus
US7558064B2 (en) * 2004-07-30 2009-07-07 Espec Corp. Cooling apparatus
US20090024345A1 (en) * 2005-03-22 2009-01-22 Harald Prautzsch Device and Method for Determining the Temperature of a Heat Sink
US9318406B2 (en) * 2005-03-22 2016-04-19 Sew-Eurodrive Gmbh & Co. Kg Device and method for determining the temperature of a heat sink
US9967966B2 (en) 2005-03-22 2018-05-08 Sew-Eurodrive Gmbh & Co. Kg Device and method for determining the temperature of a heat sink
US20090281761A1 (en) * 2008-05-09 2009-11-12 International Business Machines Corporation Detecting An Increase In Thermal Resistance Of A Heat Sink In A Computer System
US7962306B2 (en) * 2008-05-09 2011-06-14 International Business Machines Corporation Detecting an increase in thermal resistance of a heat sink in a computer system
WO2019103744A1 (en) * 2017-11-22 2019-05-31 Hewlett-Packard Development Company, L.P. Temperature-cycling microfluidic devices
US11235324B2 (en) 2017-11-22 2022-02-01 Hewlett-Packard Development Company, L.P. Temperature-cycling microfluidic devices

Similar Documents

Publication Publication Date Title
US6288371B1 (en) Temperature controlled high power burn-in board heat sinks
US7457117B2 (en) System for controlling the temperature of electronic devices
US20210293877A1 (en) Burn-in test apparatus for semiconductor devices
KR100813139B1 (en) Temperature controller of electronic components and handling apparatus
US6184504B1 (en) Temperature control system for electronic devices
US8766656B2 (en) Systems and methods for thermal control
US10126356B2 (en) Systems and methods for conforming test tooling to integrated circuit device with whirlwind cold plate
US6996996B1 (en) Sealed spray cooling system
US10908207B2 (en) Systems and methods for conforming device testers to integrated circuit device with pressure relief valve
TW201506420A (en) Direct injection phase change temperature control system
US9366721B2 (en) Apparatus for burn-in test
US20100147492A1 (en) IGBT cooling method
CN104904007A (en) Thermal head for device under test and method for controlling the temperature of device under test
US7114556B2 (en) Burn-in oven heat exchanger having improved thermal conduction
US9804223B2 (en) Systems and methods for conforming test tooling to integrated circuit device with heater socket
US9989557B2 (en) System and method for analyzing electronic devices having opposing thermal components
US20220128621A1 (en) Chip testing system
US20040182564A1 (en) Heat exchange system chip temperature sensor
US20110011564A1 (en) heat transfer device
CN111366806A (en) Adjustable constant temperature low temperature test equipment of components and parts
US9007080B2 (en) Systems and methods for conforming device testers to integrated circuit device profiles with feedback temperature control
US9229049B2 (en) Systems and methods for conforming test tooling to integrated circuit device profiles with compliant pedestals
KR102332664B1 (en) Apparatus for testing semiconductor package and apparatus for testing socket used for testing semiconductor package
CN211785920U (en) Low-temperature probe station and test cavity assembly thereof
KR100938363B1 (en) The reliability testing for temperature regulation system of memory module

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRO CONTROL COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TREMMEL, TOM A.;REEL/FRAME:014548/0306

Effective date: 20030922

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION