US20040185402A1 - Mixing process for increasing chemical reaction efficiency and reduction of byproducts - Google Patents

Mixing process for increasing chemical reaction efficiency and reduction of byproducts Download PDF

Info

Publication number
US20040185402A1
US20040185402A1 US10/459,789 US45978903A US2004185402A1 US 20040185402 A1 US20040185402 A1 US 20040185402A1 US 45978903 A US45978903 A US 45978903A US 2004185402 A1 US2004185402 A1 US 2004185402A1
Authority
US
United States
Prior art keywords
reagent
reactor
injection
ducts
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/459,789
Inventor
Goran Moberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/391,825 external-priority patent/US20040185401A1/en
Application filed by Individual filed Critical Individual
Priority to US10/459,789 priority Critical patent/US20040185402A1/en
Priority to US10/742,260 priority patent/US7335014B2/en
Priority to PCT/US2004/016539 priority patent/WO2004111538A1/en
Publication of US20040185402A1 publication Critical patent/US20040185402A1/en
Assigned to BLUE TORCH FINANCE LLC, AS AGENT reassignment BLUE TORCH FINANCE LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUANTUM CORPORATION, QUANTUM LTO HOLDINGS, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the present invention relates generally to a system and method for improving the efficiency of chemical reactions and for reducing byproducts production, and, more particularly, to a system and method for improving combustion efficiency and reduction of nitrogen oxides (NOx).
  • NOx nitrogen oxides
  • NOx formation is reduced in furnaces by the process of stage combustion, which includes administering an initial substoichiometric or suboptimal ratio of oxygen to fuel to maintain combustion gas temperatures below the peak NOx-producing temperature, about 2,800 degrees F. (approximately 1540 degrees C.), followed by the addition of secondary air, or over-fire-air (OFA), to finish the combustion reaction.
  • stage combustion includes administering an initial substoichiometric or suboptimal ratio of oxygen to fuel to maintain combustion gas temperatures below the peak NOx-producing temperature, about 2,800 degrees F. (approximately 1540 degrees C.), followed by the addition of secondary air, or over-fire-air (OFA), to finish the combustion reaction.
  • OFA over-fire-air
  • ROFA rotating over-fire-air
  • the present invention is directed to a mixing process and system for increased chemical reaction and chemical reactor efficiency and for improved reduction of by-products, in particular NOx reduction.
  • the present invention is further directed to a system and method for increased furnace efficiency through increased retention time in the furnace.
  • the process employs systems and methods to improve the reaction homogeneity and combustion zone swirling, resulting in combustion efficiency gains and thermal flux gains with corresponding gains in reactor efficiency.
  • the present invention is directed toward increasing furnace energy efficiency via increased combustion efficiency and increased furnace thermal flux, thereby also improving the reduction of pollutants, in particular the reduction of NOx.
  • the present invention increases the reaction efficiency through the rapid, thorough mixing of the injected secondary reagents with the reaction mixture via increased turbulence. This rapid, thorough mixing effects a more complete reaction of the primary reagent while reducing the secondary reagent requirements.
  • FIG. 1 is a side view of a combustion furnace operated according to the present invention.
  • FIG. 2 is a cross-sectional view of Zone A of the furnace of FIG. 1 showing the gas swirl and deflection turbulence induced by operation according to the present invention.
  • FIG. 3 is a cross-sectional view of Zone A of the furnace of FIG. 1 showing the gas rotation induced by operation according to the present invention.
  • FIG. 4 is a cross-sectional view of Zone B of the furnace showing the turbulence induced by rotation in a non-circular furnace.
  • FIG. 5 is a cross-sectional view of Zone C of the furnace showing the swirl, deflection, and rotation-induced turbulence induced by operation according to the present invention.
  • FIG. 6 shows a schematic view of a system according to the present invention.
  • FIG. 1 Shown in FIG. 1 is a side view of a combustion furnace, generally described as 12 , equipped with an air injection system composed of injection ports 14 .
  • the present invention provides for an air injection system that creates swirl 20 , peripheral turbulence 24 , and air column rotation 30 through the tangential injection of secondary air into the furnace.
  • the present invention thus creates turbulence and improves mixing of the overfire air with the combustion gases.
  • a method for increasing reaction efficiency and for reducing byproducts formation including the steps of providing a staged reaction system including a reactor and at least one reagent for introduction into a reaction process, preferably one that takes place within the reactor; introducing the at least one reagent to the reactor by asymmetrical injection at predetermined, spaced apart locations; controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the at least one reagent into the reaction system, thereby providing increased reaction efficiency and reduced byproducts formation in the reaction process.
  • the at least one reagent is a multiplicity of reagents, more preferably, at least a first reagent and a second reagent wherein the first reagent is introduced prior to the introduction of the second reagent in a first stage and the second reagent is introduced in a second stage, and wherein the stages are spaced apart in location and/or time.
  • the overfire air is injected into the combustion gases at a velocity and orientation such that the swirl and high turbulence generated in the combustion gases achieve a rapid and thorough mixing of the advected gases and the combustion gases.
  • injection of the overfire air into the combustion gases is effected in a manner such that the advected air travels across the column of combustion gases and is deflected by the opposing wall.
  • This forceful injection induces turbulent mixing of the advected air and combustion gases in at least three ways: 1) by the generation of swirl 20 in the gas column, 2) the generation of turbulence in proximity of the opposing wall after deflection of the advected air by the wall 24 , and 3) by the turbulence caused by the rotation of the column of combustion gases in a non-circular furnace, shown as 26 in FIG. 4.
  • Swirl 20 is also generated by the rotation of the gas column, as shown in FIG. 4.
  • the rotation shown as 30 in FIG. 3, is produced through the tangential injection into the furnace of the advected ROFA air, i.e. there is an injection port on each side of the furnace.
  • the injection port on the right may be, for example, toward the rear of the furnace while the injection port on the left side may be toward the front side of the furnace.
  • This placement of ports results in a “swirl” being created in the furnace much like the injection of water in a whirlpool can create a swirl, resulting in mixing, such as described in U.S. Pat. No. 5,809,910 issued Sep. 22, 1998 to Svendssen.
  • This system provides for the asymmetrical injection of overfire air (OFA) in order to create turbulence in the furnace, thus more thoroughly mixing the secondary air and the combustion gases.
  • OFA overfire air
  • Turbulence generated in proximity of the opposing wall is achieved when the advected air strikes the opposing wall before being completely mixed into the combustion gases. That is, the penetration of the injected secondary air is greater than the width of the furnace and the secondary air deflects off the opposing wall and generates turbulent flow. To achieve penetration and, therefore, turbulence, the advected gas must have sufficient linear momentum to penetrate the primary gas, strike the deflecting surface, and rotate. This linear momentum is described as mass flow for a continuous gas stream.
  • the mass flow (m) of a fluid is defined as follows:
  • the mass flow of the advected gas must be sufficient to traverse the column of flue gas, strike the deflecting surface, and create turbulence.
  • the distance from injection to deflection represented by the width of the flue gas chamber, dictates the necessary mass flow required to achieve turbulence.
  • greater mass flow of the advected air can be attained by increasing the velocity of the gas.
  • Rotation of combustion gas column in a furnace with a non-circular cross-section causes additional turbulence formation due to the non-circular cross-section.
  • the rotation is achieved, as previously described, by the use of opposing, coordinated, tangential injection of secondary air into the combustion gas column.
  • rotation of the gas column in a non-circular cross-section furnace produces rotation-induced turbulence, especially at the furnace/gas interface.
  • the staged system includes a series of reagent introduction ducts with nozzles advecting the reagents into a moving column of reagents, wherein the ducts are positioned in a predetermined, spaced apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety.
  • the reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor, as shown in FIGS.
  • the ducts may further include nozzles, which are preferably positioned at successively increasing distances along the axis of flow of the furnace away from the furnace, as shown in FIG. 1, such that rotation is maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column, generally described as 50 in FIG. 5, which is considered one of the reagents according to the present invention.
  • a fourth means of producing turbulence in the reactor of the present invention is through the advection of overfire air or gases that are cooler than the combustion gases.
  • This cooler air produces additional turbulence from the thermal expansion it undergoes upon mixing with the combustion gases. That is, the advected gas expands as it is warmed to the combustion gas temperature by the combustion gas, thus displacing and further mixing the surrounding combustion gas.
  • the advected air should not be so cold as to reduce the temperature of the exiting combustion gases and thus reduce heat exchange efficiency. In these furnaces, ambient air between ⁇ 20 and 100 degrees centigrade ( ⁇ 4 to 212 degrees F.) can be used in the advected gas.
  • Preheated gas such as from redirected combustion air, may also be used in the advected gas.
  • the redirected combustion air is preferably between 100 and 500 degrees centigrade (200 and 930 degrees F.) and is preferably mixed, if needed, with the ambient air at between 10 to 50% of the total advected gas, to provide an advection gas with temperature of between about 40 and 460 degrees centigrade. More preferably, the redirected combustion air is mixed at 20-40% of the total advected gas, if needed to provide an advection gas with temperature of between about 76 and 340 degrees centigrade. This gas mixture is therefore warm enough not to reduce the combustion gas temperature significantly and can also readily participate in the combustion reaction upon mixing with the combustion gas.
  • These turbulences can thus be further augmented by using high-velocity secondary air, which is considered one of the at least one reagents of the present invention.
  • secondary air was injected into reactors, where, in particular embodiments tested, the reactors were furnaces of various sizes at velocities ranging from 60-300 m/s using booster fans. The velocity necessary to provide sufficient mixing is dependent upon the size of the reactor, the vertical velocity of the combustion gasses and the configuration of the furnace.
  • the turbulence generated was sufficient that the entire furnace began operating as a single burner.
  • the increased turbulence, mixing swirl, and rotation in the furnace resulted in improved combustion, increased efficiency of the fuel combustion, reduction in secondary air requirements with consequential increased retention time of the combustion gases in the furnace, lower furnace exit gas temperatures due to better heat exchange in the furnace, increased boiler efficiency and lower pollutant emissions.
  • width (v/w) needs to be between about 2 to about 150 sec ⁇ 1 , preferably between about 3 and 60 sec ⁇ 1 .
  • the velocity of the advected air should result in the combustion gas column rotating at least one half-turn prior to exiting the furnace, more preferably at least 1 turn prior to exiting the furnace.
  • at least two levels of injection of at least one reagent are required, thereby providing for at least two stages of the system and method according to the present invention. More preferably at least three levels of injection are used for providing increased efficiency and for reduction of byproducts.
  • the velocity of the injected air needs to be such that the penetration of the injected reagent(s), which may include air, is greater than the reactor width by at least about 1.5 reactor widths, more preferably by at least 2 reactor widths.
  • the rotation of reagents in a non-circular cross-section reactor generates turbulence at the reagent/reactor surface interface.
  • This turbulence reduces the laminar flow of the combustion gases at the interface and therefore improves the thermal flux, or heat transfer, across the interface.
  • This effect can be advantageously used to improve the efficiency of exothermic and endothermic reactions.
  • the thermal flux may be advantageously used to remove heat from the reaction space, thereby reducing the reaction temperature and favoring the exothermic reaction.
  • the thermal flux may be used to add heat to the reaction space, thereby raising the temperature of the reaction space and favoring the endothermic reaction.
  • the turbulence generated by the rotation also further mixes the combustion gases and reduces laminar or parallel flow up the reactor.
  • Combustion reactions in prior art non-circular reactors tend to demonstrate sidedness, that is the reactions are on a particular side or zone of the furnace versus other sides, resulting in non-uniform combustion within the reactor.
  • the present invention advantageously utilizes the non-circular nature of the reactor's cross-section to eliminate the sidedness of the reactor.
  • the rotation that overcomes this sidedness is achieved by the coordinated, reinforcing, tangential, or asymmetrical, injection of high-velocity secondary air as a reagent into the combustion column of the reactor.
  • the vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia particles in the reactor, such as combustible particulate, thereby allowing them more time to burn in the reactor and further increasing the combustion efficiency and thermal flux efficiency of the reactor, as well as reducing the formation of byproducts, in particular pollutants such as NOx.
  • the present invention utilizes the co-ordinated, reinforcing, tangential injection of high-velocity secondary reagents to improve the reaction efficiency and thermal flux efficiency of reactors of various cross-sectional shapes.
  • a method according to the present invention for increasing reactor efficiency includes providing a reactor with a plurality of reagent introduction or injection ducts, asymmetrically positioned in an opposing manner at spaced apart, predetermined locations; injecting a first reagent such as fuel with a second reagent such as primary air through the burners prior to the injection of secondary air; injecting secondary air reagent through the plurality of reagent introduction or injection ducts at a velocity such that the ratio of the velocity to the reactor width is between about 2 sec ⁇ 1 to about 150 sec ⁇ 1 , preferably between about 3 and about 60 sec ⁇ 1 ; thereby increasing reaction efficiency and reactor efficiency via mixing and rotation of the reactor space, and improving the reduction of byproducts such as pollutants.
  • the velocity of the injected secondary reagent is such that the penetration of the secondary reagent is greater than the reactor width by at least about 1.5 widths and/or the reagents acting within a reaction zone, which may include combustion activity, rotates at least one half revolution prior to exiting the reactor.
  • FIG. 6 shows a schematic view of a preferred system according to the present invention, generally described as 20 , including a staged reaction system including a reactor 70 , a multiplicity of injection devices 14 for introduction of at least one reagent into a reaction process by asymmetrical injection at predetermined, spaced apart locations; at least 1 probe 40 installed downstream of at least one of the injectors of the system, and a controller 62 for controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the at least one reagent into the reaction system and mixing of the reaction space; thereby providing increased reaction efficiency and reduced byproducts formation in the reaction process.
  • a staged reaction system including a reactor 70 , a multiplicity of injection devices 14 for introduction of at least one reagent into a reaction process by asymmetrical injection at predetermined, spaced apart locations; at least 1 probe 40 installed downstream of at least one of the injectors of the system, and a controller 62 for controlling the asymmetrical injection to

Abstract

A system and method for increasing reaction and reactor efficiency, including the steps of providing a reactor with a plurality of reagent introduction or injection ducts, asymmetrically positioned in a tangentially reinforcing manner at spaced apart predetermined locations; injecting at least one reagent; wherein the velocity of the injected reagent(s) is such that the ratio of the reagent velocity to the reactor width is between about 2 sec−1 to about 150 sec−1; thereby increasing reaction and reactor efficiency and reducing the byproducts produced thereby, via mixing and rotation of the reaction space.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This nonprovisional utility patent application claims the benefit of one or more prior filed copending nonprovisional applications; a reference to each such prior application is identified as the relationship of the applications and application number (series code/serial number): The present application is a Continuation-In-Part of application Ser. No. 10/391,825, which is incorporated herein by reference in its/their entirety.[0001]
  • BACKGROUND OF THE INVENTION
  • (1) Field of the Invention [0002]
  • The present invention relates generally to a system and method for improving the efficiency of chemical reactions and for reducing byproducts production, and, more particularly, to a system and method for improving combustion efficiency and reduction of nitrogen oxides (NOx). [0003]
  • (2) Description of the Prior Art [0004]
  • Increases in fuel costs have required power generation plants seek increases in furnace efficiencies in order to reduce power generation costs. However, NOx formation must also be prevented to comply with environmental regulations. NOx formation is reduced in furnaces by the process of stage combustion, which includes administering an initial substoichiometric or suboptimal ratio of oxygen to fuel to maintain combustion gas temperatures below the peak NOx-producing temperature, about 2,800 degrees F. (approximately 1540 degrees C.), followed by the addition of secondary air, or over-fire-air (OFA), to finish the combustion reaction. Proper mixing of secondary air and combustion gases inside a furnace is thus important to achieve optimum combustion and has been improved by the use of rotating over-fire-air (ROFA). However, these existing NOx reduction systems do not optimize combustion efficiency or furnace heat exchange efficiency. [0005]
  • Therefore, a need exists to improve energy efficiency of ROFA systems without negatively affecting, or even improving the reduction of pollutants, in particular NOx reduction. [0006]
  • SUMMARY
  • The present invention is directed to a mixing process and system for increased chemical reaction and chemical reactor efficiency and for improved reduction of by-products, in particular NOx reduction. [0007]
  • The present invention is further directed to a system and method for increased furnace efficiency through increased retention time in the furnace. In a preferred embodiment, the process employs systems and methods to improve the reaction homogeneity and combustion zone swirling, resulting in combustion efficiency gains and thermal flux gains with corresponding gains in reactor efficiency. [0008]
  • The present invention is directed toward increasing furnace energy efficiency via increased combustion efficiency and increased furnace thermal flux, thereby also improving the reduction of pollutants, in particular the reduction of NOx. [0009]
  • It is one aspect of the present invention to increase chemical reaction efficiency by the asymmetrical, staged addition of reagents at high-velocity for the induction of turbulent mixing in the reaction mixture. Another aspect of the present invention is to increase reactor and reaction efficiency by increasing the residence time of the reactor and reducing laminar flow at surfaces. Yet another aspect of the present invention is to increase thermal flux in a reactor by increasing the residence time of combustion gases in the reactor and decreasing the laminar flow at heat exchange surface. In the present invention, these parameters are improved by the induction of turbulence in the reaction mixture and at the mixture/reactor interface. [0010]
  • Furthermore, the present invention increases the reaction efficiency through the rapid, thorough mixing of the injected secondary reagents with the reaction mixture via increased turbulence. This rapid, thorough mixing effects a more complete reaction of the primary reagent while reducing the secondary reagent requirements. [0011]
  • These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of a combustion furnace operated according to the present invention. [0013]
  • FIG. 2 is a cross-sectional view of Zone A of the furnace of FIG. 1 showing the gas swirl and deflection turbulence induced by operation according to the present invention. [0014]
  • FIG. 3 is a cross-sectional view of Zone A of the furnace of FIG. 1 showing the gas rotation induced by operation according to the present invention. [0015]
  • FIG. 4 is a cross-sectional view of Zone B of the furnace showing the turbulence induced by rotation in a non-circular furnace. [0016]
  • FIG. 5 is a cross-sectional view of Zone C of the furnace showing the swirl, deflection, and rotation-induced turbulence induced by operation according to the present invention. [0017]
  • FIG. 6 shows a schematic view of a system according to the present invention. [0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that such terms as “forward,” “rearward,” “front,” “back,” “right,” “left,” “upwardly,” “downwardly,” and the like are words of convenience and are not to be construed as limiting terms. [0019]
  • Referring now to the drawings in general, the illustrations are for the purpose of describing a preferred embodiment of the invention and are not intended to limit the invention thereto. Shown in FIG. 1 is a side view of a combustion furnace, generally described as [0020] 12, equipped with an air injection system composed of injection ports 14. As best seen in FIGS. 2 and 3, the present invention provides for an air injection system that creates swirl 20, peripheral turbulence 24, and air column rotation 30 through the tangential injection of secondary air into the furnace. The present invention thus creates turbulence and improves mixing of the overfire air with the combustion gases.
  • According to the present invention, a method is provided for increasing reaction efficiency and for reducing byproducts formation, including the steps of providing a staged reaction system including a reactor and at least one reagent for introduction into a reaction process, preferably one that takes place within the reactor; introducing the at least one reagent to the reactor by asymmetrical injection at predetermined, spaced apart locations; controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the at least one reagent into the reaction system, thereby providing increased reaction efficiency and reduced byproducts formation in the reaction process. Preferably, the at least one reagent is a multiplicity of reagents, more preferably, at least a first reagent and a second reagent wherein the first reagent is introduced prior to the introduction of the second reagent in a first stage and the second reagent is introduced in a second stage, and wherein the stages are spaced apart in location and/or time. [0021]
  • In one exemplary embodiment, the overfire air is injected into the combustion gases at a velocity and orientation such that the swirl and high turbulence generated in the combustion gases achieve a rapid and thorough mixing of the advected gases and the combustion gases. [0022]
  • As shown in FIG. 2, another embodiment according to the present invention, injection of the overfire air into the combustion gases is effected in a manner such that the advected air travels across the column of combustion gases and is deflected by the opposing wall. This forceful injection induces turbulent mixing of the advected air and combustion gases in at least three ways: 1) by the generation of [0023] swirl 20 in the gas column, 2) the generation of turbulence in proximity of the opposing wall after deflection of the advected air by the wall 24, and 3) by the turbulence caused by the rotation of the column of combustion gases in a non-circular furnace, shown as 26 in FIG. 4. Swirl 20 is also generated by the rotation of the gas column, as shown in FIG. 4.
  • The rotation, shown as [0024] 30 in FIG. 3, is produced through the tangential injection into the furnace of the advected ROFA air, i.e. there is an injection port on each side of the furnace. The injection port on the right may be, for example, toward the rear of the furnace while the injection port on the left side may be toward the front side of the furnace. This placement of ports results in a “swirl” being created in the furnace much like the injection of water in a whirlpool can create a swirl, resulting in mixing, such as described in U.S. Pat. No. 5,809,910 issued Sep. 22, 1998 to Svendssen. This system provides for the asymmetrical injection of overfire air (OFA) in order to create turbulence in the furnace, thus more thoroughly mixing the secondary air and the combustion gases.
  • Turbulence generated in proximity of the opposing wall is achieved when the advected air strikes the opposing wall before being completely mixed into the combustion gases. That is, the penetration of the injected secondary air is greater than the width of the furnace and the secondary air deflects off the opposing wall and generates turbulent flow. To achieve penetration and, therefore, turbulence, the advected gas must have sufficient linear momentum to penetrate the primary gas, strike the deflecting surface, and rotate. This linear momentum is described as mass flow for a continuous gas stream. The mass flow (m) of a fluid is defined as follows:[0025]
  • m=density of fluid×Area×average fluid velocity normal to Area
  • The mass flow of the advected gas must be sufficient to traverse the column of flue gas, strike the deflecting surface, and create turbulence. The distance from injection to deflection, represented by the width of the flue gas chamber, dictates the necessary mass flow required to achieve turbulence. However, since the desired rate of added gas mass is limited, it is often desirable to increase the velocity of the advected gas, thereby increasing the mass flow. Thus, greater mass flow of the advected air can be attained by increasing the velocity of the gas. [0026]
  • Rotation of combustion gas column in a furnace with a non-circular cross-section causes additional turbulence formation due to the non-circular cross-section. The rotation is achieved, as previously described, by the use of opposing, coordinated, tangential injection of secondary air into the combustion gas column. Thus, rotation of the gas column in a non-circular cross-section furnace produces rotation-induced turbulence, especially at the furnace/gas interface. [0027]
  • In a system according to the present invention, a staged system and method are provided. In one embodiment, the staged system includes a series of reagent introduction ducts with nozzles advecting the reagents into a moving column of reagents, wherein the ducts are positioned in a predetermined, spaced apart manner to create rotational flow of the combustion zone, as described in U.S. Pat. No. 5,809,910, incorporated herein by reference in its entirety. The reagent injection ducts are preferably arranged to act at mutually separate levels or stages on the mutually opposing walls of the reactor, as shown in FIGS. 1 and 2, which illustrate a furnace of an incineration unit as the reactor and/or are displaced laterally in pairs in relation to one another. Additionally, the ducts may further include nozzles, which are preferably positioned at successively increasing distances along the axis of flow of the furnace away from the furnace, as shown in FIG. 1, such that rotation is maintained by the co-ordinated, reinforcing, tangential injection of high-velocity secondary air into the combustion gas column, generally described as [0028] 50 in FIG. 5, which is considered one of the reagents according to the present invention.
  • A fourth means of producing turbulence in the reactor of the present invention is through the advection of overfire air or gases that are cooler than the combustion gases. This cooler air produces additional turbulence from the thermal expansion it undergoes upon mixing with the combustion gases. That is, the advected gas expands as it is warmed to the combustion gas temperature by the combustion gas, thus displacing and further mixing the surrounding combustion gas. However, in the case of combustion power plants, the advected air should not be so cold as to reduce the temperature of the exiting combustion gases and thus reduce heat exchange efficiency. In these furnaces, ambient air between −20 and 100 degrees centigrade (−4 to 212 degrees F.) can be used in the advected gas. Preheated gas, such as from redirected combustion air, may also be used in the advected gas. The redirected combustion air is preferably between 100 and 500 degrees centigrade (200 and 930 degrees F.) and is preferably mixed, if needed, with the ambient air at between 10 to 50% of the total advected gas, to provide an advection gas with temperature of between about 40 and 460 degrees centigrade. More preferably, the redirected combustion air is mixed at 20-40% of the total advected gas, if needed to provide an advection gas with temperature of between about 76 and 340 degrees centigrade. This gas mixture is therefore warm enough not to reduce the combustion gas temperature significantly and can also readily participate in the combustion reaction upon mixing with the combustion gas. [0029]
  • These turbulences can thus be further augmented by using high-velocity secondary air, which is considered one of the at least one reagents of the present invention. During testing of the system, secondary air was injected into reactors, where, in particular embodiments tested, the reactors were furnaces of various sizes at velocities ranging from 60-300 m/s using booster fans. The velocity necessary to provide sufficient mixing is dependent upon the size of the reactor, the vertical velocity of the combustion gasses and the configuration of the furnace. [0030]
  • Surprisingly, the turbulence generated was sufficient that the entire furnace began operating as a single burner. The increased turbulence, mixing swirl, and rotation in the furnace resulted in improved combustion, increased efficiency of the fuel combustion, reduction in secondary air requirements with consequential increased retention time of the combustion gases in the furnace, lower furnace exit gas temperatures due to better heat exchange in the furnace, increased boiler efficiency and lower pollutant emissions. [0031]
  • From the tests it was determined that the ratio of the advected air velocity to the reactor, or in a particular embodiment a furnace, width (v/w) needs to be between about 2 to about 150 sec[0032] −1, preferably between about 3 and 60 sec−1.
  • Furthermore, it was determined that the velocity of the advected air should result in the combustion gas column rotating at least one half-turn prior to exiting the furnace, more preferably at least 1 turn prior to exiting the furnace. To achieve this rotation, at least two levels of injection of at least one reagent are required, thereby providing for at least two stages of the system and method according to the present invention. More preferably at least three levels of injection are used for providing increased efficiency and for reduction of byproducts. [0033]
  • Alternatively, the velocity of the injected air needs to be such that the penetration of the injected reagent(s), which may include air, is greater than the reactor width by at least about 1.5 reactor widths, more preferably by at least 2 reactor widths. [0034]
  • The reduction in the secondary air results in a decrease in combustion gas volume, which results in an increased residence time of the combustion gases in the furnace and thus more time for thermal flux to occur into the furnace water/steam conduits for a furnace example of a reactor system and method according to the present invention. [0035]
  • Additionally, the rotation of reagents in a non-circular cross-section reactor generates turbulence at the reagent/reactor surface interface. This turbulence reduces the laminar flow of the combustion gases at the interface and therefore improves the thermal flux, or heat transfer, across the interface. This effect can be advantageously used to improve the efficiency of exothermic and endothermic reactions. For exothermic reactions, the thermal flux may be advantageously used to remove heat from the reaction space, thereby reducing the reaction temperature and favoring the exothermic reaction. For endothermic reactions, the thermal flux may be used to add heat to the reaction space, thereby raising the temperature of the reaction space and favoring the endothermic reaction. The turbulence generated by the rotation also further mixes the combustion gases and reduces laminar or parallel flow up the reactor. Combustion reactions in prior art non-circular reactors tend to demonstrate sidedness, that is the reactions are on a particular side or zone of the furnace versus other sides, resulting in non-uniform combustion within the reactor. Thus, the present invention advantageously utilizes the non-circular nature of the reactor's cross-section to eliminate the sidedness of the reactor. The rotation that overcomes this sidedness is achieved by the coordinated, reinforcing, tangential, or asymmetrical, injection of high-velocity secondary air as a reagent into the combustion column of the reactor. [0036]
  • Similarly, the vigorous mixing in the combustion area produced by the present invention also prevents the laminar flow and consequential lower residence time of higher inertia particles in the reactor, such as combustible particulate, thereby allowing them more time to burn in the reactor and further increasing the combustion efficiency and thermal flux efficiency of the reactor, as well as reducing the formation of byproducts, in particular pollutants such as NOx. [0037]
  • Thus, the present invention utilizes the co-ordinated, reinforcing, tangential injection of high-velocity secondary reagents to improve the reaction efficiency and thermal flux efficiency of reactors of various cross-sectional shapes. [0038]
  • A method according to the present invention for increasing reactor efficiency includes providing a reactor with a plurality of reagent introduction or injection ducts, asymmetrically positioned in an opposing manner at spaced apart, predetermined locations; injecting a first reagent such as fuel with a second reagent such as primary air through the burners prior to the injection of secondary air; injecting secondary air reagent through the plurality of reagent introduction or injection ducts at a velocity such that the ratio of the velocity to the reactor width is between about 2 sec[0039] −1 to about 150 sec−1, preferably between about 3 and about 60 sec−1; thereby increasing reaction efficiency and reactor efficiency via mixing and rotation of the reactor space, and improving the reduction of byproducts such as pollutants.
  • Alternatively or additionally, the velocity of the injected secondary reagent is such that the penetration of the secondary reagent is greater than the reactor width by at least about 1.5 widths and/or the reagents acting within a reaction zone, which may include combustion activity, rotates at least one half revolution prior to exiting the reactor. [0040]
  • FIG. 6 shows a schematic view of a preferred system according to the present invention, generally described as [0041] 20, including a staged reaction system including a reactor 70, a multiplicity of injection devices 14 for introduction of at least one reagent into a reaction process by asymmetrical injection at predetermined, spaced apart locations; at least 1 probe 40 installed downstream of at least one of the injectors of the system, and a controller 62 for controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the at least one reagent into the reaction system and mixing of the reaction space; thereby providing increased reaction efficiency and reduced byproducts formation in the reaction process.
  • Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the following claims. [0042]

Claims (16)

What is claimed is:
1. A method for increasing reaction efficiency and for reducing byproducts formation, comprising the steps of:
providing a staged reaction system including a reactor and at least one reagent for introduction into a reaction process,
introducing the at least one reagent to the reactor by asymmetrical injection at predetermined, spaced apart locations;
controlling the asymmetrical injection to produce a high velocity mass flow and a turbulence resulting in dispersion of the at least one reagent into the reaction system and mixing of the reaction space,
thereby providing increased reaction efficiency and reduced byproducts formation in the reaction process.
2. The method according to claim 1, further including the step of adding additional reagents in stages, spaced apart in location and time, at high velocity.
3. The method according to claim 1, wherein at least one reagent is fuel.
4. The method according to claim 1, wherein at least one reagent is secondary air.
5. The method according to claim 2, wherein the additional reagents are introduced at a plurality of injection ducts, asymmetrically positioned in an opposing manner;
6. The method according to claim 1, wherein two reagents, a first reagent and a second reagent, are introduced to the system in a sequential manner with the first reagent being introduced prior to the second reagent.
7. The method according to claim 1, the velocity of the injected reagent is such that the ratio of the velocity to the reactor width is between about 2 sec−1 to about 150 sec−1;
thereby increasing combustion efficiency and furnace efficiency via swirl, peripheral turbulence, and rotation-induce turbulence of the reactor.
10. The method of claim 1, wherein the system has at least two levels of injection ducts.
11. The method of claim 10, wherein the system has at least three levels of injection ducts for injection of the at least one reagent.
12. The method of claim 1, wherein the velocity of the injected reagent is such that the ratio of the velocity to the reactor width is between about 3 sec−1 to about 60 sec−1.
13. A method for increasing combustion efficiency in a reactor and for reducing byproducts therein, comprising:
providing a reactor with a plurality of reagent injection ducts, asymmetrically positioned in an opposing manner;
injecting a first reagent through a first stage prior to injection of a second reagent;
injecting a second reagent through the plurality of reagent injection ducts;
wherein the velocity of the injected second reagent is such that the penetration of the injected reagents is greater than the reactor width by at least about 1.5 widths;
thereby increasing reaction efficiency and reducing pollutants via mixing and rotation of the reaction space.
16. The method of claim 13, wherein the system has at least two levels of reagent introduction ducts for injection of the at least one reagent.
17. The method of claim 16, wherein the system has at least three levels of reagent ducts for injection of the at least one reagent.
18. A method for increasing chemical reaction efficiency, comprising:
providing a reactor with a plurality of reagent injection ducts, asymmetrically positioned in an opposing manner;
injecting at least one reagent through the ducts in stages;
wherein the velocity of the at least one reagent is such that the at least one injected reagent rotates at least one half revolution prior to exiting the reactor;
thereby increasing reactor efficiency via mixing and rotation of the reagents in the reactor.
21. The method of claim 18, wherein the system has at least two levels of reagent ducts for injection of the reagents.
22. The method of claim 18, wherein the system has at least three levels of reagent ducts for injection of the reagents.
US10/459,789 2003-03-19 2003-06-12 Mixing process for increasing chemical reaction efficiency and reduction of byproducts Abandoned US20040185402A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/459,789 US20040185402A1 (en) 2003-03-19 2003-06-12 Mixing process for increasing chemical reaction efficiency and reduction of byproducts
US10/742,260 US7335014B2 (en) 2003-06-12 2003-12-20 Combustion NOx reduction method
PCT/US2004/016539 WO2004111538A1 (en) 2003-06-12 2004-05-26 Mixing process for increasing chemical reaction efficiency and reduction of byproducts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/391,825 US20040185401A1 (en) 2003-03-19 2003-03-19 Mixing process for combustion furnaces
US10/459,789 US20040185402A1 (en) 2003-03-19 2003-06-12 Mixing process for increasing chemical reaction efficiency and reduction of byproducts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/391,825 Continuation-In-Part US20040185401A1 (en) 2003-03-19 2003-03-19 Mixing process for combustion furnaces

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/461,567 Continuation-In-Part US20040185399A1 (en) 2003-03-19 2003-06-13 Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US10/742,260 Continuation-In-Part US7335014B2 (en) 2003-03-19 2003-12-20 Combustion NOx reduction method

Publications (1)

Publication Number Publication Date
US20040185402A1 true US20040185402A1 (en) 2004-09-23

Family

ID=33551339

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/459,789 Abandoned US20040185402A1 (en) 2003-03-19 2003-06-12 Mixing process for increasing chemical reaction efficiency and reduction of byproducts

Country Status (2)

Country Link
US (1) US20040185402A1 (en)
WO (1) WO2004111538A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050013755A1 (en) * 2003-06-13 2005-01-20 Higgins Brian S. Combustion furnace humidification devices, systems & methods
US20050180904A1 (en) * 2004-02-14 2005-08-18 Higgins Brian S. Method for in-furnace regulation of SO3 in catalytic systems
US20050181318A1 (en) * 2004-02-14 2005-08-18 Higgins Brian S. Method for in-furnace reduction flue gas acidity
US20050260114A1 (en) * 2004-05-18 2005-11-24 Higgins Brian S Method for flue-gas reduction of pollutants in combustion processes
US20070003890A1 (en) * 2003-03-19 2007-01-04 Higgins Brian S Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US20090314226A1 (en) * 2008-06-19 2009-12-24 Higgins Brian S Circulating fluidized bed boiler and method of operation
US7775791B2 (en) 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel
US8069825B1 (en) 2005-11-17 2011-12-06 Nalco Mobotec, Inc. Circulating fluidized bed boiler having improved reactant utilization
US9599334B2 (en) 2013-04-25 2017-03-21 Rjm Corporation (Ec) Limited Nozzle for power station burner and method for the use thereof
US20210140629A1 (en) * 2018-09-11 2021-05-13 Ihi Corporation Boiler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951525B1 (en) * 2009-10-21 2012-10-26 Fives Pillard METHOD FOR OPERATING A BOILER

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105540A (en) * 1954-04-07 1963-10-01 Babcock & Wilcox Co Method of and apparatus for burning low heat content fuel
US4208386A (en) * 1976-03-03 1980-06-17 Electric Power Research Institute, Inc. Urea reduction of NOx in combustion effluents
US4584948A (en) * 1983-12-23 1986-04-29 Coal Industry (Patents) Limited Combustors
US4672900A (en) * 1983-03-10 1987-06-16 Combustion Engineering, Inc. System for injecting overfire air into a tangentially-fired furnace
US4922249A (en) * 1987-01-20 1990-05-01 S. A. T. Societe Anonyme De Telecommunications Binary-to-bipolar converter
US5146858A (en) * 1989-10-03 1992-09-15 Mitsubishi Jukogyo Kabushiki Kaisha Boiler furnace combustion system
US5809910A (en) * 1992-05-18 1998-09-22 Svendssen; Allan Reduction and admixture method in incineration unit for reduction of contaminants
US6042371A (en) * 1996-07-18 2000-03-28 Toyota Jidosha Kabushiki Kaisha Combustion apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1092897A (en) * 1977-09-16 1981-01-06 Arun K. Mehta Fuel firing method
JP2003021322A (en) * 2001-07-09 2003-01-24 Nippon Soken Inc Combustion system of heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105540A (en) * 1954-04-07 1963-10-01 Babcock & Wilcox Co Method of and apparatus for burning low heat content fuel
US4208386A (en) * 1976-03-03 1980-06-17 Electric Power Research Institute, Inc. Urea reduction of NOx in combustion effluents
US4672900A (en) * 1983-03-10 1987-06-16 Combustion Engineering, Inc. System for injecting overfire air into a tangentially-fired furnace
US4584948A (en) * 1983-12-23 1986-04-29 Coal Industry (Patents) Limited Combustors
US4922249A (en) * 1987-01-20 1990-05-01 S. A. T. Societe Anonyme De Telecommunications Binary-to-bipolar converter
US5146858A (en) * 1989-10-03 1992-09-15 Mitsubishi Jukogyo Kabushiki Kaisha Boiler furnace combustion system
US5809910A (en) * 1992-05-18 1998-09-22 Svendssen; Allan Reduction and admixture method in incineration unit for reduction of contaminants
US6042371A (en) * 1996-07-18 2000-03-28 Toyota Jidosha Kabushiki Kaisha Combustion apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449288B2 (en) 2003-03-19 2013-05-28 Nalco Mobotec, Inc. Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US20070003890A1 (en) * 2003-03-19 2007-01-04 Higgins Brian S Urea-based mixing process for increasing combustion efficiency and reduction of nitrogen oxides (NOx)
US20050013755A1 (en) * 2003-06-13 2005-01-20 Higgins Brian S. Combustion furnace humidification devices, systems & methods
US8021635B2 (en) 2003-06-13 2011-09-20 Nalco Mobotec, Inc. Combustion furnace humidification devices, systems and methods
US20100159406A1 (en) * 2003-06-13 2010-06-24 Higgins Brian S Combustion Furnace Humidification Devices, Systems & Methods
US7670569B2 (en) 2003-06-13 2010-03-02 Mobotec Usa, Inc. Combustion furnace humidification devices, systems & methods
US20050180904A1 (en) * 2004-02-14 2005-08-18 Higgins Brian S. Method for in-furnace regulation of SO3 in catalytic systems
US20050181318A1 (en) * 2004-02-14 2005-08-18 Higgins Brian S. Method for in-furnace reduction flue gas acidity
US8251694B2 (en) 2004-02-14 2012-08-28 Nalco Mobotec, Inc. Method for in-furnace reduction flue gas acidity
US7537743B2 (en) 2004-02-14 2009-05-26 Mobotec Usa, Inc. Method for in-furnace regulation of SO3 in catalytic NOx reducing systems
US20050260114A1 (en) * 2004-05-18 2005-11-24 Higgins Brian S Method for flue-gas reduction of pollutants in combustion processes
US7404940B2 (en) 2004-05-18 2008-07-29 Mobotec Usa, Inc. Method for flue-gas reduction of pollutants in combustion processes
WO2005115592A3 (en) * 2004-05-18 2007-02-01 Brian S Higgins Method for flue-gas reduction of pollutants in combustion processes
US20070009413A1 (en) * 2004-05-18 2007-01-11 Higgins Brian S Method for flue-gas reduction of pollutants in combustion processes
WO2005115592A2 (en) * 2004-05-18 2005-12-08 Higgins Brian S Method for flue-gas reduction of pollutants in combustion processes
US8069825B1 (en) 2005-11-17 2011-12-06 Nalco Mobotec, Inc. Circulating fluidized bed boiler having improved reactant utilization
US7775791B2 (en) 2008-02-25 2010-08-17 General Electric Company Method and apparatus for staged combustion of air and fuel
US8069824B2 (en) 2008-06-19 2011-12-06 Nalco Mobotec, Inc. Circulating fluidized bed boiler and method of operation
US20090314226A1 (en) * 2008-06-19 2009-12-24 Higgins Brian S Circulating fluidized bed boiler and method of operation
US9599334B2 (en) 2013-04-25 2017-03-21 Rjm Corporation (Ec) Limited Nozzle for power station burner and method for the use thereof
US20210140629A1 (en) * 2018-09-11 2021-05-13 Ihi Corporation Boiler

Also Published As

Publication number Publication date
WO2004111538A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
JP2603989Y2 (en) Collective concentric horn combustion system
US6485289B1 (en) Ultra reduced NOx burner system and process
US5195450A (en) Advanced overfire air system for NOx control
US5470224A (en) Apparatus and method for reducing NOx , CO and hydrocarbon emissions when burning gaseous fuels
PL212230B1 (en) Low nox combustion
US20040185401A1 (en) Mixing process for combustion furnaces
JPH01305206A (en) Burner
EP1219894B1 (en) Pulverized coal burner
EP0828971A1 (en) LOW NOx BURNER
US20040185402A1 (en) Mixing process for increasing chemical reaction efficiency and reduction of byproducts
US5343820A (en) Advanced overfire air system for NOx control
JPH0783405A (en) Combination body of low nox burner and nox port
EP0554254B1 (en) AN ADVANCED OVERFIRE AIR SYSTEM FOR NOx CONTROL
JPH07310903A (en) Combustion for pulverized coal and pulverized coal burner
JP2008075911A (en) Gas injection port
JP2000039108A (en) LOW NOx BURNER
JPH07301403A (en) Combustion device of boiler furnace
JPH09126412A (en) Low nox boiler
RU2047049C1 (en) Injector
Marion et al. Advanced overfire air system for NOx control
CN116241879A (en) Thermal power generation boiler with mixed combustion of ammonia and coal
CN116025889A (en) Thermal power generation boiler with mixed combustion of ammonia and coal
KR20000008416U (en) Low Pollution Furnace
JPH10332137A (en) Air supply device for two-stage combustion of boiler
SI9111419A (en) An advanced overfire air system for NOx control

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BLUE TORCH FINANCE LLC, AS AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:QUANTUM CORPORATION;QUANTUM LTO HOLDINGS, LLC;REEL/FRAME:057107/0001

Effective date: 20210805