US20040215222A1 - Intravascular material removal device - Google Patents

Intravascular material removal device Download PDF

Info

Publication number
US20040215222A1
US20040215222A1 US10/423,266 US42326603A US2004215222A1 US 20040215222 A1 US20040215222 A1 US 20040215222A1 US 42326603 A US42326603 A US 42326603A US 2004215222 A1 US2004215222 A1 US 2004215222A1
Authority
US
United States
Prior art keywords
removal device
material removal
intravascular
spiral
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/423,266
Inventor
Michael Krivoruchko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Vascular Inc
Original Assignee
Medtronic AVE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic AVE Inc filed Critical Medtronic AVE Inc
Priority to US10/423,266 priority Critical patent/US20040215222A1/en
Assigned to MEDTRONIC AVE reassignment MEDTRONIC AVE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRIVORUCHKO, MICHAEL
Publication of US20040215222A1 publication Critical patent/US20040215222A1/en
Priority to US11/085,738 priority patent/US7416555B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320725Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320004Surgical cutting instruments abrasive
    • A61B2017/320012Brushes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B2017/320733Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a flexible cutting or scraping element, e.g. with a whip-like distal filament member

Definitions

  • the invention relates to a device for removing material such as thrombus, plaque, and clots, from a body lumen such as a blood vessel.
  • Plaque, fat deposits, calcium deposits, thrombus, blood clots, etc. deposited on the inner walls of the blood vessel may cause narrowing or occlusion of the blood vessels, cutting off or restricting blood flow and/or presenting a dangerous condition in which the material may break off and travel through the vasculature causing further blockages, clots or embolisms.
  • Another technique has used laser ablation to form channels in the blockages.
  • the laser energy atomizes or blasts away particles of occluding materials.
  • Laser techniques currently used carry with them the risk of overheating tissue and burning holes in the vessel walls.
  • the openings formed in the blockages are also limited by the size of the laser.
  • the laser treatment is typically followed with ballooning of the occluded region.
  • Some techniques have used percutaneously placed catheter devices to physically remove material.
  • the percutaneous techniques avoid direct surgery at the occluded site and avoid creation of a large opening at the site of insertion into the blood vessel.
  • Rotating cylindrical cutters have been used to shave off material from the vessel wall.
  • These devices have been problematic where the cut material moves downstream forming another blockage or clot.
  • Such devices also have not worked particularly well on thrombus or clots.
  • the large cutting head size relative to the delivery path that is required to effectively remove material from the vessel wall, makes the cutting device difficult to deliver.
  • a variety of cutting head configurations have been proposed including a conical cutting head with aspiration for retrieving cut material.
  • a screw like conical cutting head has also been proposed.
  • a balloon expandable cutting device has been proposed so the diameter of the cutting head may be varied to accommodate blood vessels having a wide range of internal diameters.
  • these devices require actuation to expand or contract the cutting heads and they do not adapt sufficiently to change in circumference of the vessel along its length or as the device is advanced through the vessel while cutting.
  • Another device uses highly pressurized fluid to remove material. This technique includes a risk of perforation and damage to vessel from the high pressure jetted fluid. It is also a slow process that takes significant physician and patient table time to perform.
  • An embodiment according to the present invention provides an intravascular material removal device that removes material from a vessel wall and creates flow dynamics that draw the material into a catheter device for removal from the vessel.
  • a collapsible device provides a relatively low delivery profile while being expandable in use to adapt to varying and variable vessel diameters.
  • the device comprises a plurality of bristles formed in a spiral-like configuration along the length of an elongate member.
  • the elongate member is rotated so that the spiraled bristles create a flow pattern in a proximal direction that draws materials dislodged by the bristles or brush towards a catheter from which the elongate member extends.
  • the device has a material removing element that may be selected from a plurality of material removing elements having different properties, e.g., stiffness, flexibility, bristles of various sizes, etc for removing different types of material from gelatinous deposits like thrombus to harder deposits such as calcium deposits.
  • Another aspect according to the invention may provide a material removal device having bristles constructed of a material that permits the bristles to flex to conform to the vasculature as it is moved through or is deployed in a vessel, and that is sufficiently stiff to remove desired material from the vessel wall.
  • Another aspect according to the invention provides a spiral configuration where the length of the bristles at a distal end portion are shorter that the length of the bristles at a proximal end portion such that the overall diameter of the device is greater at the proximal end portion than at the distal end portion.
  • the bristles are retractable so that the delivery profile of the device may be reduced for delivery through the vasculature.
  • the device in one variation provides bristles that may flex when retracted into a catheter.
  • Another embodiment provides an inner elongate member with a plurality of bristles formed in a spiral-like configuration attached to the inner member and an outer member positioned over the elongate member having at least one opening through which the bristles may extend.
  • the outer member and inner member are configured to move axially with respect to each other so that the outer member engages to retract the bristles to provide a smaller radius device or alternatively permit the bristles to extend through the opening to a produce a larger radius device.
  • Aspiration may be provided through a catheter into which material is drawn and/or through the material removing element itself which may have openings through slots in an outer member and through a series of bristles.
  • FIG. 1A is a side view of an embodiment of a device for removing material deposited on vessel walls.
  • FIG. 1B is a view from the proximal end of the device of FIG. 1B
  • FIG. 2A is a side view of an embodiment of a device for removing material deposited on vessel walls.
  • FIG. 2B is a side view, partial cross section of a portion of the device of FIG. 2A in a partially collapsed position.
  • FIG. 2C is a side view, partial cross section of a portion of the device of FIG. 2A in an expanded position.
  • FIG. 2D is a schematic side view of a portion of the device of FIG. 2A.
  • FIG. 3 illustrates the device of FIG. 1A in use, percutaneously positioned in a partially blocked iliac artery of a patient.
  • FIG. 4 illustrates the device of FIGS. 2A-2D in use, percutaneously positioned in a blocked iliac artery of a patient.
  • FIG. 5A is a side view of an embodiment of a device for removing material deposited on vessel walls.
  • FIG. 5B illustrates the device of FIG. 5A in use, percutaneously positioned in a partially blocked iliac artery of a patient.
  • an intravascular material removing device 20 including a delivery catheter 25 and an elongate member 30 with a plurality of bristles 32 formed in a spiral arrangement along the length of the elongate member 30 .
  • the elongate member 30 is illustrated in a position extending out of a delivery catheter 25 .
  • the limits of the arc circumscribed by the bristles 32 gradually taper from a proximal portion 35 to a distal end portion 36 of the elongate member 30 .
  • the bristles 32 may flex or bend so that they fit within the delivery catheter 25 .
  • the elongate member 30 is retractable into a catheter having a smaller diameter than the outer diameter of the elongate member when the bristles are not constrained.
  • the elongate member is delivered percutaneously through the catheter 25 to a blocked portion 71 of a vessel 70 .
  • a vessel 70 In this particular embodiment, an abdominal aorta is illustrated with one of the iliac vessels partially blocked by material 75 .
  • the bristles 32 Expanded within a vessel, the bristles 32 adapt to a varying diameter vessel and are in position to remove material.
  • the elongate member 30 is placed adjacent the material 75 and is rotated by a motor (not shown) coupled to the elongate member 30 located external the patient's body.
  • the elongate member 30 As the elongate member 30 is rotated, it is advanced into and through the blocked material 75 , the narrower distal end 36 first and then the wider proximal end portion 35 , the bristles 32 being flexible, adapting to the diameter of the vessel as the elongate member 30 is moved within the vessel.
  • the bristles 32 break the material 75 away from the vessel wall and create a pressure gradient or flow in a direction towards the catheter 25 and proximal end portion 35 , like a screw pump.
  • the arrow A 1 illustrates the normal direction of the flow of blood while the arrows A 2 illustrate the direction of flow of material when the device 20 is in use.
  • the catheter 25 may also provide aspiration to further draw the material into the catheter 25 .
  • the bristles 32 may be made of a number of different materials such as nylon or a metal.
  • the stiffness/flexibility, hardness/softness, abrasiveness, thickness of, number of and configuration of the bristles 32 may be selected depending upon the application, e.g., the material to be removed or the condition of the vessel in which it is to be used. For example, stiffer bristles would be used for fibrotic material or calcium deposits whereas for blood, thrombosis and gelatinous material, a softer bristle may be selected.
  • a plurality of material removing elements may be provided, each having a different property that may be selected based upon condition of the vessel to be treated, i.e., the type of material deposited on the vessel wall, the type of vessel, or the toughness, resilience or other property of the vessel or vessel wall.
  • the device 40 comprises an inner member 41 having bristles 42 coupled to the inner member 41 , and a cylindrical outer member 45 having a distal portion 48 including slots 46 formed in the outer member 45 in a generally spiral configuration along the length of the distal portion 48 .
  • the bristles 42 of the inner member 41 are affixed at an angle or alternatively are hinged or otherwise coupled to the inner member 41 , also in a spiral configuration.
  • the limits of the arc circumscribed by the bristles 42 gradually taper from a proximal portion 43 to a distal end portion 44 of the inner member 41 .
  • the bristles 42 extend through the slots 46 in the outer member 45 .
  • the bristles 42 are formed of a biocompatible material such as, e.g. a nylon material.
  • the biocompatible material may be selected based on factors such as stiffness depending on its desired application, the type or characteristics of material that is to be removed or the type or characteristic of the vessel in which it is to be used such as e.g. described above with reference to device 20 .
  • the inner member 41 slides coaxially within the outer member 45 to expand or collapse, or extend or retract the bristles 42 extending out of the slots 46 .
  • the device is in a retracted position in which the radius of the device 40 is reduced. In this position the distal end 44 of the inner member 41 extends distally toward the distal end 48 of the outer member 45 .
  • the bristles 42 are drawn into the slots 46 by edges 49 of the slots 46 .
  • the device 40 is in a fully expanded position with the bristles 42 extending out of the slots 46 .
  • the distal end 44 of the inner member 41 is moved in a proximal direction with respect to the distal end 48 of the outer member 45 so that the bristles 42 are not constrained by the edges 49 of the slots 46 and extend to their full radius.
  • the bristles 42 adapt to a varying diameter vessel and are in position to remove material.
  • the bristles 42 are ideally flexible enough to avoid damage when expanding to the vessel diameter, while being stiff enough to removed the deposited material.
  • FIG. 4A illustrates a device 40 in use in removing a blockage 110 from an iliac artery branch vessel 100 .
  • the device is percutaneously passed in a retracted position within a catheter 50 , into the right iliac artery 105 upstream through the abdominal aorta 103 and back down into the left iliac branch vessel 100 .
  • the device 40 is initially positioned out of the catheter 50 and in the artery 105 , in a retracted position as illustrated in FIG. 2B, and upstream and adjacent the blockage 110 .
  • the inner member 41 is moved proximally with respect to the outer member 45 to expand the device 40 so that the bristles 42 engage the inner wall of the vessel 100 .
  • the inner member 41 may be moved to partially or completely release the bristles 42 from engagement with the edges 49 of the slots 46 depending on the desired device radius.
  • the bristles 42 further adapt to the diameter of the vessel.
  • the device 40 is then rotated about its axis a so that the bristles 42 scrape off the material and create a flow like a screw pump in an upstream direction towards the distal end 52 of the catheter 50 .
  • the inner member 41 and outer member 45 have some clearance between each other so that irrigation and aspiration may be provided through the slots 46 as shown for example by arrow A 5 in FIG. 2C. Alternatively or in addition, irrigation and aspiration may be provided through the distal end of the catheter 50 .
  • a screw pump like creation of a flow pattern moves material upstream and thereby avoids loosened or cut materials from moving downstream.
  • the bristles 42 may be sufficiently flexible that the device 40 may retracted into the catheter 50 in its fully or partially expanded position during delivery or removal of the device 40 .
  • an intravascular material removing device 120 including a delivery catheter 125 and an elongate member 130 with a plurality of bristles 132 formed in a spiral arrangement along the length of the elongate member 130 .
  • the device 120 is constructed in a manner similar to the device 20 described above with reference to FIGS. 1 A-B and FIG. 3.
  • the elongate member 130 is illustrated in a position extending out of a delivery catheter 125 with the proximal portion 135 of the elongate member 130 positioned within the distal portion 126 of the catheter 125 .
  • the limits of the arc circumscribed by the bristles 132 gradually taper from a proximal portion 135 to a distal end portion 136 of the elongate member 130 , and such that when the elongate member 130 is retracted into the delivery catheter 125 , the bristles 132 fit within the delivery catheter 125 .
  • the elongate member 130 is delivered percutaneously through the catheter 125 to a blocked portion 171 of a vessel 170 .
  • a vessel 170 In this particular embodiment, an abdominal aorta is illustrated with one of the iliac vessels partially blocked by material 175 .
  • the elongate member 130 is placed adjacent the material 175 and is rotated by a motor (not shown) coupled to the elongate member 130 located external the patient's body.
  • the bristles 132 break the material 175 away from the vessel wall and create a pressure gradient or flow into the catheter 125 wherein the distal portion 126 of the catheter 125 envelopes the proximal portion 135 of the elongate member 130 and bristles 132 , thereby providing an impeller to further direct material into the catheter 125 .
  • the devices of embodiments of the invention are illustrated in use in a blocked iliac artery.
  • Other blocked vessels are contemplated for treatment with the device, including for example, without limitation, the carotid artery, superficial femoral artery and popliteal artery.

Abstract

An intravascular material removal device that removes material from a vessel wall and creates flow dynamics that draw the material into a catheter device for removal from the vessel is provided. A collapsible device that provides a relatively low delivery profile while being expandable in use to adapt to varying and variable vessel diameters is also provided. A spiral configured material removing element is provided that can adapt to varying vessel diameters and to remove material forming blockages or occlusions from the inner wall of a vessel.

Description

    FIELD OF THE INVENTION
  • The invention relates to a device for removing material such as thrombus, plaque, and clots, from a body lumen such as a blood vessel. [0001]
  • BACKGROUND OF THE INVENTION
  • Plaque, fat deposits, calcium deposits, thrombus, blood clots, etc. deposited on the inner walls of the blood vessel may cause narrowing or occlusion of the blood vessels, cutting off or restricting blood flow and/or presenting a dangerous condition in which the material may break off and travel through the vasculature causing further blockages, clots or embolisms. [0002]
  • A variety of devices have been proposed for forming a channel in or removing such material from a vessel. [0003]
  • Guidewires have been used to channel through such deposits and a balloon passed over the guidewire is then used to form an opening. This method, however, does not provide a means for removing the material deposited on the vessel wall. Also material can break off and move downstream forming a clot or other blockage. [0004]
  • Another technique has used laser ablation to form channels in the blockages. The laser energy atomizes or blasts away particles of occluding materials. Laser techniques currently used carry with them the risk of overheating tissue and burning holes in the vessel walls. The openings formed in the blockages are also limited by the size of the laser. The laser treatment is typically followed with ballooning of the occluded region. [0005]
  • Some techniques have used percutaneously placed catheter devices to physically remove material. The percutaneous techniques avoid direct surgery at the occluded site and avoid creation of a large opening at the site of insertion into the blood vessel. Rotating cylindrical cutters have been used to shave off material from the vessel wall. These devices have been problematic where the cut material moves downstream forming another blockage or clot. Such devices also have not worked particularly well on thrombus or clots. Also, the large cutting head size relative to the delivery path, that is required to effectively remove material from the vessel wall, makes the cutting device difficult to deliver. A variety of cutting head configurations have been proposed including a conical cutting head with aspiration for retrieving cut material. A screw like conical cutting head has also been proposed. [0006]
  • A balloon expandable cutting device has been proposed so the diameter of the cutting head may be varied to accommodate blood vessels having a wide range of internal diameters. However, these devices require actuation to expand or contract the cutting heads and they do not adapt sufficiently to change in circumference of the vessel along its length or as the device is advanced through the vessel while cutting. [0007]
  • Another device uses highly pressurized fluid to remove material. This technique includes a risk of perforation and damage to vessel from the high pressure jetted fluid. It is also a slow process that takes significant physician and patient table time to perform. [0008]
  • Other devices have used inflated balloons on each side of the occluded portion of the vessel to be treated, to stop flow of blood while a mechanism such as a rotating cutter, stream of fluid or rotating brush is used to dislodge particles. These devices are relatively complex requiring placement of a balloon on each side of the blockage. [0009]
  • Accordingly it would be desirable to provide a device for removing material from a body lumen that has a relatively small delivery profile and a relatively simple delivery procedure. It would also be desirable to provide a device for removing material from a body lumen that is adaptable to varying sizes of blood vessels diameters. It would also be desirable to provide such an improved device that reduces the risk of dislodged or cut materials moving downstream and forming blockages or clots. [0010]
  • SUMMARY OF THE INVENTION
  • An embodiment according to the present invention provides an intravascular material removal device that removes material from a vessel wall and creates flow dynamics that draw the material into a catheter device for removal from the vessel. A collapsible device provides a relatively low delivery profile while being expandable in use to adapt to varying and variable vessel diameters. [0011]
  • In one embodiment according to the present invention, the device comprises a plurality of bristles formed in a spiral-like configuration along the length of an elongate member. In use the elongate member is rotated so that the spiraled bristles create a flow pattern in a proximal direction that draws materials dislodged by the bristles or brush towards a catheter from which the elongate member extends. [0012]
  • The device has a material removing element that may be selected from a plurality of material removing elements having different properties, e.g., stiffness, flexibility, bristles of various sizes, etc for removing different types of material from gelatinous deposits like thrombus to harder deposits such as calcium deposits. [0013]
  • Another aspect according to the invention may provide a material removal device having bristles constructed of a material that permits the bristles to flex to conform to the vasculature as it is moved through or is deployed in a vessel, and that is sufficiently stiff to remove desired material from the vessel wall. [0014]
  • Another aspect according to the invention, provides a spiral configuration where the length of the bristles at a distal end portion are shorter that the length of the bristles at a proximal end portion such that the overall diameter of the device is greater at the proximal end portion than at the distal end portion. [0015]
  • In one variation of the embodiment, the bristles are retractable so that the delivery profile of the device may be reduced for delivery through the vasculature. The device in one variation provides bristles that may flex when retracted into a catheter. Another embodiment provides an inner elongate member with a plurality of bristles formed in a spiral-like configuration attached to the inner member and an outer member positioned over the elongate member having at least one opening through which the bristles may extend. The outer member and inner member are configured to move axially with respect to each other so that the outer member engages to retract the bristles to provide a smaller radius device or alternatively permit the bristles to extend through the opening to a produce a larger radius device. [0016]
  • Aspiration may be provided through a catheter into which material is drawn and/or through the material removing element itself which may have openings through slots in an outer member and through a series of bristles.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a side view of an embodiment of a device for removing material deposited on vessel walls. [0018]
  • FIG. 1B is a view from the proximal end of the device of FIG. 1B [0019]
  • FIG. 2A is a side view of an embodiment of a device for removing material deposited on vessel walls. [0020]
  • FIG. 2B is a side view, partial cross section of a portion of the device of FIG. 2A in a partially collapsed position. [0021]
  • FIG. 2C is a side view, partial cross section of a portion of the device of FIG. 2A in an expanded position. [0022]
  • FIG. 2D is a schematic side view of a portion of the device of FIG. 2A. [0023]
  • FIG. 3 illustrates the device of FIG. 1A in use, percutaneously positioned in a partially blocked iliac artery of a patient. [0024]
  • FIG. 4 illustrates the device of FIGS. 2A-2D in use, percutaneously positioned in a blocked iliac artery of a patient. [0025]
  • FIG. 5A is a side view of an embodiment of a device for removing material deposited on vessel walls. [0026]
  • FIG. 5B illustrates the device of FIG. 5A in use, percutaneously positioned in a partially blocked iliac artery of a patient.[0027]
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1A and 1B, an intravascular [0028] material removing device 20 is illustrated including a delivery catheter 25 and an elongate member 30 with a plurality of bristles 32 formed in a spiral arrangement along the length of the elongate member 30. The elongate member 30 is illustrated in a position extending out of a delivery catheter 25. The limits of the arc circumscribed by the bristles 32 gradually taper from a proximal portion 35 to a distal end portion 36 of the elongate member 30. When the elongate member 30 is retracted into the delivery catheter 25, the bristles 32 may flex or bend so that they fit within the delivery catheter 25. Thus the elongate member 30 is retractable into a catheter having a smaller diameter than the outer diameter of the elongate member when the bristles are not constrained.
  • As illustrated in FIG. 3, in use, the elongate member is delivered percutaneously through the [0029] catheter 25 to a blocked portion 71 of a vessel 70. In this particular embodiment, an abdominal aorta is illustrated with one of the iliac vessels partially blocked by material 75. Expanded within a vessel, the bristles 32 adapt to a varying diameter vessel and are in position to remove material. The elongate member 30 is placed adjacent the material 75 and is rotated by a motor (not shown) coupled to the elongate member 30 located external the patient's body. As the elongate member 30 is rotated, it is advanced into and through the blocked material 75, the narrower distal end 36 first and then the wider proximal end portion 35, the bristles 32 being flexible, adapting to the diameter of the vessel as the elongate member 30 is moved within the vessel. The bristles 32 break the material 75 away from the vessel wall and create a pressure gradient or flow in a direction towards the catheter 25 and proximal end portion 35, like a screw pump. The arrow A1 illustrates the normal direction of the flow of blood while the arrows A2 illustrate the direction of flow of material when the device 20 is in use. The catheter 25 may also provide aspiration to further draw the material into the catheter 25.
  • The [0030] bristles 32 may be made of a number of different materials such as nylon or a metal. The stiffness/flexibility, hardness/softness, abrasiveness, thickness of, number of and configuration of the bristles 32 may be selected depending upon the application, e.g., the material to be removed or the condition of the vessel in which it is to be used. For example, stiffer bristles would be used for fibrotic material or calcium deposits whereas for blood, thrombosis and gelatinous material, a softer bristle may be selected. A plurality of material removing elements may be provided, each having a different property that may be selected based upon condition of the vessel to be treated, i.e., the type of material deposited on the vessel wall, the type of vessel, or the toughness, resilience or other property of the vessel or vessel wall.
  • Referring to FIGS. 2A-2D an intravascular [0031] material removal device 40 is illustrated. The device 40 comprises an inner member 41 having bristles 42 coupled to the inner member 41, and a cylindrical outer member 45 having a distal portion 48 including slots 46 formed in the outer member 45 in a generally spiral configuration along the length of the distal portion 48. The bristles 42 of the inner member 41 are affixed at an angle or alternatively are hinged or otherwise coupled to the inner member 41, also in a spiral configuration. The limits of the arc circumscribed by the bristles 42 gradually taper from a proximal portion 43 to a distal end portion 44 of the inner member 41. The bristles 42 extend through the slots 46 in the outer member 45. The bristles 42 are formed of a biocompatible material such as, e.g. a nylon material. The biocompatible material may be selected based on factors such as stiffness depending on its desired application, the type or characteristics of material that is to be removed or the type or characteristic of the vessel in which it is to be used such as e.g. described above with reference to device 20.
  • The [0032] inner member 41 slides coaxially within the outer member 45 to expand or collapse, or extend or retract the bristles 42 extending out of the slots 46. As illustrated in FIG. 2B, the device is in a retracted position in which the radius of the device 40 is reduced. In this position the distal end 44 of the inner member 41 extends distally toward the distal end 48 of the outer member 45. The bristles 42 are drawn into the slots 46 by edges 49 of the slots 46.
  • As illustrated in FIGS. 2A and 2C, the [0033] device 40 is in a fully expanded position with the bristles 42 extending out of the slots 46. In this position, the distal end 44 of the inner member 41 is moved in a proximal direction with respect to the distal end 48 of the outer member 45 so that the bristles 42 are not constrained by the edges 49 of the slots 46 and extend to their full radius. Expanded within a vessel, the bristles 42 adapt to a varying diameter vessel and are in position to remove material. The bristles 42 are ideally flexible enough to avoid damage when expanding to the vessel diameter, while being stiff enough to removed the deposited material.
  • FIG. 4A illustrates a [0034] device 40 in use in removing a blockage 110 from an iliac artery branch vessel 100. The device is percutaneously passed in a retracted position within a catheter 50, into the right iliac artery 105 upstream through the abdominal aorta 103 and back down into the left iliac branch vessel 100. The device 40 is initially positioned out of the catheter 50 and in the artery 105, in a retracted position as illustrated in FIG. 2B, and upstream and adjacent the blockage 110. Once the device 40 is in position, the inner member 41 is moved proximally with respect to the outer member 45 to expand the device 40 so that the bristles 42 engage the inner wall of the vessel 100. The inner member 41 may be moved to partially or completely release the bristles 42 from engagement with the edges 49 of the slots 46 depending on the desired device radius. The bristles 42 further adapt to the diameter of the vessel. The device 40 is then rotated about its axis a so that the bristles 42 scrape off the material and create a flow like a screw pump in an upstream direction towards the distal end 52 of the catheter 50. According to one variation of this embodiment the inner member 41 and outer member 45 have some clearance between each other so that irrigation and aspiration may be provided through the slots 46 as shown for example by arrow A5 in FIG. 2C. Alternatively or in addition, irrigation and aspiration may be provided through the distal end of the catheter 50. Thus, a screw pump like creation of a flow pattern moves material upstream and thereby avoids loosened or cut materials from moving downstream. The bristles 42 may be sufficiently flexible that the device 40 may retracted into the catheter 50 in its fully or partially expanded position during delivery or removal of the device 40.
  • Referring to FIGS. 5A and 5B, an intravascular [0035] material removing device 120 is illustrated including a delivery catheter 125 and an elongate member 130 with a plurality of bristles 132 formed in a spiral arrangement along the length of the elongate member 130. The device 120 is constructed in a manner similar to the device 20 described above with reference to FIGS. 1A-B and FIG. 3. The elongate member 130 is illustrated in a position extending out of a delivery catheter 125 with the proximal portion 135 of the elongate member 130 positioned within the distal portion 126 of the catheter 125. The limits of the arc circumscribed by the bristles 132 gradually taper from a proximal portion 135 to a distal end portion 136 of the elongate member 130, and such that when the elongate member 130 is retracted into the delivery catheter 125, the bristles 132 fit within the delivery catheter 125.
  • As illustrated in FIG. 3, in use, the [0036] elongate member 130 is delivered percutaneously through the catheter 125 to a blocked portion 171 of a vessel 170. In this particular embodiment, an abdominal aorta is illustrated with one of the iliac vessels partially blocked by material 175. The elongate member 130 is placed adjacent the material 175 and is rotated by a motor (not shown) coupled to the elongate member 130 located external the patient's body. The bristles 132 break the material 175 away from the vessel wall and create a pressure gradient or flow into the catheter 125 wherein the distal portion 126 of the catheter 125 envelopes the proximal portion 135 of the elongate member 130 and bristles 132, thereby providing an impeller to further direct material into the catheter 125.
  • The devices of embodiments of the invention are illustrated in use in a blocked iliac artery. Other blocked vessels are contemplated for treatment with the device, including for example, without limitation, the carotid artery, superficial femoral artery and popliteal artery. [0037]
  • While the invention has been described with reference to particular embodiments, it will be understood to one skilled in the art that variations and modifications may be made in form and detail without departing from the spirit and scope of the invention. [0038]

Claims (19)

What is claimed is:
1. An intravascular material removal device comprising:
an elongate member including a spiral-like element extending radially of the elongate member,
wherein the elongate member is rotatable about its length so that the spiral element produces a partially axial flow pattern, and
wherein the spiral like element has a variable diameter.
2. The intravascular material removal device of claim 1 wherein the variable diameter of the spiral element is configured to adapt to a diameter of a vessel in which it is located.
3. The intravascular material removal device of claim 1 wherein the spiral element comprises a plurality of bristles formed in a spiral configuration.
4. The intravascular material removal device of claim 1 wherein the spiral element is a tapered spiral tapering from a proximal portion of the elongate member to a distal portion of the elongate member.
5. The intravascular material removal device of claim 1 wherein the spiral element is collapsible.
6. The intravascular material removal device of claim 5 wherein the spiral element is retractable into a catheter.
7. The intravascular material removal device of claim 5 further comprising an outer member positioned over at least a portion of the elongate member, wherein the outer member is axially moveable with respect to the inner member so that the outer member engages the spiral element to move the spiral element from a first position to a second position, wherein in the first position the spiral element has a first diameter and in the second position the spiral element has a second diameter smaller than the first diameter.
8. The intravascular material removal device of claim 1 further comprising a catheter wherein the catheter has an inner diameter and the material removal device has an outer diameter in a deployed position, wherein the catheter inner diameter is smaller than the outer diameter of the material removal device in the deployed position.
9. An intravascular material removal device comprising:
an elongate member including a spiral-like element extending radially of the elongate member
wherein the elongate member is rotatable about its length so that the spiral element produces a partially axial flow pattern, and
wherein the spiral like element comprises a plurality of bristles.
10. An intravascular material removal device comprising:
an elongate member comprising:
an inner member including a spiral-like element extending radially of the elongate member, wherein the elongate member is rotatable about its length so that the spiral element produces a partially axial flow pattern; and
an outer member positioned over at least a portion of the inner member, wherein the outer member is axially moveable with respect to the inner member so that the outer member engages the spiral element to move the spiral element from a first position to a second position, wherein in the first position the spiral element has a first diameter and in the second position the spiral element has a second diameter smaller than the first diameter.
11. An intravascular material removal device comprising:
an elongate means for dislodging material from a vessel wall, wherein the elongate means comprises means for producing a partially axial flow pattern, and means for adapting the diameter of the elongate means to an outer diameter of the vessel wall.
12. The intravascular material removal device of claim 11 wherein the means for producing the partially axial flow pattern comprises a spiral brush means.
13. The intravascular material removal device of claim 11 further comprising a retracting means for reducing the diameter of the intravascular material removal device to reduce the profile of the intravascular material removal device.
14. The intravascular material removal device of claim 11 further comprising means for removing dislodged material from the vessel.
15. A method of removing intravascular material from a wall of a vessel comprising the steps of:
introducing into a vessel at a site having material to be removed from the vessel, an intravascular material removal device comprising a spiral shaped material removal element, and having a first diameter;
expanding the intravascular material removal device to a second diameter larger than the first diameter;
rotating the intravascular material removal device to dislodge material to be removed and removing the material.
16. The method of claim 15 wherein the step of removing the material comprises aspirating the material.
17. The method of claim 16 wherein the step of aspirating the material comprises aspirating the material into the intravascular removal device.
18. The method of claim 15 wherein the step of introducing an intravascular material removal device comprises first selecting the spiral shaped removing element from a plurality of spiral shaped removing elements wherein each of the spiral shaped removing elements has a different material removing property for a different condition of a vessel with material on the vessel wall.
19. A method of removing intravascular material from a wall of a vessel comprising the steps of:
introducing into a vessel at a site having material to be removed from the vessel, a catheter containing an intravascular material removal device having a first diameter within the catheter;
extending the intravascular material removal device out of the catheter, wherein the intravascular material removal device is expanded to have a second diameter larger than the first diameter;
rotating the intravascular material removal device to create and a partially axial flow pattern of material to be removed, in a direction towards the catheter.
US10/423,266 2003-04-25 2003-04-25 Intravascular material removal device Abandoned US20040215222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/423,266 US20040215222A1 (en) 2003-04-25 2003-04-25 Intravascular material removal device
US11/085,738 US7416555B2 (en) 2003-04-25 2005-03-21 Intravascular material removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/423,266 US20040215222A1 (en) 2003-04-25 2003-04-25 Intravascular material removal device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/085,738 Division US7416555B2 (en) 2003-04-25 2005-03-21 Intravascular material removal device

Publications (1)

Publication Number Publication Date
US20040215222A1 true US20040215222A1 (en) 2004-10-28

Family

ID=33299074

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/423,266 Abandoned US20040215222A1 (en) 2003-04-25 2003-04-25 Intravascular material removal device
US11/085,738 Expired - Fee Related US7416555B2 (en) 2003-04-25 2005-03-21 Intravascular material removal device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/085,738 Expired - Fee Related US7416555B2 (en) 2003-04-25 2005-03-21 Intravascular material removal device

Country Status (1)

Country Link
US (2) US20040215222A1 (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161963A1 (en) * 2006-01-09 2007-07-12 Smalling Medical Ventures, Llc Aspiration thrombectomy catheter system, and associated methods
US20090182362A1 (en) * 2008-01-11 2009-07-16 Medtronic Vascular, Inc. Obstruction Removal System
US20100234848A1 (en) * 2002-09-11 2010-09-16 Chester Sutterlin Systems and Methods for Removing Body Tissue
US8052613B2 (en) * 2003-10-23 2011-11-08 Trans1 Inc. Spinal nucleus extraction tool
US8298244B2 (en) 2006-10-26 2012-10-30 Tyco Healtcare Group Lp Intracorporeal grasping device
WO2012153319A1 (en) * 2011-05-12 2012-11-15 Non-Linear Technologies Ltd. Tissue disruption device and corresponding methods
US20120294727A1 (en) * 2009-12-23 2012-11-22 Ecp Entwicklungsegesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US20130006296A1 (en) * 2003-04-29 2013-01-03 Mcguckin Jr James F Distal protection device
US20130204278A1 (en) * 2011-08-12 2013-08-08 Edward H. Cully Systems for removal of atherosclerotic plaque or thrombus at a treatment site
US20130338690A1 (en) * 2012-06-15 2013-12-19 Gadal Consulting, LLC Device and method for removing unwanted material in a vascular conduit
EP2709511A1 (en) * 2011-05-19 2014-03-26 Medrad, Inc. Catheter with a deployable scrubbing assembly
US20140309657A1 (en) * 2012-01-15 2014-10-16 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US20140330286A1 (en) * 2013-04-25 2014-11-06 Michael P. Wallace Methods and Devices for Removing Obstructing Material From the Human Body
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US8900235B2 (en) 2004-08-11 2014-12-02 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
WO2015015444A1 (en) 2013-07-31 2015-02-05 Benhamou Martial Device for destroying adipose cells and for detaching the skin, and associated tool
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9089634B2 (en) 2009-09-22 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US20170065396A1 (en) * 2015-09-03 2017-03-09 Vesatek, Llc Systems and methods for manipulating medical devices
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US10772647B2 (en) 2015-01-28 2020-09-15 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US10869689B2 (en) 2017-05-03 2020-12-22 Medtronic Vascular, Inc. Tissue-removing catheter
US10987234B2 (en) 2011-08-12 2021-04-27 W. L. Gore & Associates, Inc. Devices and methods for approximating the cross-sectional profile of vasculature having branches
US11096677B2 (en) * 2014-09-18 2021-08-24 Covidien Lp Regions of varying physical properties in a compressible cell collection device
CN113499120A (en) * 2021-07-22 2021-10-15 温州市人民医院 Brush for choledochoscope
US11357534B2 (en) 2018-11-16 2022-06-14 Medtronic Vascular, Inc. Catheter
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11571218B2 (en) 2013-03-15 2023-02-07 Embo Medical Limited Embolisation systems
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11684371B2 (en) * 2013-03-15 2023-06-27 Embo Medical Limited Embolization systems
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US11957846B2 (en) 2010-06-25 2024-04-16 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162078A4 (en) * 2007-03-06 2011-04-06 Orthobond Inc Preparation tools and methods of using the same
US9242068B2 (en) * 2008-07-17 2016-01-26 Covidien Lp Spirally conformable infusion catheter
US8377034B2 (en) 2009-12-04 2013-02-19 Std Med, Inc. Vascular access port
US9282991B2 (en) 2010-10-06 2016-03-15 Rex Medical, L.P. Cutting wire assembly with coating for use with a catheter
US8685049B2 (en) 2010-11-18 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
US8685050B2 (en) 2010-10-06 2014-04-01 Rex Medical L.P. Cutting wire assembly for use with a catheter
EP4289373A3 (en) * 2010-10-14 2024-03-20 Corindus, Inc. Occlusion traversal robotic catheter system
US8968213B2 (en) 2010-10-19 2015-03-03 United States Endoscopy Group, Inc. Cytology brush apparatus with improvements
JP5622989B2 (en) * 2010-11-09 2014-11-12 株式会社グツドマン Medical instruments
US8702736B2 (en) 2010-11-22 2014-04-22 Rex Medical L.P. Cutting wire assembly for use with a catheter
WO2013116529A1 (en) * 2012-01-31 2013-08-08 The Trustees Of Columbia University In The City Of New York Sampling catheter devices, methods, and systems
US9381062B2 (en) 2012-05-31 2016-07-05 Covidien Lp Electro-mechanical intravascular device
WO2015153976A1 (en) 2014-04-03 2015-10-08 Versago Vascular Access, Inc. Devices and methods for installation and removal of a needle tip of a needle
US9968247B2 (en) 2014-05-02 2018-05-15 United States Endoscopy, Inc. Cleaning device for an endoscopic device
CA2971215A1 (en) 2014-12-18 2016-06-23 Versago Vascular Access, Inc. Catheter patency systems and methods
JP6673919B2 (en) 2014-12-18 2020-03-25 ヴェルサゴ ヴァスキュラー アクセス インコーポレイテッド Devices, systems, and methods for removal and replacement of catheters for implantable access ports
WO2017011652A1 (en) 2015-07-14 2017-01-19 Versago Vascular Access, Inc. Medical access ports, transfer devices and methods of use thereof
CN105105863B (en) * 2015-07-28 2017-11-24 中国医学科学院北京协和医院 Experimental animal blood vessel inner film injury experimental provision
US10368848B2 (en) * 2015-08-18 2019-08-06 Augusta University Research Institute, Inc. Cell collection devices
US10307566B2 (en) 2017-07-05 2019-06-04 Duke University Drainage or infusion catheter and method of use
WO2019126306A1 (en) 2017-12-21 2019-06-27 Versago Vascular Access, Inc. Medical access ports, transfer devices and methods of use thereof
CN109620353A (en) * 2018-12-03 2019-04-16 山西医科大学第二医院 A kind of division of respiratory disease phlegm scab remover convenient for cleaning
DE202021100846U1 (en) * 2021-02-19 2021-04-09 UTK Solution GmbH Flushing arrangement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857046A (en) * 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
US5030201A (en) * 1989-11-24 1991-07-09 Aubrey Palestrant Expandable atherectomy catheter device
US5087265A (en) * 1989-02-17 1992-02-11 American Biomed, Inc. Distal atherectomy catheter
US5176693A (en) * 1992-05-11 1993-01-05 Interventional Technologies, Inc. Balloon expandable atherectomy cutter
US5195954A (en) * 1990-06-26 1993-03-23 Schnepp Pesch Wolfram Apparatus for the removal of deposits in vessels and organs of animals
US5632755A (en) * 1992-11-09 1997-05-27 Endo Vascular Intruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5882332A (en) * 1997-06-06 1999-03-16 Wijay; Bandula Drug infusion catheter and method
US5895400A (en) * 1997-06-27 1999-04-20 Abela; George S. Catheter with bristles
US5947985A (en) * 1997-11-12 1999-09-07 Imran; Mir A. Apparatus and method for cleaning diseased vein grafts
US6030397A (en) * 1998-12-16 2000-02-29 Micro Therapeutics, Inc. Miniaturized medical brush

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302870B1 (en) * 1999-04-29 2001-10-16 Precision Vascular Systems, Inc. Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857046A (en) * 1987-10-21 1989-08-15 Cordis Corporation Drive catheter having helical pump drive shaft
US5087265A (en) * 1989-02-17 1992-02-11 American Biomed, Inc. Distal atherectomy catheter
US5030201A (en) * 1989-11-24 1991-07-09 Aubrey Palestrant Expandable atherectomy catheter device
US5195954A (en) * 1990-06-26 1993-03-23 Schnepp Pesch Wolfram Apparatus for the removal of deposits in vessels and organs of animals
US5176693A (en) * 1992-05-11 1993-01-05 Interventional Technologies, Inc. Balloon expandable atherectomy cutter
US5632755A (en) * 1992-11-09 1997-05-27 Endo Vascular Intruments, Inc. Intra-artery obstruction clearing apparatus and methods
US5746758A (en) * 1992-11-09 1998-05-05 Evi Corporation Intra-artery obstruction clearing apparatus and methods
US5882332A (en) * 1997-06-06 1999-03-16 Wijay; Bandula Drug infusion catheter and method
US5895400A (en) * 1997-06-27 1999-04-20 Abela; George S. Catheter with bristles
US5947985A (en) * 1997-11-12 1999-09-07 Imran; Mir A. Apparatus and method for cleaning diseased vein grafts
US6030397A (en) * 1998-12-16 2000-02-29 Micro Therapeutics, Inc. Miniaturized medical brush

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100234848A1 (en) * 2002-09-11 2010-09-16 Chester Sutterlin Systems and Methods for Removing Body Tissue
US8679148B2 (en) * 2003-04-29 2014-03-25 Rex Medical, L.P. Distal protection device
US20130006296A1 (en) * 2003-04-29 2013-01-03 Mcguckin Jr James F Distal protection device
US8052613B2 (en) * 2003-10-23 2011-11-08 Trans1 Inc. Spinal nucleus extraction tool
US8900235B2 (en) 2004-08-11 2014-12-02 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
US20070161963A1 (en) * 2006-01-09 2007-07-12 Smalling Medical Ventures, Llc Aspiration thrombectomy catheter system, and associated methods
US10188409B2 (en) 2006-01-09 2019-01-29 Smalling Medical Ventures, Llc Aspiration thrombectomy catheter system, and associated methods
US8298244B2 (en) 2006-10-26 2012-10-30 Tyco Healtcare Group Lp Intracorporeal grasping device
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US8021380B2 (en) * 2008-01-11 2011-09-20 Dustin Thompson Obstruction removal system
US20090182362A1 (en) * 2008-01-11 2009-07-16 Medtronic Vascular, Inc. Obstruction Removal System
US9404505B2 (en) 2008-12-05 2016-08-02 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9964115B2 (en) 2008-12-05 2018-05-08 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10495101B2 (en) 2008-12-05 2019-12-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10662967B2 (en) 2008-12-05 2020-05-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US11852155B2 (en) 2008-12-05 2023-12-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10406323B2 (en) 2009-02-04 2019-09-10 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9981110B2 (en) 2009-02-04 2018-05-29 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US11229774B2 (en) 2009-02-04 2022-01-25 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9649475B2 (en) 2009-02-04 2017-05-16 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US9512839B2 (en) 2009-05-05 2016-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11577066B2 (en) 2009-05-05 2023-02-14 Ecp Entwicklundgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11278711B2 (en) 2009-05-05 2022-03-22 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US10265448B2 (en) 2009-05-05 2019-04-23 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11786718B2 (en) 2009-05-05 2023-10-17 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11268521B2 (en) 2009-06-25 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US10330101B2 (en) 2009-06-25 2019-06-25 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US11116960B2 (en) 2009-08-06 2021-09-14 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US11592028B2 (en) 2009-09-22 2023-02-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US11773861B2 (en) 2009-09-22 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US11421701B2 (en) 2009-09-22 2022-08-23 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US10208763B2 (en) 2009-09-22 2019-02-19 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US9089634B2 (en) 2009-09-22 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Fluid pump having at least one impeller blade and a support device
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US10792406B2 (en) 2009-10-23 2020-10-06 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US11266824B2 (en) 2009-12-23 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11781557B2 (en) 2009-12-23 2023-10-10 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11549517B2 (en) 2009-12-23 2023-01-10 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9903384B2 (en) 2009-12-23 2018-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9339596B2 (en) * 2009-12-23 2016-05-17 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9795727B2 (en) 2009-12-23 2017-10-24 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11486400B2 (en) 2009-12-23 2022-11-01 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11434922B2 (en) 2009-12-23 2022-09-06 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11773863B2 (en) 2009-12-23 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US10557475B2 (en) 2009-12-23 2020-02-11 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US20120294727A1 (en) * 2009-12-23 2012-11-22 Ecp Entwicklungsegesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11815097B2 (en) 2009-12-23 2023-11-14 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US10806838B2 (en) 2009-12-23 2020-10-20 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US10561772B2 (en) 2009-12-23 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US10316853B2 (en) 2010-01-25 2019-06-11 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US11517739B2 (en) 2010-01-25 2022-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US10413646B2 (en) 2010-03-05 2019-09-17 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9907891B2 (en) 2010-03-05 2018-03-06 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9759237B2 (en) 2010-05-17 2017-09-12 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US11168705B2 (en) 2010-05-17 2021-11-09 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US10221866B2 (en) 2010-05-17 2019-03-05 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US11957846B2 (en) 2010-06-25 2024-04-16 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10898625B2 (en) 2010-06-25 2021-01-26 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10874781B2 (en) 2010-06-25 2020-12-29 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10584589B2 (en) 2010-07-15 2020-03-10 Ecp Entwicklungsgellschaft Mbh Rotor for a pump having helical expandable blades
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US11844939B2 (en) 2010-07-15 2023-12-19 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US10589012B2 (en) 2010-07-15 2020-03-17 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US10920596B2 (en) 2010-07-15 2021-02-16 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US11702938B2 (en) 2010-07-15 2023-07-18 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US11913467B2 (en) 2010-07-15 2024-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US11083885B2 (en) 2010-08-27 2021-08-10 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US11235125B2 (en) 2011-03-10 2022-02-01 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
WO2012153319A1 (en) * 2011-05-12 2012-11-15 Non-Linear Technologies Ltd. Tissue disruption device and corresponding methods
CN103648415A (en) * 2011-05-12 2014-03-19 Nlt脊椎有限公司 Tissue disruption device and corresponding methods
EP2709511A4 (en) * 2011-05-19 2015-04-22 Boston Scient Ltd Catheter with a deployable scrubbing assembly
EP2709511A1 (en) * 2011-05-19 2014-03-26 Medrad, Inc. Catheter with a deployable scrubbing assembly
US20130204278A1 (en) * 2011-08-12 2013-08-08 Edward H. Cully Systems for removal of atherosclerotic plaque or thrombus at a treatment site
US10987234B2 (en) 2011-08-12 2021-04-27 W. L. Gore & Associates, Inc. Devices and methods for approximating the cross-sectional profile of vasculature having branches
US11666746B2 (en) 2011-09-05 2023-06-06 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US9987027B2 (en) * 2012-01-15 2018-06-05 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US20140309657A1 (en) * 2012-01-15 2014-10-16 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US10786268B2 (en) 2012-01-15 2020-09-29 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US20130338690A1 (en) * 2012-06-15 2013-12-19 Gadal Consulting, LLC Device and method for removing unwanted material in a vascular conduit
US11571218B2 (en) 2013-03-15 2023-02-07 Embo Medical Limited Embolisation systems
US11684371B2 (en) * 2013-03-15 2023-06-27 Embo Medical Limited Embolization systems
US20140330286A1 (en) * 2013-04-25 2014-11-06 Michael P. Wallace Methods and Devices for Removing Obstructing Material From the Human Body
US10959750B2 (en) * 2013-04-25 2021-03-30 Cardioprolific Inc. Methods and devices for removing obstructing material from the human body
US20170027604A1 (en) * 2013-04-25 2017-02-02 Michael P. Wallace Methods and devices for removing obstructing material from the human body
WO2015015444A1 (en) 2013-07-31 2015-02-05 Benhamou Martial Device for destroying adipose cells and for detaching the skin, and associated tool
FR3009187A1 (en) * 2013-07-31 2015-02-06 Martial Benhamou NEEDLE FOR DESTRUCTION OF ADIPUSED CELLS AND ASSOCIATED TOOL
US11096677B2 (en) * 2014-09-18 2021-08-24 Covidien Lp Regions of varying physical properties in a compressible cell collection device
US10772647B2 (en) 2015-01-28 2020-09-15 Triticum Ltd. Device and method for removing occlusions in a biological vessel
US11672561B2 (en) 2015-09-03 2023-06-13 Walk Vascular, Llc Systems and methods for manipulating medical devices
US20170065396A1 (en) * 2015-09-03 2017-03-09 Vesatek, Llc Systems and methods for manipulating medical devices
US10561440B2 (en) * 2015-09-03 2020-02-18 Vesatek, Llc Systems and methods for manipulating medical devices
US11051842B2 (en) 2017-05-03 2021-07-06 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US11690645B2 (en) 2017-05-03 2023-07-04 Medtronic Vascular, Inc. Tissue-removing catheter
US11896260B2 (en) 2017-05-03 2024-02-13 Medtronic Vascular, Inc. Tissue-removing catheter
US10987126B2 (en) 2017-05-03 2021-04-27 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US10925632B2 (en) 2017-05-03 2021-02-23 Medtronic Vascular, Inc. Tissue-removing catheter
US11871958B2 (en) 2017-05-03 2024-01-16 Medtronic Vascular, Inc. Tissue-removing catheter with guidewire isolation liner
US10869689B2 (en) 2017-05-03 2020-12-22 Medtronic Vascular, Inc. Tissue-removing catheter
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11357534B2 (en) 2018-11-16 2022-06-14 Medtronic Vascular, Inc. Catheter
US11819236B2 (en) 2019-05-17 2023-11-21 Medtronic Vascular, Inc. Tissue-removing catheter
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11638637B2 (en) 2019-12-18 2023-05-02 Imperative Care, Inc. Method of removing embolic material with thrombus engagement tool
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
CN113499120A (en) * 2021-07-22 2021-10-15 温州市人民医院 Brush for choledochoscope

Also Published As

Publication number Publication date
US20050165431A1 (en) 2005-07-28
US7416555B2 (en) 2008-08-26

Similar Documents

Publication Publication Date Title
US7416555B2 (en) Intravascular material removal device
US10939936B2 (en) Intravascular catheter with incising devices
AU2018226388B2 (en) Devices and systems for thrombus treatment
US7731731B2 (en) Catheter for clearing passages in a patient
EP0829238B1 (en) Incisor-dilator with tapered balloon
EP1073383B1 (en) Intravascular filter
US20220240974A1 (en) Intravascular catheter having an expandable incising portion and abrasive surfaces
US10610255B2 (en) Intravascular catheter having an expandable incising portion and medication delivery system
CN114587499A (en) Vascular opening device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC AVE, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRIVORUCHKO, MICHAEL;REEL/FRAME:014016/0447

Effective date: 20030423

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION