US20040221449A1 - Circuit board and method of manufacturing the same - Google Patents

Circuit board and method of manufacturing the same Download PDF

Info

Publication number
US20040221449A1
US20040221449A1 US10/864,382 US86438204A US2004221449A1 US 20040221449 A1 US20040221449 A1 US 20040221449A1 US 86438204 A US86438204 A US 86438204A US 2004221449 A1 US2004221449 A1 US 2004221449A1
Authority
US
United States
Prior art keywords
copper
conductive
conductive material
conductive layers
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/864,382
Inventor
Toshio Sugawa
Satoshi Murakawa
Masaaki Hayama
Takeo Yasuho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US10/864,382 priority Critical patent/US20040221449A1/en
Publication of US20040221449A1 publication Critical patent/US20040221449A1/en
Priority to US12/461,320 priority patent/US20100025099A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0305Solder used for other purposes than connections between PCB or components, e.g. for filling vias or for programmable patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0317Thin film conductor layer; Thin film passive component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the present invention relates to a circuit board including an insulation substrate having a via-hole filled with conductive material, and conductive layers disposed to both sides of the insulation substrate.
  • the invention also relates to a method of manufacturing the board.
  • a conventional circuit board includes a glass-epoxy board, which is an insulation substrate made of woven glass cloth impregnated with epoxy resin, and copper foils bonded by heat-press or the like to both sides of the substrate.
  • a glass-epoxy board which is an insulation substrate made of woven glass cloth impregnated with epoxy resin, and copper foils bonded by heat-press or the like to both sides of the substrate.
  • patterns are formed by photo-etching the copper foils, a through-hole is formed by drilling or the like, and wiring layers between both side surfaces of the through hole are then connected with copper plated on an interior wall of the through-hole.
  • an interior of the through hole upon being plated, lacks reliability because plating solution does not permeate easily into the hole, and an area which is not plated thus tends to be created, and this may cause a failure of electrical connection.
  • This may cause in deficiency that a thickness of the plated copper deep inside the through-hole, which can cause an electrical problem due to a large resistance for an electric connection.
  • It is difficult to mount a component to a portion where a through-hole is formed. And it is difficult to plate a through-hole in a desired inner layer of a multi-layered substrate.
  • a circuit board is manufactured through filling a via-hole formed in an insulating substrate with conductive material, forming conductive layers on both sides of the insulating substrate, and forming alloy of component material in the conductive material and component material of the conductive layers.
  • the conductive material in the via-hole formed in the insulating substrate is securely connected electrically as well as mechanically to the conductive layers on both sides of the insulating substrate reliably.
  • FIG. 1A through FIG. 1D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 1 of the present invention.
  • FIG. 2A through FIG. 2D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 2 of the invention.
  • FIG. 3A through FIG. 3D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 3 of the invention.
  • FIG. 1A through FIG. 1D are sectional views of a circuit board according to exemplary embodiment 1 of the present invention.
  • Insulating substrate 101 may be a glass-epoxy board made of glass cloth impregnated and/or coated with epoxy resin, a resin board made of woven cloth or unwoven cloth of resin fibers, such as aramid impregnated with resin such as epoxy, or a film board made of a plastic film such as polyimide coated with resin such as adhesive material.
  • Insulating substrate 101 is provided with through-hole (via-hole) 102 , as shown in FIG. 1A, by laser beam using carbon dioxide, YAG, and the like, or drilling.
  • Via-hole 102 is more favorably formed by laser machining than mechanical method using a drill, since the hole can have its small diameter and its smooth peripheral edge as if it is melted, which is effective for a filling of conductive material at a subsequent process.
  • Conductive material 103 may employ pasty material containing a granular metal in a form of fine spherical or scaly particles of approximately 0.1 ⁇ m to 50 ⁇ m mixed with organic solvent and/or resin.
  • the metal may be copper, alloy of copper and silver, or copper having its surface coated or alloyed with another metal like silver, gold or the like. Copper can make particles of spherical shape inexpensively. Copper may be mixed with or coated on its surface with other metal of lower hardness and lower electric resistance than those of copper, such as silver, gold, or the like.
  • Conductive material 103 may be filled into the via-hole 102 by such a method as printing conductive material 103 on one side of the via-hole 102 while the other side is, for example, vacuum-suctioned.
  • conductive layers 104 for instance, copper foils are placed on respective sides of insulating substrate 101 having via-hole 102 filled with conductive material 103 , as shown in FIG. 1C.
  • Metal 105 which can be alloyed with copper is deposited on conductive layer 104 deposited at least at an area contacting with conductive material 103 .
  • Metal 105 has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction such as adhesion and pressure bonding between the metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process, which will be described later.
  • Metal 105 is bonded to each of conductive layers 104 by depositing metal of comparatively low melting point, such as tin, zinc, silver, palladium, indium, or bismuth, by a method, such as plating, thermal spraying.
  • metal 105 if having a granular form, is alloyed easily since contact areas among the granules become smaller, thereby increasing energy of reaction in pressure and temperature that they receive per unit area.
  • Conductive layers 104 placed on both sides of insulating substrate 101 are then pressed externally while being heated at least at a pressure and a temperature that produce adhesion between insulating substrate 101 and conductive layers 104 . The temperature needs to form alloy of the metal to be alloyed with copper.
  • the temperature is preferably 120° C. or higher, but 300° C. or lower, and more preferably ranges from 200° C. to 270° C.
  • the pressure does not excessively compress insulating resin 101 , and thus is, for example, 200 kg/cm 2 or less.
  • Indium and bismuth have melting points of 157° C. and 271° C., respectively, as low as tin. They start reactions, e.g. of alloying, at a temperatures ranging generally from 60 to 70% of their melting points. The reactions are accelerated further in this process if they receive additional energy of, e.g., pressure or mechanical activity.
  • Reaction layers 106 are formed as shown in FIG. 1D by adhesion, pressure bonding, and/or alloying at connecting portions at boundaries between conductive layers 104 and the conductive material 103 filled in the via-hole. Copper and metal 105 to be alloyed with the copper to form the reaction layers 106 produce diffusion layers and/or alloy layers only on copper surfaces with practically no need to melt the copper. This increases mechanical strength and decreases electric resistance at the connecting portions. In addition, the copper, since keeping its intrinsic low resistance, provides the connecting portions having a low resistance and high mechanical strength.
  • FIG. 2A through FIG. 2D are sectional views of a circuit board according to exemplary embodiment 2 of the present invention.
  • Insulating substrate 201 made of, for example, a glass epoxy board, a resin board, or a film board is provided with via-hole 202 , as shown in FIG. 2A, formed therein in the same manner as described in embodiment 1. Then, the via-hole 202 formed in insulating substrate 201 is filled with conductive material 203 not containing copper but consisting of metal that forms alloy with copper, as shown in FIG. 2B. Conductive material 203 can be filled into via-hole 202 by a method, such as printing conductive material 203 on one side of via-hole 202 while the other side is vacuum-suctioned.
  • Conductive material 203 has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction, such as adhesion or pressure bonding between these metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process described later.
  • Conductive material 203 may suitably employs soft metal, such as tin, zinc, silver, palladium, conductive indium, bismuth, that have comparatively low melting points and low hardnesses. The metals may be used as material of lead free solder that does not contain noxious lead.
  • Conductive material 203 may be suitably formed in a pasty form made of granular metal in a form of fine spherical or scaly particles of approximately 0.1 ⁇ m to 50 ⁇ m mixed with organic solvent and/or resin.
  • the metal has relatively high melting point and high hardness, and does not contain copper.
  • the metal may be any other metal excluding copper having surface coated with aforementioned metal, alloy of the aforementioned metal, or any other pure metal.
  • conductive layers 204 made of copper foils or the like are placed on both sides of the insulating substrate 201 which has via-hole 202 filled with conductive material 203 , as shown in FIG. 2C.
  • Conductive layers 204 are then pressed from the outside while being heated at least at a pressure and temperature that produce adhesion between insulating substrate 201 and conductive layers 204 .
  • the temperature may be preferably 120° C. or higher, but 300° C. or lower, which can induce a reaction of forming alloy between conductive material 203 and conductive layers 204 .
  • the temperature may more preferably be between 200° C. and 270° C.
  • the higher the pressure applied in this process the better it results.
  • the pressure does not excessively compress the insulating substrate 201 , and thus is, for example, 200 kg/cm 2 or less.
  • Conductive material 203 can be alloyed easily because of its granular form having a smaller contact area than the granules, thereby increasing energy of reaction in pressure and temperature that they receive per unit area.
  • conductive material 203 since being filled in via-hole 202 contains soft metal of low hardness, increases contact areas by deformation resulting from a pressure of press working, thereby decreasing an electric resistance in via-hole 202 .
  • Nickel, chromium, molybdenum, and tungsten which have high hardness and high melting point, are effective for a core material to be coated.
  • conductive material 203 consists of soft metal having a comparatively low hardness. In other words, they not only promote conductive material 203 to be alloyed in itself, but also increase contact area that can reduce the contact resistance by the press-working.
  • Reaction layers 206 are formed as shown in FIG. 2D by the press-working which produces adhesion, pressure bonding, and/or metal alloy of copper and the metal to be alloyed with copper, as discussed above, at connecting portions at boundaries between conductive layers 204 and conductive material 203 filled in the via-hole. It is practically unnecessary to melt the copper in reaction layers 206 if the copper and conductive material 203 to be alloyed with the copper are used. This is because reaction layers 203 need to be formed by diffusion and/or alloying only on surfaces of the copper. This can thus increase mechanical strength of the connecting portions, and decrease an electric resistance. In addition, the copper, since keeping its intrinsic low resistance, provides the connecting portions having a low resistance and high mechanical strength.
  • Reaction layers 206 start reactions to form, for example, alloy at a temperature generally 60 to 70% of its melting point similarly to embodiment 1. The reactions are accelerated even further if they receive additional energy of, for example, pressure or mechanical activity.
  • the alloy layers is in a desirable condition for an electric resistance and mechanical strength if tin is alloyed only with a portion approx. 10% or less of the entire copper. Moreover, contact resistances of the layers can be further decreased since they form diffusion layers, and/or since they produce adhesion or pressure bonding even if they are not alloyed.
  • FIG. 3A through FIG. 3D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 3 of the present invention.
  • insulating substrate 301 made of, for example, a glass epoxy board, a resin board, or a film board is provided with via-hole 302 formed therein similarly to embodiments 1 and 2. Then, via-hole 302 is filled with conductive material 303 containing copper and another metal that can be alloyed with copper, as shown in FIG. 3B. Conductive material 303 can be filled into via-hole 302 by a method, such as printing conductive material 303 on one side of via-hole 302 while the other side is vacuum-suctioned.
  • the metal contained in conductive material 303 to be alloyed with copper has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction, such as adhesion or pressure bonding between these metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process, which will be described later.
  • the metal may be suitably employ tin, zinc, silver, palladium, conductive indium, or bismuth, which is soft metal having comparatively low melting point and low hardness.
  • Material suitable for conductive material 303 is in pasty form made of granular metal in a form of fine spherical or scaly particles of approximately 0.1 ⁇ m to 50 ⁇ m mixed with organic solvent and/or resin.
  • the metal may be copper or any other metal of relatively high melting point and high hardness with a surface coated with the above-mentioned metal, alloy of copper with the above-mentioned metal, or any other pure metal.
  • conductive layers 304 consisting of copper foils or the like are placed on both sides of insulating substrate 301 having via-hole 302 filled with conductive material 303 , as shown in FIG. 3C.
  • Conductive layers 304 are then pressed from the outside while being heated at least at a pressure and a temperature that produce adhesion between insulating substrate 301 and conductive layers 304 .
  • the temperature may be 120° C. or higher, but 300° C. or lower, which makes the copper in conductive layers 304 to form alloy with the metal contained in conductive material 303 and the copper in conductive material 303 to be alloyed with the afore-mentioned metal.
  • the temperature is more preferably between 200° C. and 270° C.
  • insulating substrate 301 is preferably 200 kg/cm 2 or less.
  • Conductive material 303 can be alloyed easily because of its granular form that having a smaller contact area among the granules, thereby increasing energy of reaction in pressure and temperature that they receive per unit area.
  • conductive material 303 filled in via-hole 302 since being composed of soft metal of low hardness, has an contact area increased by deformation resulting from a pressure of press working, thereby decreasing an electric resistance in via-hole 302 .
  • Copper is suitable as core material to be coated for conductive material 303 since being relatively inexpensive, having a low electric resistance, and easily forming fine particles of spherical shape. Even with any such metal having relatively high melting point and high hardness, the pressure acts more effectively in the press working upon conductive material 303 since the metal also contains the soft metal having comparatively low hardness. This not only promotes conductive material 303 to be alloyed in itself, but also increases the contact area and reduces the contact resistance by the press working and by the low electric resistance.
  • Copper is contained in conductive material 303 preferably at 50% or less for the electric resistance, and more preferably at 10% or less for both the electric resistance and mechanical strength. Moreover, contact resistances between conductive material 303 and conductive layers 304 can be further decreased since they form diffusion layers, and/or since they produce adhesion or pressure bonding even if they are not alloyed.
  • Reaction layer 306 is formed as shown in FIG. 3D by the press-working which produces adhesion, pressure bonding, and/or alloy of copper and the metal to be alloyed with the copper, as discussed above, at connecting portions at boundaries between conductive layers 304 and conductive material 303 , as well as an interior of via-hole 302 .
  • the copper need not melt in reaction layer 306 containing the copper and afore-mentioned metal.
  • the copper forms diffusion layers or alloy layers only on surfaces of the copper. This improves mechanical strength and decreases electric resistance of reaction layer 306 , and thus provides connecting portions with low resistance and high mechanical strength since interiors of individual copper particles contained in reaction layer 306 keeps its intrinsic low resistance.
  • Reaction layer 306 starts reaction, for example, to form alloy at a temperature generally of 60 to 70% of the melting point similarly to embodiment 1. The reaction is accelerated even further if it receives additional energy of, for example, pressure or mechanical activity.
  • Reaction layers are formed by adhesion, pressure bonding, and/or alloying at connecting portions in the boundaries between the conductive layers and the conductive material filled in the through via hole. Accordingly, the circuit board is provided with a low resistance and high mechanical strength at the connecting portions since the reaction layers have high mechanical strength and low electric resistance while interior of the copper contained therein keeps its intrinsic low resistance. In addition, a resistance of the conductive layers on both sides of the insulating substrate at the via-hole is reduced since an interior of the reaction layer reduces the resistance of the via-hole. Furthermore, mechanical strength of the connecting portions increases, and the reliability improves by mechanically securing the connections. Moreover, since the via-hole is filled with the conductive material, a component can be mounted on a surface of the conductive layer including an area above the via-hole, which improves downsizing of the circuit board as well as wiring flexibility.
  • the present invention provides the same effect for a circuit board having a conductive layer formed previously on only one side of a via-hole, i.e., a blind via-hole.
  • a similar advantage is obtainable with a multi-layered board fabricated by repeating the process described in any of the foregoing embodiments.
  • Like advantage is also accomplished with a circuit board having a conductive layer made previously by transferring a pattern-formed metal foil.
  • the conductive layers are copper foils, and the conductive material contains copper and another metal that is alloyed with copper.
  • the conductive layer may be composed of other conductive substance instead of copper, and the conductive material may contain any material that can be alloyed with the substance in order to achieve like advantages.
  • a conductive material filled in a via-hole formed in an insulating substrate and a conductive layers on both sides of the insulating substrate are securely connected electrically as well as mechanically with high reliability, by forming metal alloy of a part of metals that compose the layers and the material.

Abstract

A circuit board is manufactured by filling a via-hole formed in an insulating substrate with conductive material, disposing conductive layers on both sides of the insulating substrate, and forming alloy of component material of the conductive material with component material of the conductive layers. In the circuit board, therefore, the conductive material filled in the via-hole formed in the insulating substrate is securely connected electrically as well as mechanically to the conductive layers on both sides of the insulating substrate with high reliability.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a circuit board including an insulation substrate having a via-hole filled with conductive material, and conductive layers disposed to both sides of the insulation substrate. The invention also relates to a method of manufacturing the board. [0001]
  • BACKGROUND OF THE INVENTION
  • According to the recent trend toward downsizing of electronic devices, inexpensive circuit boards that are capable of mounting semiconductor chips, such as LSIs, are strongly demanded for not only industrial purposes but also for consumer products. It is imperative that such circuit boards having multi-layered fine wiring patterns can be manufactured easily with high yield rate and high reliability, for the purpose of increasing packaging density. [0002]
  • A conventional circuit board includes a glass-epoxy board, which is an insulation substrate made of woven glass cloth impregnated with epoxy resin, and copper foils bonded by heat-press or the like to both sides of the substrate. In circuit board, patterns are formed by photo-etching the copper foils, a through-hole is formed by drilling or the like, and wiring layers between both side surfaces of the through hole are then connected with copper plated on an interior wall of the through-hole. [0003]
  • In this method, an interior of the through hole, upon being plated, lacks reliability because plating solution does not permeate easily into the hole, and an area which is not plated thus tends to be created, and this may cause a failure of electrical connection. This may cause in deficiency that a thickness of the plated copper deep inside the through-hole, which can cause an electrical problem due to a large resistance for an electric connection. It is difficult to mount a component to a portion where a through-hole is formed. And it is difficult to plate a through-hole in a desired inner layer of a multi-layered substrate. These difficulties limit an arrangement of wiring patterns and manufacturing processes of the circuit board, and also hinder downsizing of the board. [0004]
  • DISCLOSURE OF THE INVENTION
  • A circuit board is manufactured through filling a via-hole formed in an insulating substrate with conductive material, forming conductive layers on both sides of the insulating substrate, and forming alloy of component material in the conductive material and component material of the conductive layers. [0005]
  • In this circuit board, the conductive material in the via-hole formed in the insulating substrate is securely connected electrically as well as mechanically to the conductive layers on both sides of the insulating substrate reliably.[0006]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A through FIG. 1D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 1 of the present invention. [0007]
  • FIG. 2A through FIG. 2D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 2 of the invention. [0008]
  • FIG. 3A through FIG. 3D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 3 of the invention.[0009]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • (Exemplary Embodiment 1) [0010]
  • FIG. 1A through FIG. 1D are sectional views of a circuit board according to exemplary embodiment 1 of the present invention. Insulating [0011] substrate 101 may be a glass-epoxy board made of glass cloth impregnated and/or coated with epoxy resin, a resin board made of woven cloth or unwoven cloth of resin fibers, such as aramid impregnated with resin such as epoxy, or a film board made of a plastic film such as polyimide coated with resin such as adhesive material. Insulating substrate 101 is provided with through-hole (via-hole) 102, as shown in FIG. 1A, by laser beam using carbon dioxide, YAG, and the like, or drilling. Via-hole 102 is more favorably formed by laser machining than mechanical method using a drill, since the hole can have its small diameter and its smooth peripheral edge as if it is melted, which is effective for a filling of conductive material at a subsequent process.
  • Via-[0012] hole 102 formed in the insulating substrate 101 is then filled with conductive material 103, as shown in FIG. 1B. Conductive material 103 may employ pasty material containing a granular metal in a form of fine spherical or scaly particles of approximately 0.1 μm to 50 μm mixed with organic solvent and/or resin. The metal may be copper, alloy of copper and silver, or copper having its surface coated or alloyed with another metal like silver, gold or the like. Copper can make particles of spherical shape inexpensively. Copper may be mixed with or coated on its surface with other metal of lower hardness and lower electric resistance than those of copper, such as silver, gold, or the like. The silver or gold may be transformed by press-working in a subsequent process. Accordingly, such metal of lower resistance can further reduce contact resistance since the particles have increased contact surface areas on the copper. Conductive material 103 may be filled into the via-hole 102 by such a method as printing conductive material 103 on one side of the via-hole 102 while the other side is, for example, vacuum-suctioned.
  • Then, [0013] conductive layers 104, for instance, copper foils are placed on respective sides of insulating substrate 101 having via-hole 102 filled with conductive material 103, as shown in FIG. 1C. Metal 105 which can be alloyed with copper is deposited on conductive layer 104 deposited at least at an area contacting with conductive material 103. Metal 105 has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction such as adhesion and pressure bonding between the metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process, which will be described later. Metal 105 is bonded to each of conductive layers 104 by depositing metal of comparatively low melting point, such as tin, zinc, silver, palladium, indium, or bismuth, by a method, such as plating, thermal spraying. In this embodiment, metal 105, if having a granular form, is alloyed easily since contact areas among the granules become smaller, thereby increasing energy of reaction in pressure and temperature that they receive per unit area. Conductive layers 104 placed on both sides of insulating substrate 101 are then pressed externally while being heated at least at a pressure and a temperature that produce adhesion between insulating substrate 101 and conductive layers 104. The temperature needs to form alloy of the metal to be alloyed with copper. The temperature is preferably 120° C. or higher, but 300° C. or lower, and more preferably ranges from 200° C. to 270° C. In addition, the higher the pressure applied in this process, the better it results. The pressure does not excessively compress insulating resin 101, and thus is, for example, 200 kg/cm2 or less. Indium and bismuth have melting points of 157° C. and 271° C., respectively, as low as tin. They start reactions, e.g. of alloying, at a temperatures ranging generally from 60 to 70% of their melting points. The reactions are accelerated further in this process if they receive additional energy of, e.g., pressure or mechanical activity. Alloy layers containing tin having a melting point of 232° C., while copper has that of 1084° C. of copper, has a desirable condition for an electric resistance and mechanical strength. Tin can be alloyed only with a portion approx. 10% or less of the entire copper. Furthermore, zinc, silver, and palladium having respective melting points of 419° C., 962° C., and 1554° C. are capable of decreasing the contact resistance substantially since they form diffusion layers, and/or since they produce adhesion or pressure bonding even though they do not melt to be alloyed.
  • [0014] Reaction layers 106 are formed as shown in FIG. 1D by adhesion, pressure bonding, and/or alloying at connecting portions at boundaries between conductive layers 104 and the conductive material 103 filled in the via-hole. Copper and metal 105 to be alloyed with the copper to form the reaction layers 106 produce diffusion layers and/or alloy layers only on copper surfaces with practically no need to melt the copper. This increases mechanical strength and decreases electric resistance at the connecting portions. In addition, the copper, since keeping its intrinsic low resistance, provides the connecting portions having a low resistance and high mechanical strength.
  • (Exemplary Embodiment 2) [0015]
  • FIG. 2A through FIG. 2D are sectional views of a circuit board according to exemplary embodiment 2 of the present invention. [0016]
  • Insulating [0017] substrate 201 made of, for example, a glass epoxy board, a resin board, or a film board is provided with via-hole 202, as shown in FIG. 2A, formed therein in the same manner as described in embodiment 1. Then, the via-hole 202 formed in insulating substrate 201 is filled with conductive material 203 not containing copper but consisting of metal that forms alloy with copper, as shown in FIG. 2B. Conductive material 203 can be filled into via-hole 202 by a method, such as printing conductive material 203 on one side of via-hole 202 while the other side is vacuum-suctioned. Conductive material 203 has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction, such as adhesion or pressure bonding between these metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process described later. Conductive material 203 may suitably employs soft metal, such as tin, zinc, silver, palladium, conductive indium, bismuth, that have comparatively low melting points and low hardnesses. The metals may be used as material of lead free solder that does not contain noxious lead. Conductive material 203 may be suitably formed in a pasty form made of granular metal in a form of fine spherical or scaly particles of approximately 0.1 μm to 50 μm mixed with organic solvent and/or resin. The metal has relatively high melting point and high hardness, and does not contain copper. The metal may be any other metal excluding copper having surface coated with aforementioned metal, alloy of the aforementioned metal, or any other pure metal.
  • Next, [0018] conductive layers 204 made of copper foils or the like are placed on both sides of the insulating substrate 201 which has via-hole 202 filled with conductive material 203, as shown in FIG. 2C. Conductive layers 204 are then pressed from the outside while being heated at least at a pressure and temperature that produce adhesion between insulating substrate 201 and conductive layers 204. The temperature may be preferably 120° C. or higher, but 300° C. or lower, which can induce a reaction of forming alloy between conductive material 203 and conductive layers 204. The temperature may more preferably be between 200° C. and 270° C. In addition, the higher the pressure applied in this process the better it results. The pressure does not excessively compress the insulating substrate 201, and thus is, for example, 200 kg/cm2 or less. Conductive material 203 can be alloyed easily because of its granular form having a smaller contact area than the granules, thereby increasing energy of reaction in pressure and temperature that they receive per unit area. In addition, conductive material 203, since being filled in via-hole 202 contains soft metal of low hardness, increases contact areas by deformation resulting from a pressure of press working, thereby decreasing an electric resistance in via-hole 202. Nickel, chromium, molybdenum, and tungsten, which have high hardness and high melting point, are effective for a core material to be coated. They help the pressure to act more effectively upon conductive material 203 in the press-working since conductive material 203 consists of soft metal having a comparatively low hardness. In other words, they not only promote conductive material 203 to be alloyed in itself, but also increase contact area that can reduce the contact resistance by the press-working.
  • Reaction layers [0019] 206 are formed as shown in FIG. 2D by the press-working which produces adhesion, pressure bonding, and/or metal alloy of copper and the metal to be alloyed with copper, as discussed above, at connecting portions at boundaries between conductive layers 204 and conductive material 203 filled in the via-hole. It is practically unnecessary to melt the copper in reaction layers 206 if the copper and conductive material 203 to be alloyed with the copper are used. This is because reaction layers 203 need to be formed by diffusion and/or alloying only on surfaces of the copper. This can thus increase mechanical strength of the connecting portions, and decrease an electric resistance. In addition, the copper, since keeping its intrinsic low resistance, provides the connecting portions having a low resistance and high mechanical strength. Reaction layers 206 start reactions to form, for example, alloy at a temperature generally 60 to 70% of its melting point similarly to embodiment 1. The reactions are accelerated even further if they receive additional energy of, for example, pressure or mechanical activity. The alloy layers is in a desirable condition for an electric resistance and mechanical strength if tin is alloyed only with a portion approx. 10% or less of the entire copper. Moreover, contact resistances of the layers can be further decreased since they form diffusion layers, and/or since they produce adhesion or pressure bonding even if they are not alloyed.
  • (Exemplary Embodiment 3) [0020]
  • FIG. 3A through FIG. 3D are sectional views of a circuit board, illustrating a method of manufacturing the board according to exemplary embodiment 3 of the present invention. [0021]
  • As shown in FIG. 3A, insulating [0022] substrate 301 made of, for example, a glass epoxy board, a resin board, or a film board is provided with via-hole 302 formed therein similarly to embodiments 1 and 2. Then, via-hole 302 is filled with conductive material 303 containing copper and another metal that can be alloyed with copper, as shown in FIG. 3B. Conductive material 303 can be filled into via-hole 302 by a method, such as printing conductive material 303 on one side of via-hole 302 while the other side is vacuum-suctioned. The metal contained in conductive material 303 to be alloyed with copper has a lower melting point than copper, and is alloyed with copper by a temperature-independent reaction, such as adhesion or pressure bonding between these metals by a pressure applied in the press-working, and/or by a thermal energy given by heat-press that heats them while applying a pressure in the process, which will be described later. The metal may be suitably employ tin, zinc, silver, palladium, conductive indium, or bismuth, which is soft metal having comparatively low melting point and low hardness. Material suitable for conductive material 303 is in pasty form made of granular metal in a form of fine spherical or scaly particles of approximately 0.1 μm to 50 μm mixed with organic solvent and/or resin. The metal may be copper or any other metal of relatively high melting point and high hardness with a surface coated with the above-mentioned metal, alloy of copper with the above-mentioned metal, or any other pure metal.
  • Next, [0023] conductive layers 304 consisting of copper foils or the like are placed on both sides of insulating substrate 301 having via-hole 302 filled with conductive material 303, as shown in FIG. 3C. Conductive layers 304 are then pressed from the outside while being heated at least at a pressure and a temperature that produce adhesion between insulating substrate 301 and conductive layers 304. The temperature may be 120° C. or higher, but 300° C. or lower, which makes the copper in conductive layers 304 to form alloy with the metal contained in conductive material 303 and the copper in conductive material 303 to be alloyed with the afore-mentioned metal. The temperature is more preferably between 200° C. and 270° C. In addition, the higher the pressure applied in this process the better it results. The pressure, however, does not excessively compress insulating substrate 301, and thus is preferably 200 kg/cm2 or less. Conductive material 303 can be alloyed easily because of its granular form that having a smaller contact area among the granules, thereby increasing energy of reaction in pressure and temperature that they receive per unit area. In addition, since conductive material 303 filled in via-hole 302, since being composed of soft metal of low hardness, has an contact area increased by deformation resulting from a pressure of press working, thereby decreasing an electric resistance in via-hole 302. Copper is suitable as core material to be coated for conductive material 303 since being relatively inexpensive, having a low electric resistance, and easily forming fine particles of spherical shape. Even with any such metal having relatively high melting point and high hardness, the pressure acts more effectively in the press working upon conductive material 303 since the metal also contains the soft metal having comparatively low hardness. This not only promotes conductive material 303 to be alloyed in itself, but also increases the contact area and reduces the contact resistance by the press working and by the low electric resistance.
  • Copper is contained in [0024] conductive material 303 preferably at 50% or less for the electric resistance, and more preferably at 10% or less for both the electric resistance and mechanical strength. Moreover, contact resistances between conductive material 303 and conductive layers 304 can be further decreased since they form diffusion layers, and/or since they produce adhesion or pressure bonding even if they are not alloyed.
  • [0025] Reaction layer 306 is formed as shown in FIG. 3D by the press-working which produces adhesion, pressure bonding, and/or alloy of copper and the metal to be alloyed with the copper, as discussed above, at connecting portions at boundaries between conductive layers 304 and conductive material 303, as well as an interior of via-hole 302. Thus, the copper need not melt in reaction layer 306 containing the copper and afore-mentioned metal. The copper forms diffusion layers or alloy layers only on surfaces of the copper. This improves mechanical strength and decreases electric resistance of reaction layer 306, and thus provides connecting portions with low resistance and high mechanical strength since interiors of individual copper particles contained in reaction layer 306 keeps its intrinsic low resistance. Reaction layer 306 starts reaction, for example, to form alloy at a temperature generally of 60 to 70% of the melting point similarly to embodiment 1. The reaction is accelerated even further if it receives additional energy of, for example, pressure or mechanical activity.
  • Reaction layers are formed by adhesion, pressure bonding, and/or alloying at connecting portions in the boundaries between the conductive layers and the conductive material filled in the through via hole. Accordingly, the circuit board is provided with a low resistance and high mechanical strength at the connecting portions since the reaction layers have high mechanical strength and low electric resistance while interior of the copper contained therein keeps its intrinsic low resistance. In addition, a resistance of the conductive layers on both sides of the insulating substrate at the via-hole is reduced since an interior of the reaction layer reduces the resistance of the via-hole. Furthermore, mechanical strength of the connecting portions increases, and the reliability improves by mechanically securing the connections. Moreover, since the via-hole is filled with the conductive material, a component can be mounted on a surface of the conductive layer including an area above the via-hole, which improves downsizing of the circuit board as well as wiring flexibility. [0026]
  • The present invention provides the same effect for a circuit board having a conductive layer formed previously on only one side of a via-hole, i.e., a blind via-hole. In addition, a similar advantage is obtainable with a multi-layered board fabricated by repeating the process described in any of the foregoing embodiments. Like advantage is also accomplished with a circuit board having a conductive layer made previously by transferring a pattern-formed metal foil. [0027]
  • In the foregoing exemplary embodiments, the conductive layers are copper foils, and the conductive material contains copper and another metal that is alloyed with copper. The conductive layer may be composed of other conductive substance instead of copper, and the conductive material may contain any material that can be alloyed with the substance in order to achieve like advantages. [0028]
  • INDUSTRIAL APPLICABILITY
  • In the circuit board of the present invention, a conductive material filled in a via-hole formed in an insulating substrate and a conductive layers on both sides of the insulating substrate are securely connected electrically as well as mechanically with high reliability, by forming metal alloy of a part of metals that compose the layers and the material. [0029]

Claims (17)

1. A circuit board comprising:
an insulating substrate having a via-hole formed therein;
a conductive material filled in said via-hole;
conductive layers on both sides of said insulating substrate, respectively;
first alloy containing component material of said conductive material and component material of said conductive layers; and
second alloy contained in said conductive material.
2. The circuit board according to claim 1,
wherein at least one of said conductive layers and said conductive material contains copper, and
wherein said first alloy contains copper.
3. The circuit board according to claim 1,
wherein said conductive layers contain copper, and
wherein said first alloy contain said copper in said conductive layers.
4. The circuit board according to claim 1,
wherein said conductive material contains copper, and
wherein said first alloy contains said copper in said conductive material.
5. The circuit board according to claim 4, wherein said conductive material contains 50 wt % or less of copper.
6. A circuit board comprising:
an insulating substrate having a via-hole formed therein;
a conductive material filled in said via-hole, said conductive material containing alloy; and
conductive layers on both sides of said insulating substrate, respectively.
7. A method of manufacturing a circuit board comprising the steps of:
filling a via-hole formed in an insulating substrate with a conductive material;
disposing conductive layers on both sides of the insulating substrate, respectively; and
forming alloy of component material of the conductive material with component material of the conductive layers.
8. The method according to claim 7,
wherein the conductive layers contain copper,
wherein the component material of the conductive material is metal, and
wherein the conductive material includes a particle containing the metal.
9. The method according to claim 8, wherein the metal has a lower melting point than copper.
10. The method according to claim 7,
wherein the conductive material contains copper, and
wherein the conductive layers each includes a particle containing metal to be alloyed with copper placed on a surface of the conductive layers.
11. The method according to claim 10, wherein the metal has a lower melting point than copper.
12. The method according to claim 7,
wherein the conductive material contains copper,
wherein the conductive material contains copper and metal which can be alloyed with copper, and
wherein said step of forming the alloy of the component material of the conductive material with the component material of the conductive layers comprises the step of forming the alloy containing at least a part of the copper.
13. The method according to claim 12, wherein the metal has a lower melting point than copper.
14. The method according to claim 7,
wherein said step of disposing the conductive layers comprises the step of pressing the conductive layers onto the insulating substrate, and
wherein said step of forming the alloy of the component material of the conductive material with the component material of the conductive layers comprises the step of compressing the conductive material simultaneously to said step of pressing the conductive layers.
15. The method according to claim 7,
wherein said step of disposing the conductive layers comprises the step of heat-pressing the conductive layers onto the insulating substrate, and
wherein said step of forming the alloy of the component material of the conductive material with the component material of the conductive layers comprises the step of compressing and heating the conductive material simultaneously to said step of heat-pressing the conductive layers.
16. The method according to claim 15,
wherein the component material of the conductive layers contains copper, and
wherein the component material of the conductive material contains metal having a melting point lower than a temperature in said step of heat-pressing the conductive layers.
17. The method according to claim 15,
wherein the component material of the conductive layers contains copper, and
wherein the component material of the conductive material contains one of tin, zinc, silver, palladium, indium, and bismuth.
US10/864,382 2001-01-15 2004-06-10 Circuit board and method of manufacturing the same Abandoned US20040221449A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/864,382 US20040221449A1 (en) 2001-01-15 2004-06-10 Circuit board and method of manufacturing the same
US12/461,320 US20100025099A1 (en) 2001-01-15 2009-08-07 Circuit board and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001006024A JP2002217510A (en) 2001-01-15 2001-01-15 Connecting structure of board, and its manufacturing method
JP2001-006024 2001-01-15
US10/203,970 US7423222B2 (en) 2001-01-15 2002-01-11 Circuit board and method of manufacturing the same
US10/864,382 US20040221449A1 (en) 2001-01-15 2004-06-10 Circuit board and method of manufacturing the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/203,970 Division US7423222B2 (en) 2001-01-15 2002-01-11 Circuit board and method of manufacturing the same
PCT/JP2002/000134 Division WO2002056651A1 (en) 2001-01-15 2002-01-11 Circuit board and production method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/461,320 Division US20100025099A1 (en) 2001-01-15 2009-08-07 Circuit board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20040221449A1 true US20040221449A1 (en) 2004-11-11

Family

ID=18873980

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/203,970 Expired - Fee Related US7423222B2 (en) 2001-01-15 2002-01-11 Circuit board and method of manufacturing the same
US10/864,382 Abandoned US20040221449A1 (en) 2001-01-15 2004-06-10 Circuit board and method of manufacturing the same
US12/461,320 Abandoned US20100025099A1 (en) 2001-01-15 2009-08-07 Circuit board and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/203,970 Expired - Fee Related US7423222B2 (en) 2001-01-15 2002-01-11 Circuit board and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/461,320 Abandoned US20100025099A1 (en) 2001-01-15 2009-08-07 Circuit board and method of manufacturing the same

Country Status (6)

Country Link
US (3) US7423222B2 (en)
EP (1) EP1278404B1 (en)
JP (1) JP2002217510A (en)
CN (1) CN1287647C (en)
DE (1) DE60225508T2 (en)
WO (1) WO2002056651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992001B1 (en) * 2003-05-08 2006-01-31 Kulicke And Soffa Industries, Inc. Screen print under-bump metalization (UBM) to produce low cost flip chip substrate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979391B2 (en) 2004-01-26 2007-09-19 松下電器産業株式会社 Circuit forming substrate manufacturing method and circuit forming substrate manufacturing material
JP4593331B2 (en) * 2005-03-24 2010-12-08 古河電気工業株式会社 Multilayer circuit board and manufacturing method thereof
JP4609849B2 (en) * 2005-08-01 2011-01-12 古河電気工業株式会社 Multilayer circuit board
JP4609850B2 (en) * 2005-08-01 2011-01-12 古河電気工業株式会社 Multilayer circuit board
JP5114858B2 (en) * 2006-03-28 2013-01-09 富士通株式会社 Multilayer wiring board and manufacturing method thereof
US7910837B2 (en) * 2007-08-10 2011-03-22 Napra Co., Ltd. Circuit board, electronic device and method for manufacturing the same
JP2008160150A (en) * 2008-02-15 2008-07-10 Matsushita Electric Ind Co Ltd Method of producing substrate
JP5250582B2 (en) * 2010-04-22 2013-07-31 有限会社 ナプラ Filling substrate and filling method using the same
US8491315B1 (en) * 2011-11-29 2013-07-23 Plastronics Socket Partners, Ltd. Micro via adapter socket
KR101370119B1 (en) * 2011-12-13 2014-03-04 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 Elastomer adhesions
US20140008104A1 (en) * 2012-02-08 2014-01-09 Panasonic Corporation Resistance-formed substrate and method for manufacturing same
US10402232B2 (en) * 2013-02-11 2019-09-03 Wind River Systems, Inc. Method and system for deterministic multicore execution
CN103596362B (en) * 2013-11-08 2016-08-31 溧阳市江大技术转移中心有限公司 A kind of printed circuit board (PCB) of the alloy column with staggered interval
CN113311959B (en) * 2021-05-18 2023-01-17 维沃移动通信有限公司 Display module and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039721A (en) * 1974-09-18 1977-08-02 Siemens Aktiengesellschaft Thick-layer conductor path pastes
US4788766A (en) * 1987-05-20 1988-12-06 Loral Corporation Method of fabricating a multilayer circuit board assembly
US5551626A (en) * 1992-06-05 1996-09-03 Matsushita Electric Industrial Co., Ltd. Diffusion joining method and a paste used therefor
US5742419A (en) * 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
US5907425A (en) * 1995-12-19 1999-05-25 The Board Of Trustees Of The Leland Stanford Junior University Miniature scanning confocal microscope
US6483626B2 (en) * 1999-03-05 2002-11-19 Olympus Optical Co., Ltd. Direct-view-type confocal point optical system
US6713687B2 (en) * 2000-12-26 2004-03-30 Denso Corporation Printed wiring board and method for manufacturing printed wiring board
US20040122289A1 (en) * 2002-11-05 2004-06-24 Pentax Corporation Confocal probe and endoscope device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663497A (en) * 1982-05-05 1987-05-05 Hughes Aircraft Company High density printed wiring board
US5185502A (en) * 1989-12-01 1993-02-09 Cray Research, Inc. High power, high density interconnect apparatus for integrated circuits
US5627345A (en) * 1991-10-24 1997-05-06 Kawasaki Steel Corporation Multilevel interconnect structure
JP3350949B2 (en) * 1992-02-20 2002-11-25 株式会社村田製作所 Conductive paste
US5309629A (en) * 1992-09-01 1994-05-10 Rogers Corporation Method of manufacturing a multilayer circuit board
JP3094754B2 (en) 1993-10-20 2000-10-03 松下電器産業株式会社 Printed wiring board and method of manufacturing the same
CA2154409C (en) * 1994-07-22 1999-12-14 Yuzo Shimada Connecting member and a connecting method using the same
US6077415A (en) * 1998-07-30 2000-06-20 Moltech Invent S.A. Multi-layer non-carbon metal-based anodes for aluminum production cells and method
JPH11251703A (en) * 1998-02-27 1999-09-17 Matsushita Electric Ind Co Ltd Circuit board, both-sided circuit board, multilayered circuit board, and manufacture of circuit board
US6139777A (en) * 1998-05-08 2000-10-31 Matsushita Electric Industrial Co., Ltd. Conductive paste for filling via-hole, double-sided and multilayer printed circuit boards using the same, and method for producing the same
WO2000013190A1 (en) * 1998-08-28 2000-03-09 Matsushita Electric Industrial Co., Ltd. Conductive paste, conductive structure using the same, electronic part, module, circuit board, method for electrical connection, method for manufacturing circuit board, and method for manufacturing ceramic electronic part
JP3119630B2 (en) * 1998-09-18 2000-12-25 日本電気株式会社 Multilayer circuit board for semiconductor chip module and method of manufacturing the same
JP3980801B2 (en) * 1999-09-16 2007-09-26 株式会社東芝 Three-dimensional structure and manufacturing method thereof
JP4486196B2 (en) * 1999-12-08 2010-06-23 イビデン株式会社 Single-sided circuit board for multilayer printed wiring board and manufacturing method thereof
JP3473601B2 (en) 2000-12-26 2003-12-08 株式会社デンソー Printed circuit board and method of manufacturing the same
US6713688B2 (en) * 2000-12-27 2004-03-30 Matsushita Electric Industrial Co., Ltd. Circuit board and its manufacture method
JP2003101184A (en) * 2001-09-27 2003-04-04 Kyocera Corp Ceramic circuit board and production method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039721A (en) * 1974-09-18 1977-08-02 Siemens Aktiengesellschaft Thick-layer conductor path pastes
US4788766A (en) * 1987-05-20 1988-12-06 Loral Corporation Method of fabricating a multilayer circuit board assembly
US5551626A (en) * 1992-06-05 1996-09-03 Matsushita Electric Industrial Co., Ltd. Diffusion joining method and a paste used therefor
US5742419A (en) * 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
US5907425A (en) * 1995-12-19 1999-05-25 The Board Of Trustees Of The Leland Stanford Junior University Miniature scanning confocal microscope
US6483626B2 (en) * 1999-03-05 2002-11-19 Olympus Optical Co., Ltd. Direct-view-type confocal point optical system
US6713687B2 (en) * 2000-12-26 2004-03-30 Denso Corporation Printed wiring board and method for manufacturing printed wiring board
US20040122289A1 (en) * 2002-11-05 2004-06-24 Pentax Corporation Confocal probe and endoscope device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992001B1 (en) * 2003-05-08 2006-01-31 Kulicke And Soffa Industries, Inc. Screen print under-bump metalization (UBM) to produce low cost flip chip substrate

Also Published As

Publication number Publication date
CN1456031A (en) 2003-11-12
US7423222B2 (en) 2008-09-09
JP2002217510A (en) 2002-08-02
WO2002056651A1 (en) 2002-07-18
EP1278404A1 (en) 2003-01-22
EP1278404B1 (en) 2008-03-12
CN1287647C (en) 2006-11-29
DE60225508T2 (en) 2008-06-19
EP1278404A4 (en) 2005-07-20
US20030039811A1 (en) 2003-02-27
DE60225508D1 (en) 2008-04-24
US20100025099A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US20100025099A1 (en) Circuit board and method of manufacturing the same
TW522772B (en) Double-sided circuit board and multilayer wiring board comprising the same and process for producing double-sided circuit board
US6300576B1 (en) Printed-circuit board having projection electrodes and method for producing the same
US6812412B2 (en) Multi-layer wiring board and method of producing same
US6710261B2 (en) Conductive bond, multilayer printed circuit board, and method for making the multilayer printed circuit board
EP1280393B1 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
US6544428B1 (en) Method for producing a multi-layer circuit board using anisotropic electro-conductive adhesive layer
KR20090124916A (en) Method of making printed wiring board and electrically conductive binder
WO1995013901A1 (en) Metallurgically bonded polymer vias
JP2003229661A (en) Wiring board and its manufacturing method
JP3252757B2 (en) Ball grid array
JP2008160150A (en) Method of producing substrate
JP3065569B2 (en) Manufacturing method of printed circuit board
JP2003133474A (en) Mounting structure of electronic device
JP4683768B2 (en) Wiring board
JP2009246145A (en) Substrate with built-in electronic component and method of manufacturing the same, and semiconductor device using the same
JP2004031738A (en) Wiring board and its manufacturing method
JP6476562B2 (en) Wiring board and method for manufacturing wiring board
JP2001291800A (en) Package for electronic component
JP3765743B2 (en) Wiring board manufacturing method
JP2006120769A (en) Multilayer flexible printed wiring board and manufacturing method thereof
JP2003324277A (en) Wiring board and manufacturing method thereof
JP2002252305A (en) Mounting structure for electronic device
JP2002353368A (en) Mounting structure of electronic apparatus
JP2003046252A (en) Method for manufacturing wiring board

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION