US20040224585A1 - Wet-formed mat applications for cement backerboards - Google Patents

Wet-formed mat applications for cement backerboards Download PDF

Info

Publication number
US20040224585A1
US20040224585A1 US10/830,795 US83079504A US2004224585A1 US 20040224585 A1 US20040224585 A1 US 20040224585A1 US 83079504 A US83079504 A US 83079504A US 2004224585 A1 US2004224585 A1 US 2004224585A1
Authority
US
United States
Prior art keywords
strands
chop
wet
introducing
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/830,795
Inventor
Dale Grove
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Corning Intellectual Capital LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/830,795 priority Critical patent/US20040224585A1/en
Publication of US20040224585A1 publication Critical patent/US20040224585A1/en
Assigned to OWENS CORNING INTELLECTUAL CAPITAL, LLC reassignment OWENS CORNING INTELLECTUAL CAPITAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS-CORNING FIBERGLAS TECHNOLOGY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/522Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/40Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/04Mats
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • C04B2111/0062Gypsum-paper board like materials
    • C04B2111/00629Gypsum-paper board like materials the covering sheets being made of material other than paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/133Inorganic fiber-containing scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/171Including a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/172Coated or impregnated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/172Coated or impregnated
    • Y10T442/174Including particulate material other than fiber in coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • Y10T442/191Inorganic fiber-containing scrim
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/184Nonwoven scrim
    • Y10T442/198Coated or impregnated

Definitions

  • the present invention relates generally to cement backerboards and more specifically to wet formed mat applications for cement backerboards.
  • Interior and exterior construction boards with cores of plaster, cement, or hybrid materials are used in a wide variety of indoor and outdoor structural applications.
  • cement boards are used as a support surface for overlying materials such as wood siding, stucco, aluminum, brick, tile, stone aggregate and marble.
  • cement boards are used in exterior insulating systems, commercial roof deck systems, masonry applications and exterior curtain walls.
  • cement boards contain a core formed of a cementitious material and low density fillers that are interposed between two facing layers. Facing materials advantageously contribute flexural and impact strength to the high compressive strength but brittle material forming the cementitious core.
  • the facing material can provide a durable surface and/or other desirable properties to the cement board.
  • facing materials are alkaline resistant, binder coated glass fibers.
  • Glass fiber facings provide increased dimensional stability in the presence of moisture and provide greater physical and mechanical properties to the cement board.
  • These facing sheets are formed as randomly oriented fibrous glass mats or open mesh glass scrims formed from continuous glass yarns.
  • Known methods for making cementitious boards consists of providing a continuous feed of facing material and depositing a cementitious slurry onto the top surface of the facing material. A second continuous feed of facing material is then applied to the top surface of the slurry. The slurry is dried to harden the cementitious composition and to integrate the facing material into the cement board. The cement board is subsequently cut to a predetermined length for shipping and eventual use.
  • Known glass scrim systems used to make the glass facing sheets typically include about 60% polyvinyl chloride (PVC) and glass scrim solutions that are manufactured in an expensive, two step process. Although some binder protection from highly alkaline conditions is required, the high binder levels are more likely due to process/coating related issues. Higher binder loading levels are required in existing glass facing sheets due to (i) throughput issues in a single strand coating operation, if precoated strands are employed; (ii) coating control issues that arise in coating pre-weaved fabrics; and (iii) possible wet out issues associated with thick, plasticized PVC resins. Biaxial 0/90 oriented scrims exhibit pitting in highly open porous regions.
  • the present invention comprises combining an alkaline resistant binder with a permeable wet-formed mat composed of wet use chopped strands (WUCS), chopped dry strands or roving, and potentially unidirectional roving to create an open mat structure that can be used in cement backerboard applications.
  • WUCS wet use chopped strands
  • roving chopped dry strands or roving
  • a unique aspect of the present invention is the behavior of the wet chop strands and dry chop strands in the dispersion prior to forming the mat.
  • Wet chop strands tend to spread out randomly within the whitewater dispersion.
  • Dry chop strands will also randomly orient, however the material tends to stay together in the whitewater dispersion (like a log).
  • the permeable matting formed is not a completely random network of wet and dry chop, thereby giving a mat with a higher degree of openness as measured by Frazier air permeability. This improves cement impregnation.
  • FIG. 1 is a perspective view of a randomly oriented open mesh filament network according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view of a randomly oriented open mesh filament network according to another preferred embodiment of the present invention.
  • FIG. 3 is a perspective view of a processing line used to form the a wet formed permeable mat and the randomly oriented open mesh filament network of FIGS. 1 and 2;
  • FIGS. 4-9 illustrate the manner of precasting the cement backerboard using the wet permeable mat of FIG. 3.
  • FIGS. 1 and 2 illustrate a randomly oriented open mesh filament network 14 according to two preferred embodiments of the present invention.
  • the randomly oriented open mesh filament network 14 of FIGS. 1 and 2 may then be impregnated with an alkaline resistant binder 16 to form a wet permeable mat 10 .
  • This wet permeable mat 10 may be immersed and embedded with cement to form a cement backerboard 110 having improved decorative characteristics and other properties as described in FIG. 4.
  • the randomly oriented open mesh filament network 14 comprises a combination of sized wet use chop strands (WUCS) 18 and sized dry chop fiber strands 20 in lengths between approximately 0.75 and 1.5 inches in approximately a 25-75/75-25 weight percentage ratio (or between a 3:1 and 1:3 weight percent ratio).
  • WUCS wet use chop strands
  • sized dry chop fiber strands 20 in lengths between approximately 0.75 and 1.5 inches in approximately a 25-75/75-25 weight percentage ratio (or between a 3:1 and 1:3 weight percent ratio).
  • the strands 18 , 20 are randomly dispersed throughout the network 14 using a whitewater chemical dispersion 71 .
  • the strands 18 , 20 comprise E-type glass filaments, S-type glass filaments, alkaline resistant glass filaments, or ECR-type glass filaments such as Owens Corning's Advantex® glass fibers.
  • E-type glass filaments such as Owens Corning's Advantex® glass fibers.
  • other types of fiber having sufficient modulus i.e. similar in modulus to the fibers described above may be used as well, including basalt fibers and wood natural fibers such as cellulose and wood.
  • dry chop strands 20 In the case of dry chop strands 20 , sizing compositions having higher solids levels are employed, and the filaments are dried and cured before final packaging.
  • One preferred dry chop strand 20 having a high solids coating that meets these requirements is Owens Corning's 893 filaments, available in roving form but capable of being chopped into the proper size by methods well known in the art.
  • the network 14 also comprises unidirectional rovings 22 combined with a 25-75/75-25 weight percentage ratio of wet use and dry strands 18 , 20 .
  • the unidirectional rovings 22 comprise approximately 20 to 50% of the total fiber weight of the network 14 .
  • the unidirectional rovings 22 have a similar sizing composition to the dry use strands 20 .
  • One preferred unidirectional roving 22 that meets these requirements is Owens Corning's 377 unidirectional glass rovings.
  • FIG. 3 illustrates a processing line 17 used for forming the random open mesh filament network 14 of FIGS. 1 and 2 and further forming a wet process permeable mat 10 that is used to make a cement backerboard 110 .
  • a 25-75/75-25 by weight percentage combination of the wet chop 18 and dry chop strands 20 are added to a whitewater chemical dispersion 71 within a whitewater tank 70 to form a thick whitewater slurry 72 at consistency levels of approximately 0.2 to 1 percent.
  • the whitewater chemical dispersion 71 is used to obtain reasonable filamentation of wet used strands 18 through steric, thermodynamic, and charge colloidal interactions.
  • a preferred whitewater dispersion 71 includes a cationic dispersant, an anionic viscosity modifier, a defoamer and a biocide.
  • the pH of the whitewater chemical dispersion 71 is maintained at approximately 8 by adding ammonia.
  • the cationic dispersant is typically added first, followed by the strands 18 , 20 , defoamer, and viscosity modifier to form the dispersion 71 .
  • Additives such as dry strength agents and wet strength agents known in the art may also be added to the dispersion 71 .
  • the anionic viscosity modifiers used in the whitewater dispersion 71 preferably have molar anionicities between approximately 25 and 40% and molecular weights of about 16 million.
  • One preferred class of anionic viscosity modifiers is a polyacrylamide viscosity modifier such as Nalco 7768, Magnifloc 1886A, and HyChem AE 874.
  • other possible viscosity modifiers or flocculants include hydroxyethyl cellulose and polyamines.
  • the cationic dispersants used comprise ethoxylated alkylamine dispersants such as Nalco 8493, Schercopol DS-140, and Rhodameen VP532.
  • ethoxylated alkylamine dispersants such as Nalco 8493, Schercopol DS-140, and Rhodameen VP532.
  • other dispersants may be used as well, including amine oxides and polyethoxylated derivatives of amide condensation of fatty acid products.
  • preferred defoamers include Nalco PP04-3840 and Nopco NXZ.
  • a unique aspect of the present invention is the behavior of the wet chop strands 18 and dry chop strands 20 in the dispersion 71 .
  • the wet chop strands 18 have a tendency to spread out randomly within the dispersion 71 .
  • the dry chop strands 20 will also randomly orient, however the material tends to stay together in the dispersion 71 (like a log).
  • the network 14 and subsequently formed permeable mat 10 formed is not a completely random network of wet and dry chop strands 18 , 20 .
  • the permeable mat 10 that is formed has a higher degree of openness as measured by Frazier air permeability. This improves cement impregnation.
  • the thick slurry 72 formed is maintained under agitation in a single tank 73 or series of tanks.
  • the thick slurry 72 is then delivered through a control valve 74 and combined with a thin stock stream 76 from a silo 78 to form a lower consistency slurry 80 in the former 82 .
  • the thin stock stream 76 comprises the same whitewater chemicals as the thick slurry 72 with low concentrations of the strands 18 , 20 .
  • the ratio of thick slurry 72 to the silo stream 78 in the lower consistency slurry 80 should not exceed 20:1 to obtain good mixing characteristics.
  • the former 82 functions to equally distribute and randomly align the strands 18 , 20 to form the open mesh filament network 14 .
  • Formers 82 that can accommodate the initial fiber formation include Fourdrinier machines, Stevens Former, Roto Former, Inver Former, cylinder, and VertiFormer machines. These formers offer several control mechanisms 90 to control fiber orientation within the network 14 such as drop leg and various pond regulator/wall adjustments.
  • Deposited fibers forming the network 14 are partially dried over a suction box 94 to exhibit correct release characteristics from the former wire 96 to the saturator section 98 .
  • the network 14 is guided from the former 82 to the saturator section 98 through a contact vacuum roller.
  • the network 14 Upon entering the saturator section 98 , the network 14 is further dried with a first suction box 100 .
  • a binder is then poured onto the network 14 from a curtain coater 16 or similar depositing device.
  • the binder 16 coats and is pulled through the network 14 using a second suction box 104 .
  • Additional suction boxes 106 may be employed to control the binder basis weight.
  • binder basis weight level is measured at the end of the line 17 using a binder basis-measuring device 108 .
  • the network 14 is subsequently dried and cured in a dryer 110 such as a through-air dryer or honeycomb dryer to form the wet formed permeable mat 10 .
  • unidirectional rovings 22 are introduced to the network 14 from a creel stand 101 , wherein operators will string the rovings 22 through guide dyes onto the network 14 that move slightly back and forth in the CD direction. Rovings are saturated with binder and are introduced prior to the binder curtain coater but after the first saturator suction box.
  • the binder 16 must provide alkalinity resistant for the fibers to work since silica, which is used in the glass network 14 , is attacked under strong alkaline conditions. Glass transition temperature is also an important criteria in selecting an appropriate binder 16 . For example, binders 16 having a glass transition temperature near the boiling point of water experience moisture diffusion/resin velocity problems that adversely affect film formation and mechanical properties.
  • Alkaline resistant binders 16 that meet these criteria and may be used include phenolics, melamines, acrylics, styrene-acrylates, styrene butadiene, and ethylene vinyl acetate.
  • phenolic-based binders are used, such as Borden Chemical's 5901 phenolic binder.
  • Another preferred non-phenolic based binder that is used is Rohm and Haas' GL618 acrylic copolymer, which has a glass transition temperature of approximately 35 degrees Celsius.
  • Example formulations for the mats 10 without unidirectional rovings 22 made with the 20% by weight acrylic binder and 30% by weight phenolic binder at various mat weights is illustrated below in Tables 1-6, while example formulations for mats 10 made with unidirectional rovings 22 are shown in Tables 7 and 8: TABLE 1 GL 618
  • Example Handsheet Formulations Overall Compositions in a 2 lb/sq mat with 20% Binder Name Description Company Amount 9501 WUCS* 9501 sized Wet Chop Owens Corning 3.3 893 Chopped SMC 893 sized Dry Chop Owens Corning 3.3 GL 618 Acrylic Binder Rohm & Haas 1.7 Nalclear 7768 Anionic Viscosity Nalco Trace Modifier 8493 Cationic Dispersant Nalco Trace PP04-3840 Defoamer Nalco Trace (Gram)
  • Tables 9A and 9B compares mats 10 made according to the present invention using various binder compositions with known mat systems and mat systems having variations of the preferred mat 10 compositions and to illustrate physical and decorative properties.
  • TABLE 9A Glass Binder Basis Basis Basis Basis Binder Binder Weight Weight LOI Weight Weight Thickness Material Description Manufacturer (lb/sq) (gsm) (%) (lb/sq) (lb/sq) (0.001′′) PVC PVC Scrim - 2.2 1.1E+02 61 0.9 1.3 11.6 0/90 PVC/E- Glass Tows (60% LOI) Roofing Mat Portland 1.9 9.3E+01 19 1.5 0.4 23.8 3500 Enterprise National 1.8 8.8E+01 19 1.5 0.3 14.1 Mat with Starch or WUCS/Chopped Air Products Roving with EVA Binder 5901E 5901 Borden 2.4 1.2E+02 23 1.8 0.6 26.4 Phenolic and 1′′ 9501 E Glass WUCS 5901A 5901 Borden
  • Tables 9A and 9B illustrate that the combination of strands 18 , 20 , generally maintain or improve the Frazier Air Permeability of the various systems without significantly adversely affecting mechanical properties such as CaO percent retention and hot water retention. Tables also indicate that tensile strength may be affected as the ratio of wet use chop strands 18 to dry use strands 20 decreases. This is believed to be a result of the dry use strands 20 forming additional logs in the network 14 , which increase Frazier Air Permeability but decrease tensile strength of the network 14 .
  • the mat 10 formed in FIG. 3 above may then be applied to form a cement backerboard 110 in a conventional method such as the method described in U.S. Pat. No. 3,284,980 to Dinkel, which is herein incorporated by reference and described below in FIGS. 4-9.
  • a layer of wet formed permeable mat 10 is laid.
  • a slurry 122 containing hydraulic cement of a suitable consistency to permit penetration thereof through the openings in the open permeable mat 10 is applied, as from the traveling supply pipe 121 .
  • the amount of cement slurry 122 introduced is sufficient to cover the mat 10 completely so that substantially all the network 14 is immersed or embedded; the slurry penetrates the openings in the fibers 18 , 20 and optional rovings 22 and fills them so that the mat 10 is enveloped on both sides. Normally this is only a light envelopment, although an excess is sometimes needed where the aggregate in the core is large and the boundary surface presented by the core is very rough.
  • the core mixture 124 of aggregate and hydraulic cement is poured into the form 120 ; the water content is normally kept on the low side within the range for best strength development in the concrete.
  • a typical mix of the core mixture 124 is three volumes of light weight aggregate, one volume Portland cement and three-fourths volume of water.
  • the core mixture 124 is then rodded off flush with the top of the form 120 , as shown in FIG. 7, at the top boundary of the core mixture 124 some depressions will usually be present due to the openings between aggregate particles, to voids from the air entrainment or other cause, resulting from the coarse nature of the core mixture 124 composition.
  • a layer of wet formed permeable mat 10 is laid over the top of the core mixture 124 .
  • the thickness of the mat 10 ordinarily is so slight that it does not add materially to the thickness of the core 124 .
  • the last layer of hydraulic cement slurry 122 ′ is poured over the mat 10 from traveling supply pipe 121 , or applied by other suitable means.
  • the slurry 122 ′ penetrates the openings in the mat 10 and also into the voids, openings or surface irregularities at the upper boundary surface of core 124 .
  • Sufficient slurry 122 ′ is deposited to penetrate and fill the openings and voids in the core 124 surface, to fill the openings in the fibers 18 , 20 and to lightly cover the mat 10 , or at least be flush with its outer surface; it is then rodded or otherwise leveled.
  • the mat 10 is normally kept as close to the ultimate surface of the finished panel as possible inasmuch as the maximum benefit and greatest strength is thereby realized from the fiber strands 18 , 20 .
  • the composite panel 110 is prepared it is left in the form 120 for sufficient time to effect initial cure, or complete cure if desired; the use of a plastic film covering to retain moisture or the use of steam curing is advantageous.
  • the cement backerboards 110 formed according to the present invention offer many advantages over known PVC glass scrims. These backerboards 110 offer economical advantages in that the mat 10 be formed in a single operation and requires less binder 16 material than known scrim systems. Further, the backerboards 110 formed offer superior decorative finishes by preventing sink marks and pitting.
  • the present invention offers improved cement impregnation because the permeable mat 10 formed is not a completely random network of wet and dry chop strands 18 , 20 , and optional rovings 22 , thereby giving a mat 10 with a higher degree of openness as measured by Frazier air permeability as compared with some known systems. Further, permeability to cement impregnation may be adjusted by simply altering the ratio of wet chop strands 18 to dry chop strands 20 in the mat 10 , which in turn affects the ultimate physical properties such as tensile strength within the cement backerboards 110 .

Abstract

A wet-formed permeable mat composed of wet use chopped strands (WUCS), chopped roving, and potentially unidirectional roving coupled with an alkaline resistant binder are combined to create an randomly oriented open mat structure with a high degree of openness that can be used in cement backerboard applications. The cement backerboard that is subsequently formed from the wet-formed permeable mat has lower binder content, superior decorative finish, and better permeability control than known glass scrim systems and can be produced in a single continuous step.

Description

    TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
  • The present invention relates generally to cement backerboards and more specifically to wet formed mat applications for cement backerboards. [0001]
  • BACKGROUND OF THE INVENTION
  • Interior and exterior construction boards with cores of plaster, cement, or hybrid materials, such as cement boards or gypsum boards, are used in a wide variety of indoor and outdoor structural applications. For example, cement boards are used as a support surface for overlying materials such as wood siding, stucco, aluminum, brick, tile, stone aggregate and marble. Also, cement boards are used in exterior insulating systems, commercial roof deck systems, masonry applications and exterior curtain walls. [0002]
  • Generally, cement boards contain a core formed of a cementitious material and low density fillers that are interposed between two facing layers. Facing materials advantageously contribute flexural and impact strength to the high compressive strength but brittle material forming the cementitious core. In addition, the facing material can provide a durable surface and/or other desirable properties to the cement board. [0003]
  • One material that has been used to form facing materials is alkaline resistant, binder coated glass fibers. Glass fiber facings provide increased dimensional stability in the presence of moisture and provide greater physical and mechanical properties to the cement board. These facing sheets are formed as randomly oriented fibrous glass mats or open mesh glass scrims formed from continuous glass yarns. Known methods for making cementitious boards consists of providing a continuous feed of facing material and depositing a cementitious slurry onto the top surface of the facing material. A second continuous feed of facing material is then applied to the top surface of the slurry. The slurry is dried to harden the cementitious composition and to integrate the facing material into the cement board. The cement board is subsequently cut to a predetermined length for shipping and eventual use. [0004]
  • Known glass scrim systems used to make the glass facing sheets typically include about 60% polyvinyl chloride (PVC) and glass scrim solutions that are manufactured in an expensive, two step process. Although some binder protection from highly alkaline conditions is required, the high binder levels are more likely due to process/coating related issues. Higher binder loading levels are required in existing glass facing sheets due to (i) throughput issues in a single strand coating operation, if precoated strands are employed; (ii) coating control issues that arise in coating pre-weaved fabrics; and (iii) possible wet out issues associated with thick, plasticized PVC resins. Biaxial 0/90 oriented scrims exhibit pitting in highly open porous regions. [0005]
  • It is therefore highly desirable to provide glass scrim system that can be formed in a single step operation that uses less binder material. It is also highly desirable that such a process will result in superior decorative finishes and better permeability control. [0006]
  • SUMMARY OF THE INVENTION
  • The present invention comprises combining an alkaline resistant binder with a permeable wet-formed mat composed of wet use chopped strands (WUCS), chopped dry strands or roving, and potentially unidirectional roving to create an open mat structure that can be used in cement backerboard applications. [0007]
  • A unique aspect of the present invention is the behavior of the wet chop strands and dry chop strands in the dispersion prior to forming the mat. Wet chop strands tend to spread out randomly within the whitewater dispersion. Dry chop strands will also randomly orient, however the material tends to stay together in the whitewater dispersion (like a log). Hence, the permeable matting formed is not a completely random network of wet and dry chop, thereby giving a mat with a higher degree of openness as measured by Frazier air permeability. This improves cement impregnation. [0008]
  • Other objects and advantages of the present invention will become apparent upon considering the following detailed description and appended claims, and upon reference to the accompanying drawings.[0009]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a randomly oriented open mesh filament network according to a preferred embodiment of the present invention; [0010]
  • FIG. 2 is a perspective view of a randomly oriented open mesh filament network according to another preferred embodiment of the present invention; [0011]
  • FIG. 3 is a perspective view of a processing line used to form the a wet formed permeable mat and the randomly oriented open mesh filament network of FIGS. 1 and 2; and [0012]
  • FIGS. 4-9 illustrate the manner of precasting the cement backerboard using the wet permeable mat of FIG. 3.[0013]
  • DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS OF THE INVENTION
  • FIGS. 1 and 2 illustrate a randomly oriented open [0014] mesh filament network 14 according to two preferred embodiments of the present invention. As will be shown in FIG. 3 below, the randomly oriented open mesh filament network 14 of FIGS. 1 and 2 may then be impregnated with an alkaline resistant binder 16 to form a wet permeable mat 10. This wet permeable mat 10, in turn, may be immersed and embedded with cement to form a cement backerboard 110 having improved decorative characteristics and other properties as described in FIG. 4.
  • Referring to FIG. 1, the randomly oriented open [0015] mesh filament network 14 comprises a combination of sized wet use chop strands (WUCS) 18 and sized dry chop fiber strands 20 in lengths between approximately 0.75 and 1.5 inches in approximately a 25-75/75-25 weight percentage ratio (or between a 3:1 and 1:3 weight percent ratio). As shown in FIG. 3 below, the strands 18, 20 are randomly dispersed throughout the network 14 using a whitewater chemical dispersion 71.
  • Preferably, the [0016] strands 18, 20 comprise E-type glass filaments, S-type glass filaments, alkaline resistant glass filaments, or ECR-type glass filaments such as Owens Corning's Advantex® glass fibers. However, other types of fiber having sufficient modulus (i.e. similar in modulus to the fibers described above) may be used as well, including basalt fibers and wood natural fibers such as cellulose and wood.
  • In the case of wet [0017] use chop strands 18, low solids sizing compositions are employed that contain high dispersive chemistries. The finished product remains in a moist state having moisture contents running between 10 and 25%. One preferred wet use chop strand 18 having a low solids sizing that meets these requirements is Owens Corning's 9501 filaments.
  • In the case of [0018] dry chop strands 20, sizing compositions having higher solids levels are employed, and the filaments are dried and cured before final packaging. One preferred dry chop strand 20 having a high solids coating that meets these requirements is Owens Corning's 893 filaments, available in roving form but capable of being chopped into the proper size by methods well known in the art.
  • In an alternative preferred embodiment, as shown in FIG. 2, the [0019] network 14 also comprises unidirectional rovings 22 combined with a 25-75/75-25 weight percentage ratio of wet use and dry strands 18, 20. The unidirectional rovings 22 comprise approximately 20 to 50% of the total fiber weight of the network 14. The unidirectional rovings 22 have a similar sizing composition to the dry use strands 20. One preferred unidirectional roving 22 that meets these requirements is Owens Corning's 377 unidirectional glass rovings.
  • FIG. 3 illustrates a [0020] processing line 17 used for forming the random open mesh filament network 14 of FIGS. 1 and 2 and further forming a wet process permeable mat 10 that is used to make a cement backerboard 110. A 25-75/75-25 by weight percentage combination of the wet chop 18 and dry chop strands 20 are added to a whitewater chemical dispersion 71 within a whitewater tank 70 to form a thick whitewater slurry 72 at consistency levels of approximately 0.2 to 1 percent. The whitewater chemical dispersion 71 is used to obtain reasonable filamentation of wet used strands 18 through steric, thermodynamic, and charge colloidal interactions. A preferred whitewater dispersion 71 includes a cationic dispersant, an anionic viscosity modifier, a defoamer and a biocide. The pH of the whitewater chemical dispersion 71 is maintained at approximately 8 by adding ammonia. To take advantage of charge differences between mostly anionic and partially cationic surfaces of the E-type glass, the cationic dispersant is typically added first, followed by the strands 18, 20, defoamer, and viscosity modifier to form the dispersion 71. Additives such as dry strength agents and wet strength agents known in the art may also be added to the dispersion 71.
  • The anionic viscosity modifiers used in the [0021] whitewater dispersion 71 preferably have molar anionicities between approximately 25 and 40% and molecular weights of about 16 million. One preferred class of anionic viscosity modifiers is a polyacrylamide viscosity modifier such as Nalco 7768, Magnifloc 1886A, and HyChem AE 874. However, other possible viscosity modifiers or flocculants that may be used include hydroxyethyl cellulose and polyamines.
  • Preferably, the cationic dispersants used comprise ethoxylated alkylamine dispersants such as Nalco 8493, Schercopol DS-140, and Rhodameen VP532. However, other dispersants may be used as well, including amine oxides and polyethoxylated derivatives of amide condensation of fatty acid products. Also, preferred defoamers include Nalco PP04-3840 and Nopco NXZ. [0022]
  • A unique aspect of the present invention is the behavior of the [0023] wet chop strands 18 and dry chop strands 20 in the dispersion 71. The wet chop strands 18 have a tendency to spread out randomly within the dispersion 71. The dry chop strands 20 will also randomly orient, however the material tends to stay together in the dispersion 71 (like a log). Hence, the network 14 and subsequently formed permeable mat 10 formed is not a completely random network of wet and dry chop strands 18, 20. As will be discussed below, the permeable mat 10 that is formed has a higher degree of openness as measured by Frazier air permeability. This improves cement impregnation.
  • The [0024] thick slurry 72 formed is maintained under agitation in a single tank 73 or series of tanks. The thick slurry 72 is then delivered through a control valve 74 and combined with a thin stock stream 76 from a silo 78 to form a lower consistency slurry 80 in the former 82. The thin stock stream 76 comprises the same whitewater chemicals as the thick slurry 72 with low concentrations of the strands 18, 20. The ratio of thick slurry 72 to the silo stream 78 in the lower consistency slurry 80 should not exceed 20:1 to obtain good mixing characteristics.
  • The former [0025] 82 functions to equally distribute and randomly align the strands 18, 20 to form the open mesh filament network 14. Formers 82 that can accommodate the initial fiber formation include Fourdrinier machines, Stevens Former, Roto Former, Inver Former, cylinder, and VertiFormer machines. These formers offer several control mechanisms 90 to control fiber orientation within the network 14 such as drop leg and various pond regulator/wall adjustments.
  • Deposited fibers forming the [0026] network 14 are partially dried over a suction box 94 to exhibit correct release characteristics from the former wire 96 to the saturator section 98. Preferably, the network 14 is guided from the former 82 to the saturator section 98 through a contact vacuum roller.
  • Upon entering the [0027] saturator section 98, the network 14 is further dried with a first suction box 100. A binder is then poured onto the network 14 from a curtain coater 16 or similar depositing device. The binder 16 coats and is pulled through the network 14 using a second suction box 104. Additional suction boxes 106 may be employed to control the binder basis weight. Ideally, binder basis weight level is measured at the end of the line 17 using a binder basis-measuring device 108. The network 14 is subsequently dried and cured in a dryer 110 such as a through-air dryer or honeycomb dryer to form the wet formed permeable mat 10.
  • If optional [0028] unidirectional rovings 22 are used, they are introduced to the network 14 from a creel stand 101, wherein operators will string the rovings 22 through guide dyes onto the network 14 that move slightly back and forth in the CD direction. Rovings are saturated with binder and are introduced prior to the binder curtain coater but after the first saturator suction box.
  • The binder [0029] 16 must provide alkalinity resistant for the fibers to work since silica, which is used in the glass network 14, is attacked under strong alkaline conditions. Glass transition temperature is also an important criteria in selecting an appropriate binder 16. For example, binders 16 having a glass transition temperature near the boiling point of water experience moisture diffusion/resin velocity problems that adversely affect film formation and mechanical properties.
  • Alkaline resistant binders [0030] 16 that meet these criteria and may be used include phenolics, melamines, acrylics, styrene-acrylates, styrene butadiene, and ethylene vinyl acetate. Preferably, phenolic-based binders are used, such as Borden Chemical's 5901 phenolic binder. Another preferred non-phenolic based binder that is used is Rohm and Haas' GL618 acrylic copolymer, which has a glass transition temperature of approximately 35 degrees Celsius. Example formulations for the mats 10 without unidirectional rovings 22 made with the 20% by weight acrylic binder and 30% by weight phenolic binder at various mat weights is illustrated below in Tables 1-6, while example formulations for mats 10 made with unidirectional rovings 22 are shown in Tables 7 and 8:
    TABLE 1
    GL 618 Example Handsheet Formulations
    Overall Compositions in a 2 lb/sq mat with 20% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 3.3
    893 Chopped SMC 893 sized Dry Chop Owens Corning 3.3
    GL 618 Acrylic Binder Rohm & Haas 1.7
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0031]
    TABLE 2
    Overall Compositions in a 2.5 lb/sq mat with 20% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 4.2
    893 Chopped SMC 893 sized Dry Chop Owens Corning 4.2
    GL 618 Acrylic Binder Rohm & Haas 2.1
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0032]
    TABLE 3
    Overall Compositions in a 3.0 lb/sq mat with 20% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 5.0
    893 Chopped SMC 893 sized Dry Chop Owens Corning 5.0
    GL 618 Acrylic Binder Rohm & Haas 2.5
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0033]
    TABLE 4
    RE 176 Phenolic Example Handsheet Formulations
    Overall Compositions in a 2 lb/sq mat with 30% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 2.9
    893 Chopped SMC 893 sized Dry Chop Owens Corning 2.9
    AL-5901A Phenolic Binder Borden 2.5
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0034]
    TABLE 5
    Overall Compositions in a 2.5 lb/sq mat with 30% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 3.6
    893 Chopped SMC 893 sized Dry Chop Owens Corning 3.6
    AL-5901A Phenolic Binder Borden 3.1
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0035]
    TABLE 6
    Overall Compositions in a 3.0 lb/sq mat with 30% Binder
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 4.4
    893 Chopped SMC 893 sized Dry Chop Owens Corning 4.4
    AL-5901A Phenolic Binder Borden 3.7
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0036]
    TABLE 7
    Unidirectional Roving Example Handsheets
    Amount of Glass/Whitewater Required for
    2.5 lb/sq product at 20% LOI
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 2.1
    893 Chopped SMC 893 sized Dry Chop Owens Corning 2.1
    377 Roving 377 Roving Owens Corning 4.2
    GL 618 Acrylic Binder Rohm & Haas 2.1
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • [0037]
    TABLE 8
    Amount of Glass/Whitewater Required for
    2.5 lb/sq product at 30% LOI
    Name Description Company Amount
    9501 WUCS* 9501 sized Wet Chop Owens Corning 1.8
    893 Chopped SMC 893 sized Dry Chop Owens Corning 1.8
    377 Roving 377 Roving Owens Corning 3.6
    AL-5901A Phenolic Binder Borden 3.1
    Nalclear 7768 Anionic Viscosity Nalco Trace
    Modifier
    8493 Cationic Dispersant Nalco Trace
    PP04-3840 Defoamer Nalco Trace
    (Gram)
  • Tables 9A and 9B compares [0038] mats 10 made according to the present invention using various binder compositions with known mat systems and mat systems having variations of the preferred mat 10 compositions and to illustrate physical and decorative properties.
    TABLE 9A
    Glass Binder
    Basis Basis Basis Basis
    Binder Binder Weight Weight LOI Weight Weight Thickness
    Material Description Manufacturer (lb/sq) (gsm) (%) (lb/sq) (lb/sq) (0.001″)
    PVC PVC Scrim - 2.2 1.1E+02 61 0.9 1.3 11.6
    0/90 PVC/E-
    Glass Tows
    (60% LOI)
    Roofing Mat Portland 1.9 9.3E+01 19 1.5 0.4 23.8
    3500 Enterprise National 1.8 8.8E+01 19 1.5 0.3 14.1
    Mat with Starch or
    WUCS/Chopped Air Products
    Roving with
    EVA Binder
    5901E 5901 Borden 2.4 1.2E+02 23 1.8 0.6 26.4
    Phenolic and
    1″ 9501 E
    Glass WUCS
    5901A 5901 Borden 2.4 1.2E+02 21 1.9 0.5 24.7
    Phenolic and
    0.75″
    Advantex
    9501 WUCS
    618AL GL618 and Rohm & Haas 2.1 1.0E+02 16 1.8 0.3 23.7
    0.75″
    Advantex
    9501 WUCS
    618EL GL618 and 1″ Rohm & Haas 2.2 1.1E+02 17 1.9 0.4 24.6
    9501 E Glass
    WUCS
    618EL GL618 and Rohm & Haas 2.3 1.1E+02 17 1.9 0.4 19.3
    50% 1″ E
    9501/50%
    Chopped 893
    618E GL618 and 1″ E Rohm & Haas 2.4 1.1E+02 17 2.0 0.4 21.1
    WUCS/Chopped
    893/Uni 377
    Roving
    618L Low GL618 on Rohm & Haas 2.8 1.3E+02 32 1.9 0.9 26.1
    9501 1″ WUCS
    618H High GL618 Rohm & Haas 3.7 1.8E+02 50 1.8 1.8 28.3
    on 9501 1″
    WUCS
    2780L 2780 Acrylic Rohm & Haas 2.4 1.1E+02 21 1.9 0.5 20.4
    Low Binder
    Content on
    1″ 9501 Wet
    Chop
    2780H 2780 Acrylic Rohm & Haas 3.4 1.6E+02 41 2.0 1.4 21.2
    High Binder
    on 50% 1″
    9501 and 50%
    Chopped 893
    2780L 2780 Acrylic Rohm & Haas 2.6 1.3E+02 23 2.0 0.6 18.1
    Low Binder
    on 50% 1″
    9501 and 50%
    Chopped 893
    720L 720 Acrylic Rohm & Haas 2.6 1.3E+02 30 1.8 0.8 30.4
    Low Binder
    on 1″ 9501
    WUCS
    720L 720 Acrylic Rohm & Haas 2.7 1.3E+02 29 1.9 0.8 26.5
    Low Binder
    on 50% 1″
    9501/50%
    Chopped 893
    720H 720 Acrylic Rohm & Haas 3.4 1.6E+02 41 2.0 1.4 29.1
    High Binder
    on 50% 1″
    9501/50%
    Chopped 893
    DX24VL Dow DX31524 Dow 2.2 1.0E+02 16 1.8 0.3 22.3
    V-Low Binder
    on 9501 1″
    WUCS
    DX24VL Dow DX31524 Dow 2.3 1.1E+02 14 2.0 0.3 19.9
    V-Low Binder
    on 50% 1″
    9501/50%
    Chopped 893
    DX24M Dow DX31524 Dow 2.5 1.2E+02 20 2.0 0.5 20.3
    on 50% 1″
    9501/50%
    Chopped 893
    D280VL Dow 280 V- Dow 2.1 1.0E+02 13 1.8 0.3 22.9
    Low Binder
    on 9501 1″
    WUCS
    D280VL Dow 280 V- Dow 2.3 1.1E+02 12 2.0 0.3 19.8
    Low Binder
    on 50% 1″
    9501/50%
    Chopped 893
    D280M Dow 280 on Dow 2.4 1.2E+02 18 2.0 0.4 23.2
    50% 1″
    9501/50%
    Chopped 893
    DX49VL Dow DX31549 Dow 2.2 1.1E+02 17 1.8 0.4 25.0
    V-Low Binder
    on 9501 1″
    WUCS
    DX49VL Dow DX31549 Dow 2.3 1.1E+02 15 2.0 0.3 22.8
    V-Low Binder
    on 50% 1″
    9501/50%
    Chopped 893
    DX49M Dow DX31549 Dow 2.6 1.3E+02 23 2.0 0.6 26.4
    Binder on
    50% 1″
    9501/Chopped
    893
  • [0039]
    TABLE 9B
    Frazier Air Tensile CaO Hot H2O
    Binder Binder Permeability Strength Retention Retention MD/CD
    Material Description Manufacturer (ft3/min/ft2) (pli) (%) (%) Comments
    PVC PVC Scrim - 1600 56 75 0/90
    0/90 PVC/E- Roving
    Glass Tows Orientation
    (60% LOI)
    Roofing Mat Portland 830 38 63 Oriented
    Wet Mat
    3500 Enterprise National 990 8 87-116 96 Oriented
    Mat with Starch or Hybrid
    Wucs/Chopped Air Products Mat
    Roving with
    EVA Binder
    5901E 5901 Borden 840 21 94 59 Random
    Phenolic and Wet Mat
    1″ 9501 E
    Glass WUCS
    5901A 5901 Borden 700 18 53 48 Random
    Phenolic and Wet Mat
    0.75″
    Advantex
    9501 WUCS
    618AL GL618 and Rohm & Haas 670 18 111 73 Random
    0.75″ Wet Mat
    Advantex
    9501 WUCS
    618EL GL618 and 1″ Rohm & Haas 760 25 104 97 Random
    9501 E Glass Wet Mat
    WUCS
    618EL GL618 and Rohm & Haas 1000 23 104 Random
    50% 1″ E Hybrid
    9501/50% Mat
    Chopped 893
    618E GL618 and 1″ Rohm & Haas 970 41 98 MD Uni + Random
    E WUCS/ Hybrid
    Chopped 893/
    Uni 377
    Roving
    618L Low GL618 on Rohm & Haas 730 41 91 Random
    9501 1″ WUCS Wet Mat
    618H High GL618 Rohm & Haas 630 49 101 Random
    on 9501 1″ Wet Mat
    WUCS
    2780L 2780 Acrylic Rohm & Haas 810 10 125 Random
    Low Binder Wet Mat
    Content on
    1″ 9501 Wet
    Chop
    2780H 2780 Acrylic Rohm & Haas 830 17 89 Random
    High Binder Hybrid
    on 50% 1″ Mat
    9501 and 50%
    Chopped 893
    2780L 2780 Acrylic Rohm & Haas 930 10 101 Random
    Low Binder Hybrid
    on 50% 1″ Mat
    9501 and 50%
    Chopped 893
    720L 720 Acrylic Rohm & Haas 780 12 86 Random
    Low Binder Wet Mat
    on 1″ 9501
    WUCS
    720L 720 Acrylic Rohm & Haas 840 13 63 Random
    Low Binder Hybrid
    on 50% 1″ Mat
    9501/50%
    Chopped 893
    720H 720 Acrylic Rohm & Haas 790 19 99 Random
    High Binder Hybrid
    on 50% 1″ Mat
    9501/50%
    Chopped 893
    DX24VL Dow DX31524 Dow 750 23 94 Random
    V-Low Binder Wet Mat
    on 9501 1″
    WUCS
    DX24VL Dow DX31524 Dow 910 18 88 Random
    V-Low Binder Hybrid
    on 50% 1″ Mat
    9501/50%
    Chopped 893
    DX24M Dow DX31524 Dow 840 24 91 Random
    on 50% 1″ Hybrid
    9501/50% Mat
    Chopped 893
    D280VL Dow 280 V- Dow 850 18 93 Random
    Low Binder Wet Mat
    on 9501 1″
    WUCS
    D280VL Dow 280 V- Dow 1000 12 88 Random
    Low Binder Hybrid
    on 50% 1″ Mat
    9501/50%
    Chopped 893
    D280M Dow 280 on Dow 1000 16 88 Random
    50% 1″ Hybrid
    9501/50% Mat
    Chopped 893
    DX49VL Dow DX31549 Dow 810 17 56 Random
    V-Low Binder Wet Mat
    on 9501 1″
    WUCS
    DX49VL Dow DX31549 Dow 960 10 73 Random
    V-Low Binder Hybrid
    on 50% 1″ Mat
    9501/50%
    Chopped 893
    DX49M Dow DX31549 Dow 940 20 85 Random
    Binder on Hybrid
    50% 1″ Mat
    9501/Chopped
    893
  • Tables 9A and 9B illustrate that the combination of [0040] strands 18, 20, generally maintain or improve the Frazier Air Permeability of the various systems without significantly adversely affecting mechanical properties such as CaO percent retention and hot water retention. Tables also indicate that tensile strength may be affected as the ratio of wet use chop strands 18 to dry use strands 20 decreases. This is believed to be a result of the dry use strands 20 forming additional logs in the network 14, which increase Frazier Air Permeability but decrease tensile strength of the network 14.
  • The [0041] mat 10 formed in FIG. 3 above may then be applied to form a cement backerboard 110 in a conventional method such as the method described in U.S. Pat. No. 3,284,980 to Dinkel, which is herein incorporated by reference and described below in FIGS. 4-9.
  • Referring now to FIG. 4-6, into a [0042] form 120 of a size of the desired cement backerboard 110 panel, a layer of wet formed permeable mat 10 is laid. A slurry 122 containing hydraulic cement of a suitable consistency to permit penetration thereof through the openings in the open permeable mat 10 is applied, as from the traveling supply pipe 121. The amount of cement slurry 122 introduced is sufficient to cover the mat 10 completely so that substantially all the network 14 is immersed or embedded; the slurry penetrates the openings in the fibers 18, 20 and optional rovings 22 and fills them so that the mat 10 is enveloped on both sides. Normally this is only a light envelopment, although an excess is sometimes needed where the aggregate in the core is large and the boundary surface presented by the core is very rough.
  • In the next step, as shown in FIG. 7, the [0043] core mixture 124 of aggregate and hydraulic cement is poured into the form 120; the water content is normally kept on the low side within the range for best strength development in the concrete. A typical mix of the core mixture 124 is three volumes of light weight aggregate, one volume Portland cement and three-fourths volume of water. The core mixture 124 is then rodded off flush with the top of the form 120, as shown in FIG. 7, at the top boundary of the core mixture 124 some depressions will usually be present due to the openings between aggregate particles, to voids from the air entrainment or other cause, resulting from the coarse nature of the core mixture 124 composition.
  • Referring to FIG. 8, a layer of wet formed [0044] permeable mat 10 is laid over the top of the core mixture 124. The thickness of the mat 10 ordinarily is so slight that it does not add materially to the thickness of the core 124.
  • As shown in FIG. 9, the last layer of [0045] hydraulic cement slurry 122′ is poured over the mat 10 from traveling supply pipe 121, or applied by other suitable means. The slurry 122′ penetrates the openings in the mat 10 and also into the voids, openings or surface irregularities at the upper boundary surface of core 124. Sufficient slurry 122′ is deposited to penetrate and fill the openings and voids in the core 124 surface, to fill the openings in the fibers 18, 20 and to lightly cover the mat 10, or at least be flush with its outer surface; it is then rodded or otherwise leveled. The mat 10 is normally kept as close to the ultimate surface of the finished panel as possible inasmuch as the maximum benefit and greatest strength is thereby realized from the fiber strands 18, 20.
  • After the [0046] composite panel 110 is prepared it is left in the form 120 for sufficient time to effect initial cure, or complete cure if desired; the use of a plastic film covering to retain moisture or the use of steam curing is advantageous.
  • The cement backerboards [0047] 110 formed according to the present invention offer many advantages over known PVC glass scrims. These backerboards 110 offer economical advantages in that the mat 10 be formed in a single operation and requires less binder 16 material than known scrim systems. Further, the backerboards 110 formed offer superior decorative finishes by preventing sink marks and pitting.
  • In addition, the present invention offers improved cement impregnation because the [0048] permeable mat 10 formed is not a completely random network of wet and dry chop strands 18, 20, and optional rovings 22, thereby giving a mat 10 with a higher degree of openness as measured by Frazier air permeability as compared with some known systems. Further, permeability to cement impregnation may be adjusted by simply altering the ratio of wet chop strands 18 to dry chop strands 20 in the mat 10, which in turn affects the ultimate physical properties such as tensile strength within the cement backerboards 110.
  • While the invention has been described in terms of preferred embodiments, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. [0049]

Claims (29)

What is claimed is:
1. A wet formed permeable mat for use in a cement backerboard comprising:
a randomly oriented open mesh glass filament network comprising approximately a mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands, wherein said plurality of wet use chop strands and said plurality of dry chop glass fiber strands each have lengths between approximately 0.75 and 1.5 inches and wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3; and
an alkaline resistant binder.
2. The permeable mat of claim 1, wherein said randomly oriented open mesh glass filament network further comprises a plurality of unidirectional rovings, said unidirectional rovings comprising approximately 20 to 50 percent by weight of said randomly oriented open mesh glass filament network.
3. The permeable mat of claim 1, wherein said alkaline resistant binder comprises between approximately 20 and 50 percent by weight of the wet formed permeable mat.
4. The permeable mat of claim 1, wherein said alkaline resistant binder is selected from the group consisting of phenolic binders, melamine binders, acrylic binders, styrene-acrylate binders, styrene butadiene binders, and ethylene vinyl acetate binders.
5. The permeable mat of claim 1, wherein said alkaline resistant binder comprises Borden Chemical's 5901 phenolic binder.
6. The permeable mat of claim 1, wherein said alkaline resistant binder comprises Rohm and Haas' GL618 acrylic copolymer binder.
7. A method for forming a wet formed permeable mat for use in reinforced cement backerboards comprising:
forming a thick slurry of a whitewater chemical dispersion having a plurality of wet use chop strands and a plurality of dry chop glass fiber strands;
introducing said thick slurry to a thin stock stream slurry to form a lower consistency slurry;
introducing said lower consistency slurry to a former,
aligning said plurality of wet use chop strands and said plurality of dry chop glass fiber strands within said former to form a web;
partially drying said web;
introducing an alkaline resistant binder to said web; and
drying and curing said alkaline resistant binder and said web to form the wet formed permeable mat.
8. The method of claim 7, wherein forming a thick slurry comprises forming a thick slurry comprising a cationic dispersant, an anionic viscosity modifier, a defoamer, a biocide, a plurality of wet use chop strands and a plurality of dry chop glass fiber strands.
9. The method of claim 8, wherein forming a thick slurry of a whitewater chemical dispersion comprises:
(a) introducing a cationic dispersant to a tank under agitation;
(b) introducing a weight mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands to (a), wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3;
(c) introducing a defoamer to (b);
(d) introducing an anionic viscosity modifier to (c).
10. The method of claim 8, wherein said anionic viscosity modifier is selected from the group consisting of a polyacrylamide viscosity modifier, a hydroxyethyl cellulose viscosity modifier, and a polyamine viscosity modifier.
11. The method of claim 10, wherein said polyacrylamide viscosity modifier is selected from the group consisting of Nalco 7768, Magnifloc 1886A, HyChem AE 874.
12. The method of claim 8, wherein said cationic dispersant is selected from the group consisting of an ethoxylated alkylamine dispersant, an amine oxide dispersant, and a polyethyoxylated derivative of an amide condensated fatty acid dispersant.
13. The method of claim 12, wherein said ethoxylated alkylamine dispersant is selected from the group consisting of Nalco 8493, Schercopol DS-140, and Rhodameen VP532.
14. The method of claim 8, wherein said defoamer is selected from the group consisting of Nalco PP04-3840 and Nopco NXZ.
15. The method of claim 8, wherein forming a thick slurry comprises forming a thick slurry of a whitewater chemical dispersion having a plurality of wet use chop strands, a plurality of dry chop glass fiber strands and a plurality of unidirectional rovings.
16. The method of claim 15, wherein forming a thick slurry comprises forming a thick slurry of a whitewater chemical dispersion, wherein forming a thick slurry comprises:
(a) introducing a cationic dispersant to a tank under agitation;
(b) introducing a mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands to (a), wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3;
(c) introducing a plurality of unidirectional rovings to (a), wherein said plurality of unidirectional rovings comprise between approximately 20 and 50 percent of the total weight of said mixture and said plurality of unidirectional rovings;
(d) introducing a defoamer to (c);
(e) introducing an anionic viscosity modifier to (d).
17. The method of claim 15, wherein said anionic viscosity modifier is selected from the group consisting of a polyacrylamide viscosity modifier, a hydroxyethyl cellulose viscosity modifier, and a polyamine viscosity modifier.
18. The method of claim 17, wherein said polyacrylamide viscosity modifier is selected from the group consisting of Nalco 7768, Magnifloc 1886A, HyChem AE 874.
19. The method of claim 15, wherein said cationic dispersant is selected from the group consisting of an ethoxylated alkylamine dispersant, an amine oxide dispersant, and a polyethyoxylated derivative of an amide condensated fatty acid dispersant.
20. The method of claim 19, wherein said ethoxylated alkylamine dispersant is selected from the group consisting of Nalco 8493, Schercopol DS-140, and Rhodameen VP532.
21. The method of claim 15, wherein said defoamer is selected from the group consisting of Nalco PP04-3840 and Nopco NXZ.
22. A method for making a cement backerboard comprising:
forming a wet formed permeable mat, said wet formed permeable mat comprising a randomly oriented open mesh glass filament network and an alkaline resistant binder, wherein said randomly oriented open mesh glass filament network has approximately a mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands each have lengths between approximately 0.75 and 1.5 inches and wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3;
introducing a first layer of said wet formed permeable mat to a form;
introducing a first amount of a cement slurry onto said first layer sufficient to cover said first layer;
introducing a layer of a core material onto said first amount of said cement slurry sufficient to cover said first amount of said cement slurry;
introducing a second layer of said wet formed permeable mat onto said layer of said core material;
introducing a second amount of said cement slurry onto said second layer sufficient to cover said first amount;
curing said first amount and said second amount of cement slurry.
23. The method of claim 22, wherein forming a wet-formed permeable mat comprises:
forming a thick slurry of a whitewater chemical dispersion having a plurality of wet use chop strands and a plurality of dry chop glass fiber strands;
introducing said thick slurry to a thin stock stream slurry to form a lower consistency slurry;
introducing said lower consistency slurry to a former,
aligning said plurality of wet use chop strands and said plurality of dry chop glass fiber strands within said former to form a web;
partially drying said web;
introducing an alkaline resistant binder to said web; and
drying and curing said alkaline resistant binder and said web to form the wet formed permeable mat.
24. The method of claim 23, wherein forming a thick slurry comprises forming a thick slurry comprising a cationic dispersant, an anionic viscosity modifier, a defoamer, a biocide, a plurality of wet use chop strands and a plurality of dry chop glass fiber strands.
25. The method of claim 24, wherein forming a thick slurry of a whitewater chemical dispersion comprises:
(a) introducing a cationic dispersant to a tank under agitation;
(b) introducing a mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands to (a), wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3;
(c) introducing a defoamer to (b);
(d) introducing an anionic viscosity modifier to (c).
26. The method of claim 23, wherein said randomly oriented open mesh glass filament network further comprises a plurality of unidirectional rovings, said plurality of unidirectional rovings comprising approximately 20 to 50 weight percent of said randomly oriented open mesh glass filament network.
27. The method of claim 26, wherein forming a thick slurry comprises forming a thick slurry of a whitewater chemical dispersion having a plurality of wet use chop strands, a plurality of dry chop glass fiber strands and a plurality of unidirectional rovings.
28. The method of claim 27, wherein forming a thick slurry comprises forming a thick slurry comprising a cationic dispersant, an anionic viscosity modifier, a defoamer, a biocide, a plurality of wet use chop strands, a plurality of unidirectional rovings and a plurality of dry chop glass fiber strands.
29. The method of claim 28, wherein forming a thick slurry comprises forming a thick slurry of a whitewater dispersion, wherein forming a thick slurry comprises:
(a) introducing a cationic dispersant to a tank under agitation;
(b) introducing a mixture of a plurality of wet use chop strands and a plurality of dry chop glass fiber strands to (a), wherein the ratio by weight of said plurality of wet use chop strands and said plurality of dry use chop strands within said mixture is between approximately 3:1 and 1:3;
(c) introducing a plurality of unidirectional rovings to (a), wherein said plurality of unidirectional rovings comprise between approximately 20 and 25 percent of the total weight of said mixture and said plurality of unidirectional rovings;
(d) introducing a defoamer to (c);
(e) introducing an anionic viscosity modifier to (d).
US10/830,795 2001-03-21 2004-04-23 Wet-formed mat applications for cement backerboards Abandoned US20040224585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/830,795 US20040224585A1 (en) 2001-03-21 2004-04-23 Wet-formed mat applications for cement backerboards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/103,647 US6749720B2 (en) 2001-03-21 2001-03-21 Wet-formed mat applications for cement backerboards
US10/830,795 US20040224585A1 (en) 2001-03-21 2004-04-23 Wet-formed mat applications for cement backerboards

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/103,647 Division US6749720B2 (en) 2001-03-21 2001-03-21 Wet-formed mat applications for cement backerboards

Publications (1)

Publication Number Publication Date
US20040224585A1 true US20040224585A1 (en) 2004-11-11

Family

ID=22296277

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/103,647 Expired - Fee Related US6749720B2 (en) 2001-03-21 2001-03-21 Wet-formed mat applications for cement backerboards
US10/830,795 Abandoned US20040224585A1 (en) 2001-03-21 2004-04-23 Wet-formed mat applications for cement backerboards

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/103,647 Expired - Fee Related US6749720B2 (en) 2001-03-21 2001-03-21 Wet-formed mat applications for cement backerboards

Country Status (1)

Country Link
US (2) US6749720B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141316A1 (en) * 2005-12-19 2007-06-21 Mcgrath Ralph D Tri-extruded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US20070148429A1 (en) * 2005-12-19 2007-06-28 Mcgrath Ralph D Tri-excluded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US20090159228A1 (en) * 2007-12-21 2009-06-25 Annabeth Law Variable dispersion of wet use chopped strand glass fibers in a chopped title strand mat
US20100234491A1 (en) * 2010-05-27 2010-09-16 Morteza Khorrami Method and material for manufacturing fiber cement board
US20110005699A1 (en) * 2008-05-29 2011-01-13 Meuser Guenter Machine for the production of a fibrous web

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02006662A (en) * 2000-01-05 2004-09-10 Saint Gobain Technical Fabrics Smooth reinforced cementitious boards and methods of making same.
US6749720B2 (en) * 2001-03-21 2004-06-15 Owens Corning Fiberglas Technology, Inc. Wet-formed mat applications for cement backerboards
US7311964B2 (en) * 2002-07-30 2007-12-25 Saint-Gobain Technical Fabrics Canada, Ltd. Inorganic matrix-fabric system and method
US7049251B2 (en) * 2003-01-21 2006-05-23 Saint-Gobain Technical Fabrics Canada Ltd Facing material with controlled porosity for construction boards
US7354876B2 (en) * 2003-07-09 2008-04-08 Saint-Gobain Technical Fabrics Canada Ltd. Fabric reinforcement and cementitious boards faced with same
US7786026B2 (en) 2003-12-19 2010-08-31 Saint-Gobain Technical Fabrics America, Inc. Enhanced thickness fabric and method of making same
US20060141260A1 (en) * 2004-12-29 2006-06-29 Enamul Haque Sandwich composite material using an air-laid process and wet glass
US7803723B2 (en) * 2008-12-16 2010-09-28 Saint-Gobain Technical Fabrics America, Inc. Polyolefin coated fabric reinforcement and cementitious boards reinforced with same
US8084378B2 (en) * 2009-04-24 2011-12-27 Johns Manville Fiber glass mat, method and laminate
CN103304199B (en) * 2012-03-13 2015-07-15 苏琳 Multifunctional inorganic thermal insulation material composition, product comprising same and preparation method of product
USD759064S1 (en) * 2013-03-07 2016-06-14 Samsung Electronics Co., Ltd. Display screen with graphical user interface
USD794224S1 (en) * 2015-07-03 2017-08-08 Arktura Llc Architectural panel
CN105781141B (en) * 2016-04-21 2017-12-01 湖南大学 A kind of fiber knitted net enhancing cement base composite board reinforced for concrete flexural member and preparation method thereof
JP6839933B2 (en) * 2016-06-01 2021-03-10 太平洋マテリアル株式会社 Manufacturing method of concrete structure
CN106088453A (en) * 2016-07-25 2016-11-09 湖南大学 A kind of function and service wallboard based on fast-growing grass and preparation method thereof
US10448686B2 (en) * 2016-09-23 2019-10-22 Medline Industries, Inc. Glide-on coating for polymeric gloves
USD905973S1 (en) * 2019-05-20 2020-12-29 Schattdecor Ag Sheet material
CN112982026B (en) * 2021-02-05 2023-04-11 西藏俊富环境恢复有限公司 Plant fiber-based controllable water permeable material and preparation method thereof

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477555A (en) * 1944-08-18 1949-07-26 Owens Corning Fiberglass Corp Mineral fiber mat and process of manufacture
US3907724A (en) * 1974-04-10 1975-09-23 Monsanto Co Phenolic binders for mineral fiber thermal insulation
US3944703A (en) * 1971-07-21 1976-03-16 Union Carbide Corporation Fibrous batts impregnated with aqueous dispersions based on heat-hardenable phenolic resins
US4014835A (en) * 1973-04-27 1977-03-29 Owens-Corning Fiberglas Corporation Composition comprising a blend of a resorcinol-aldehyde resin; an elastomer and an organo silicon coupling system
US4064099A (en) * 1974-06-06 1977-12-20 Shiseido Company, Ltd. Thermoplastic resin composition having a pearly luster
US4250221A (en) * 1976-04-29 1981-02-10 Consolidated Fiberglass Products Co. Fiberglass mat
US4309473A (en) * 1978-12-08 1982-01-05 Toho Beslon Co., Ltd. Non-tacky strand prepreg comprising a resin composition containing a combination of (1) a thermosetting resin and (2) a high molecular weight epoxy resin and a process for forming an article from the same
US4314050A (en) * 1978-10-30 1982-02-02 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4393189A (en) * 1978-10-30 1983-07-12 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4418113A (en) * 1980-03-21 1983-11-29 Asahi Fiber Glass Company Limited Reinforcing mat for fiber reinforced plastic material
US4461859A (en) * 1981-11-16 1984-07-24 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4476191A (en) * 1981-11-16 1984-10-09 Ppg Industries, Inc. Resorcinol-aldehyde resin composition for an adhesive system to be applied to glass fibers
US4571356A (en) * 1980-06-17 1986-02-18 Reichhold Chemicals, Incorporated Water soluble one-component polymeric resin binder system for fiberglass mats
US4587278A (en) * 1983-04-20 1986-05-06 Basf Aktiengesellschaft Sound-insulating boards based on mineral fibers and thermoplastic binders
US4898769A (en) * 1988-06-01 1990-02-06 Tenmat Ltd. Fibre reinforced composite material
US4916004A (en) * 1986-02-20 1990-04-10 United States Gypsum Company Cement board having reinforced edges
US4948644A (en) * 1988-11-04 1990-08-14 Midwest Acoust-A-Fiber, Inc. Apparatus for making a resin composite panel
US5149728A (en) * 1990-08-15 1992-09-22 Bayer Aktiengesellschaft Blends of polyarylene sulfides, phenolic resin nitroarylates, glass fibers and optionally other fillers
US5194190A (en) * 1989-03-31 1993-03-16 General Electric Company Process for impregantion of glass fiber reinforcement with thermoplastic resins
US5300562A (en) * 1991-05-09 1994-04-05 Certainteed Corporation Process for preparing phenolic binder
US5340903A (en) * 1990-10-12 1994-08-23 Isover Saint-Gobain Phenolic resin, procedure for preparation of the resin, and sizing composition for mineral fibers containing this resin
US5409573A (en) * 1988-05-10 1995-04-25 E. I. Du Pont De Nemours And Company Composites from wet formed blends of glass and thermoplastic fibers
US5744229A (en) * 1995-08-28 1998-04-28 Owens-Corning Fiberglas Technology Inc. Glass fiber mat made with polymer-reacted asphalt binder
US5883023A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, thermoplastic composites reinforced with the same and methods for making the same
US5952440A (en) * 1997-11-03 1999-09-14 Borden Chemical, Inc. Water soluble and storage stable resole-melamine resin
US6054022A (en) * 1996-09-12 2000-04-25 Owens-Corning Veil U.K. Ltd. Method for producing a non-woven glass fiber mat comprising bundles of fibers
US6242270B1 (en) * 1998-02-10 2001-06-05 U.S. Phillips Corporation Method of manufacturing integrated circuits
US6307009B1 (en) * 1999-12-29 2001-10-23 Owens Corning Fiberglas Technology, Inc. High catalyst phenolic resin binder system
US6306539B1 (en) * 1997-09-02 2001-10-23 Kvg Technologies, Inc. Mat of glass and other fibers in a separator of a storage battery
US6579413B1 (en) * 2002-03-21 2003-06-17 Owens Corning Fiberglas Technology, Inc. Wet-formed mat applications for cement backerboards
US6749720B2 (en) * 2001-03-21 2004-06-15 Owens Corning Fiberglas Technology, Inc. Wet-formed mat applications for cement backerboards

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271270B1 (en) * 1996-04-25 2001-08-07 Georgia Composites Fiber-reinforced recycled thermoplastic composite
US6242524B1 (en) * 1999-06-02 2001-06-05 The Goodyear Tire & Rubber Company Binder for non-woven fabric

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477555A (en) * 1944-08-18 1949-07-26 Owens Corning Fiberglass Corp Mineral fiber mat and process of manufacture
US3944703A (en) * 1971-07-21 1976-03-16 Union Carbide Corporation Fibrous batts impregnated with aqueous dispersions based on heat-hardenable phenolic resins
US4014835A (en) * 1973-04-27 1977-03-29 Owens-Corning Fiberglas Corporation Composition comprising a blend of a resorcinol-aldehyde resin; an elastomer and an organo silicon coupling system
US3907724A (en) * 1974-04-10 1975-09-23 Monsanto Co Phenolic binders for mineral fiber thermal insulation
US4064099A (en) * 1974-06-06 1977-12-20 Shiseido Company, Ltd. Thermoplastic resin composition having a pearly luster
US4250221A (en) * 1976-04-29 1981-02-10 Consolidated Fiberglass Products Co. Fiberglass mat
US4393189A (en) * 1978-10-30 1983-07-12 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4314050A (en) * 1978-10-30 1982-02-02 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4309473A (en) * 1978-12-08 1982-01-05 Toho Beslon Co., Ltd. Non-tacky strand prepreg comprising a resin composition containing a combination of (1) a thermosetting resin and (2) a high molecular weight epoxy resin and a process for forming an article from the same
US4418113A (en) * 1980-03-21 1983-11-29 Asahi Fiber Glass Company Limited Reinforcing mat for fiber reinforced plastic material
US4571356A (en) * 1980-06-17 1986-02-18 Reichhold Chemicals, Incorporated Water soluble one-component polymeric resin binder system for fiberglass mats
US4461859A (en) * 1981-11-16 1984-07-24 Ppg Industries, Inc. Method of preparing a phenolic aldehyde resin and resin composition for an adhesive system to be applied to glass fibers
US4476191A (en) * 1981-11-16 1984-10-09 Ppg Industries, Inc. Resorcinol-aldehyde resin composition for an adhesive system to be applied to glass fibers
US4587278A (en) * 1983-04-20 1986-05-06 Basf Aktiengesellschaft Sound-insulating boards based on mineral fibers and thermoplastic binders
US4916004A (en) * 1986-02-20 1990-04-10 United States Gypsum Company Cement board having reinforced edges
US4916004B1 (en) * 1986-02-20 1992-02-18 United States Gypsum Co
US5409573A (en) * 1988-05-10 1995-04-25 E. I. Du Pont De Nemours And Company Composites from wet formed blends of glass and thermoplastic fibers
US4898769A (en) * 1988-06-01 1990-02-06 Tenmat Ltd. Fibre reinforced composite material
US4948644A (en) * 1988-11-04 1990-08-14 Midwest Acoust-A-Fiber, Inc. Apparatus for making a resin composite panel
US5194190A (en) * 1989-03-31 1993-03-16 General Electric Company Process for impregantion of glass fiber reinforcement with thermoplastic resins
US5149728A (en) * 1990-08-15 1992-09-22 Bayer Aktiengesellschaft Blends of polyarylene sulfides, phenolic resin nitroarylates, glass fibers and optionally other fillers
US5340903A (en) * 1990-10-12 1994-08-23 Isover Saint-Gobain Phenolic resin, procedure for preparation of the resin, and sizing composition for mineral fibers containing this resin
US5300562A (en) * 1991-05-09 1994-04-05 Certainteed Corporation Process for preparing phenolic binder
US5744229A (en) * 1995-08-28 1998-04-28 Owens-Corning Fiberglas Technology Inc. Glass fiber mat made with polymer-reacted asphalt binder
US6054022A (en) * 1996-09-12 2000-04-25 Owens-Corning Veil U.K. Ltd. Method for producing a non-woven glass fiber mat comprising bundles of fibers
US5883023A (en) * 1997-03-21 1999-03-16 Ppg Industries, Inc. Glass monofilament and strand mats, thermoplastic composites reinforced with the same and methods for making the same
US6306539B1 (en) * 1997-09-02 2001-10-23 Kvg Technologies, Inc. Mat of glass and other fibers in a separator of a storage battery
US5952440A (en) * 1997-11-03 1999-09-14 Borden Chemical, Inc. Water soluble and storage stable resole-melamine resin
US6242270B1 (en) * 1998-02-10 2001-06-05 U.S. Phillips Corporation Method of manufacturing integrated circuits
US6307009B1 (en) * 1999-12-29 2001-10-23 Owens Corning Fiberglas Technology, Inc. High catalyst phenolic resin binder system
US6749720B2 (en) * 2001-03-21 2004-06-15 Owens Corning Fiberglas Technology, Inc. Wet-formed mat applications for cement backerboards
US6579413B1 (en) * 2002-03-21 2003-06-17 Owens Corning Fiberglas Technology, Inc. Wet-formed mat applications for cement backerboards

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141316A1 (en) * 2005-12-19 2007-06-21 Mcgrath Ralph D Tri-extruded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US20070148429A1 (en) * 2005-12-19 2007-06-28 Mcgrath Ralph D Tri-excluded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US20090159228A1 (en) * 2007-12-21 2009-06-25 Annabeth Law Variable dispersion of wet use chopped strand glass fibers in a chopped title strand mat
US20110005699A1 (en) * 2008-05-29 2011-01-13 Meuser Guenter Machine for the production of a fibrous web
US8152968B2 (en) * 2008-05-29 2012-04-10 Voith Patent Gmbh Machine for the production of a fibrous web
US20100234491A1 (en) * 2010-05-27 2010-09-16 Morteza Khorrami Method and material for manufacturing fiber cement board

Also Published As

Publication number Publication date
US6749720B2 (en) 2004-06-15
US20030051430A1 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US6749720B2 (en) Wet-formed mat applications for cement backerboards
US6579413B1 (en) Wet-formed mat applications for cement backerboards
US8039058B2 (en) Methods of forming gypsum facers and gypsum boards incorporating gypsum facers
CN101166873B (en) Interior wallboard and method of making same
US6187697B1 (en) Multiple layer nonwoven mat and laminate
AU2004284423B2 (en) Interior wallboard and method of making same
US7338702B2 (en) Non-woven glass mat with dissolvable binder system for fiber-reinforced gypsum board
US7815841B2 (en) Fiber cement composite materials using sized cellulose fibers
US6941720B2 (en) Composite building material
US7128965B2 (en) Cementitious product in panel form and manufacturing process
EP1346964A2 (en) Wet-formed mat applications for cement backerboards
AU2001292966A1 (en) Fiber cement composite materials using sized cellulose fibers
US20170218635A1 (en) Stucco support structures and stucco walls
US20090208704A1 (en) Roofing product constructed from polymer /gypsum/ fiberglass composite material
US20110056157A1 (en) Urea-formaldehyde resin reinforced gypsum composites and building materials made therefrom
US20220380975A1 (en) Composite nonwoven mat with coating layer
US20220315488A1 (en) Coated nonwoven mat with tuned performance properties
US20230373852A1 (en) Coated nonwoven mat with coating layer
WO2000006849A1 (en) Building board and its production
US20180086666A1 (en) Glass reinforcement
AU2006246450A1 (en) Composite building material

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLASS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLASS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-CORNING FIBERGLAS TECHNOLOGY, INC.;REEL/FRAME:019795/0433

Effective date: 20070803

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION