US20040211894A1 - Imaging sensor optical system - Google Patents

Imaging sensor optical system Download PDF

Info

Publication number
US20040211894A1
US20040211894A1 US10/763,735 US76373504A US2004211894A1 US 20040211894 A1 US20040211894 A1 US 20040211894A1 US 76373504 A US76373504 A US 76373504A US 2004211894 A1 US2004211894 A1 US 2004211894A1
Authority
US
United States
Prior art keywords
sensor
detector
radiation
window
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/763,735
Other versions
US7212283B2 (en
Inventor
John Hother
Robert Cockshott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proneta Ltd
Original Assignee
Proneta Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proneta Ltd filed Critical Proneta Ltd
Assigned to PRONETA LTD. reassignment PRONETA LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COCKSHOTT, ROBERT ALEXANDER, HOTHER, JOHN ANTHONY
Publication of US20040211894A1 publication Critical patent/US20040211894A1/en
Application granted granted Critical
Publication of US7212283B2 publication Critical patent/US7212283B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to an optical system image sensor operating in structures which may contain media with different spectral transmission characteristics; for example, in vessels containing both crude oil and water, either by rendering all media transparent simultaneously, or, on command, by rendering one or more of the media opaque to allow its detection.
  • Image sensors operating in structures containing fluids transparent in the visible region of the electromagnetic spectrum such as water are well-known, and disclosed, for example, in EP0846840, EP0264511, and WO0206631.
  • Operation may be extended to opaque fluids by flushing the vessel with a transparent fluid in the vicinity of the image sensor, and a method for doing this is disclosed in U.S. Pat. No. 4,238,158.
  • the invention in one aspect, provides an in-vessel or down-hole imaging sensor comprising means adapted to selectively emit and/or detect two or more independently controllable wavelengths or wavebands.
  • the independently controllable wavelengths or wavebands render the media in the field of view opaque or transparent, or reveal the presence of one or more medium or component in the media by some other means such as exciting fluorescence.
  • the invention provides a method of obtaining images in a vessel, comprising operating a sensor and illuminating means to selectively emit and/or detect radiation of two or more independently controllable wavelengths or wavebands.
  • This is provided by a further aspect of the invention, which provides an in-vessel or down-hole imaging sensor comprising a sensor window; illuminating means for emitting radiation; optical means for directing said radiation through an area of said sensor window in a first direction and optical means for receiving radiation reflected from a target illuminated by radiation from said illuminating means through the same area of the said sensor window in a second direction.
  • a target in contact with the image sensor window will be illuminated by the outgoing radiation.
  • the image sensor preferably comprises an imaging detector and associated electronics and mechanical housing, an illuminator and, optionally, a common-path optic which forms the window for both the outgoing and incoming radiation.
  • the detector comprises a vacuum tube device sensitive to visible and near infrared radiation, but may also comprise other detectors such as charge couple devices, active pixel sensors, thermo-electric sensors, bolometric sensors or InGaAs devices, either as two-dimensional arrays, or linear array sensor or single point detectors with a scanning device.
  • detectors such as charge couple devices, active pixel sensors, thermo-electric sensors, bolometric sensors or InGaAs devices, either as two-dimensional arrays, or linear array sensor or single point detectors with a scanning device.
  • thermo-electric cooler may be used to stabilize or lower the temperature of the detector, and the heat pumped from it is conducted through the housing into the surrounding fluid.
  • Other coolers may be used, including, but not limited to, Joule-Thomson or Stirling coolers.
  • energy can be absorbed into a medium within the housing which heats up or changes phase. Cooling or temperature control allows the invention to be used in media at temperatures higher than the desired or maximum operating temperature of the detector, detectors or other components.
  • the cooler or coolers may be used to control, reduce or eliminate the dark signal generated in the detector or detectors, and to control, reduce or stabilise other temperature dependant effects in the detector or electronics.
  • incoming energy is focused onto the detector using optics which can incorporate anti-reflection coatings optimised either for the full spectral range of incoming radiation, or for the discrete wavelengths or wavebands emitted by the illuminators or transmitted by the media in which the image sensor will be operated.
  • optics designed for use in the visible spectrum but still providing adequate performance in the spectral range used by the image sensor may be employed.
  • the optics map the scene onto the detector using a tan theta function, but other techniques such as a tele-centric system may be employed.
  • fiducial marks may be incorporated in the images to assist the use of the images for metrology.
  • the optical system may place the fiducial marks in the scene viewed by the detector, or the marks may be added electronically to the output signal.
  • the illuminator comprises sources selected to match the spectral transmission of the media in which the image sensor will be used, which may be laser diodes, for example, in the 1500-1650 nm waveband for crude oil and in the visible-1350 nm waveband for water.
  • sources selected to match the spectral transmission of the media in which the image sensor will be used, which may be laser diodes, for example, in the 1500-1650 nm waveband for crude oil and in the visible-1350 nm waveband for water.
  • a broadband source such as an incandescent filament lamp, discharge (including flash) lamp, Light Emitting Diode or an electro-luminescent device could be used together with filters to select the appropriate wavebands, or a combination of broad and narrow band sources, with or without filters, could be used.
  • a broadband source and detector or detectors together with mechanically interchanged filters, or filters whose transmission wavelength or waveband can be altered electrically, may be used.
  • a mosaic of wavelength selecting filters are applied to individual pixels in an array or line detector, and images in each medium obtained by appropriate electronic processing of the output signals. For example, this is done in conventional single-sensor colour cameras operating in the visible region of the spectrum, where a red filter is placed over every third pixel in each line on the sensor, a green filter over each neighbouring pixel, and a blue filter over the remaining pixels.
  • this technique can be applied to an arbitrary number of wavebands some or all of which can be outside the visible region of the spectrum.
  • some or all of the wavelengths or wavebands required are produced by the illuminator, and radiation returning from the target is focused onto a slit. Radiation passing through the slit is then dispersed using, for example, a prism or prisms or a diffraction grating, operate in either transmission or in reflection. The dispersed spectrum is then imaged onto multiple discrete detectors or a detector array or arrays, and wavelength selection is performed by selecting the appropriate discrete detector or location within a detector array. In this embodiment, spectral information is provided in one axis and spatial information is provided in the other, and two-dimension spatial images may be formed by scanning the incoming radiation over the slit.
  • illumination is provided in all the required wavebands, and a separate detector is provided for the waveband transmitted by each medium, the incoming radiation being separated into the appropriate wavebands by a beam-splitter or beam splitters and directed to each detector by relay optics.
  • a single focusing lens may be used, which does not have to bring all wavelengths to a focus on the same plane as the detectors may be placed at different distances from the target, or separate focusing lenses optimised for each waveband may be used.
  • Detectors optimised for each waveband may also be used, and may provide colour or monochrome outputs.
  • a monochrome infrared sensor may be used for the oil transmission band, and a colour detector may be used in the visible region of the spectrum in water.
  • This arrangement provides separate images in each medium simultaneously from one instrument. Each medium can be detected by comparing the images.
  • images are combined electronically or by other means to form composite images, and individual media can be revealed by subtracting images or by adding false colour.
  • more than one assembly comprising relay and focusing optics and detector or detectors is provided to enable stereoscopic images to be obtained.
  • polarizing filters may be included in the optical system.
  • Oil and water are discussed in the example above, but by incorporating appropriate illumination further embodiments of the invention can be applied to different media and also to more than two media.
  • the media may be, e.g., gases or vapours.
  • the absorption in crude oil in the 1500-1650 nm band is typically much higher than the absorption in water in the visible to 1350 nm band.
  • the output power for each emitted waveband is matched to characteristics of the medium it penetrates, allowing the image sensor to operate continuously while passing through different media. In the oil and water example, lower output power is needed in the water band than in the oil band.
  • the illumination level at each wavelength or waveband can only be exactly equal at one distance from the image sensor. In the more strongly absorbing medium, objects closer than this distance will appear brighter, and objects further away will appear fainter, than in the more weakly absorbing medium.
  • a further aspect of the invention provides a down-hole or in-vessel imaging apparatus comprising illuminating means for emitting radiation of a specified wavelength or waveband through a medium to a target; detector means for detecting radiation deflected by said target; and amplifier means for providing non-linear amplification of the detector means output.
  • the preferred embodiment of the invention incorporates a video amplifier with a non-linear response to compress the dynamic range in the analogue output signal. Since the non-linear absorption effects described above are generally believed to be exponential, or approximately exponential, this could be counteracted, in one example using a logarithmic or approximately logarithmic response. If the absorption effect is not exponential, then an appropriate amplifier response could be selected to counteract the effect. This enhances the pictures and makes video and still images easier to interpret when using display systems with lower dynamic range than the detector, and reduces the number of bits needed to digitise the output. Non-linear functions may also be applied by digital processing after digitising the analogue output.
  • different functions may be selected to suit the medium in which the sensor is operating, for example, a linear response could be selected in water and a logarithmic response in oil.
  • the commands used to select the illumination source could also be also to select the response functions, or separate command could be used.
  • This apparatus may find application in different types of imaging systems where the medium surrounding the target has a non-linear illumination absorption effect.
  • this arrangement is used with a selectable wavelength or waveband system as previously described.
  • Different amplifiers may be provided for the different wavelengths or wavebands for different media, with means for selecting between the amplifiers.
  • a single amplifier may be provided with selectable characteristics.
  • the non-linear function applied to output signal can be varied, as appropriate to the particular application, for example by adjusting the slope of a logarithmic amplifier. This may be adjusted by remote control.
  • a remote control command may be provided by superimposing control signals on the video output signal.
  • the illumination power is controlled automatically using a signal derived from the output from the detector to ensure that energy received from the scene lies within the dynamic range of the detector.
  • illumination is provided by a single laser diode or an array of laser diodes assembled into a module or modules installed within the image sensor housing and incorporating the mechanical mounting and electrical connections to each diode. Separate electrical connections are provided to diodes or groups of diodes emitting at different wavelengths.
  • the emitting device or devices are also thermally coupled to a heat sink such as the image sensor housing using a high conductivity link or heat pipe, optionally incorporating a thermo-electric or other cooler such as a Joule-Thomson or Stirling device to control, stabilize or lower the temperature of the emitting devices.
  • energy can be absorbed into a medium within the housing which heats up or changes phase.
  • the illumination system may be operated when the housing is immersed in media at temperatures above the desired or maximum operating temperature of components used to provide the illumination.
  • the cooler or coolers may be used to control, stabilise or increase the output from the emitting devices and to control, reduce or stabilize other temperature dependant effects.
  • the cooling system may be used to increase the output from laser diodes, the output from which reduces as the temperature increases.
  • illumination is provided by collimated laser beams scanned over the target using known techniques such as rotating mirrors.
  • illumination is provided by a broad-band source or sources such as an incandescent filament lamp or lamps or by a discharge lamp or lamps and, optionally, selectable optical filters are used to provide wavelength switching.
  • a broad-band source or sources such as an incandescent filament lamp or lamps or by a discharge lamp or lamps and, optionally, selectable optical filters are used to provide wavelength switching.
  • illumination is provided by more than one independently-controllable broad-band source, each with its own wavelength restricting filter or filters.
  • the filters may be moveable or may be fixed with independently moveable shutters to select the desired wavelengths or wavebands.
  • cylindrical spheric or aspheric lenses in front an array of laser diodes or other single or multiple discrete sources direct radiation into the common-path optic.
  • lenslet arrays may be used.
  • a diffuser may be placed in the optical path of the illumination system. This arrangement provides uniform illumination of the scene viewed by the image sensor. The envelope of the beam projected into the surrounding media may be matched to the field of view of the image sensor at the desired operating distance, or a collimated beam may be used.
  • the illumination may be polarized, for example when operating with targets or media sensitive to polarisation.
  • the common-path optic also forms the image sensor window and must withstand the ambient pressure in media in which the image sensor is immersed.
  • the common-path optic transmits the out-going illumination radiation and the returning radiation from the scene through the same window area in contact with the surrounding media.
  • the refractive index of the common path optic is chosen to match that of the media in which the image sensor operates in order to avoid reflections at the window.
  • reflections are controlled using anti-reflection coatings matched to the wavebands emitted by the illuminator and the refractive indices of the media in which the image sensor will operate.
  • the common-path optic may comprise an assembly of more than one component, including, for example, solid components coupled by appropriate means such as optical cement or a fluid or fluids which may be chosen such that the refractive indices match, or which may incorporate anti-reflection coatings.
  • the common-path optic can also provide optical power, for example to form all or part of the image sensor focussing optics, the illuminator beam shaping optics and to correct distortion in the optical system.
  • the common-path optic can be configured in various ways to do this, for example by shaping external surfaces, incorporating other refracting or reflecting optical components, incorporating diffractive elements or graded index elements, or a combination of some or all of these techniques.
  • the illumination system is external to the image sensor casing.
  • This arrangement may be used when the refractive indices of the surrounding media are significantly different; for example, when viewing in air objects coated in oil or wax. In this situation the invention will show the visible surface, and, on command, render the oil or wax transparent to reveal the underlying surface of the object.
  • One embodiment of the image sensor is supplied from a single electrical supply, and incorporates power conditioning for the laser diode array and detector, an analogue video output, and control electronics to adjust independently the power output of two or more laser diodes or groups of diodes.
  • the output power control is commanded by signals applied to the video output line, decoded within the image sensor.
  • signals applied to the video line are also used to adjust the characteristics of the non-linear amplifier.
  • a further embodiment of the invention incorporates internal digitisation and compression of the output signal, and a digital output, with separate command lines.
  • Further embodiments of the invention can incorporate some or all of the following features: power from internal batteries, internal data storage, and pre-programmed, automatic switching between the different wavelengths. If some or all of these features are incorporated, the resulting embodiment of the image sensor can be deployed remotely to acquire images autonomously without the need for external connections, with the internally-stored data being down-loaded on retrieval of the sensor.
  • the image sensor is arranged in a cylindrical geometry with a sideways-looking optical system.
  • This configuration is suited to imaging the inner walls of pipes, and may be deployed horizontally, for example on a pig or crawler, or vertically, for example on a wireline.
  • the side view window is curved to match the cylindrical profile of the sensor housing, and, when operating in media which do not match the refractive index of the window, compensating optics can be included to counteract the cylindrical-lens effect of the curved outer face.
  • a similar arrangement but with a rectangular rather than a cylindrical housing, is suited to inspecting the inner walls of tanks.
  • the image sensor is arranged with the window at the end of the housing. This geometry is suited to inspecting the bottom surface of tanks or obstructions in pipes.
  • FIG. 1 shows a schematic view of one embodiment of a sensor according to the present invention
  • FIG. 2 shows a schematic view of a further embodiment of a sensor according to the present invention
  • FIG. 3 shows a schematic view of a yet further embodiment of a sensor according to the present invention.
  • FIG. 4 shows a block diagram showing the common-path optic principle of an embodiment of the invention
  • FIG. 5 shows a schematic view of an optical system used in a sensor according to the invention
  • FIG. 6 shows another embodiment of an optical system used in a sensor according to the invention.
  • FIG. 7 shows another embodiment of an optical system used in a sensor according to the invention.
  • FIG. 8 shows an electrical block diagram of an image sensor processing stage
  • FIG. 9 shows a sensor without a common path optic operating in a single medium opaque to visible radiation, as disclosed in GB2332331B, in which the present invention may find application.
  • FIG. 1 shows a schematic diagram of a structure 1 in which a sideways-looking embodiment of the image sensor 2 is immersed in medium 3 and medium 5 .
  • the target 4 is viewed by the image sensor while straddling the boundary between the two media.
  • the figure shows the image sensor deployed in the vertical axis, but, with an appropriate delivery mechanism, it may be deployed in any orientation.
  • the image sensor 2 emits radiation at wavelengths which are transmitted by each media 3 and 5 .
  • the sensor will emit radiation in the 1500-1650 nm waveband, and also in the visible-1350 nm waveband.
  • sensor 2 may comprise light emitting or laser diodes, or groups of diodes, which operate in the respective wavebands and, for simultaneous imaging in both media, both diodes or groups of diodes will be operated as illumination sources.
  • sensor 2 could emit radiation covering the visible-1650 nm waveband which would then be split, by a beam-splitter (not shown).
  • different wavelengths or wavebands would be used.
  • the illumination radiation is preferably directed through a sensor window, as described in more detail in relation to FIGS. 4 to 6 .
  • the radiation is, because of its selected wavelengths, transmitted through both media 3 and 5 and strikes the target 4 .
  • the reflected radiation is focused onto the detector by optics 8 , and an image of the target can then be derived using any of various known imaging techniques including the use of two dimensional photo-sensitive arrays such as charge coupled devices, or vacuum tube devices, or line or single point sensors together with scanning mechanisms, and appropriate electronic readouts.
  • the radiation reflected by the target is directed through the same sensor window as the emitted radiation (as discussed further below) and processed by the imaging sensor to form an image of the target.
  • FIG. 2 shows a schematic diagram of a structure 1 containing an end-viewing embodiment of the image sensor 6 . As with the sideways-looking embodiment, this configuration can be deployed in any orientation.
  • the image sensor is immersed in medium 3 , while the target 4 is immersed in medium 5 .
  • the sensor 6 can be arranged to emit radiation which is transmitted by medium 3 . If medium 5 is also transparent to some or all of this radiation, the target can be illuminated. If the spectral transmission “windows” in medium 3 and medium 5 partly overlap, medium 5 can be made either transparent or opaque while the sensor is in medium 3 by selecting the wavelength of the emitted radiation. If there is no overlap between the spectral transmission “windows” in media 3 and 5 , medium 5 will be detected as a dark region in front of the sensor but the target cannot be illuminated. Medium 5 will remain opaque until the sensor passes through medium 3 and into medium 5 . Once in medium 5 , illumination with an appropriate wavelength or waveband can be emitted and the target 4 will be visible.
  • Switching between the different wavebands or wavelengths could be done automatically by switches operating according to a pre-programmed sequence.
  • FIG. 3 shows a schematic diagram of a structure 1 containing an end-viewing embodiment of the image sensor 6 .
  • the image sensor and the target 4 are immersed in medium 3 , and the target is coated in medium 5 .
  • this configuration can be deployed in any orientation.
  • the senor 2 could be arranged to emit radiation in a waveband which is transmitted by medium 3 , but not by medium 5 , to give an image of the coated object target 4 . Further, on command, the sensor could emit radiation which is transmitted by medium 5 , to reveal the underlying surface of the coated object.
  • the types of illumination source and image processing are as described above in relation to FIG. 1. Switching between the different wavebands or wavelengths could be done automatically by switches operating according to a pre-programmed sequence.
  • FIG. 4 shows a block diagram illustrating the principle of the common-path optic.
  • Radiation at the selected wavelength(s), is emitted by the illumination source(s) 11 of the imaging sensor 2 , 6 .
  • This radiation is directed by a so-called common-path optic 7 (described in more detail in relation to FIGS. 4, 5 and 6 ) to exit through a sensor window.
  • the emitted radiation strikes the target 4 in the vicinity of the window and radiation reflected by the target is directed through the same area 17 on the same window through which the illumination radiation passes.
  • the common-path optic 7 then transmits the reflected radiation to focusing optics 8 which form an image of the target on the detector(s) 9 of the imaging sensor.
  • this common-path optic allows imaging at close range in media with limited transmission.
  • the target is still illuminated even when in contact with the window, an improvement on the arrangement illustrated in FIG. 3, where the sensor window and illuminators are separated by a finite distance.
  • FIGS. 5 to 7 below show examples of practical implementations of the common-path optic.
  • FIG. 5 shows a schematic diagram of the optical system for an example embodiment of the invention, in this case an end-viewing image sensor.
  • the common-path optic 7 is sealed into the image sensor housing 10 and forms the window for the illumination system and the detector.
  • the output from illuminators 11 which may incorporate beam shaping or collimating optics, is directed into the common-path optic. Radiation reflected back from the target 4 passes through the common-path optic to the lens 8 which focuses the scene onto the detector 9 .
  • two illuminators are shown, but any number from one to a continuous ring of units, or a single ring-shaped unit, around the detector lens 8 may be used.
  • FIG. 6 shows a schematic diagram of the common-path optic in an alternative embodiment of an end-viewing geometry.
  • the common-path optic 7 is sealed into housing 10 , which contains the detector 9 , detector focusing optics 8 and the illuminator 11 and illuminator beam shaping optics 12 .
  • Target 4 is illuminated by, and viewed by, the image sensor.
  • FIG. 7 shows a schematic diagram of the common-path optic for the sideways-looking embodiment of the image sensor.
  • the common-path optic 7 is also sealed into the housing 10 , and forms the window for the illuminator 11 and the detector. Radiation from the illuminator passes through the common-path optic to the target 4 . Returning radiation passes back into the common-path optic 7 and is reflected by the coating 13 into the lens 8 and focused onto the detector 9 .
  • the external surface of the common-optic may be curved in one direction to match a cylindrical housing, to facilitate operation in a cylindrical vessel.
  • FIG. 8 shows an electrical block diagram for an example embodiment of the image processing components of the sensor. Since, where objects are viewed in different media, different rates of absorption exist, the illumination levels at each wavelength or waveband are different. So as to mitigate the effects of this, a video amplifier 14 with a non-linear response may be connected to the detector 9 to compress the dynamic range in the output signal. For example, a logarithmic response may be applied. The response characteristics of the amplifier are preferably adjustable; for example, the slope would be adjustable if a logarithmic response were applied. The resulting processed image can then be further transmitted, recorded and/or displayed.
  • the non-linear amplifier may be integral with the image sensor, or may be located in a separate unit outside the image sensor housing.
  • One application for the present invention is in a system such as that described in GB-B-2332331, an embodiment of which is shown schematically in FIG. 9, the system being adapted for detecting targets in different media, as described above.
  • FIG. 9 shows a schematic diagram of a sensor 6 without a common path optic operating in a medium 3 (for example crude oil) contained in a tubular structure 1 .
  • a medium 3 for example crude oil
  • the radial position of the sensor is controlled by the spider assembly 17 .
  • the illuminators 11 which, using the present invention, are as described above, are mounted on the spider assembly, in this case to illuminate the internal walls of the structure, and returning radiation is collected at the sensor window 16 .
  • This system could also be adapted to incorporate the common path optic and/or amplifier features described above.

Abstract

The present invention relates to an in-vessel or down-hole optical imaging sensor or system for operating in structures which may contain media with different spectral transmission characteristics. The imaging sensor of the present invention selectively emits and/or detects two or more independently controllable wavelengths or wavebands. The imaging sensor comprises illuminating means for emitting radiation of a specified wavelength or waveband through a medium to a target, detector means for detecting the radiation deflected by said target and amplifier means for providing non-linear amplification of the detector means output. The sensor of the present invention may also comprise a sensor window and optical means for directing the radiation through an area of the sensor window in a first direction and optical means for receiving the radiation reflected from the target through the same area of the sensor window in a second direction. The optical means then transmit the reflected radiation to focusing optics which form an image of the target on the detector.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present patent application claims priority from Great Britain Patent Application No. 0301447.9, filed on Jan. 22, 2003. [0001]
  • BACKGROUND OF THE INVENTION
  • 1). Field of the Invention [0002]
  • The present invention relates to an optical system image sensor operating in structures which may contain media with different spectral transmission characteristics; for example, in vessels containing both crude oil and water, either by rendering all media transparent simultaneously, or, on command, by rendering one or more of the media opaque to allow its detection. [0003]
  • 2). Discussion of Related Art [0004]
  • In the oil industry, amongst others, it is necessary to inspect surfaces for cracks, corrosion, scale or other defects or characteristics, to examine welds to establish the integrity of a structure and ascertain the need for repair or replacement. It is desirable to use a single sensor to inspect internal surfaces of structures such as tanks, wells and pipelines containing crude oil and water, and also distinguish between oil and water, without emptying, flushing or cleaning the structure. It is also desirable to inspect surfaces coated with oil or wax in air. [0005]
  • Image sensors operating in structures containing fluids transparent in the visible region of the electromagnetic spectrum such as water are well-known, and disclosed, for example, in EP0846840, EP0264511, and WO0206631. [0006]
  • Operation may be extended to opaque fluids by flushing the vessel with a transparent fluid in the vicinity of the image sensor, and a method for doing this is disclosed in U.S. Pat. No. 4,238,158. [0007]
  • An image sensor operating directly in fluids which are opaque in the visible region of the spectrum but transmit energy at other wavelengths, for example, crude oil, is disclosed in GB2332331B. Transmission in these fluids may be limited, restricting operation of a practical sensor to close range. [0008]
  • The absorption at a given wavelength varies widely for different crude oils, but the general shape of each plot of absorption against wavelength is very similar and transmission “windows” occur at the same wavelengths in the spectrum, as shown in U.S. Pat. No. 5,266,800 which discloses a method for using infrared absorption measurements to discriminate between different crude oils. [0009]
  • As well as discriminating between crude oils, is also possible to distinguish between other fluids by measuring their spectral absorption characteristics, as disclosed in U.S. Pat. No. 4,994,671. [0010]
  • It is an object of the present invention to enable an image sensor to operate within, and also by remote command or autonomous internal control to discriminate between, media such as crude oil and water, which have transmission bands in different regions of the spectrum. [0011]
  • SUMMARY OF THE INVENTION
  • The invention, in one aspect, provides an in-vessel or down-hole imaging sensor comprising means adapted to selectively emit and/or detect two or more independently controllable wavelengths or wavebands. [0012]
  • The independently controllable wavelengths or wavebands render the media in the field of view opaque or transparent, or reveal the presence of one or more medium or component in the media by some other means such as exciting fluorescence. [0013]
  • In accordance with another aspect, the invention provides a method of obtaining images in a vessel, comprising operating a sensor and illuminating means to selectively emit and/or detect radiation of two or more independently controllable wavelengths or wavebands. [0014]
  • It is also an object of the present invention to provide uniform illumination and maximum illumination power on targets in the surrounding media close to, or in contact with, the image sensor window, to allow imaging at close range (e.g., from 0 to 25 mm) in media with limited transmission. This is provided by a further aspect of the invention, which provides an in-vessel or down-hole imaging sensor comprising a sensor window; illuminating means for emitting radiation; optical means for directing said radiation through an area of said sensor window in a first direction and optical means for receiving radiation reflected from a target illuminated by radiation from said illuminating means through the same area of the said sensor window in a second direction. Thus a target in contact with the image sensor window will be illuminated by the outgoing radiation. [0015]
  • The image sensor preferably comprises an imaging detector and associated electronics and mechanical housing, an illuminator and, optionally, a common-path optic which forms the window for both the outgoing and incoming radiation. [0016]
  • In the preferred embodiment of the invention, the detector comprises a vacuum tube device sensitive to visible and near infrared radiation, but may also comprise other detectors such as charge couple devices, active pixel sensors, thermo-electric sensors, bolometric sensors or InGaAs devices, either as two-dimensional arrays, or linear array sensor or single point detectors with a scanning device. [0017]
  • In a further embodiment of the invention, a thermo-electric cooler may be used to stabilize or lower the temperature of the detector, and the heat pumped from it is conducted through the housing into the surrounding fluid. Other coolers may be used, including, but not limited to, Joule-Thomson or Stirling coolers. Alternatively, energy can be absorbed into a medium within the housing which heats up or changes phase. Cooling or temperature control allows the invention to be used in media at temperatures higher than the desired or maximum operating temperature of the detector, detectors or other components. For example, the cooler or coolers may be used to control, reduce or eliminate the dark signal generated in the detector or detectors, and to control, reduce or stabilise other temperature dependant effects in the detector or electronics. [0018]
  • In the preferred embodiment of the invention, incoming energy is focused onto the detector using optics which can incorporate anti-reflection coatings optimised either for the full spectral range of incoming radiation, or for the discrete wavelengths or wavebands emitted by the illuminators or transmitted by the media in which the image sensor will be operated. [0019]
  • In an alternative embodiment of the invention, optics designed for use in the visible spectrum but still providing adequate performance in the spectral range used by the image sensor may be employed. [0020]
  • In the preferred embodiment of the invention the optics map the scene onto the detector using a tan theta function, but other techniques such as a tele-centric system may be employed. [0021]
  • In a further embodiment of the invention, fiducial marks may be incorporated in the images to assist the use of the images for metrology. The optical system may place the fiducial marks in the scene viewed by the detector, or the marks may be added electronically to the output signal. [0022]
  • In the preferred embodiment of the invention, the illuminator comprises sources selected to match the spectral transmission of the media in which the image sensor will be used, which may be laser diodes, for example, in the 1500-1650 nm waveband for crude oil and in the visible-1350 nm waveband for water. When both types of source are illuminated imaging is possible in both oil and water simultaneously. When only the source in the 1500-1650 nm band is energised imaging in crude oil is possible but water will appear black, as it absorbs strongly in this waveband, and the converse is true when only the source emitting in the visible-1350 nm band is energised. Alternatively, a broadband source such as an incandescent filament lamp, discharge (including flash) lamp, Light Emitting Diode or an electro-luminescent device could be used together with filters to select the appropriate wavebands, or a combination of broad and narrow band sources, with or without filters, could be used. By this means imaging is possible in both crude oil and water, and, by energising only one of the two types of illumination, the presence of either fluid may be detected as globules, layers, or separate slugs, in multiphase flow, in tanks, wells, or pipelines. [0023]
  • In an alternative embodiment of the invention, a broadband source and detector or detectors together with mechanically interchanged filters, or filters whose transmission wavelength or waveband can be altered electrically, may be used. [0024]
  • In an alternative embodiment of the invention, a mosaic of wavelength selecting filters are applied to individual pixels in an array or line detector, and images in each medium obtained by appropriate electronic processing of the output signals. For example, this is done in conventional single-sensor colour cameras operating in the visible region of the spectrum, where a red filter is placed over every third pixel in each line on the sensor, a green filter over each neighbouring pixel, and a blue filter over the remaining pixels. Clearly this technique can be applied to an arbitrary number of wavebands some or all of which can be outside the visible region of the spectrum. [0025]
  • In an alternative embodiment of the invention, some or all of the wavelengths or wavebands required are produced by the illuminator, and radiation returning from the target is focused onto a slit. Radiation passing through the slit is then dispersed using, for example, a prism or prisms or a diffraction grating, operate in either transmission or in reflection. The dispersed spectrum is then imaged onto multiple discrete detectors or a detector array or arrays, and wavelength selection is performed by selecting the appropriate discrete detector or location within a detector array. In this embodiment, spectral information is provided in one axis and spatial information is provided in the other, and two-dimension spatial images may be formed by scanning the incoming radiation over the slit. [0026]
  • In an alternative embodiment of the invention, illumination is provided in all the required wavebands, and a separate detector is provided for the waveband transmitted by each medium, the incoming radiation being separated into the appropriate wavebands by a beam-splitter or beam splitters and directed to each detector by relay optics. A single focusing lens may be used, which does not have to bring all wavelengths to a focus on the same plane as the detectors may be placed at different distances from the target, or separate focusing lenses optimised for each waveband may be used. Detectors optimised for each waveband may also be used, and may provide colour or monochrome outputs. In the oil and water example, a monochrome infrared sensor may be used for the oil transmission band, and a colour detector may be used in the visible region of the spectrum in water. This arrangement provides separate images in each medium simultaneously from one instrument. Each medium can be detected by comparing the images. In a further embodiment of this technique, images are combined electronically or by other means to form composite images, and individual media can be revealed by subtracting images or by adding false colour. [0027]
  • In an alternative embodiment of the invention, more than one assembly comprising relay and focusing optics and detector or detectors is provided to enable stereoscopic images to be obtained. [0028]
  • Optionally, polarizing filters may be included in the optical system. [0029]
  • Oil and water are discussed in the example above, but by incorporating appropriate illumination further embodiments of the invention can be applied to different media and also to more than two media. The media may be, e.g., gases or vapours. [0030]
  • It may not be possible to select illumination wavelengths such that the absorption in the various media in which the image sensor operates is identical. For example, with the preferred embodiment of the invention, the absorption in crude oil in the 1500-1650 nm band is typically much higher than the absorption in water in the visible to 1350 nm band. In order to stay within the dynamic range of the detector, the output power for each emitted waveband is matched to characteristics of the medium it penetrates, allowing the image sensor to operate continuously while passing through different media. In the oil and water example, lower output power is needed in the water band than in the oil band. When the image sensor operates in media with different absorption characteristics, the illumination level at each wavelength or waveband can only be exactly equal at one distance from the image sensor. In the more strongly absorbing medium, objects closer than this distance will appear brighter, and objects further away will appear fainter, than in the more weakly absorbing medium. [0031]
  • In order to mitigate the consequences of this effect, a further aspect of the invention provides a down-hole or in-vessel imaging apparatus comprising illuminating means for emitting radiation of a specified wavelength or waveband through a medium to a target; detector means for detecting radiation deflected by said target; and amplifier means for providing non-linear amplification of the detector means output. [0032]
  • The preferred embodiment of the invention incorporates a video amplifier with a non-linear response to compress the dynamic range in the analogue output signal. Since the non-linear absorption effects described above are generally believed to be exponential, or approximately exponential, this could be counteracted, in one example using a logarithmic or approximately logarithmic response. If the absorption effect is not exponential, then an appropriate amplifier response could be selected to counteract the effect. This enhances the pictures and makes video and still images easier to interpret when using display systems with lower dynamic range than the detector, and reduces the number of bits needed to digitise the output. Non-linear functions may also be applied by digital processing after digitising the analogue output. Optionally, different functions may be selected to suit the medium in which the sensor is operating, for example, a linear response could be selected in water and a logarithmic response in oil. The commands used to select the illumination source could also be also to select the response functions, or separate command could be used. [0033]
  • This apparatus may find application in different types of imaging systems where the medium surrounding the target has a non-linear illumination absorption effect. [0034]
  • Preferably, however, this arrangement is used with a selectable wavelength or waveband system as previously described. Different amplifiers may be provided for the different wavelengths or wavebands for different media, with means for selecting between the amplifiers. Alternatively, a single amplifier may be provided with selectable characteristics. [0035]
  • In the preferred embodiment of the invention, the non-linear function applied to output signal can be varied, as appropriate to the particular application, for example by adjusting the slope of a logarithmic amplifier. This may be adjusted by remote control. A remote control command may be provided by superimposing control signals on the video output signal. [0036]
  • In another embodiment of the invention, the illumination power is controlled automatically using a signal derived from the output from the detector to ensure that energy received from the scene lies within the dynamic range of the detector. [0037]
  • In the preferred embodiment of the invention, illumination is provided by a single laser diode or an array of laser diodes assembled into a module or modules installed within the image sensor housing and incorporating the mechanical mounting and electrical connections to each diode. Separate electrical connections are provided to diodes or groups of diodes emitting at different wavelengths. In an alternative embodiment of the invention, the emitting device or devices are also thermally coupled to a heat sink such as the image sensor housing using a high conductivity link or heat pipe, optionally incorporating a thermo-electric or other cooler such as a Joule-Thomson or Stirling device to control, stabilize or lower the temperature of the emitting devices. Alternatively, energy can be absorbed into a medium within the housing which heats up or changes phase. When cooling or temperature control is provided, the illumination system may be operated when the housing is immersed in media at temperatures above the desired or maximum operating temperature of components used to provide the illumination. For example, the cooler or coolers may be used to control, stabilise or increase the output from the emitting devices and to control, reduce or stabilize other temperature dependant effects. For example, the cooling system may be used to increase the output from laser diodes, the output from which reduces as the temperature increases. [0038]
  • In an alternative embodiment of the invention, illumination is provided by collimated laser beams scanned over the target using known techniques such as rotating mirrors. [0039]
  • In an alternative embodiment of the invention, illumination is provided by a broad-band source or sources such as an incandescent filament lamp or lamps or by a discharge lamp or lamps and, optionally, selectable optical filters are used to provide wavelength switching. [0040]
  • In an alternative embodiment of the invention, illumination is provided by more than one independently-controllable broad-band source, each with its own wavelength restricting filter or filters. [0041]
  • The filters may be moveable or may be fixed with independently moveable shutters to select the desired wavelengths or wavebands. [0042]
  • In the preferred embodiment of the invention, cylindrical spheric or aspheric lenses in front an array of laser diodes or other single or multiple discrete sources direct radiation into the common-path optic. Optionally, lenslet arrays may be used. Optionally, a diffuser may be placed in the optical path of the illumination system. This arrangement provides uniform illumination of the scene viewed by the image sensor. The envelope of the beam projected into the surrounding media may be matched to the field of view of the image sensor at the desired operating distance, or a collimated beam may be used. Optionally, the illumination may be polarized, for example when operating with targets or media sensitive to polarisation. [0043]
  • In the preferred embodiment the common-path optic also forms the image sensor window and must withstand the ambient pressure in media in which the image sensor is immersed. The common-path optic transmits the out-going illumination radiation and the returning radiation from the scene through the same window area in contact with the surrounding media. In the preferred embodiment of the invention, the refractive index of the common path optic is chosen to match that of the media in which the image sensor operates in order to avoid reflections at the window. In an alternative embodiment, reflections are controlled using anti-reflection coatings matched to the wavebands emitted by the illuminator and the refractive indices of the media in which the image sensor will operate. [0044]
  • In an alternative embodiment, the common-path optic may comprise an assembly of more than one component, including, for example, solid components coupled by appropriate means such as optical cement or a fluid or fluids which may be chosen such that the refractive indices match, or which may incorporate anti-reflection coatings. [0045]
  • The common-path optic can also provide optical power, for example to form all or part of the image sensor focussing optics, the illuminator beam shaping optics and to correct distortion in the optical system. The common-path optic can be configured in various ways to do this, for example by shaping external surfaces, incorporating other refracting or reflecting optical components, incorporating diffractive elements or graded index elements, or a combination of some or all of these techniques. [0046]
  • In an alternative embodiment of the invention, the illumination system is external to the image sensor casing. This arrangement may be used when the refractive indices of the surrounding media are significantly different; for example, when viewing in air objects coated in oil or wax. In this situation the invention will show the visible surface, and, on command, render the oil or wax transparent to reveal the underlying surface of the object. [0047]
  • One embodiment of the image sensor is supplied from a single electrical supply, and incorporates power conditioning for the laser diode array and detector, an analogue video output, and control electronics to adjust independently the power output of two or more laser diodes or groups of diodes. The output power control is commanded by signals applied to the video output line, decoded within the image sensor. In a further embodiment of the image sensor, signals applied to the video line are also used to adjust the characteristics of the non-linear amplifier. [0048]
  • A further embodiment of the invention incorporates internal digitisation and compression of the output signal, and a digital output, with separate command lines. [0049]
  • Further embodiments of the invention can incorporate some or all of the following features: power from internal batteries, internal data storage, and pre-programmed, automatic switching between the different wavelengths. If some or all of these features are incorporated, the resulting embodiment of the image sensor can be deployed remotely to acquire images autonomously without the need for external connections, with the internally-stored data being down-loaded on retrieval of the sensor. [0050]
  • In one embodiment of the invention, the image sensor is arranged in a cylindrical geometry with a sideways-looking optical system. This configuration is suited to imaging the inner walls of pipes, and may be deployed horizontally, for example on a pig or crawler, or vertically, for example on a wireline. In a further embodiment, the side view window is curved to match the cylindrical profile of the sensor housing, and, when operating in media which do not match the refractive index of the window, compensating optics can be included to counteract the cylindrical-lens effect of the curved outer face. [0051]
  • A similar arrangement, but with a rectangular rather than a cylindrical housing, is suited to inspecting the inner walls of tanks. [0052]
  • In another embodiment the image sensor is arranged with the window at the end of the housing. This geometry is suited to inspecting the bottom surface of tanks or obstructions in pipes. [0053]
  • Other geometries may be employed in embodiments of the invention tailored to other applications, including, but not limited to, examples such as welds joining right-angle plates. [0054]
  • All the embodiments described above may be deployed in various ways, examples of which include wirelines, arms, crawlers, or remotely operated vehicles.[0055]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments will now be described, by way of example only, with reference to the drawings. [0056]
  • FIG. 1 shows a schematic view of one embodiment of a sensor according to the present invention; [0057]
  • FIG. 2 shows a schematic view of a further embodiment of a sensor according to the present invention; [0058]
  • FIG. 3 shows a schematic view of a yet further embodiment of a sensor according to the present invention. [0059]
  • FIG. 4 shows a block diagram showing the common-path optic principle of an embodiment of the invention; [0060]
  • FIG. 5 shows a schematic view of an optical system used in a sensor according to the invention; [0061]
  • FIG. 6 shows another embodiment of an optical system used in a sensor according to the invention; [0062]
  • FIG. 7 shows another embodiment of an optical system used in a sensor according to the invention; [0063]
  • FIG. 8 shows an electrical block diagram of an image sensor processing stage; and [0064]
  • FIG. 9 shows a sensor without a common path optic operating in a single medium opaque to visible radiation, as disclosed in GB2332331B, in which the present invention may find application.[0065]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 shows a schematic diagram of a [0066] structure 1 in which a sideways-looking embodiment of the image sensor 2 is immersed in medium 3 and medium 5. The target 4 is viewed by the image sensor while straddling the boundary between the two media. The figure shows the image sensor deployed in the vertical axis, but, with an appropriate delivery mechanism, it may be deployed in any orientation.
  • To view and image the [0067] target 4, the image sensor 2 emits radiation at wavelengths which are transmitted by each media 3 and 5. For example, if medium 5 is crude oil, and medium 3 is water, the sensor will emit radiation in the 1500-1650 nm waveband, and also in the visible-1350 nm waveband. This may be achieved in various ways. For example, sensor 2 may comprise light emitting or laser diodes, or groups of diodes, which operate in the respective wavebands and, for simultaneous imaging in both media, both diodes or groups of diodes will be operated as illumination sources. Alternatively, sensor 2 could emit radiation covering the visible-1650 nm waveband which would then be split, by a beam-splitter (not shown). Of course, for different media, different wavelengths or wavebands would be used.
  • The illumination radiation is preferably directed through a sensor window, as described in more detail in relation to FIGS. [0068] 4 to 6.
  • The radiation is, because of its selected wavelengths, transmitted through both [0069] media 3 and 5 and strikes the target 4. The reflected radiation is focused onto the detector by optics 8, and an image of the target can then be derived using any of various known imaging techniques including the use of two dimensional photo-sensitive arrays such as charge coupled devices, or vacuum tube devices, or line or single point sensors together with scanning mechanisms, and appropriate electronic readouts.
  • Preferably the radiation reflected by the target is directed through the same sensor window as the emitted radiation (as discussed further below) and processed by the imaging sensor to form an image of the target. [0070]
  • FIG. 2 shows a schematic diagram of a [0071] structure 1 containing an end-viewing embodiment of the image sensor 6. As with the sideways-looking embodiment, this configuration can be deployed in any orientation.
  • The image sensor is immersed in [0072] medium 3, while the target 4 is immersed in medium 5. The sensor 6 can be arranged to emit radiation which is transmitted by medium 3. If medium 5 is also transparent to some or all of this radiation, the target can be illuminated. If the spectral transmission “windows” in medium 3 and medium 5 partly overlap, medium 5 can be made either transparent or opaque while the sensor is in medium 3 by selecting the wavelength of the emitted radiation. If there is no overlap between the spectral transmission “windows” in media 3 and 5, medium 5 will be detected as a dark region in front of the sensor but the target cannot be illuminated. Medium 5 will remain opaque until the sensor passes through medium 3 and into medium 5. Once in medium 5, illumination with an appropriate wavelength or waveband can be emitted and the target 4 will be visible.
  • Switching between the different wavebands or wavelengths could be done automatically by switches operating according to a pre-programmed sequence. [0073]
  • FIG. 3 shows a schematic diagram of a [0074] structure 1 containing an end-viewing embodiment of the image sensor 6. The image sensor and the target 4 are immersed in medium 3, and the target is coated in medium 5. As with the sideways-looking embodiment, this configuration can be deployed in any orientation.
  • Here, the [0075] sensor 2 could be arranged to emit radiation in a waveband which is transmitted by medium 3, but not by medium 5, to give an image of the coated object target 4. Further, on command, the sensor could emit radiation which is transmitted by medium 5, to reveal the underlying surface of the coated object. The types of illumination source and image processing are as described above in relation to FIG. 1. Switching between the different wavebands or wavelengths could be done automatically by switches operating according to a pre-programmed sequence.
  • FIG. 4 shows a block diagram illustrating the principle of the common-path optic. Radiation, at the selected wavelength(s), is emitted by the illumination source(s) [0076] 11 of the imaging sensor 2, 6. This radiation is directed by a so-called common-path optic 7 (described in more detail in relation to FIGS. 4, 5 and 6) to exit through a sensor window. The emitted radiation strikes the target 4 in the vicinity of the window and radiation reflected by the target is directed through the same area 17 on the same window through which the illumination radiation passes. The common-path optic 7 then transmits the reflected radiation to focusing optics 8 which form an image of the target on the detector(s) 9 of the imaging sensor.
  • As discussed above, this common-path optic allows imaging at close range in media with limited transmission. The target is still illuminated even when in contact with the window, an improvement on the arrangement illustrated in FIG. 3, where the sensor window and illuminators are separated by a finite distance. FIGS. [0077] 5 to 7 below show examples of practical implementations of the common-path optic.
  • FIG. 5 shows a schematic diagram of the optical system for an example embodiment of the invention, in this case an end-viewing image sensor. The common-[0078] path optic 7 is sealed into the image sensor housing 10 and forms the window for the illumination system and the detector. The output from illuminators 11, which may incorporate beam shaping or collimating optics, is directed into the common-path optic. Radiation reflected back from the target 4 passes through the common-path optic to the lens 8 which focuses the scene onto the detector 9. In this example two illuminators are shown, but any number from one to a continuous ring of units, or a single ring-shaped unit, around the detector lens 8 may be used.
  • FIG. 6 shows a schematic diagram of the common-path optic in an alternative embodiment of an end-viewing geometry. The common-[0079] path optic 7 is sealed into housing 10, which contains the detector 9, detector focusing optics 8 and the illuminator 11 and illuminator beam shaping optics 12. Target 4 is illuminated by, and viewed by, the image sensor.
  • FIG. 7 shows a schematic diagram of the common-path optic for the sideways-looking embodiment of the image sensor. The common-[0080] path optic 7 is also sealed into the housing 10, and forms the window for the illuminator 11 and the detector. Radiation from the illuminator passes through the common-path optic to the target 4. Returning radiation passes back into the common-path optic 7 and is reflected by the coating 13 into the lens 8 and focused onto the detector 9. In a further embodiment of this configuration the external surface of the common-optic may be curved in one direction to match a cylindrical housing, to facilitate operation in a cylindrical vessel.
  • FIG. 8 shows an electrical block diagram for an example embodiment of the image processing components of the sensor. Since, where objects are viewed in different media, different rates of absorption exist, the illumination levels at each wavelength or waveband are different. So as to mitigate the effects of this, a [0081] video amplifier 14 with a non-linear response may be connected to the detector 9 to compress the dynamic range in the output signal. For example, a logarithmic response may be applied. The response characteristics of the amplifier are preferably adjustable; for example, the slope would be adjustable if a logarithmic response were applied. The resulting processed image can then be further transmitted, recorded and/or displayed. The non-linear amplifier may be integral with the image sensor, or may be located in a separate unit outside the image sensor housing.
  • One application for the present invention is in a system such as that described in GB-B-2332331, an embodiment of which is shown schematically in FIG. 9, the system being adapted for detecting targets in different media, as described above. [0082]
  • FIG. 9 shows a schematic diagram of a [0083] sensor 6 without a common path optic operating in a medium 3 (for example crude oil) contained in a tubular structure 1. In this example the radial position of the sensor is controlled by the spider assembly 17. The illuminators 11 which, using the present invention, are as described above, are mounted on the spider assembly, in this case to illuminate the internal walls of the structure, and returning radiation is collected at the sensor window 16.
  • This system could also be adapted to incorporate the common path optic and/or amplifier features described above. [0084]

Claims (52)

What is claimed:
1. An in-vessel or down-hole imaging sensor, comprising
means adapted to selectively emit and/or detect two or more independently controllable wavelengths or wavebands.
2. The sensor of claim 1, wherein
the independently controllable wavelengths or wavebands render the media in the field of view opaque or transparent.
3. The sensor of claim 1, wherein
the independently controllable wavelengths or wavebands excite fluorescence, thereby revealing the presence of one or more medium or component in a media.
4. A method of obtaining images in a vessel, comprising
operating a sensor and illuminating means to selectively emit and/or detect radiation of two or more independently controllable wavelengths or wavebands.
5. An in-vessel or down-hole imaging sensor, comprising
a sensor window;
illuminating means for emitting radiation;
optical means for directing said radiation through an area of said sensor window in a first direction; and
optical means for receiving radiation reflected from a target illuminated by radiation from said illuminating means through said area of said sensor window in a second direction.
6. The imaging sensor of claim 5, further comprising
an imaging detector and associated electronics and mechanical housing; and
an illuminator.
7. The imaging sensor of claim 6, further comprising
a common-path optic which forms said sensor window for both emitted and received radiation.
8. The sensor of claim 6, wherein
said detector comprises a vacuum tube device that is sensitive to visible and near infrared radiation.
9. The sensor of claim 6, further comprising
cooling or temperature control means for stabilising or lowering the temperature of said detector.
10. The sensor of claim 6, further comprising
means for focussing incoming energy onto said detector.
11. The sensor of claim 10,
wherein said focussing means comprise anti-reflection coatings.
12. The sensor of claim 11, wherein
said focussing means map a scene onto the detector.
13. The sensor of claim 11, wherein
fiducial marks are incorporated into images.
14. The sensor of claim 13, wherein
said fiducial marks are placed in a scene viewed by said detector.
15. The sensor of claim 13, wherein
said fiducial marks are added electronically.
16. The sensor of claim 6, wherein
said illuminator comprises one or more sources selected to match the spectral transmission of media in which the image sensor is used.
17. The sensor of claim 16, wherein
said sources are laser diodes.
18. The sensor of claim 16,
wherein a broadband source and said detector are used together with mechanically interchanged filters for selecting appropriate wavebands.
19. The sensor of claim 16,
wherein filters whose transmission wavelength or waveband can be altered electrically are used for selecting appropriate wavebands.
20. The sensor of claim 16, wherein said illuminator comprises a plurality of sources, and only one of the sources is energised.
21. The sensor of claim 16, wherein
a mosaic of wavelength selecting filters are applied to individual pixels in an array or line detector and images are obtained by electronic processing of output signals.
22. The sensor of claim 5,
further comprising a prism or prisms for diffraction grating.
23. The sensor of claim 5,
further comprising multiple discrete detectors or a detector array or arrays.
24. The sensor of claim 23,
further comprising a beam splitter or beam splitters and relay optics.
25. The sensor of claim 24,
further comprising more than one assembly comprising relay and focussing optics and detector or detectors.
26. The sensor of claim 5,
further comprising polarizing filters.
27. A down-hole or in-vessel imaging apparatus, comprising
illuminating means for emitting radiation of a specified wavelength or waveband through a medium to a target;
detector means for detecting radiation deflected by said target; and
amplifier means for providing non-linear amplification of the detector means output.
28. The sensor of claim 27, wherein
said amplifier is a video amplifier with a non-linear response.
29. The sensor of claim 27, further comprising
a selectable wavelength or waveband system, comprising different amplifiers for different media; and
means for selecting between said amplifiers.
30. The sensor of claim 27, further comprising
means for varying a non-linear function of said output.
31. The sensor of claim 30, wherein said means for varying said non-linear function of said output is a remote control means.
32. The sensor of claim 27, further comprising
means for automatically controlling illumination power.
33. The sensor of claim 27, wherein said illumination means comprises a single laser diode.
34. The sensor of claim 27, wherein said illumination means comprises
an array of laser diodes assembled into a module or modules installed within an image sensor housing.
35. The sensor of claim 34, further comprising
separate electrical connections to diodes or groups of diodes emitting at different wavelengths.
36. The sensor of claim 27, further comprising
stabilising or temperature control means.
37. The sensor of claim 27, wherein
said illumination means are collimated laser beams.
38. The sensor of claim 27, wherein
said illumination means comprises a broad-band source or sources.
39. The sensor of claim 27, wherein
said illumination means comprises more than one independently controllable broad-band source, each with its own wavelength restricting filter or filters.
40. The sensor of claim 27, further comprising
cylindrical spheric or aspheric lenses in front of said illuminating means.
41. The sensor of claim 27, further comprising
a common-path optic which forms an image sensor window,
wherein said common-path optic transmits the outgoing illumination radiation and the returning radiation through the same window area in contact with surrounding media.
42. The sensor of claim 41, wherein
said common-path optic comprises an assembly of more than one component.
43. The sensor of claim 41, wherein
said common-path optic provides optical power to form all or part of the image sensor focussing optics, the illuminator beam shaping optics and to correct distortion in the optical system.
44. The sensor of claim 27, further comprising
a casing;
wherein said illumination means is provided externally to said casing.
45. The sensor of claim 34, wherein
said sensor further comprises power conditioning for said laser diode array and detector,
an analogue video output, and
control electronics to adjust independently the power output of two or more laser diodes or groups of diodes.
46. The sensor of claim 45, wherein
said output power control is commanded by signals applied to the video output line, decoded within the image sensor.
47. The sensor of claim 45, wherein
signals applied to the video line are used to adjust the characteristics of the non-linear amplifier.
48. The sensor of claim 45, further comprising
internal digitisation and compression of the output signal, and a digital output, with separate command lines.
49. The image sensor of claim 27, wherein
said image sensor is arranged in a cylindrical geometry with a sideways-looking optical system.
50. The image sensor of claim 49, wherein
said sensor housing has a cylindrical profile and
said side view window is curved to match the cylindrical profile of the sensor housing.
51. The image sensor of claim 48, wherein
the sensor housing is arranged in a rectangular geometry.
52. The image sensor of claim 27, wherein
the sensor is arranged with the window at the end of the housing.
US10/763,735 2003-01-22 2004-01-22 Imaging sensor optical system Expired - Fee Related US7212283B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0301447.9 2003-01-22
GB0301447A GB2399971B (en) 2003-01-22 2003-01-22 Imaging sensor optical system

Publications (2)

Publication Number Publication Date
US20040211894A1 true US20040211894A1 (en) 2004-10-28
US7212283B2 US7212283B2 (en) 2007-05-01

Family

ID=9951584

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/763,735 Expired - Fee Related US7212283B2 (en) 2003-01-22 2004-01-22 Imaging sensor optical system

Country Status (2)

Country Link
US (1) US7212283B2 (en)
GB (1) GB2399971B (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050097911A1 (en) * 2003-11-06 2005-05-12 Schlumberger Technology Corporation [downhole tools with a stirling cooler system]
US20060102343A1 (en) * 2004-11-12 2006-05-18 Skinner Neal G Drilling, perforating and formation analysis
US20060102607A1 (en) * 2004-11-12 2006-05-18 Applied Materials, Inc. Multiple band pass filtering for pyrometry in laser based annealing systems
US20060266064A1 (en) * 2003-11-06 2006-11-30 Schlumberger Technology Corporation Electrical Submersible Pumping Systems Having Stirling Coolers
US20070035736A1 (en) * 2005-08-15 2007-02-15 Stephane Vannuffelen Spectral imaging for downhole fluid characterization
US20070075889A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute Interlaced linear array sampling technique for electromagnetic wave imaging
US20070120051A1 (en) * 2005-02-04 2007-05-31 Baker Hughes Incorporated Apparatus and Method for Imaging Fluids Downhole
US20080002858A1 (en) * 2006-06-15 2008-01-03 Rafael - Armament Development Authority Ltd. Photogrammetric mapping of inaccessible terrain
US20080173804A1 (en) * 2007-01-19 2008-07-24 Schlumberger Technology Corporation Methods and apparatus for multi dimension fluorescence spectrum measurement and correlations downhole
US20080312847A1 (en) * 2007-06-15 2008-12-18 Morteza Safai Method and apparatus for nondestructive corrosion detection using quantum dots
US20100156590A1 (en) * 2008-12-23 2010-06-24 Palodex Group Oy Image Plate Readout Device
US20100217538A1 (en) * 2009-02-23 2010-08-26 Morteza Safai Corrosion detection and monitoring system
US20100213387A1 (en) * 2009-02-23 2010-08-26 Morteza Safai Portable corrosion detection apparatus
US20110043619A1 (en) * 2008-04-30 2011-02-24 Ralf Wolleschensky Resolution-Enhanced Luminescence Microscopy
US20110102771A1 (en) * 2009-10-15 2011-05-05 Camtek Ltd. Systems and methods for near infra-red optical inspection
US20110279681A1 (en) * 2010-01-27 2011-11-17 Ci Systems Ltd. Room-temperature filtering for passive infrared imaging
KR101111467B1 (en) * 2003-11-07 2012-02-21 큐인텔 테크놀로지 리미티드 Phased array antenna system with controllable electrical tilt
US8396187B2 (en) 2010-12-10 2013-03-12 The Boeing Company X-ray inspection tool
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US8467049B2 (en) * 2006-09-15 2013-06-18 RedzoneRobotics, Inc. Manhole modeler using a plurality of scanners to monitor the conduit walls and exterior
US8503610B1 (en) 2010-11-23 2013-08-06 The Boeing Company X-ray inspection tool
US8525124B2 (en) 2008-11-03 2013-09-03 Redzone Robotics, Inc. Device for pipe inspection and method of using same
WO2013155391A1 (en) * 2012-04-12 2013-10-17 Kla-Tencor Corporation System and method for rejuvenating an imaging sensor degraded by exposure to extreme ultraviolet or deep ultraviolet light
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8588262B1 (en) 2011-09-07 2013-11-19 The Boeing Company Quantum dot detection
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
NO20140514A1 (en) * 2014-04-16 2015-10-19 Vision Io As inspection Tools
NO20140517A1 (en) * 2014-04-22 2015-10-23 Vision Io As Procedure for visual inspection and logging
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
WO2017008393A1 (en) * 2015-07-16 2017-01-19 中国矿业大学 Method for testing and controlling fully-mechanized-mining working-face device
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
CN108204230A (en) * 2016-12-16 2018-06-26 中国石油天然气股份有限公司 A kind of detection method of oil tube inner lining
CN109029921A (en) * 2018-08-03 2018-12-18 中国电子科技集团公司第十研究所 The target simulator of axis is adjusted for the focusing of multi-sensor photoelectric equipment
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
CN109540942A (en) * 2018-11-27 2019-03-29 东莞中子科学中心 For scattering or the temperature-changeable automatic sample-changing device of diffraction experiment
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687770B2 (en) 2007-01-19 2010-03-30 Schlumberger Technology Corporation Methods and apparatus for multi dimension fluorescence spectrum measurement downhole
US20100013663A1 (en) 2008-07-16 2010-01-21 Halliburton Energy Services, Inc. Downhole Telemetry System Using an Optically Transmissive Fluid Media and Method for Use of Same
US8594972B2 (en) 2010-06-11 2013-11-26 The Johns Hopkins University System and method for tomographic retrieval of parameter profile from traveling path

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807226A (en) * 1972-11-29 1974-04-30 Department Of Transportation Non-linear amplification technique for improving signal to noise contrast
US5652617A (en) * 1995-06-06 1997-07-29 Barbour; Joel Side scan down hole video tool having two camera
US5717209A (en) * 1996-04-29 1998-02-10 Petrometrix Ltd. System for remote transmission of spectral information through communication optical fibers for real-time on-line hydrocarbons process analysis by near infra red spectroscopy
US6075611A (en) * 1998-05-07 2000-06-13 Schlumberger Technology Corporation Methods and apparatus utilizing a derivative of a fluorescene signal for measuring the characteristics of a multiphase fluid flow in a hydrocarbon well
US6472660B1 (en) * 1998-05-19 2002-10-29 Proneta Limited Imaging sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2102565A (en) * 1981-07-11 1983-02-02 Draftrule Limited Surface inspection
US4516167A (en) * 1982-11-30 1985-05-07 Rca Corporation Compression of the dynamic range of video signals
EP0264511A1 (en) * 1986-10-23 1988-04-27 Societe De Prospection Electrique Schlumberger Video camera for borehole inspection
JP2655571B2 (en) * 1986-12-27 1997-09-24 オリンパス光学工業株式会社 Imaging device
US4876534A (en) * 1988-02-05 1989-10-24 Synaptics Incorporated Scanning method and apparatus for current signals having large dynamic range
GB2293513A (en) * 1994-09-20 1996-03-27 Colin Scott Boyle Downhole video camera and video recorder assembly
US5663559A (en) * 1995-06-07 1997-09-02 Schlumberger Technology Corporation Microscopy imaging of earth formations
GB2310293A (en) * 1996-02-07 1997-08-20 P C Richardson & Co Camera system
GB9810772D0 (en) * 1998-05-19 1998-07-15 Proneta Ltd Imaging sensor
GB2342419B (en) * 1998-10-05 2002-09-18 Pearpoint Ltd Pipe inspection device
TW466872B (en) * 1998-12-02 2001-12-01 Syscan Technology Shenzhen Co Improved image sensing module for producing digital images having reduced noise

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807226A (en) * 1972-11-29 1974-04-30 Department Of Transportation Non-linear amplification technique for improving signal to noise contrast
US5652617A (en) * 1995-06-06 1997-07-29 Barbour; Joel Side scan down hole video tool having two camera
US5717209A (en) * 1996-04-29 1998-02-10 Petrometrix Ltd. System for remote transmission of spectral information through communication optical fibers for real-time on-line hydrocarbons process analysis by near infra red spectroscopy
US6075611A (en) * 1998-05-07 2000-06-13 Schlumberger Technology Corporation Methods and apparatus utilizing a derivative of a fluorescene signal for measuring the characteristics of a multiphase fluid flow in a hydrocarbon well
US6472660B1 (en) * 1998-05-19 2002-10-29 Proneta Limited Imaging sensor

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050097911A1 (en) * 2003-11-06 2005-05-12 Schlumberger Technology Corporation [downhole tools with a stirling cooler system]
US7913498B2 (en) 2003-11-06 2011-03-29 Schlumberger Technology Corporation Electrical submersible pumping systems having stirling coolers
US20060266064A1 (en) * 2003-11-06 2006-11-30 Schlumberger Technology Corporation Electrical Submersible Pumping Systems Having Stirling Coolers
KR101111467B1 (en) * 2003-11-07 2012-02-21 큐인텔 테크놀로지 리미티드 Phased array antenna system with controllable electrical tilt
US7438468B2 (en) * 2004-11-12 2008-10-21 Applied Materials, Inc. Multiple band pass filtering for pyrometry in laser based annealing systems
US20060102607A1 (en) * 2004-11-12 2006-05-18 Applied Materials, Inc. Multiple band pass filtering for pyrometry in laser based annealing systems
US20060102343A1 (en) * 2004-11-12 2006-05-18 Skinner Neal G Drilling, perforating and formation analysis
US7938175B2 (en) 2004-11-12 2011-05-10 Halliburton Energy Services Inc. Drilling, perforating and formation analysis
US7490664B2 (en) 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
US20090133871A1 (en) * 2004-11-12 2009-05-28 Skinner Neal G Drilling, perforating and formation analysis
US20070120051A1 (en) * 2005-02-04 2007-05-31 Baker Hughes Incorporated Apparatus and Method for Imaging Fluids Downhole
US8023690B2 (en) 2005-02-04 2011-09-20 Baker Hughes Incorporated Apparatus and method for imaging fluids downhole
US20070035736A1 (en) * 2005-08-15 2007-02-15 Stephane Vannuffelen Spectral imaging for downhole fluid characterization
US7933018B2 (en) * 2005-08-15 2011-04-26 Schlumberger Technology Corporation Spectral imaging for downhole fluid characterization
US7548185B2 (en) * 2005-09-30 2009-06-16 Battelle Memorial Institute Interlaced linear array sampling technique for electromagnetic wave imaging
US20070075889A1 (en) * 2005-09-30 2007-04-05 Battelle Memorial Institute Interlaced linear array sampling technique for electromagnetic wave imaging
US20080002858A1 (en) * 2006-06-15 2008-01-03 Rafael - Armament Development Authority Ltd. Photogrammetric mapping of inaccessible terrain
US8467049B2 (en) * 2006-09-15 2013-06-18 RedzoneRobotics, Inc. Manhole modeler using a plurality of scanners to monitor the conduit walls and exterior
US7687769B2 (en) * 2007-01-19 2010-03-30 Schlumberger Technology Corporation Methods and apparatus for multi dimension fluorescence spectrum measurement and correlations downhole
US20080173804A1 (en) * 2007-01-19 2008-07-24 Schlumberger Technology Corporation Methods and apparatus for multi dimension fluorescence spectrum measurement and correlations downhole
US20080312847A1 (en) * 2007-06-15 2008-12-18 Morteza Safai Method and apparatus for nondestructive corrosion detection using quantum dots
US7925452B2 (en) 2007-06-15 2011-04-12 The Boeing Company Method and apparatus for nondestructive corrosion detection using quantum dots
US20110043619A1 (en) * 2008-04-30 2011-02-24 Ralf Wolleschensky Resolution-Enhanced Luminescence Microscopy
US8997894B2 (en) 2008-08-20 2015-04-07 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US11060378B2 (en) * 2008-08-20 2021-07-13 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9284783B1 (en) 2008-08-20 2016-03-15 Foro Energy, Inc. High power laser energy distribution patterns, apparatus and methods for creating wells
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US8757292B2 (en) 2008-08-20 2014-06-24 Foro Energy, Inc. Methods for enhancing the efficiency of creating a borehole using high power laser systems
US8511401B2 (en) 2008-08-20 2013-08-20 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US8936108B2 (en) 2008-08-20 2015-01-20 Foro Energy, Inc. High power laser downhole cutting tools and systems
US8701794B2 (en) 2008-08-20 2014-04-22 Foro Energy, Inc. High power laser perforating tools and systems
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US10036232B2 (en) 2008-08-20 2018-07-31 Foro Energy Systems and conveyance structures for high power long distance laser transmission
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US8869914B2 (en) 2008-08-20 2014-10-28 Foro Energy, Inc. High power laser workover and completion tools and systems
US8636085B2 (en) 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9327810B2 (en) 2008-10-17 2016-05-03 Foro Energy, Inc. High power laser ROV systems and methods for treating subsea structures
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8525124B2 (en) 2008-11-03 2013-09-03 Redzone Robotics, Inc. Device for pipe inspection and method of using same
US10080535B2 (en) 2008-12-23 2018-09-25 Palodex Group Oy Image plate readout device
US9066648B2 (en) * 2008-12-23 2015-06-30 Palodex Group Oy Image plate readout device
US20100156590A1 (en) * 2008-12-23 2010-06-24 Palodex Group Oy Image Plate Readout Device
US9665752B2 (en) 2008-12-23 2017-05-30 Palodex Group Oy Image plate readout device
US20100217538A1 (en) * 2009-02-23 2010-08-26 Morteza Safai Corrosion detection and monitoring system
US20100213387A1 (en) * 2009-02-23 2010-08-26 Morteza Safai Portable corrosion detection apparatus
US7902524B2 (en) * 2009-02-23 2011-03-08 The Boeing Company Portable corrosion detection apparatus
US8185326B2 (en) 2009-02-23 2012-05-22 The Boeing Company Corrosion detection and monitoring system
US8540026B2 (en) 2009-06-29 2013-09-24 Halliburton Energy Services, Inc. Wellbore laser operations
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US8528643B2 (en) 2009-06-29 2013-09-10 Halliburton Energy Services, Inc. Wellbore laser operations
US8534357B2 (en) 2009-06-29 2013-09-17 Halliburton Energy Services, Inc. Wellbore laser operations
US8678087B2 (en) 2009-06-29 2014-03-25 Halliburton Energy Services, Inc. Wellbore laser operations
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8492721B2 (en) * 2009-10-15 2013-07-23 Camtek Ltd. Systems and methods for near infra-red optical inspection
US20110102771A1 (en) * 2009-10-15 2011-05-05 Camtek Ltd. Systems and methods for near infra-red optical inspection
US9291506B2 (en) * 2010-01-27 2016-03-22 Ci Systems Ltd. Room-temperature filtering for passive infrared imaging
US20110279681A1 (en) * 2010-01-27 2011-11-17 Ci Systems Ltd. Room-temperature filtering for passive infrared imaging
US8879876B2 (en) 2010-07-21 2014-11-04 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8503610B1 (en) 2010-11-23 2013-08-06 The Boeing Company X-ray inspection tool
US8396187B2 (en) 2010-12-10 2013-03-12 The Boeing Company X-ray inspection tool
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US9291017B2 (en) 2011-02-24 2016-03-22 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9784037B2 (en) 2011-02-24 2017-10-10 Daryl L. Grubb Electric motor for laser-mechanical drilling
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US8929411B1 (en) 2011-09-07 2015-01-06 The Boeing Company Quantum dot detection
US8588262B1 (en) 2011-09-07 2013-11-19 The Boeing Company Quantum dot detection
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US10096478B2 (en) 2012-04-12 2018-10-09 Kla-Tencor Corporation System and method for rejuvenating an imaging sensor degraded by exposure to extreme ultraviolet or deep ultraviolet light
WO2013155391A1 (en) * 2012-04-12 2013-10-17 Kla-Tencor Corporation System and method for rejuvenating an imaging sensor degraded by exposure to extreme ultraviolet or deep ultraviolet light
GB2545089A (en) * 2014-04-16 2017-06-07 Vision Io As An inspection tool
WO2015158837A1 (en) * 2014-04-16 2015-10-22 Vision Io As An inspection tool
US9909995B2 (en) 2014-04-16 2018-03-06 Vision Io As Inspection tool
NO20140514A1 (en) * 2014-04-16 2015-10-19 Vision Io As inspection Tools
WO2015162067A1 (en) * 2014-04-22 2015-10-29 Vision Io As A method for visual inspection and logging
NO20140517A1 (en) * 2014-04-22 2015-10-23 Vision Io As Procedure for visual inspection and logging
US10380729B2 (en) 2014-04-22 2019-08-13 Vision Io As Method for visual inspection and logging
GB2540510A (en) * 2014-04-22 2017-01-18 Vision Io As A method for visual inspection and logging
WO2017008393A1 (en) * 2015-07-16 2017-01-19 中国矿业大学 Method for testing and controlling fully-mechanized-mining working-face device
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
CN108204230A (en) * 2016-12-16 2018-06-26 中国石油天然气股份有限公司 A kind of detection method of oil tube inner lining
CN109029921A (en) * 2018-08-03 2018-12-18 中国电子科技集团公司第十研究所 The target simulator of axis is adjusted for the focusing of multi-sensor photoelectric equipment
CN109540942A (en) * 2018-11-27 2019-03-29 东莞中子科学中心 For scattering or the temperature-changeable automatic sample-changing device of diffraction experiment

Also Published As

Publication number Publication date
GB2399971A (en) 2004-09-29
US7212283B2 (en) 2007-05-01
GB2399971B (en) 2006-07-12
GB0301447D0 (en) 2003-02-19

Similar Documents

Publication Publication Date Title
US7212283B2 (en) Imaging sensor optical system
US11573172B2 (en) Broad range gas illumination and imaging
CN109100876B (en) Multi-optical-axis parallel adjusting device and multi-optical-axis parallel adjusting method
CN110487514A (en) A kind of plain shaft parallelism calibration system of the multispectral photoelectric detecting system in aperture altogether
US20050156111A1 (en) Imaging of fugitive gas leaks
US20180136072A1 (en) Gas detection, imaging and flow rate measurement system
NO319064B1 (en) Device for video-based inspection of a borehole
JP2019523410A (en) Optical system for detecting the scanning range
US10536623B2 (en) Imaging device with an improved autofocusing performance
US4947044A (en) Method and apparatus for covertly viewing a target using infrared radiation
AU630310B2 (en) Two-color focal plane array sensor arrangement
US10404925B2 (en) Chip scale multispectral imaging and ranging
US6396647B1 (en) Optical system with extended boresight source
JP2005249723A (en) Display output unit for image containing temperature distribution, and control method therefor
US6825978B2 (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
JP2004325165A (en) Foreign substance detection device, method, and mine detection device
CA2509436A1 (en) Imaging of fugitive gas leaks
EP0217692B1 (en) Auto-alignment device for an infrared observation system
EP0489649A1 (en) Autocalibrating optronic infrared observation system and gimballed designator comprising it
CN100474888C (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
RU2319183C1 (en) Zoned scanning device for remote visualization of earth image from geostationary orbits
JP2009109407A (en) Infrared imaging apparatus
JPH05209838A (en) Image pickup system for comprehensive measurement of abrasion loss of optical element operating intransmission mode and optronic camera apparatus equipped with the same
RU48616U1 (en) REMOTE OIL AND GAS LEAKAGE DEVICE
KR20060071219A (en) Warm stop for infrared system using cooled detector

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRONETA LTD., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOTHER, JOHN ANTHONY;COCKSHOTT, ROBERT ALEXANDER;REEL/FRAME:015505/0026

Effective date: 20040419

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110501