US20040225306A1 - Paired expandable anastomosis devices - Google Patents

Paired expandable anastomosis devices Download PDF

Info

Publication number
US20040225306A1
US20040225306A1 US10/780,110 US78011004A US2004225306A1 US 20040225306 A1 US20040225306 A1 US 20040225306A1 US 78011004 A US78011004 A US 78011004A US 2004225306 A1 US2004225306 A1 US 2004225306A1
Authority
US
United States
Prior art keywords
vessel
ring
opening
anastomosis
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/780,110
Inventor
Duane Blatter
Michael Barrus
Troy Orr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vital Access Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/460,740 external-priority patent/US6569173B1/en
Priority claimed from US09/737,200 external-priority patent/US7981126B2/en
Application filed by Individual filed Critical Individual
Priority to US10/780,110 priority Critical patent/US20040225306A1/en
Assigned to INTEGRATED VASCULAR INTERVENTIONAL TECHNOLOGIES (IVIT LC) reassignment INTEGRATED VASCULAR INTERVENTIONAL TECHNOLOGIES (IVIT LC) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLATTER, DUANE D., BARRUS, MICHAEL C., ORR, TROY J.
Publication of US20040225306A1 publication Critical patent/US20040225306A1/en
Assigned to IVIT, INC. reassignment IVIT, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTEGRATED VASCULAR INTERVENTIONAL TECHNOLOGIES, L.C.
Assigned to VITAL ACCESS CORPORATION reassignment VITAL ACCESS CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: IVIT, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/115Staplers for performing anastomosis in a single operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0643Surgical staples, i.e. penetrating the tissue with separate closing member, e.g. for interlocking with staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/32053Punch like cutting instruments, e.g. using a cylindrical or oval knife
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0641Surgical staples, i.e. penetrating the tissue having at least three legs as part of one single body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1135End-to-side connections, e.g. T- or Y-connections

Definitions

  • the present invention is directed generally to an anastomosis device. More particularly, the present invention is directed a paired, expandable device that joins one vessel to another.
  • An anastomosis is an operative union of two hollow or tubular structures.
  • Anastomotic structures can be part of a variety of systems, such as the vascular system, the digestive system or the genitourinary system.
  • blood is shunted from an artery to a vein in an arteriovenous anastomosis, and from the right pulmonary artery to the superior vena cava in a cavopulmonary anastomosis.
  • afferent and efferent loops of jejunum are joined in a Braun's anastomosis after gastroenteroscopy; the ureter and the Fallopian tube are joined in a ureterotubal anastomosis, and the ureter and a segment of the sigmoid colon are joined in a ureterosigmoid anastomosis.
  • microvascular anastomosis very small blood vessels are anastomosed usually under surgical microscope.
  • An anastomosis is termed end-to-end when the terminal portions of tubular structures are anastomosed, and it is termed end-to-side when the terminal portion of a tubular structure is anastomosed to a lateral portion of another tubular or hollow structure.
  • end-to-side anastomosis we often refer to the structure whose end is anastomosed as the “graft vessel” while the structure whose side wall is anastomosed is referred to as the “receiving structure” or “target vessel”.
  • anastomosed blood vessels should not leak at the anastomosis site, the anastomotic devices should not significantly disrupt the flow of blood, and the anastomosis itself should not cause a biological reaction that could lead to an obstruction of the anastomosed blood vessels.
  • anastomosed blood vessels should remain patent and they should ideally not develop hyperplasia, thrombosis, spasms or arteriosclerosis.
  • anastomosed structures are composed of tissues that are susceptible to damage, the anastomosis should furthermore not be significantly detrimental to the integrity of these tissues. For example, injury to endothelial tissue and exposure of subintimal connective tissue should be minimized or even eliminated in vascular anastomosis.
  • an anastomosis requires a degree of invasion.
  • the invasive character of an anastomosis should be minimized subject to the reliable performance of a satisfactory anastomosis. Accordingly, there has been a noticeable trend during the last quarter of this century towards less invasive surgical intervention, a surgical style that is termed minimally invasive surgery. This style is characterized by pursuing a maximal treatment effect with minimal damage to surrounding and overlying normal structures.
  • successful minimally invasive procedures should procure patency and they should minimize damage to the tissues of the anastomosed structures themselves.
  • Anastomosis techniques generally intend to provide leak-proof joints that are not susceptible to mechanical failure, and they also intend to minimize damage and reduce the undesirable effects of certain operational features that may lead to post-anastomosis complications. Damage to be minimized and operational features whose undesirable effects should be reduced include endothelial coverage injury, exposure of subintimal connective tissue, exposure of an intraluminal foreign component, blood flow interruption, irregularities at the junction, adventitial tissue stripping, intimal injury, installment of a foreign rigid body, use of materials that may have toxic effects, damage to surrounding tissue, extensive vessel eversion, and tissue plane malalignment.
  • Post-anastomosis complications include neointimal hyperplasia, atherosclerosis, thrombosis, stenosis, tissue necrosis, vascular wall thinning, and aneurism formation.
  • potential for thrombosis and for other complications is increased when the anastomosis site does not expand and contract with systole and diastole, causing flow disturbances as blood crosses the anastomosis. Therefore, a flexible and expandable anastomosis device that responds to changing blood pressure during systole and diastole is needed to decrease the potential for thrombosis and other complication.
  • an anastomosis device that acts external to vessels without penetrating at least one of the vessels and that creates an anastomosis more quickly than conventional techniques, with minimal interruption of blood flow.
  • Another object of the invention is to provide an anastomosis device that joins vessels together through the use of expandable rings that are guided to each other by guides.
  • a further objection of this invention is to provide devices for joining vessels together in a secure manner such that the portions defining the openings of the vessels are not penetrated.
  • a further object of this invention to provide an anastomosis device that efficiently and reliably joins two vessels together at an anastomosis site.
  • the present invention is a paired, expandable anastomosis device that joins one vessel opening to another vessel opening.
  • the anastomosis device has two rings. Referred to herein as first and second rings.
  • each ring is made of connected flexible segments. Each flexible segment has two arms that are hingedly connected to form expandable V-shaped segments.
  • One embodiment of the anastomosis device has a ring is designed so that a portion of a target vessel can be everted through and held on the ring during the anastomosis procedure.
  • the other ring of this embodiment is designed so that a portion of a graft vessel can be everted through and held on the ring during the anastomosis procedure.
  • Each ring has a holding surface, such as a plurality of holding tabs, to hold the everted vessel tissue.
  • Holding tabs are preferably configured with rounded tips to avoid penetrating the vessel walls.
  • the holding tabs of the ring used to anchor the graft vessel on the ring may have barbs or hooks to more securely hold the graft vessel.
  • the holding tabs in each ring are preferably oriented relative to the holding tabs of the opposing ring so that when the rings are brought together, each one of the holding tabs in a rings is opposite the space between two neighboring holding tabs in the opposing ring.
  • the rings are brought together so that the tips of the holding tabs enter or at least close to entering the opposing spaces between the holding tabs of the other ring, the everted tissue will be held together, creating a secure anastomosis.
  • the rings are guided together.
  • the anastomosis device includes a plurality of guides which guide the movement of one ring to the other ring.
  • the rings may have a plurality of guides adapted to receive guideposts.
  • the guides are preferably sized to frictionally engage the guideposts.
  • the rings have a loading position in which the vessels can be loaded onto the rings.
  • the guideposts of the second ring are completely inserted into the guides when in the loading position.
  • the guideposts of the first ring are partially inserted into the guides so that the rings maintain an offset configuration.
  • the holding tabs of the first ring are sufficiently spaced from the holding tabs of the second ring so that the graft vessel can be everted onto one ring and the target vessel can be everted onto the other ring.
  • the rings are brought together to create a secure anastomosis.
  • the rings may be brought together manually or by the use of a device specifically designed for use with the rings, such as an attachment actuaction device. Once the rings are brought together, the frictional engagement of the guides and guideposts prevents the rings from inadvertently sliding on the guides.
  • the anastomosis device of the present invention provides an efficient, reliable anastomosis. Because the rings are expandable, the inventive anastomosis device minimizes complications caused with anastomosis devices of the prior art. Once the expandable rings are deployed to the anastomosis position, the rings permit the vessel tissue defining the anastomosis to expand and contract with expansion and contraction of the vessels. Additionally, the expandable rings radially expand to a deployed position when released from an external operator or tongs so that the vessel tissues defining the vessel openings are stretched to a diameter greater than the diameter of the initial opening in the target vessel. Also, no foreign material is placed in the interior of the vessel because the vessel tissue is everted onto the rings and the anastomosis is formed by bringing the everted interior of the graft vessel into contact with the everted, interior portion of the target vessel.
  • FIG. 1A is an exploded perspective view of a preferred embodiment of the paired, expandable anastomosis device with guides.
  • FIG. 1B is a perspective view of the anastomosis device depicted in FIG. 1A assembled and in the loading position.
  • FIG. 1C is a cross-sectional view of the anastomosis device shown in FIG. 1B.
  • FIG. 1D is a perspective view of the anastomosis device shown in FIGS. 1B with a graft vessel loaded onto the holding surface of the first expandable ring and a cutter positioned to be loaded into the lumen of the graft vessel.
  • FIG. 2A is a cross-sectional view of the anastomosis device shown in FIG. 1A as anvil apparatus distends a target vessel into the anastomosis device.
  • FIG. 2B is a cross-sectional view of the anastomosis device shown in FIG. 2A in the next phase as a cutter and an anvil are engaged to form an opening in the vessel.
  • FIG. 2C is a partial cross-sectional view of the anastomosis device shown in FIG. 2B in the next phase as the graft vessel everts the portion of the target vessel defining the first vessel opening.
  • FIG. 2D is a cross-sectional view of the anastomosis device shown in FIG. 2A in the next phase after the second compression plate has been compressed towards the first compression plate such that the everted graft vessel contacts the everted target vessel.
  • FIG. 2E is a cross-sectional view of the anastomosis device shown in FIG. 2A with the anastomosed structure after the anvil apparatus and the cutter have been removed.
  • FIG. 3A depicts an exploded perspective view of an embodiment of the present invention with locking extensions on one ring and corresponding slots in the other ring.
  • FIG. 3B is a cross-sectional view of the embodiment shown in FIG. 3A in a loading position.
  • FIG. 3C is a cross-sectional view of the embodiment shown in FIG. 3A in an anastomosis position.
  • FIGS. 4A-4B are perspective views of an alternative embodiment of the anastomosis device having guides that are integral with one of the rings.
  • FIGS. 5A-5F depict alternative embodiments of the expandable rings of the present invention.
  • FIG. 6A is a partial cross-sectional view of the embodiment shown in FIG. 1A used in combination with an attachment actuation device.
  • FIG. 6B is a perspective and partial cross-sectional view of the anastomosis device shown in FIG. 6A in the loading position.
  • FIG. 6C is a cross-sectional view of the anastomosis device shown in FIG. 6B in the next phase after the first expandable ring has been compressed towards the second expandable ring by the attachment actuation device such that the everted graft vessel contacts the everted target vessel.
  • FIG. 7A is a perspective view of the external anastomosis operator cooperating with the anvil depicted in phantom lines to form an anastomosis.
  • FIG. 7B is a perspective view of an external anastomosis operator.
  • FIG. 7C is an exploded perspective view of the external anastomosis operator.
  • FIG. 7D is a cross-sectional view of the external anastomosis operator.
  • FIG. 7E is a cross-sectional view of the external anastomosis operator as the anvil pull advancer knob is rotated to pull the anvil pull so that the anvil causes distension of the target vessel into the compression plate apparatus.
  • FIG. 7F is a cross-sectional view of the external anastomosis operator as the attachment actuator device is moved to compress the second compression plate against the first compression plate.
  • the present invention relates to a paired expandable anastomosis device adapted to join a first vessel opening in a first vessel to a second vessel opening in a second vessel.
  • the anastomosis device is capable of expanding and contracting in response to changes in fluid pressure in the vessels that are joined together.
  • the anastomosis device is also adapted to radially expand upon deployment, stretching the vessel tissue to create an anastomosis larger than the initial openings in the anastomosed vessels.
  • the anastomosis device comprises a first expandable ring and a second expandable ring.
  • the first expandable ring is adapted to hold a first vessel, such as a target vessel, at an opening in the vessel.
  • the second expandable ring is adapted to hold a second vessel, such as a graft vessel, at an opening in the vessel.
  • the rings cooperate with guides so that after the graft and target vessels have been loaded onto the rings, the second ring may be brought together with the first ring to create an anastomosis. Once the two rings have been brought together, the rings are adapted to be linked together so that the rings expand and contract in unison.
  • FIGS. 1A-1D Anastomosis device 300 with guides and guideposts to link a pair of expandable rings together is shown at FIGS. 1A-1D.
  • FIGS. 2A-2E depict the creation of an anastomosis opening in a vessel and the placement of anastomosis device 300 using an external operator 700 ′′.
  • FIGS. 3A-3C depict an alternative embodiment of the anastomosis device having a ring with locking extensions positioned to slide into slots in the other ring.
  • FIGS. 4A-4B depicts another embodiment of the anastomosis device in which one of the expandable rings is integral with a plurality of guides.
  • FIGS. 5A-5F depict additional embodiments of the expandable rings.
  • the anastomosis device may be used in combination with an attachment actuation device as depicted in FIGS. 6A-6C.
  • the anastomosis device of the present invention may be utilized in combination with an attachment actuator of an external operator as depicted in FIGS. 7A-7F.
  • first ring 310 a is adapted to support a first vessel, such as a target vessel 20 .
  • First ring 310 a has a generally annular shape and a plurality of holding surfaces or tabs 514 a that define an opening, first ring opening 320 a , which has a generally circumferential contour.
  • the internal diameter of first ring opening 320 a is such that the corresponding portion of the vessel to be anastomosed can fit therein.
  • First ring opening 320 a is generally round, however, the opening may also be ellipsoidal or ovoid.
  • First ring 310 a comprises a plurality of connected flexible segments 324 a each with two arms 326 a joined by a flexible segment joint 328 a . Arms 326 a and flexible segment joints 328 a form V-shaped flexible segments 324 a . Each flexible segment 324 a is attached to an adjoining flexible segment by a connecting joint 322 a .
  • First ring 310 a further includes guideposts 330 a adapted to slide into and frictionally engage with guides 334 . The operation of the guides and guideposts is discussed in more detail below.
  • First ring 310 a has a first end 370 a and a second end 372 a and defines a first ring opening 320 a .
  • First ring 310 a is an example of a first ring means for providing support for a first vessel at a first vessel opening.
  • holding tabs 314 a extend integrally from first end 370 a at connecting joints 322 a .
  • Holding surfaces or tabs are intended to hold the everted contours of the structures being anastomosed. More particularly, a portion of the target vessel defining a vessel opening is everted through ring 310 a and held by holding tabs 314 a .
  • Each holding tab 314 a extends radially inward and has a base 315 a that extends from the ring. Bases 315 a preferably curve radially inward with an U-shape. Holding tabs 314 a are preferably wider at bases 315 a than at the tips 316 a opposite the bases 315 a .
  • Tips 316 a - b are preferably rounded as shown to minimize the potential for penetration. Since, as discussed below, the anastomosis is generally completed immediately after the target vessel is loaded onto one of the rings, the holding tabs hold the target vessel long enough without additional anchors such as barbs or hooks. Holding tabs 314 a are an example of holding means for holding the first vessel at the first vessel opening.
  • second ring 310 b is adapted to support a second vessel, such as graft vessel 50 .
  • the graft vessel may be synthetic or autologous.
  • Second ring 310 b has a plurality of holding surfaces or tabs 314 b that define a second ring opening 320 b with a round shape that corresponds to the shape of first ring opening 320 a .
  • second ring opening 320 b is such that the corresponding portion of the graft vessel can fit therein, as shown in FIG. 1D. Note that while the configuration of the first and second rings are designed to specifically interact respectively with the target and graft vessel, all or part of their configurations can be reversed so that the first and second rings respectively interact with the graft vessel and target vessel.
  • Second ring 310 b comprises a plurality of connected flexible segments 324 b , each with two arms 326 b joined by a flexible segment joint 328 b . Arms 326 b and flexible segment joints 328 b form V-shaped flexible segments 324 b . Each flexible segment 324 b is attached to an adjoining flexible segment by a connecting joint 322 b . Second ring 310 b has a first end 370 b and a second end 372 b . Second ring 310 b is an example of a second ring means for providing support for a second vessel at a second vessel opening.
  • Holding tabs 314 b extend integrally from first end 370 b at flexible segment joints 328 b . Holding tabs 314 b are adapted to securely hold a portion of the graft vessel that defines an opening after the portion has been everted through ring 310 b . In the embodiment shown in FIGS. 1A-1D, each holding tab 314 b has a length that is about equal to the width of second ring 310 b . Each holding tab 314 b extends radially inward and has a base 315 b that extends from the ring so that each holding tab 314 b is opposite from arms 326 b and guideposts 330 b .
  • Bases 315 b are preferably U-shaped and curve radially inward toward the center of the expandable ring.
  • the holding surfaces or tabs 314 b are preferably wider at bases 315 b , but narrower than bases 315 a of first ring 310 a .
  • holding tabs 314 b preferably terminate at rounded tips 316 b that are rounded to minimize the potential for penetration.
  • Holding tabs 314 b are an example of holding means for holding the second vessel at the second vessel opening.
  • Each holding tab 314 b of second ring 310 b has a hook or barb 318 to prevent graft vessel 50 from slipping off holding surfaces 314 b after graft vessel 50 has been loaded onto holding tabs 314 b .
  • Hooks 318 are an example of anchor means for more securely anchoring a vessel on the holding means.
  • Anastomosis device 300 is shown in FIGS. 1B-1C in a loading position before graft vessel 50 has been loaded onto holding tabs 314 b of second ring 310 b .
  • a graft vessel 50 is loaded onto second ring 310 b .
  • the graft vessel may be synthetic or auotologous.
  • the holding surfaces such as holding tabs 314 a - b are preferably configured in a way such that they are not exposed to blood flowing through the anastomosed structures.
  • Blood vessels have an internal layer, called the intimal layer and an external layer called the adventitial layer.
  • the holding surfaces are positioned to capture everted tissue defining an opening in a blood vessel so that the holding surfaces and rings contact the adventitial layer of the blood vessel.
  • the rings are moved together, to an anastomosis position, the intimal layer of the portion of the first vessel defining a first vessel opening contacts the intimal layer of the portion of the second vessel defining a second vessel opening. Stated otherwise, the holding tabs contact only the exterior of the everted vessel tissue and no portion of the device is exposed in the vessel lumens.
  • holding tabs 314 a - b are positioned such that as the rings are brought towards each other, each holding tab 314 b is positioned opposite from the spaces between holding tabs 314 a in a mated configuration.
  • the terms “mated or interdigitated configuration” describe a configuration in which each one of the holding tabs in a ring can generally fit in or at least be opposite the space between two neighboring holding tabs in the opposing ring when such rings are close enough. While other configurations are possible, the holding tabs in each ring are preferably oriented relative to the holding tabs in the other ring in such a mating configuration. Examples of interdigitated configurations are provided below.
  • anastomosis device 300 further comprises guides 334 with guide apertures 336 .
  • Guideposts 330 a - b of first and second rings 310 a - b are sized to slide into guide apertures 336 .
  • Guideposts 330 a of first ring 310 a extend from connecting joints 322 a , opposite holding tabs 314 a .
  • Guideposts 330 b of second ring 310 b extend from flexible segment joints 328 b .
  • the rings are held in an initial loading position with the rings offset from each other by the use of the guides and guideposts.
  • guides 334 position rings 310 a - b in an initial loading position.
  • the full length of each guidepost 330 b of second ring 310 b has been inserted into guides 334 .
  • Guideposts 330 a of first ring 310 a are partially inserted into guides 334 so that the rings are offset from each other.
  • holding tabs 314 a are sufficiently spaced apart from holding tabs 314 b to permit graft vessel 50 to be everted through ring 310 b and loaded onto holding tabs 314 b .
  • holding tabs 314 a - b are sufficiently spaced apart so that the tissue defining an opening in the target vessel may be everted onto holding tabs 314 a and brought into contact with graft vessel 50 .
  • Guides 334 are positioned to provide guided coaxial movement of the rings relative to each other so that the target vessel may be brought into contact with the graft vessel.
  • Guides 334 permit the relative approach of the two rings as guideposts 330 a are moved into guides 334 , bringing ring 310 b towards ring 310 a .
  • guides 334 enable rings 310 a - b to be brought together in a manner such that second ring 310 b is moved in a fixed parallel orientation relative to first ring 310 a .
  • rings 310 a - b are compressed together and the graft vessel is anastomosed to the target vessel.
  • Guides 334 in combination with guideposts 330 a - b are an example of guide means for guiding the movement of one ring relative to the other ring.
  • the guides also operate to structurally link the two rings together so that while the rings expand and contract, the anastomosis remains intact.
  • Guide apertures 336 are sized to frictionally engage guideposts 330 a - b so that first ring 310 a and second ring 310 b remain in the anastomosis position, even as the rings expand and contract. More particularly, guide apertures 334 are sized such that, after the rings are compressed together, significant force is required to move one ring away from the other ring.
  • guides 334 in combination with guideposts 330 a - b are examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • guides 334 and guideposts 330 are preferably sized so that when rings 310 a - b are approximated to an anastomosis position, the holding tabs of one ring are sufficiently close to the holding tabs of the second ring to create a blood-tight anastomosis of the graft and target vessels.
  • An example of a suitable compression is provided by an anastomosis device with holding tabs of a length such that the tips slightly extend into the space between the holding tabs of the opposite ring in an interdigitated configuration.
  • the rings may also be designed for further compression such that holdings surfaces or tabs 314 b further enter the space between adjacent holding surfaces or tabs 314 a .
  • the rings are preferably designed such that the rings are brought together without penetrating target vessel 20 or graft vessel 50 .
  • the rings may be designed so that when the rings are compressed together, the tips of the holding tabs of one of the rings terminate in approximately the same plane as the tips of the holding tabs of the other ring.
  • the rings may be adapted such that, in the anastomosis position, the holding tabs of one ring are slightly offset from the holding tabs of the other ring.
  • the rings are accordingly sized to have an anastomosis position that compresses down to the ideal spacing between the anastomosis sides while providing holding surfaces that have sufficient surface area to capture the tissue in an everted configuration.
  • a graft vessel 50 is loaded onto holding tabs 314 b of ring 314 while a cutter 400 is positioned to be loaded into the lumen 58 of graft vessel 50 .
  • Cutter 400 includes a cutting tube 410 that terminates at a cutting knife 412 with a cutting edge 414 .
  • FIGS. 2A-2E depict the use, in sequential order, of an anastomosis device 300 in combination with a cutter 400 , anvil 210 and an attachment actuator 600 ′′ of an external operator 700 ′′.
  • the operation of the external operator 700 ′′ is described in more detail below with reference to FIGS. 7A-7F.
  • FIGS. 2A-2E are cross-sectional views.
  • FIG. 2A depicts a graft vessel 50 , loaded onto ring 310 b .
  • FIG. 2A also depicts anvil 210 being pulled against the intima or interior of the vessel wall such that target vessel 20 is sufficiently distended to permit target vessel 20 at anastomosis site 10 to be pulled into anastomosis device 300 through first ring opening 320 a .
  • Cutter 400 also is shown in FIG. 2A extending through second ring opening 320 b about half way through anastomosis device 300 as cutter 400 is approximated with the portion of the target vessel 20 distended by anvil 210 .
  • FIG. 2B depicts the formation of a first vessel opening 24 in the wall of the first vessel.
  • First vessel opening 24 is formed by pulling anvil pull 230 through cutter 400 with sufficient force to enable anvil 210 to advance target vessel 20 against cutting edge 414 .
  • a cut portion 25 of the wall of target vessel 20 remains on spherical engaging end 212 of anvil 210 while the portion 26 of the target vessel that now define first vessel opening 24 rests on anvil landing 214 .
  • FIG. 2C depicts anastomosis device 300 as it is being compressed and as portion 26 defining vessel opening 24 is being everted.
  • Attachment actuator has a first ring engager 600 a ′′ and a second ring engager 600 b ′′ adapted to hold first and second rings 310 a - b in a fixed orientation relative to each other and to bring rings together in this fixed orientation.
  • attachment actuactor 600 ′′ has actuating guides 640 ′′ that guide one ring engager toward the other ring engager to bring the expandable rings together.
  • Each ring engager 600 a ′′- b ′′ has a latch (not shown) that enables the ring engagers to be released once the anastomosis is complete.
  • the rings may, alternatively, be brought together by an attachment actuation device, which is described in more detail below with reference to FIGS. 6A-6C.
  • the everted portion 56 of graft vessel 50 is urged against portion 26 that defines first target vessel opening 24 in a manner such that portion 26 is being everted.
  • This eversion process is augmented by landing 214 of anvil 210 which allows portion 26 to rest on landing 214 and be plowed upward by everted portion 56 .
  • the length of portion 26 is sufficient for this eversion process since vessel 20 was distended and pulled into the snap-fit anastomosis device by the action of anvil 210 .
  • FIG. 2D depicts anastomosis device 300 after compression. More particularly, ring 310 b has been moved toward ring 310 a by sliding guideposts 330 b on guides 334 . Note that the everted portion 56 of graft vessel 50 , more particularly the portion 57 opposite from the rounded tip 316 b , is urged against portion 26 that defines first target vessel opening 24 in a manner such that portion 26 has been everted. The end result is that the portion 27 opposite from rounded tip 316 a is held in contact with the portion 57 of vessel 50 opposite from distal rounded tip 316 b.
  • the rings are preferably held in an initial, radially compressed position by attachment actuator 600 ′′ of external operator 700 ′′ or attachment actuation device 600 ′. In this radially compressed position, each ring opening has an initial diameter. Once the vessels are anastomosed together, the rings are released by the attachment actuator and spring radially to a deployed position. In the deployed position, the rings have a greater diameter, stretching the vessel openings at the anastomosis site.
  • FIGS. 2D-2E This radial expansion is best seen in FIGS. 2D-2E.
  • the rings preferably spring open sufficiently so that, at the anastomosis site, the vessel openings have a diameter equal to or greater than the diameter of the graft vessel, thus minimizing restriction at the anastomosis.
  • the initial diameter of the ring openings may be about 4 mm and the diameter of the ring openings after deployment may be about 6 mm.
  • external operator 700 holds rings 310 a - b in an initial state with a diameter D 1 .
  • rings 310 a - b radially expand to a greater diameter, D 2 , as shown in FIG. 2E.
  • first vessel 20 and second vessel 50 are anastomosed together and are in fluid communication. Note that holding tabs 314 a - b hold the vessels in place without penetration and without contacting the interior of the vessels.
  • Anvil apparatus 200 and cutter 400 have been removed upon the completion of the procedure through lumen 58 of graft vessel 50 . Once the anastomosis is complete, guideposts 330 a - b remain stationary in guides 334 after being compressed due to frictional engagement.
  • the rings create an anastomosis without any placing any foreign material into the anastomosed vessels and the interior of the vessels are not exposed to any foreign material. As a result, the thrombogenic potential is minimized.
  • the rings radially expand upon initial deployment.
  • the radial expansion of the rings enables the anastomosis to have a diameter that is larger than the initial opening in the vessel. It may expand enough to be equivalent to the diameter of the anastomosed vessels.
  • a smaller incision in the target vessel is required. Because a smaller incision is required, smaller instruments may be used to create the opening in the target vessel and to place the anastomosis device. For example, the anvil and the cutter may be smaller than would otherwise be required. As a result the invasiveness of the procedure is minimized.
  • the present invention By radially expanding upon release to create an opening at least equal in diameter to the graft vessel, the present invention also minimizes the restriction at the anastomosis and potential resulting complications such as thrombosis and neointimal hyperplasia.
  • the rings are also capable of expanding and contracting with changes in the fluid pressure in the anastomosed vessels.
  • an anastomosis device which joins two blood vessels will expand and contract with systole and diastole.
  • the rings can expand and contract while the holding tabs maintain the anastomosis.
  • the anastomosis device of the present invention minimizes flow disturbances as the blood flow approaches the anastomosis site. This feature also serves to minimize thrombosis and neointimal hyperplasia.
  • the method does not require temporary occlusion of blood flow to the target vessel.
  • the second ring may be pre-loaded with the graft vessel so that the steps disclosed above in connection with FIGS. 2A-2E may be accomplished simultaneously or in quick succession.
  • the rings may be brought together to create the anastomosis without blocking blood flow through the target vessel.
  • the anastomosis can be reliably created.
  • the anastomosis utilizing the paired rings of the present invention is rapidly achieved and eliminates the need for highly skilled suturing. For example, once the anvil pull extends through the wall of the vessel, the anastomosis procedure can be accomplished in as little as 30 seconds when rings 310 a - b are used to join the vessels.
  • anvil pull 230 may be manually pulled as cutter 400 is held or manually advanced.
  • the anastomosis device may be manually compressed in some embodiments.
  • the paired rings of the present invention are preferably used in combination with an intraluminally directed anvil apparatus such as the apparatus disclosed in U.S. Pat. No. 6,248,117, which is hereby incorporated by reference.
  • Other intraluminally directed anvil apparatus are disclosed in U.S. patent application Ser No. 09/737,200 and Serial No. 09/460,740 which were previously incorporated by reference.
  • the paired rings may also be used in combination with an externally directed apparatus, such as those disclosed in U.S. patent application Ser. No. 09/736,781, filed Dec. 14, 2000 and entitled Externally Directed Methods for Forming an Anastomosis Opening in a Vessel, U.S. patent application Ser. No._______ filed on Oct. 31, 2001 and entitled Soft Anvil Apparatus for cutting Anastomosis Fenestra, and U.S. patent application Ser. No.______ filed on Oct. 31, 2001 and entitled Externally Positioned Anvil Apparatus for Cutting Anastomosis Fenestra, which are hereby incorporated by reference.
  • the anastomosis device may be used in combination with any suitable mechanical anastomosis techniques.
  • FIGS. 3A-3C depict an alternative embodiment of the anastomosis device, referred to herein as anastomosis device 300 ′.
  • the two rings of anastomosis device 300 ′ are structurally linked by locking extensions 340 in combination with slots 346 .
  • each locking leg 330 a ′ of first ring 310 a ′ has a locking extension 340 .
  • each locking extension 340 is positioned to lock into a corresponding slot 346 in a locking leg 330 b ′ when rings 310 a ′-b′ are brought together to the anastomosis position.
  • Legs 330 b ′ having slots 346 in combination with legs 330 a ′ having locking extensions 340 are additional examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • the expandable rings may be linked by any suitable device, such as clips, clamps or interlocking tabs. Sutures or adhesive may also be used to structurally link two rings together. Clips, clamps, interlocking tabs, sutures and adhesives are all further examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • anastomosis device 300 ′ functions without guides such as the guides of the embodiment shown in FIG. 1A. Instead, rings 310 a ′-b′ of anastomosis device 300 ′ are adapted to be coupled by an attachment actuation device 600 ′ as shown in FIGS. 6A-6C or attachment actuator 600 of external operator 700 as shown in FIGS. 7A-7E, both of which are discussed in more detail below.
  • Attachment actuator 600 and attachment actuation device 600 ′ have a first ring engager 600 a , 600 a ′ and a second ring engager 600 , 600 b ′ that are adapted to guide rings 310 a - b from a loading position to an anastomosis position.
  • FIGS. 4A-4B depict an additional embodiment of the anastomosis device, referred to herein as anastomosis device 300 ′′.
  • Guides 334 ′′ of anastomosis device 300 ′′ are integral with second ring 310 b ′′ and have holding surfaces 314 b .
  • Second ring 310 b ′′ is preferably made of plastic and integrally molded with guides 334 .
  • Ring 310 b ′′ enables graft vessel tissue to be everted through ring 310 b ′′ and over holding surfaces 314 b ′′.
  • Ring 310 a ′′ has guideposts 330 ′′ positioned to slide into guides 334 ′′.
  • Guides 334 ′′ have apertures 336 ′′ that are sized to frictionally engage guideposts 330 ′′.
  • FIG. 4B depicts a partial cross-section of a graft vessel 50 in phantom lines.
  • Guideposts 330 ′′ in combination with guides 334 ′′ are an additional example of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • the graft vessel is everted through ring 310 b ′′ and over holding surfaces 314 b ′′.
  • ring 310 b is designed such that the graft tissue is everted through ring 310 b over holding surfaces 314 b and onto the outer surface of guides 334 ′′.
  • guideposts 330 a ′′ are adapted to penetrate graft vessel tissue that has been everted through second ring 310 b ′ and past guide apertures 336 ′′. After the graft vessel is loaded onto second ring 310 b , guideposts 330 a ′′ penetrate the graft vessel and slide partially into guides apertures 336 ′′.
  • Guideposts 330 ′′ in combination with guides 334 ′′ are an additional example of anchor means for more securely anchoring a vessel on the holding means.
  • holding surfaces 314 b ′′ are at the top of guides 334 ′′.
  • each holding surface 314 b ′′ is a flat surface.
  • Holding surfaces 314 a ′′- b ′′ of rings 310 a ′′- b ′′ of anastomosis device 300 ′′ are arranged so that when rings 310 a ′′- b ′′ are brought together to an anastomosis position, holding tab tips 316 a ′′ of first ring 310 a ′′ directly oppose holding surface 314 b ′′ of second ring 310 b ′′. Therefore, the graft and target vessels are pinched between tips 316 a ′′ and holding surfaces 314 b ′′when rings 310 a ′′- b ′′ are in the anastomosis position.
  • Holding surfaces such as holding tabs 314 a - b depicted in FIG. 1A and holding surfaces 314 b ′′ depicted in FIG. 4A, can have a variety of shapes and arrays. A generally regular distribution on the anastomosis sides of rings 310 a - b is preferred. Holding surfaces may also form a contiguous surface around a ring. For example, a suitable elastic band may be utilized as a ring having a contiguous surface.
  • the holding tabs are inclined towards the ring so that each holding tab clamps vessel tissue against the ring.
  • holding tabs of one of the rings are spike shaped or have pointed tips to better retain the graft vessel.
  • the holding tabs are typically rather rigid, however, they may also be designed to elastically bend in such a way that the distal tips of such holding surfaces slightly swing about their respective bases.
  • the number of holding surfaces and their spacing may be varied as needed as long as the portions of the vessels defining the vessel openings can be maintained in an everted orientation.
  • the plurality of holding surfaces may include ten holding surfaces or tabs as shown in FIG. 1A. However, smaller or greater amounts may also be utilized, for example there may be from three to sixteen holding surfaces.
  • the guides may also be distributed in varying numbers and arrays.
  • the guides may be movably connected to the rings. Alternatively, the guides may be integral with one of the rings.
  • the anastomosis devices depicted in FIGS. 1A and 4A have ten guides. Alternative embodiments may include only two or more guides.
  • the guides may extend from one or both of the rings at any appropriate location.
  • the guides are preferably regularly distributed around the ring.
  • the guides are preferably situated such that the portion defining the target vessel opening and the portion defining the graft vessel opening are joined without being penetrated as the first vessel and the second vessel are anastomosed together.
  • the rings of the present invention may have flexible segments with a variety of shapes.
  • the expandable rings may be formed of any shape of flexible segment that provides the rings with the capability to expand and contract with changes in fluid pressure.
  • FIG. 5A is a partial view of V-shaped flexible segments 324 of the second ring 310 a depicted in FIG. 1A.
  • FIG. 5B depicts an expandable ring that comprises a series of U-shaped flexible segments.
  • FIG. 5C depicts an expandable ring comprising a series of flexible segments which are made of plastic and have hinged portions of decreased thickness relative to adjacent portions.
  • FIGS. 5D-5F depict embodiments of the first ring with varied flexible segments.
  • FIGS. 5D depicts an expandable ring with U-shaped flexible segments.
  • FIG. 5E shows a ring comprising flexible segments which have a configuration that is diamond shaped. The diamond shaped configuration is an example of a quadrilaterial configuration.
  • FIG. 5F depicts an expandable ring with circular flexible segments.
  • the rings may include spiral-shaped flexible segments, oval-shaped flexible segments, elliptical flexible segments and other flexible segments that have appropriate configurations.
  • the positioning of the anastomosis device and the operations of pulling or holding anvil pull 230 , making an opening, and compressing the rings together, as described in connection with FIGS. 2A-2E, can be accomplished manually or with the aid of devices such as external anastomosis operator 700 .
  • the attachment actuation means need not be part of the same apparatus with the anvil pull engager and the cutter. This reduces the size of the instruments utilized.
  • FIGS. 6A-6C show an attachment actuation device or tongs 600 ′ used to approximate rings 310 a - b .
  • Actuation device 600 ′ has opposing ring engagers, a first ring engager 600 a ′ and a second ring engager 600 b ′, that respectively extend from attached handles 604 a - b .
  • Handles 604 a - b are connected together at a hinge.
  • Each ring engager 600 a ′- b ′ has a latch 608 a - b that enables the ring engagers to lock onto expandable rings 310 a - b so that anvil 210 can be pulled through second ring opening 320 b and distend the wall of vessel 20 into expandable anastomosis device 300 . While the tissue of vessel 20 is cut and everted onto holding surfaces 314 b , tongs 600 ′ are closed. Once the anastomosis is complete, latch 608 a ′- b ′ is released to open ring engagers 600 a ′- b ′ and deploy expandable rings 310 a - b .
  • Attachment actuation device 600 ′ is an example of attachment actuation means for approximating one ring to the other ring.
  • Latches 608 a ′- b ′ are examples of means for locking the ring engagers against the rings.
  • FIG. 7A shows external anastomosis operator 700 with an attachment actuator 600 engaging an anvil in preparation for cutting an opening in the target vessel.
  • external anastomosis operator 700 has a body 710 with an optional handle 720 .
  • Attached to body 710 are the main components of operator 700 . These main components are cutter 400 , spring biasing device 450 , an anvil pull engager 500 which includes an anvil pull holder 530 and an anvil pull advancer 560 , and an attachment actuator 600 .
  • Attachment actuator 600 is an additional example of attachment actuation means for approximating one of the rings to the other ring.
  • the attachment actuation devices and the attachment actuator 600 of external operator 700 may be adapted to enable the orientation of the rings relative to each other to remain essentially the same as the rings are brought together to an anastomosis position. This ability may be necessary for embodiments of the anastomosis device such as device 300 ′ that has no guides. Note that once the opposing ring engagers of the attachment actuation devices or the attachment actuator 600 of external operator 700 have have engaged the rings of an anstomosis device, preferably in a locked configuration, then the rings are easily brought together while maintaining their relative orientation. Note that the opposing ring engagers may be guided together in different ways as shown by the various embodiments.
  • attachment actuation device 600 ′′ relies on guides 640 ′′ to bring first ring engager 600 a ′′ and second ring engager 600 b ′′ together.
  • the hinge of attachment actuation device 600 ′ guides the opposing ring engagers 600 a ′- b ′ together.
  • rail 640 guides the movement of ring engager to the other.
  • Mechanims adapted to lock the ring engagers against the rings are also discussed below in reference to attachment actuator 600 that function much like latches 608 a ′- b ′ discussed above in reference to attachment actuation device 600 ′.
  • FIG. 7B provides a perspective view of an external anastomosis operator 700 with its main components identified including: cutter 400 , spring biasing device 450 , an anvil pull engager 500 which includes an anvil pull holder 530 and an anvil pull advancer 560 , and an attachment actuation device 600 .
  • Spring biasing device 450 is used to apply pressure against the distal end 418 of cutter 400 .
  • One advantage derived form the use of a device such as external anastomosis operator 700 is that such devices have a series of actuators, and by manipulating these actuators the operator can effectuate the different operations at the anastomosis site without actually having to manually and directly operate each element itself.
  • FIG. 7C provides an exploded perspective view of all of the components of external anastomosis operator 700 so it is with reference primarily to this view that the details of operator 700 are understood.
  • FIGS. 7D-7E provide cross-sectional views of operator 700 depicting the steps for using operator 700 .
  • Cutter 400 is shown in FIG. 7C as including a tip portion 401 and an extension portion 402 .
  • a spring biasing device 450 applies pressure against the distal end 418 of cutter 400 .
  • Spring biasing device 450 has a spring mount 452 that is mounted to body 710 via spring mount pins 454 .
  • a rotatable spring housing 456 is threadably engaged by spring mount 452 .
  • Loaded into rotatable spring housing 456 is a cutter cup 458 that is configured to hold distal end 418 of cutter.
  • Cutter cup 458 has a flange that is pushed against a flange at the proximal end of rotatable spring housing 456 such that cutter cup 458 is held in the proximal end of spring housing 456 .
  • a spring 460 is positioned within a spring sleeve 462 .
  • Spring 460 and spring sleeve 462 have ends that abut cutter cup 458 and opposite ends that abut threaded jam screw 464 .
  • Threaded jam screw 464 is accessible via the distal end of spring mount 452 so that it may be rotated to increase or decrease the tension of spring 460 against cutter cup 458 .
  • Cutter cup 458 moves within rotatable spring housing 456 against spring 460 .
  • the pressure of spring 460 against cutter cup 458 enables cutter 400 to apply pressure against anvil 210 as anvil 210 is pulled against cutter 400 . This makes it easier to cut the vessels as force is being applied in both directions. It also enables cutter 400 to be pushed back by anvil 210 to allow anvil 210 to further distend the wall of vessel 20 as shown in FIGS. 5A-5B until sufficient pressure is applied by spring 460 to bias cutter 400 forward and by the advancement of anvil 210 by anvil pull 230 to cut the vessel. The gradual increase in pressure also serves to assist a spherical engaging end 212 of anvil 210 to self center on cutter 400 .
  • anvil 210 may be initially misaligned such that the center of engaging end from which anvil pull extends is positioned on the cutting edge of the cutter. A rapid application of pressure would lock such a misalignment while a gradual increase enables the curvature of spherical engaging end to guide the anvil into a centered orientation.
  • Rotatable spring housing 456 has a notch 457 at its distal end that enables a screw driver to rotate rotatable spring housing 456 within spring mount 452 to advance or retract rotatable spring housing 456 within spring mount 452 . Movement of rotatable spring housing 456 also moves cutter cup 458 , thereby determining the location of distal end 418 of cutter 400 within operator 700 .
  • cutter cup 458 advancement of cutter cup 458 towards the proximal end of operator 700 causes cutting knife 400 to engage anvil 210 closer to first ring 310 a while retraction of cutter cup 458 towards the distal end of operator 700 causes cutting knife and anvil to engage each other closer to second ring 310 b .
  • the position of cutter 400 is preferably set to enable vessel 20 to be distended in a manner that is optimal for then subsequently everting the portion defining the newly formed opening onto holding surfaces 314 a .
  • a detent 470 is threaded into spring mount such that it can contact rotatable spring housing and engage the grooves 471 of rotatable spring housing in a manner that enables detent 470 to click as each groove is rotated past detent 470 .
  • spring biasing device 450 has many variables that impact the manner in which cutter 400 is used in combination with external anastomosis operator 700 . Some of these variables include the inherent tension of spring 460 , the tension of spring 460 as caused by the position of threaded jam screw 464 in spring mount 452 against spring 460 , and the position of the surface which distal end 418 of cutter 400 abuts, namely cutter cup 660 as determined by the position of rotatable spring housing 456 within spring mount 452 .
  • Spring biasing device 450 is an example of spring biasing means for providing tension against the cutting means as the cutting means engages the anvil means of the intraluminally directed anvil apparatus.
  • the spring biasing means provides an amount of tension that enables the cutting means to form the first vessel opening after the wall of the first vessel has been distended by the action of the anvil means being pulled into the openings of the ring assembly such that forming the first vessel opening results in at least partial eversion of the portion of the first vessel defining the first vessel opening.
  • anvil pull engager 500 has two primary components including an anvil pull holder 530 and anvil pull advancer.
  • Anvil pull holder 530 receives anvil pull 230 via spring biasing device 450 . More particularly, anvil pull 230 extends through cutter cup 458 , rotatable spring housing 456 , spring 460 and sleeve 462 around spring 460 , and out of threaded jam screw 464 .
  • Anvil pull holder 530 includes a holder mount 532 positioned in track 730 of body 710 .
  • holder mount is moveable so that the anvil pull can be advanced after it is held.
  • the anvil pull holder may just lock the anvil pull into position such that the cutter is moved against a stationary anvil.
  • the spring biasing device 450 may be eliminated so that the vessel is cut only by pressure exerted by the anvil pull against the cutter.
  • Holder mount 532 may be utilized in different ways to hold anvil pull 230 .
  • Holder 530 has a split cone 534 inserted into a tapered chamber 536 against a spring 538 .
  • Anvil pull 230 extends through apertures in holder mount 532 , spring 538 , split cone 534 and out of an aperture centered in holder knob 540 .
  • Holder knob 540 is threadably engaged by holder mount 532 such that rotation of holder knob 540 advances split cone 534 in tapered chamber 536 causing split cone to lock onto anvil pull 230 .
  • Holder mount is slotted at its distal end as is holder knob.
  • anvil pull 230 By aligning slot 542 of holder knob 540 with the insert slot 544 of holder mount, anvil pull 230 can be bent so that it extends through both holder knob slot 542 and insert slot 544 . Then holder knob 540 can then be rotated so that the bent portion of anvil pull 230 is rotated into one of the locking slots 546 a - b that extend perpendicularly from insert slot 544 . This securely locks anvil pull into position. Anvil pull 230 can be locked through the use of slots instead of or in addition to the use of split cone 534 in tapered chamber 536 .
  • anvil pull holder 530 is moveable it threadably engages rotatable lead screw 562 of anvil pull advancer. More particularly, lead screw 562 is threadably engaged by anti-backlash nut 550 which is fixedly attached to holder mount 532 .
  • Anti-backlash nut 550 has an attachment face 552 through which a plurality of attachment face screws 554 extend to hold holder mount 532 and anti-backlash nut 550 together.
  • Lead screw 562 has a proximal pivot end 564 that rotates within a bushing 566 positioned within a recess in spring mount 452 .
  • Lead screw also has a distal pivot end 568 that is attached to advancer knob 570 to rotate lead screw 562 .
  • Advancer knob 570 rotates within an advancer knob mount 572 which is attached to body 710 in groove 730 via advancer knob mount bolts 574 .
  • distal pivot end 568 rotates in a bushing 576 positioned within an aperture of advancer knob mount 572 .
  • Advancer knob 570 has a stem with a plurality of grooves 578 that engage a detent 580 to click so that the incremental rotation of advancer knob 570 can be carefully counted to determine the length that the anvil is moved in the anastomosis device as the anvil pull is advanced.
  • detent 580 is threaded into advancer knob mount 572 such that it can contact grooves 578 in the stem of advancer knob 570 to click as each groove is rotated past detent 580 .
  • FIG. 7E depicts advancer knob 570 being rotated to move anvil pull advancer 560 so that it can urge anvil pull 230 in a manner such that anvil 210 is advanced within anastomosis device 300 .
  • advancer knob 570 is rotated, lead screw 562 is thereby rotated. Since anvil pull holder 530 is threadably engaged on rotatable lead screw 562 and is locked in track 730 , anvil pull holder 530 can only move forward and backward as lead screw 562 is rotated.
  • FIG. 7F depicts attachment actuation device 600 being engaged.
  • Attachment actuation device 600 has a first ring engager 600 a and a second ring engager 600 b .
  • First ring engager 600 a and a second ring engager 600 b each respectively utilize an optional adaptor 610 a - b to engage first and second rings 310 a - b .
  • First ring engager 600 a and second ring engager 600 b each have a cutter aperture 620 a and 620 b .
  • Cutter 400 extends through these aligned apertures 620 a - b .
  • First ring engager 600 a is positioned on rail 640 such that it extends slightly beyond cutting edge 414 of cutter 400 . This difference in length enables first ring 300 a to be held slightly beyond cutter in a manner that permits the wall of vessel 20 to be pulled into anastomosis device as shown in FIG. 7D-7F and distended as needed.
  • Rail 640 is attached to body 710 via rail pin 642 .
  • a groove pin 644 extends through rail 640 .
  • a first ring holder 646 holds first ring engager 600 a on the proximal end of rail 640 .
  • First ring engager 600 a is fixedly mounted on rail 640 via pin 646 while second ring engager 600 b is movably mounted on rail 640 .
  • Second ring engager 600 b has a groove 634 through which groove pin 644 extends. The configuration of groove pin 644 in groove 634 enables second ring engager 600 b to be held in a fixed orientation such that it can be moved back and forth as needed with respect to first ring engager 600 a.
  • Second ring engager is moved on rail 640 by rotating threaded compressor sleeve 650 which engages a threaded rail sleeve 648 .
  • Threaded rail sleeve 648 may be adhered onto rail 640 or be an integral component.
  • Rail 640 and its threaded rail sleeve 648 or threaded rail portion combined with compressor sleeve 650 are means for advancing one ring engager towards the other ring engager.
  • Set screws 615 lock first ring engager 600 a on first ring 310 a .
  • Second ring engager 600 b has a latch (not shown) that enables engager 600 b to lock onto second ring 310 b .
  • set screws 615 and the latch are released to release the first and second ring engagers from the expandable rings.
  • first and second ring engager 600 a - b there are many other ways for locking the rings with first and second ring engager 600 a - b such as the use of conventional quick release configurations. Quick release configurations, latches and set screws are all examples of means for locking the ring engagers against the rings.
  • the paired expandable anastomosis device of the present invention is preferably used for vascular anastomosis, however, the present invention is not limited to such use.
  • the anastomosis device limited to use with any particularly sized vessel.
  • vessels may be joined with diameters ranging from about 2 mm to about 20 mm, but there is no fundamental limitation for using embodiments of this invention with graft vessels with diameters less than 2 mm.

Abstract

A paired, expandable anastomosis device joins two vessels together and can expand and contract with changes in the size of the two vessels. The anastomosis device has two expandable rings with a plurality of holding tabs. The holding tabs of one ring are shaped to enable a graft vessel tissue to be everted through one of the rings and to be held on one of the rings. Similarly, the holding tabs of the other ring are shaped to enable a target vessel to be everted through the other ring and to be retained by the holding tabs. Once the graft and target vessels are loaded, the rings are adapted to be brought together to a position in which the graft and target vessels are anastomosed together.

Description

    RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 10/035,084 titled Paired Expandable Anastomosis Devices, which was filed on Dec. 27, 2001 on behalf of Duane D. Blatter, Michael C. Barrus and Troy J. Orr, which is a continuation-in-part of U.S. patent application Ser No. 09/737,200 titled Compression Plate Anastomosis Apparatus and Related Systems, which was filed on Dec. 14, 2000 on behalf of Duane D. Blatter, Kenneth C. Goodrich, Michael C. Barrus, and Bruce M. Burnett, which is a continuation-in-part of U.S. patent application Ser No. 09/460,740, which issued as U.S. Pat. No. 6,569,173 on May 27, 2003, titled Compression Plate Anastomosis Device, which was filed on Dec. 14, 1999 on behalf of Duane D. Blatter, Kenneth C. Goodrich, Mike Barrus, and Bruce M. Burnett. application Ser. Nos. 10/035,084, 09/737,200, and 09/460,740 are each incorporated herein by reference. [0001]
  • TECHNICAL FIELD
  • The present invention is directed generally to an anastomosis device. More particularly, the present invention is directed a paired, expandable device that joins one vessel to another. [0002]
  • BACKGROUND OF THE INVENTION
  • An anastomosis is an operative union of two hollow or tubular structures. Anastomotic structures can be part of a variety of systems, such as the vascular system, the digestive system or the genitourinary system. For example, blood is shunted from an artery to a vein in an arteriovenous anastomosis, and from the right pulmonary artery to the superior vena cava in a cavopulmonary anastomosis. In other examples, afferent and efferent loops of jejunum are joined in a Braun's anastomosis after gastroenteroscopy; the ureter and the Fallopian tube are joined in a ureterotubal anastomosis, and the ureter and a segment of the sigmoid colon are joined in a ureterosigmoid anastomosis. In microvascular anastomosis, very small blood vessels are anastomosed usually under surgical microscope. [0003]
  • An anastomosis is termed end-to-end when the terminal portions of tubular structures are anastomosed, and it is termed end-to-side when the terminal portion of a tubular structure is anastomosed to a lateral portion of another tubular or hollow structure. In an end-to-side anastomosis, we often refer to the structure whose end is anastomosed as the “graft vessel” while the structure whose side wall is anastomosed is referred to as the “receiving structure” or “target vessel”. [0004]
  • The operative union of two hollow or tubular structures requires that the anastomosis be tight with respect to the flow of matter through such structures and also that the anastomosed structures remain patent for allowing an uninterrupted flow of matter therethrough. For example, anastomosed blood vessels should not leak at the anastomosis site, the anastomotic devices should not significantly disrupt the flow of blood, and the anastomosis itself should not cause a biological reaction that could lead to an obstruction of the anastomosed blood vessels. In particular, anastomosed blood vessels should remain patent and they should ideally not develop hyperplasia, thrombosis, spasms or arteriosclerosis. [0005]
  • Because anastomosed structures are composed of tissues that are susceptible to damage, the anastomosis should furthermore not be significantly detrimental to the integrity of these tissues. For example, injury to endothelial tissue and exposure of subintimal connective tissue should be minimized or even eliminated in vascular anastomosis. [0006]
  • Because structures to be anastomosed are internal, an anastomosis requires a degree of invasion. The invasive character of an anastomosis, however, should be minimized subject to the reliable performance of a satisfactory anastomosis. Accordingly, there has been a noticeable trend during the last quarter of this century towards less invasive surgical intervention, a surgical style that is termed minimally invasive surgery. This style is characterized by pursuing a maximal treatment effect with minimal damage to surrounding and overlying normal structures. In addition, successful minimally invasive procedures should procure patency and they should minimize damage to the tissues of the anastomosed structures themselves. [0007]
  • Particularly in the field of vascular anastomosis, it is acknowledged that there is an increasing demand for an easier, quicker, less damaging, but reliable procedure to create vascular anastomosis. This demand is further revitalized by the movement of vascular procedures towards minimally invasive procedures. See Paul M. N. Werker and Moshe Kon, Review of Facilitated Approaches to Vascular Anastomosis Surgery, Annals of Thoracic Surgery, Vol. 63 (1997) pp. S122-S127. [0008]
  • Anastomosis techniques generally intend to provide leak-proof joints that are not susceptible to mechanical failure, and they also intend to minimize damage and reduce the undesirable effects of certain operational features that may lead to post-anastomosis complications. Damage to be minimized and operational features whose undesirable effects should be reduced include endothelial coverage injury, exposure of subintimal connective tissue, exposure of an intraluminal foreign component, blood flow interruption, irregularities at the junction, adventitial tissue stripping, intimal injury, installment of a foreign rigid body, use of materials that may have toxic effects, damage to surrounding tissue, extensive vessel eversion, and tissue plane malalignment. A common feature of most conventional stapling, coupling and clipping techniques, particularly when applied to small-diameter vessels, is that they require a temporary interruption of the blood stream in the recipient vessel. As the instrumentation that is needed at the anastomosis site becomes complex and cumbersome, a wider open area is needed for accessing the anastomosis site, thus leading to an increasingly invasive procedure. [0009]
  • Post-anastomosis complications include neointimal hyperplasia, atherosclerosis, thrombosis, stenosis, tissue necrosis, vascular wall thinning, and aneurism formation. In particular, potential for thrombosis and for other complications is increased when the anastomosis site does not expand and contract with systole and diastole, causing flow disturbances as blood crosses the anastomosis. Therefore, a flexible and expandable anastomosis device that responds to changing blood pressure during systole and diastole is needed to decrease the potential for thrombosis and other complication. [0010]
  • Potential for flow disturbance at the anastomosis site is also increased when the opening at the anastomosis site has a relatively small diameter. Of course, it is desirable to minimize the size of instruments utilized to form the anastomosis. Smaller instruments minimize the intrusiveness of the procedure. What is needed, therefore, is an anastomosis device that expands upon release and stretches the tissue at the anastomosis opening, enabling the anastomosis to have a larger diameter than the initial anastomosis opening. [0011]
  • Also needed is an anastomosis device that acts external to vessels without penetrating at least one of the vessels and that creates an anastomosis more quickly than conventional techniques, with minimal interruption of blood flow. [0012]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a device for joining vessels together that minimizes complications such as thrombosis through the use of expandable rings that expand and contract with changes in fluid flow through the vessel after anastomosis is complete. [0013]
  • It is a further object of the present invention to provide an anastomosis device that avoids restriction of the lumen at the anastomosis by radially expanding upon deployment, thus minimizing complications such as thrombosis. [0014]
  • Additionally, another object of the invention is to provide an anastomosis device that joins vessels together through the use of expandable rings that are guided to each other by guides. [0015]
  • A further objection of this invention is to provide devices for joining vessels together in a secure manner such that the portions defining the openings of the vessels are not penetrated. [0016]
  • A further object of this invention to provide an anastomosis device that efficiently and reliably joins two vessels together at an anastomosis site. [0017]
  • The present invention is a paired, expandable anastomosis device that joins one vessel opening to another vessel opening. The anastomosis device has two rings. Referred to herein as first and second rings. In one embodiment each ring is made of connected flexible segments. Each flexible segment has two arms that are hingedly connected to form expandable V-shaped segments. [0018]
  • One embodiment of the anastomosis device has a ring is designed so that a portion of a target vessel can be everted through and held on the ring during the anastomosis procedure. The other ring of this embodiment is designed so that a portion of a graft vessel can be everted through and held on the ring during the anastomosis procedure. [0019]
  • Each ring has a holding surface, such as a plurality of holding tabs, to hold the everted vessel tissue. Holding tabs are preferably configured with rounded tips to avoid penetrating the vessel walls. The holding tabs of the ring used to anchor the graft vessel on the ring may have barbs or hooks to more securely hold the graft vessel. [0020]
  • The holding tabs in each ring are preferably oriented relative to the holding tabs of the opposing ring so that when the rings are brought together, each one of the holding tabs in a rings is opposite the space between two neighboring holding tabs in the opposing ring. When the rings are brought together so that the tips of the holding tabs enter or at least close to entering the opposing spaces between the holding tabs of the other ring, the everted tissue will be held together, creating a secure anastomosis. [0021]
  • Once the target and graft vessels are loaded onto the anastomosis device, the rings are guided together. Several embodiments are discussed that enable the rings to be guided together. In one embodiment, the anastomosis device includes a plurality of guides which guide the movement of one ring to the other ring. The rings may have a plurality of guides adapted to receive guideposts. The guides are preferably sized to frictionally engage the guideposts. [0022]
  • The rings have a loading position in which the vessels can be loaded onto the rings. In one embodiment, the guideposts of the second ring are completely inserted into the guides when in the loading position. The guideposts of the first ring are partially inserted into the guides so that the rings maintain an offset configuration. In this loading position, the holding tabs of the first ring are sufficiently spaced from the holding tabs of the second ring so that the graft vessel can be everted onto one ring and the target vessel can be everted onto the other ring. After the rings are loaded, they are brought together to create a secure anastomosis. The rings may be brought together manually or by the use of a device specifically designed for use with the rings, such as an attachment actuaction device. Once the rings are brought together, the frictional engagement of the guides and guideposts prevents the rings from inadvertently sliding on the guides. [0023]
  • The anastomosis device of the present invention provides an efficient, reliable anastomosis. Because the rings are expandable, the inventive anastomosis device minimizes complications caused with anastomosis devices of the prior art. Once the expandable rings are deployed to the anastomosis position, the rings permit the vessel tissue defining the anastomosis to expand and contract with expansion and contraction of the vessels. Additionally, the expandable rings radially expand to a deployed position when released from an external operator or tongs so that the vessel tissues defining the vessel openings are stretched to a diameter greater than the diameter of the initial opening in the target vessel. Also, no foreign material is placed in the interior of the vessel because the vessel tissue is everted onto the rings and the anastomosis is formed by bringing the everted interior of the graft vessel into contact with the everted, interior portion of the target vessel.[0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order that the manner in which the above-recited and other advantages and objects of the invention are obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: [0025]
  • FIG. 1A is an exploded perspective view of a preferred embodiment of the paired, expandable anastomosis device with guides. [0026]
  • FIG. 1B is a perspective view of the anastomosis device depicted in FIG. 1A assembled and in the loading position. [0027]
  • FIG. 1C is a cross-sectional view of the anastomosis device shown in FIG. 1B. [0028]
  • FIG. 1D is a perspective view of the anastomosis device shown in FIGS. 1B with a graft vessel loaded onto the holding surface of the first expandable ring and a cutter positioned to be loaded into the lumen of the graft vessel. [0029]
  • FIG. 2A is a cross-sectional view of the anastomosis device shown in FIG. 1A as anvil apparatus distends a target vessel into the anastomosis device. [0030]
  • FIG. 2B is a cross-sectional view of the anastomosis device shown in FIG. 2A in the next phase as a cutter and an anvil are engaged to form an opening in the vessel. [0031]
  • FIG. 2C is a partial cross-sectional view of the anastomosis device shown in FIG. 2B in the next phase as the graft vessel everts the portion of the target vessel defining the first vessel opening. [0032]
  • FIG. 2D is a cross-sectional view of the anastomosis device shown in FIG. 2A in the next phase after the second compression plate has been compressed towards the first compression plate such that the everted graft vessel contacts the everted target vessel. [0033]
  • FIG. 2E is a cross-sectional view of the anastomosis device shown in FIG. 2A with the anastomosed structure after the anvil apparatus and the cutter have been removed. [0034]
  • FIG. 3A depicts an exploded perspective view of an embodiment of the present invention with locking extensions on one ring and corresponding slots in the other ring. [0035]
  • FIG. 3B is a cross-sectional view of the embodiment shown in FIG. 3A in a loading position. [0036]
  • FIG. 3C is a cross-sectional view of the embodiment shown in FIG. 3A in an anastomosis position. [0037]
  • FIGS. 4A-4B are perspective views of an alternative embodiment of the anastomosis device having guides that are integral with one of the rings. [0038]
  • FIGS. 5A-5F depict alternative embodiments of the expandable rings of the present invention. [0039]
  • FIG. 6A is a partial cross-sectional view of the embodiment shown in FIG. 1A used in combination with an attachment actuation device. [0040]
  • FIG. 6B is a perspective and partial cross-sectional view of the anastomosis device shown in FIG. 6A in the loading position. [0041]
  • FIG. 6C is a cross-sectional view of the anastomosis device shown in FIG. 6B in the next phase after the first expandable ring has been compressed towards the second expandable ring by the attachment actuation device such that the everted graft vessel contacts the everted target vessel. [0042]
  • FIG. 7A is a perspective view of the external anastomosis operator cooperating with the anvil depicted in phantom lines to form an anastomosis. [0043]
  • FIG. 7B is a perspective view of an external anastomosis operator. [0044]
  • FIG. 7C is an exploded perspective view of the external anastomosis operator. [0045]
  • FIG. 7D is a cross-sectional view of the external anastomosis operator. [0046]
  • FIG. 7E is a cross-sectional view of the external anastomosis operator as the anvil pull advancer knob is rotated to pull the anvil pull so that the anvil causes distension of the target vessel into the compression plate apparatus. [0047]
  • FIG. 7F is a cross-sectional view of the external anastomosis operator as the attachment actuator device is moved to compress the second compression plate against the first compression plate.[0048]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention relates to a paired expandable anastomosis device adapted to join a first vessel opening in a first vessel to a second vessel opening in a second vessel. The anastomosis device is capable of expanding and contracting in response to changes in fluid pressure in the vessels that are joined together. The anastomosis device is also adapted to radially expand upon deployment, stretching the vessel tissue to create an anastomosis larger than the initial openings in the anastomosed vessels. [0049]
  • As shown in FIG. 1A, the anastomosis device comprises a first expandable ring and a second expandable ring. The first expandable ring is adapted to hold a first vessel, such as a target vessel, at an opening in the vessel. The second expandable ring is adapted to hold a second vessel, such as a graft vessel, at an opening in the vessel. The rings cooperate with guides so that after the graft and target vessels have been loaded onto the rings, the second ring may be brought together with the first ring to create an anastomosis. Once the two rings have been brought together, the rings are adapted to be linked together so that the rings expand and contract in unison. [0050]
  • [0051] Anastomosis device 300 with guides and guideposts to link a pair of expandable rings together is shown at FIGS. 1A-1D. FIGS. 2A-2E depict the creation of an anastomosis opening in a vessel and the placement of anastomosis device 300 using an external operator 700″. FIGS. 3A-3C depict an alternative embodiment of the anastomosis device having a ring with locking extensions positioned to slide into slots in the other ring. FIGS. 4A-4B depicts another embodiment of the anastomosis device in which one of the expandable rings is integral with a plurality of guides. FIGS. 5A-5F depict additional embodiments of the expandable rings. The anastomosis device may be used in combination with an attachment actuation device as depicted in FIGS. 6A-6C. Alternatively, the anastomosis device of the present invention may be utilized in combination with an attachment actuator of an external operator as depicted in FIGS. 7A-7F.
  • In the embodiment shown in FIG. 1A, [0052] first ring 310 a is adapted to support a first vessel, such as a target vessel 20. First ring 310 a has a generally annular shape and a plurality of holding surfaces or tabs 514 a that define an opening, first ring opening 320 a, which has a generally circumferential contour. The internal diameter of first ring opening 320 a is such that the corresponding portion of the vessel to be anastomosed can fit therein. First ring opening 320 a is generally round, however, the opening may also be ellipsoidal or ovoid.
  • [0053] First ring 310 a comprises a plurality of connected flexible segments 324 a each with two arms 326 a joined by a flexible segment joint 328 a. Arms 326 a and flexible segment joints 328 a form V-shaped flexible segments 324 a. Each flexible segment 324 a is attached to an adjoining flexible segment by a connecting joint 322 a. First ring 310 a further includes guideposts 330 a adapted to slide into and frictionally engage with guides 334. The operation of the guides and guideposts is discussed in more detail below. First ring 310 a has a first end 370 a and a second end 372 a and defines a first ring opening 320 a. First ring 310 a is an example of a first ring means for providing support for a first vessel at a first vessel opening.
  • As shown in FIG. 1A, holding [0054] tabs 314 a extend integrally from first end 370 a at connecting joints 322 a. Holding surfaces or tabs are intended to hold the everted contours of the structures being anastomosed. More particularly, a portion of the target vessel defining a vessel opening is everted through ring 310 a and held by holding tabs 314 a. Each holding tab 314 a extends radially inward and has a base 315 a that extends from the ring. Bases 315 a preferably curve radially inward with an U-shape. Holding tabs 314 a are preferably wider at bases 315 a than at the tips 316 a opposite the bases 315 a. Tips 316 a-b are preferably rounded as shown to minimize the potential for penetration. Since, as discussed below, the anastomosis is generally completed immediately after the target vessel is loaded onto one of the rings, the holding tabs hold the target vessel long enough without additional anchors such as barbs or hooks. Holding tabs 314 a are an example of holding means for holding the first vessel at the first vessel opening.
  • Still referring to FIG. 1A, [0055] second ring 310 b is adapted to support a second vessel, such as graft vessel 50. The graft vessel may be synthetic or autologous. Second ring 310 b has a plurality of holding surfaces or tabs 314 b that define a second ring opening 320 b with a round shape that corresponds to the shape of first ring opening 320 a. Like first ring opening 320 a, second ring opening 320 b is such that the corresponding portion of the graft vessel can fit therein, as shown in FIG. 1D. Note that while the configuration of the first and second rings are designed to specifically interact respectively with the target and graft vessel, all or part of their configurations can be reversed so that the first and second rings respectively interact with the graft vessel and target vessel.
  • [0056] Second ring 310 b comprises a plurality of connected flexible segments 324 b, each with two arms 326 b joined by a flexible segment joint 328 b. Arms 326 b and flexible segment joints 328 b form V-shaped flexible segments 324 b. Each flexible segment 324 b is attached to an adjoining flexible segment by a connecting joint 322 b. Second ring 310 b has a first end 370 b and a second end 372 b. Second ring 310 b is an example of a second ring means for providing support for a second vessel at a second vessel opening.
  • Holding [0057] tabs 314 b extend integrally from first end 370 b at flexible segment joints 328 b. Holding tabs 314 b are adapted to securely hold a portion of the graft vessel that defines an opening after the portion has been everted through ring 310 b. In the embodiment shown in FIGS. 1A-1D, each holding tab 314 b has a length that is about equal to the width of second ring 310 b. Each holding tab 314 b extends radially inward and has a base 315 b that extends from the ring so that each holding tab 314 b is opposite from arms 326 b and guideposts 330 b. Bases 315 b are preferably U-shaped and curve radially inward toward the center of the expandable ring. The holding surfaces or tabs 314 b are preferably wider at bases 315 b, but narrower than bases 315 a of first ring 310 a. As with the holding tabs of the first ring, holding tabs 314 b preferably terminate at rounded tips 316 b that are rounded to minimize the potential for penetration. Holding tabs 314 b are an example of holding means for holding the second vessel at the second vessel opening.
  • Each [0058] holding tab 314 b of second ring 310 b has a hook or barb 318 to prevent graft vessel 50 from slipping off holding surfaces 314 b after graft vessel 50 has been loaded onto holding tabs 314 b. Hooks 318 are an example of anchor means for more securely anchoring a vessel on the holding means.
  • [0059] Anastomosis device 300 is shown in FIGS. 1B-1C in a loading position before graft vessel 50 has been loaded onto holding tabs 314 b of second ring 310 b. As shown in FIG. 1D, a graft vessel 50 is loaded onto second ring 310 b. The graft vessel may be synthetic or auotologous.
  • The holding surfaces such as holding tabs [0060] 314 a-b are preferably configured in a way such that they are not exposed to blood flowing through the anastomosed structures. Blood vessels have an internal layer, called the intimal layer and an external layer called the adventitial layer. The holding surfaces are positioned to capture everted tissue defining an opening in a blood vessel so that the holding surfaces and rings contact the adventitial layer of the blood vessel. When the rings are moved together, to an anastomosis position, the intimal layer of the portion of the first vessel defining a first vessel opening contacts the intimal layer of the portion of the second vessel defining a second vessel opening. Stated otherwise, the holding tabs contact only the exterior of the everted vessel tissue and no portion of the device is exposed in the vessel lumens.
  • As shown in FIG. 1C, holding tabs [0061] 314 a-b are positioned such that as the rings are brought towards each other, each holding tab 314 b is positioned opposite from the spaces between holding tabs 314 a in a mated configuration. When referring to the relative configuration of the holding tabs in opposing rings, the terms “mated or interdigitated configuration” describe a configuration in which each one of the holding tabs in a ring can generally fit in or at least be opposite the space between two neighboring holding tabs in the opposing ring when such rings are close enough. While other configurations are possible, the holding tabs in each ring are preferably oriented relative to the holding tabs in the other ring in such a mating configuration. Examples of interdigitated configurations are provided below.
  • As shown in FIG. 1A, [0062] anastomosis device 300 further comprises guides 334 with guide apertures 336. Guideposts 330 a-b of first and second rings 310 a-b are sized to slide into guide apertures 336. Guideposts 330 a of first ring 310 a extend from connecting joints 322 a, opposite holding tabs 314 a. Guideposts 330 b of second ring 310 b extend from flexible segment joints 328 b. As shown in FIGS. 1B and IC, the rings are held in an initial loading position with the rings offset from each other by the use of the guides and guideposts.
  • As shown in FIGS. 1B-1C, guides [0063] 334 position rings 310 a-b in an initial loading position. In the initial loading position, the full length of each guidepost 330 b of second ring 310 b has been inserted into guides 334. Guideposts 330 a of first ring 310 a are partially inserted into guides 334 so that the rings are offset from each other. As shown in FIG. 1C, in the loading position, holding tabs 314 a are sufficiently spaced apart from holding tabs 314 b to permit graft vessel 50 to be everted through ring 310 b and loaded onto holding tabs 314 b. Additionally, in the loading position, holding tabs 314 a-b are sufficiently spaced apart so that the tissue defining an opening in the target vessel may be everted onto holding tabs 314 a and brought into contact with graft vessel 50.
  • [0064] Guides 334 are positioned to provide guided coaxial movement of the rings relative to each other so that the target vessel may be brought into contact with the graft vessel. Guides 334 permit the relative approach of the two rings as guideposts 330 a are moved into guides 334, bringing ring 310 b towards ring 310 a. More particularly, guides 334 enable rings 310 a-b to be brought together in a manner such that second ring 310 b is moved in a fixed parallel orientation relative to first ring 310 a. In the anastomosis position, rings 310 a-b are compressed together and the graft vessel is anastomosed to the target vessel. Guides 334 in combination with guideposts 330 a-b are an example of guide means for guiding the movement of one ring relative to the other ring.
  • The guides also operate to structurally link the two rings together so that while the rings expand and contract, the anastomosis remains intact. [0065] Guide apertures 336 are sized to frictionally engage guideposts 330 a-b so that first ring 310 a and second ring 310 bremain in the anastomosis position, even as the rings expand and contract. More particularly, guide apertures 334 are sized such that, after the rings are compressed together, significant force is required to move one ring away from the other ring. The frictional engagement of guides 334 with guideposts 330 a-b also enables rings 310 a-b and the anastomosis to contract and expand in unison in response to change in fluid pressure through the target and graft vessels. Guides 334 in combination with guideposts 330 a-b are examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • To ensure sufficient compression of rings [0066] 310 a-b, guides 334 and guideposts 330 are preferably sized so that when rings 310 a-b are approximated to an anastomosis position, the holding tabs of one ring are sufficiently close to the holding tabs of the second ring to create a blood-tight anastomosis of the graft and target vessels. An example of a suitable compression is provided by an anastomosis device with holding tabs of a length such that the tips slightly extend into the space between the holding tabs of the opposite ring in an interdigitated configuration. The rings may also be designed for further compression such that holdings surfaces or tabs 314 b further enter the space between adjacent holding surfaces or tabs 314 a. Of course, the rings are preferably designed such that the rings are brought together without penetrating target vessel 20 or graft vessel 50.
  • Other interdigitated configurations are also possible. The rings may be designed so that when the rings are compressed together, the tips of the holding tabs of one of the rings terminate in approximately the same plane as the tips of the holding tabs of the other ring. Alternatively, the rings may be adapted such that, in the anastomosis position, the holding tabs of one ring are slightly offset from the holding tabs of the other ring. The rings are accordingly sized to have an anastomosis position that compresses down to the ideal spacing between the anastomosis sides while providing holding surfaces that have sufficient surface area to capture the tissue in an everted configuration. [0067]
  • As can be seen from FIG. 1D, a [0068] graft vessel 50 is loaded onto holding tabs 314 bof ring 314 while a cutter 400 is positioned to be loaded into the lumen 58 of graft vessel 50. Cutter 400 includes a cutting tube 410 that terminates at a cutting knife 412 with a cutting edge 414. Once cutter 400 is positioned within graft vessel 50 then the combination of anastomosis device 300, graft vessel 50 and cutter 400 are ready for use with anvil apparatus 200 to form an anastomosis. This combination is referred to herein as ring and cutter assembly.
  • FIGS. 2A-2E depict the use, in sequential order, of an [0069] anastomosis device 300 in combination with a cutter 400, anvil 210 and an attachment actuator 600″ of an external operator 700″. The operation of the external operator 700″ is described in more detail below with reference to FIGS. 7A-7F. To optimally present this sequence, FIGS. 2A-2E are cross-sectional views.
  • FIG. 2A depicts a [0070] graft vessel 50, loaded onto ring 310 b. FIG. 2A also depicts anvil 210 being pulled against the intima or interior of the vessel wall such that target vessel 20 is sufficiently distended to permit target vessel 20 at anastomosis site 10 to be pulled into anastomosis device 300 through first ring opening 320 a. Cutter 400 also is shown in FIG. 2A extending through second ring opening 320 b about half way through anastomosis device 300 as cutter 400 is approximated with the portion of the target vessel 20 distended by anvil 210.
  • FIG. 2B depicts the formation of a first vessel opening [0071] 24 in the wall of the first vessel. First vessel opening 24 is formed by pulling anvil pull 230 through cutter 400 with sufficient force to enable anvil 210 to advance target vessel 20 against cutting edge 414. After the cut has been made then a cut portion 25 of the wall of target vessel 20 remains on spherical engaging end 212 of anvil 210 while the portion 26 of the target vessel that now define first vessel opening 24 rests on anvil landing 214.
  • FIG. 2C depicts [0072] anastomosis device 300 as it is being compressed and as portion 26 defining vessel opening 24 is being everted. FIGS. 2C-2D depict the rings being brought together by an attachment actuator 600″ of an external operator 700″. Attachment actuator has a first ring engager 600 a″ and a second ring engager 600 b″ adapted to hold first and second rings 310 a-b in a fixed orientation relative to each other and to bring rings together in this fixed orientation. In the embodiment shown in FIGS. 2A-2E, attachment actuactor 600″ has actuating guides 640″ that guide one ring engager toward the other ring engager to bring the expandable rings together. Each ring engager 600 a″-b″ has a latch (not shown) that enables the ring engagers to be released once the anastomosis is complete. The rings may, alternatively, be brought together by an attachment actuation device, which is described in more detail below with reference to FIGS. 6A-6C.
  • Note that the everted [0073] portion 56 of graft vessel 50, more particularly the portion 57 opposite runded tips 316 of holding tabs 314 b, is urged against portion 26 that defines first target vessel opening 24 in a manner such that portion 26 is being everted. This eversion process is augmented by landing 214 of anvil 210 which allows portion 26 to rest on landing 214 and be plowed upward by everted portion 56. The length of portion 26 is sufficient for this eversion process since vessel 20 was distended and pulled into the snap-fit anastomosis device by the action of anvil 210.
  • FIG. 2D depicts [0074] anastomosis device 300 after compression. More particularly, ring 310 b has been moved toward ring 310 a by sliding guideposts 330 b on guides 334. Note that the everted portion 56 of graft vessel 50, more particularly the portion 57 opposite from the rounded tip 316 b, is urged against portion 26 that defines first target vessel opening 24 in a manner such that portion 26 has been everted. The end result is that the portion 27 opposite from rounded tip 316 a is held in contact with the portion 57 of vessel 50 opposite from distal rounded tip 316 b.
  • During anastomosis, the rings are preferably held in an initial, radially compressed position by [0075] attachment actuator 600″ of external operator 700″ or attachment actuation device 600′. In this radially compressed position, each ring opening has an initial diameter. Once the vessels are anastomosed together, the rings are released by the attachment actuator and spring radially to a deployed position. In the deployed position, the rings have a greater diameter, stretching the vessel openings at the anastomosis site.
  • This radial expansion is best seen in FIGS. 2D-2E. The rings preferably spring open sufficiently so that, at the anastomosis site, the vessel openings have a diameter equal to or greater than the diameter of the graft vessel, thus minimizing restriction at the anastomosis. For example, for a graft vessel having a diameter of about 5 mm the initial diameter of the ring openings may be about 4 mm and the diameter of the ring openings after deployment may be about 6 mm. As shown in FIG. 2D, [0076] external operator 700 holds rings 310 a-b in an initial state with a diameter D1. When anastomosis is complete and external operator 700 releases anastomosis device 300, rings 310 a-b radially expand to a greater diameter, D2, as shown in FIG. 2E.
  • After rings [0077] 310 a-b have been brought together to join portion 26 of target vessel 20 that defines first vessel opening 24 to portion 56 of second vessel 50 that defines graft vessel opening 54, then first vessel 20 and second vessel 50 are anastomosed together and are in fluid communication. Note that holding tabs 314 a-b hold the vessels in place without penetration and without contacting the interior of the vessels. Anvil apparatus 200 and cutter 400 have been removed upon the completion of the procedure through lumen 58 of graft vessel 50. Once the anastomosis is complete, guideposts 330 a-b remain stationary in guides 334 after being compressed due to frictional engagement.
  • There are significant advantages to combining vessels in accordance with the device described above, especially in a manner such that there is at least partial eversion and contact between the everted surfaces of the vessels. Another advantage is that there is no penetration of the portions of the vessels defining the vessel openings or at least no penetration of the target vessel. Of course, the anastomosis is fluid tight to normal systolic pressure and remains intact under stress. Since the everted [0078] portions 26 and 56 respectively cover the holding tabs 314 a-b, exposure of subintimal connective tissue is minimized. The rings create an anastomosis that is morphologically satisfactory, including complete eversion of the receiving target vessel intima with apposition to the graft vessel. Further, everted portions 26 and 56 are in intima-intima contact and no cut portion is significantly exposed to the blood flow that is to circulate through the anastomosed structures.
  • Furthermore, the rings create an anastomosis without any placing any foreign material into the anastomosed vessels and the interior of the vessels are not exposed to any foreign material. As a result, the thrombogenic potential is minimized. [0079]
  • Also, as discussed above, the rings radially expand upon initial deployment. The radial expansion of the rings enables the anastomosis to have a diameter that is larger than the initial opening in the vessel. It may expand enough to be equivalent to the diameter of the anastomosed vessels. Thus, a smaller incision in the target vessel is required. Because a smaller incision is required, smaller instruments may be used to create the opening in the target vessel and to place the anastomosis device. For example, the anvil and the cutter may be smaller than would otherwise be required. As a result the invasiveness of the procedure is minimized. By radially expanding upon release to create an opening at least equal in diameter to the graft vessel, the present invention also minimizes the restriction at the anastomosis and potential resulting complications such as thrombosis and neointimal hyperplasia. [0080]
  • The rings are also capable of expanding and contracting with changes in the fluid pressure in the anastomosed vessels. For example an anastomosis device which joins two blood vessels will expand and contract with systole and diastole. The rings can expand and contract while the holding tabs maintain the anastomosis. By expanding and contracting with changes in fluid pressure, the anastomosis device of the present invention minimizes flow disturbances as the blood flow approaches the anastomosis site. This feature also serves to minimize thrombosis and neointimal hyperplasia. [0081]
  • In addition to the results achieved, there are also significant procedural advantages. The method does not require temporary occlusion of blood flow to the target vessel. The second ring may be pre-loaded with the graft vessel so that the steps disclosed above in connection with FIGS. 2A-2E may be accomplished simultaneously or in quick succession. By pre-loading the graft vessel and simultaneously cutting a target vessel opening and loading the target vessel, the rings may be brought together to create the anastomosis without blocking blood flow through the target vessel. Also, the anastomosis can be reliably created. The anastomosis utilizing the paired rings of the present invention is rapidly achieved and eliminates the need for highly skilled suturing. For example, once the anvil pull extends through the wall of the vessel, the anastomosis procedure can be accomplished in as little as 30 seconds when rings [0082] 310 a-b are used to join the vessels.
  • Manual manipulation may be utilized to achieve the steps shown in FIGS. 2A-2E, however, mechanization is preferred. More particularly, anvil pull [0083] 230 may be manually pulled as cutter 400 is held or manually advanced. Additionally, the anastomosis device may be manually compressed in some embodiments. However, the paired rings of the present invention are preferably used in combination with an intraluminally directed anvil apparatus such as the apparatus disclosed in U.S. Pat. No. 6,248,117, which is hereby incorporated by reference. Other intraluminally directed anvil apparatus are disclosed in U.S. patent application Ser No. 09/737,200 and Serial No. 09/460,740 which were previously incorporated by reference. The paired rings may also be used in combination with an externally directed apparatus, such as those disclosed in U.S. patent application Ser. No. 09/736,781, filed Dec. 14, 2000 and entitled Externally Directed Methods for Forming an Anastomosis Opening in a Vessel, U.S. patent application Ser. No.______ filed on Oct. 31, 2001 and entitled Soft Anvil Apparatus for cutting Anastomosis Fenestra, and U.S. patent application Ser. No.______ filed on Oct. 31, 2001 and entitled Externally Positioned Anvil Apparatus for Cutting Anastomosis Fenestra, which are hereby incorporated by reference. Alternatively, the anastomosis device may be used in combination with any suitable mechanical anastomosis techniques.
  • FIGS. 3A-3C depict an alternative embodiment of the anastomosis device, referred to herein as [0084] anastomosis device 300′. The two rings of anastomosis device 300′ are structurally linked by locking extensions 340 in combination with slots 346. As shown in FIGS. 3A-3B, each locking leg 330 a′ of first ring 310 a′ has a locking extension 340. As shown in FIG. 3C, each locking extension 340 is positioned to lock into a corresponding slot 346 in a locking leg 330 b′ when rings 310 a′-b′ are brought together to the anastomosis position. Legs 330 b′ having slots 346 in combination with legs 330 a′ having locking extensions 340 are additional examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together. Alternatively, the expandable rings may be linked by any suitable device, such as clips, clamps or interlocking tabs. Sutures or adhesive may also be used to structurally link two rings together. Clips, clamps, interlocking tabs, sutures and adhesives are all further examples of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • As shown in FIGS. 3A-3C, [0085] anastomosis device 300′ functions without guides such as the guides of the embodiment shown in FIG. 1A. Instead, rings 310 a′-b′ of anastomosis device 300′ are adapted to be coupled by an attachment actuation device 600′ as shown in FIGS. 6A-6C or attachment actuator 600 of external operator 700 as shown in FIGS. 7A-7E, both of which are discussed in more detail below. Attachment actuator 600 and attachment actuation device 600′ have a first ring engager 600 a, 600 a′ and a second ring engager 600, 600 b′ that are adapted to guide rings 310 a-b from a loading position to an anastomosis position.
  • FIGS. 4A-4B depict an additional embodiment of the anastomosis device, referred to herein as [0086] anastomosis device 300″. Guides 334″ of anastomosis device 300″ are integral with second ring 310 b″ and have holding surfaces 314 b. Second ring 310 b″ is preferably made of plastic and integrally molded with guides 334. Ring 310 b″ enables graft vessel tissue to be everted through ring 310 b″ and over holding surfaces 314 b″.
  • [0087] Ring 310 a″ has guideposts 330″ positioned to slide into guides 334″. Guides 334″ have apertures 336″ that are sized to frictionally engage guideposts 330″. FIG. 4B depicts a partial cross-section of a graft vessel 50 in phantom lines. Guideposts 330″ in combination with guides 334″ are an additional example of locking means for locking the first ring and second ring together such that the first vessel and the second vessel remain anastomosed together.
  • The graft vessel is everted through [0088] ring 310 b″ and over holding surfaces 314 b″. In the embodiment shown in FIG. 4B, ring 310 b is designed such that the graft tissue is everted through ring 310 b over holding surfaces 314 b and onto the outer surface of guides 334″. In this embodiment, guideposts 330 a″ are adapted to penetrate graft vessel tissue that has been everted through second ring 310 b′ and past guide apertures 336″. After the graft vessel is loaded onto second ring 310 b, guideposts 330 a″ penetrate the graft vessel and slide partially into guides apertures 336″. Guideposts 330″ in combination with guides 334″ are an additional example of anchor means for more securely anchoring a vessel on the holding means.
  • As shown in FIGS. 4A-4B, holding [0089] surfaces 314 b″ are at the top of guides 334″. As shown in FIG. 3A, each holding surface 314 b″ is a flat surface. Holding surfaces 314 a″-b″ of rings 310 a″-b″ of anastomosis device 300″ are arranged so that when rings 310 a″-b″ are brought together to an anastomosis position, holding tab tips 316 a″ of first ring 310 a″ directly oppose holding surface 314 b″ of second ring 310 b″. Therefore, the graft and target vessels are pinched between tips 316 a″ and holding surfaces 314 b″when rings 310 a″-b″ are in the anastomosis position.
  • Holding surfaces, such as holding tabs [0090] 314 a-b depicted in FIG. 1A and holding surfaces 314 b″ depicted in FIG. 4A, can have a variety of shapes and arrays. A generally regular distribution on the anastomosis sides of rings 310 a-b is preferred. Holding surfaces may also form a contiguous surface around a ring. For example, a suitable elastic band may be utilized as a ring having a contiguous surface.
  • In an alternative embodiment, the holding tabs are inclined towards the ring so that each holding tab clamps vessel tissue against the ring. In another embodiment, holding tabs of one of the rings are spike shaped or have pointed tips to better retain the graft vessel. The holding tabs are typically rather rigid, however, they may also be designed to elastically bend in such a way that the distal tips of such holding surfaces slightly swing about their respective bases. [0091]
  • The number of holding surfaces and their spacing may be varied as needed as long as the portions of the vessels defining the vessel openings can be maintained in an everted orientation. For example, the plurality of holding surfaces may include ten holding surfaces or tabs as shown in FIG. 1A. However, smaller or greater amounts may also be utilized, for example there may be from three to sixteen holding surfaces. [0092]
  • The guides may also be distributed in varying numbers and arrays. The guides may be movably connected to the rings. Alternatively, the guides may be integral with one of the rings. The anastomosis devices depicted in FIGS. 1A and 4A have ten guides. Alternative embodiments may include only two or more guides. The guides may extend from one or both of the rings at any appropriate location. The guides are preferably regularly distributed around the ring. Furthermore, the guides are preferably situated such that the portion defining the target vessel opening and the portion defining the graft vessel opening are joined without being penetrated as the first vessel and the second vessel are anastomosed together. [0093]
  • As depicted in FIGS. 5A-5E, the rings of the present invention may have flexible segments with a variety of shapes. The expandable rings may be formed of any shape of flexible segment that provides the rings with the capability to expand and contract with changes in fluid pressure. FIGS. 5A-5C depict alternative embodiments of the second ring. FIG. 5A is a partial view of V-shaped flexible segments [0094] 324 of the second ring 310 a depicted in FIG. 1A. FIG. 5B depicts an expandable ring that comprises a series of U-shaped flexible segments. FIG. 5C depicts an expandable ring comprising a series of flexible segments which are made of plastic and have hinged portions of decreased thickness relative to adjacent portions.
  • FIGS. 5D-5F depict embodiments of the first ring with varied flexible segments. FIGS. 5D depicts an expandable ring with U-shaped flexible segments. FIG. 5E shows a ring comprising flexible segments which have a configuration that is diamond shaped. The diamond shaped configuration is an example of a quadrilaterial configuration. FIG. 5F depicts an expandable ring with circular flexible segments. Alternatively, the rings may include spiral-shaped flexible segments, oval-shaped flexible segments, elliptical flexible segments and other flexible segments that have appropriate configurations. [0095]
  • The positioning of the anastomosis device and the operations of pulling or holding anvil pull [0096] 230, making an opening, and compressing the rings together, as described in connection with FIGS. 2A-2E, can be accomplished manually or with the aid of devices such as external anastomosis operator 700. The attachment actuation means need not be part of the same apparatus with the anvil pull engager and the cutter. This reduces the size of the instruments utilized.
  • FIGS. 6A-6C show an attachment actuation device or [0097] tongs 600′ used to approximate rings 310 a-b. Actuation device 600′ has opposing ring engagers, a first ring engager 600 a′ and a second ring engager 600 b′, that respectively extend from attached handles 604 a-b. Handles 604 a-b are connected together at a hinge. Each ring engager 600 a′-b′ has a latch 608 a-b that enables the ring engagers to lock onto expandable rings 310 a-b so that anvil 210 can be pulled through second ring opening 320 b and distend the wall of vessel 20 into expandable anastomosis device 300. While the tissue of vessel 20 is cut and everted onto holding surfaces 314 b, tongs 600′ are closed. Once the anastomosis is complete, latch 608 a′-b′ is released to open ring engagers 600 a′-b′ and deploy expandable rings 310 a-b. Attachment actuation device 600′ is an example of attachment actuation means for approximating one ring to the other ring. Latches 608 a′-b′ are examples of means for locking the ring engagers against the rings.
  • FIG. 7A shows [0098] external anastomosis operator 700 with an attachment actuator 600 engaging an anvil in preparation for cutting an opening in the target vessel. As shown in FIGS. 7A-7B, external anastomosis operator 700 has a body 710 with an optional handle 720. Attached to body 710 are the main components of operator 700. These main components are cutter 400, spring biasing device 450, an anvil pull engager 500 which includes an anvil pull holder 530 and an anvil pull advancer 560, and an attachment actuator 600. Attachment actuator 600 is an additional example of attachment actuation means for approximating one of the rings to the other ring.
  • The attachment actuation devices and the [0099] attachment actuator 600 of external operator 700 may be adapted to enable the orientation of the rings relative to each other to remain essentially the same as the rings are brought together to an anastomosis position. This ability may be necessary for embodiments of the anastomosis device such as device 300′ that has no guides. Note that once the opposing ring engagers of the attachment actuation devices or the attachment actuator 600 of external operator 700 have have engaged the rings of an anstomosis device, preferably in a locked configuration, then the rings are easily brought together while maintaining their relative orientation. Note that the opposing ring engagers may be guided together in different ways as shown by the various embodiments. For example, attachment actuation device 600″ relies on guides 640″ to bring first ring engager 600 a″ and second ring engager 600 b″ together. The hinge of attachment actuation device 600′ guides the opposing ring engagers 600 a′-b′ together. As discussed below in reference to attachment actuator 600, rail 640 guides the movement of ring engager to the other. Mechanims adapted to lock the ring engagers against the rings are also discussed below in reference to attachment actuator 600 that function much like latches 608 a′-b′ discussed above in reference to attachment actuation device 600′.
  • FIG. 7B provides a perspective view of an [0100] external anastomosis operator 700 with its main components identified including: cutter 400, spring biasing device 450, an anvil pull engager 500 which includes an anvil pull holder 530 and an anvil pull advancer 560, and an attachment actuation device 600. Spring biasing device 450 is used to apply pressure against the distal end 418 of cutter 400. One advantage derived form the use of a device such as external anastomosis operator 700 is that such devices have a series of actuators, and by manipulating these actuators the operator can effectuate the different operations at the anastomosis site without actually having to manually and directly operate each element itself.
  • FIG. 7C provides an exploded perspective view of all of the components of [0101] external anastomosis operator 700 so it is with reference primarily to this view that the details of operator 700 are understood. FIGS. 7D-7E provide cross-sectional views of operator 700 depicting the steps for using operator 700.
  • [0102] Cutter 400 is shown in FIG. 7C as including a tip portion 401 and an extension portion 402. A spring biasing device 450 applies pressure against the distal end 418 of cutter 400. Spring biasing device 450 has a spring mount 452 that is mounted to body 710 via spring mount pins 454. A rotatable spring housing 456 is threadably engaged by spring mount 452. Loaded into rotatable spring housing 456 is a cutter cup 458 that is configured to hold distal end 418 of cutter. Cutter cup 458 has a flange that is pushed against a flange at the proximal end of rotatable spring housing 456 such that cutter cup 458 is held in the proximal end of spring housing 456. A spring 460 is positioned within a spring sleeve 462. Spring 460 and spring sleeve 462 have ends that abut cutter cup 458 and opposite ends that abut threaded jam screw 464. Threaded jam screw 464 is accessible via the distal end of spring mount 452 so that it may be rotated to increase or decrease the tension of spring 460 against cutter cup 458.
  • [0103] Cutter cup 458 moves within rotatable spring housing 456 against spring 460. The pressure of spring 460 against cutter cup 458 enables cutter 400 to apply pressure against anvil 210 as anvil 210 is pulled against cutter 400. This makes it easier to cut the vessels as force is being applied in both directions. It also enables cutter 400 to be pushed back by anvil 210 to allow anvil 210 to further distend the wall of vessel 20 as shown in FIGS. 5A-5B until sufficient pressure is applied by spring 460 to bias cutter 400 forward and by the advancement of anvil 210 by anvil pull 230 to cut the vessel. The gradual increase in pressure also serves to assist a spherical engaging end 212 of anvil 210 to self center on cutter 400. More particularly, anvil 210 may be initially misaligned such that the center of engaging end from which anvil pull extends is positioned on the cutting edge of the cutter. A rapid application of pressure would lock such a misalignment while a gradual increase enables the curvature of spherical engaging end to guide the anvil into a centered orientation.
  • Another function of spring biasing device is to set the position of [0104] cutter 400. Rotatable spring housing 456 has a notch 457 at its distal end that enables a screw driver to rotate rotatable spring housing 456 within spring mount 452 to advance or retract rotatable spring housing 456 within spring mount 452. Movement of rotatable spring housing 456 also moves cutter cup 458, thereby determining the location of distal end 418 of cutter 400 within operator 700. Of course advancement of cutter cup 458 towards the proximal end of operator 700 causes cutting knife 400 to engage anvil 210 closer to first ring 310 a while retraction of cutter cup 458 towards the distal end of operator 700 causes cutting knife and anvil to engage each other closer to second ring 310 b. The position of cutter 400 is preferably set to enable vessel 20 to be distended in a manner that is optimal for then subsequently everting the portion defining the newly formed opening onto holding surfaces 314 a. To carefully identify the length that rotatable spring housing 456 is advanced or retracted, a detent 470 is threaded into spring mount such that it can contact rotatable spring housing and engage the grooves 471 of rotatable spring housing in a manner that enables detent 470 to click as each groove is rotated past detent 470.
  • Obviously [0105] spring biasing device 450 has many variables that impact the manner in which cutter 400 is used in combination with external anastomosis operator 700. Some of these variables include the inherent tension of spring 460, the tension of spring 460 as caused by the position of threaded jam screw 464 in spring mount 452 against spring 460, and the position of the surface which distal end 418 of cutter 400 abuts, namely cutter cup 660 as determined by the position of rotatable spring housing 456 within spring mount 452.
  • [0106] Spring biasing device 450 is an example of spring biasing means for providing tension against the cutting means as the cutting means engages the anvil means of the intraluminally directed anvil apparatus. The spring biasing means provides an amount of tension that enables the cutting means to form the first vessel opening after the wall of the first vessel has been distended by the action of the anvil means being pulled into the openings of the ring assembly such that forming the first vessel opening results in at least partial eversion of the portion of the first vessel defining the first vessel opening.
  • As indicated above, [0107] anvil pull engager 500 has two primary components including an anvil pull holder 530 and anvil pull advancer. Anvil pull holder 530 receives anvil pull 230 via spring biasing device 450. More particularly, anvil pull 230 extends through cutter cup 458, rotatable spring housing 456, spring 460 and sleeve 462 around spring 460, and out of threaded jam screw 464.
  • [0108] Anvil pull holder 530 includes a holder mount 532 positioned in track 730 of body 710. In this embodiment, holder mount is moveable so that the anvil pull can be advanced after it is held. However, in other embodiments, the anvil pull holder may just lock the anvil pull into position such that the cutter is moved against a stationary anvil. Similarly, the spring biasing device 450 may be eliminated so that the vessel is cut only by pressure exerted by the anvil pull against the cutter. As discussed above, while the cutter and the anvil may engage each other in these arrangements, it is preferable for the cutter to apply some pressure as the anvil pull is advanced against the cutter.
  • [0109] Holder mount 532 may be utilized in different ways to hold anvil pull 230. Holder 530 has a split cone 534 inserted into a tapered chamber 536 against a spring 538. Anvil pull 230 extends through apertures in holder mount 532, spring 538, split cone 534 and out of an aperture centered in holder knob 540. Holder knob 540 is threadably engaged by holder mount 532 such that rotation of holder knob 540 advances split cone 534 in tapered chamber 536 causing split cone to lock onto anvil pull 230. Holder mount is slotted at its distal end as is holder knob. By aligning slot 542 of holder knob 540 with the insert slot 544 of holder mount, anvil pull 230 can be bent so that it extends through both holder knob slot 542 and insert slot 544. Then holder knob 540 can then be rotated so that the bent portion of anvil pull 230 is rotated into one of the locking slots 546 a-b that extend perpendicularly from insert slot 544. This securely locks anvil pull into position. Anvil pull 230 can be locked through the use of slots instead of or in addition to the use of split cone 534 in tapered chamber 536.
  • Since [0110] anvil pull holder 530 is moveable it threadably engages rotatable lead screw 562 of anvil pull advancer. More particularly, lead screw 562 is threadably engaged by anti-backlash nut 550 which is fixedly attached to holder mount 532. Anti-backlash nut 550 has an attachment face 552 through which a plurality of attachment face screws 554 extend to hold holder mount 532 and anti-backlash nut 550 together.
  • [0111] Lead screw 562 has a proximal pivot end 564 that rotates within a bushing 566 positioned within a recess in spring mount 452. Lead screw also has a distal pivot end 568 that is attached to advancer knob 570 to rotate lead screw 562. Advancer knob 570 rotates within an advancer knob mount 572 which is attached to body 710 in groove 730 via advancer knob mount bolts 574. As shown in FIG. 7D, distal pivot end 568 rotates in a bushing 576 positioned within an aperture of advancer knob mount 572.
  • Advancer [0112] knob 570 has a stem with a plurality of grooves 578 that engage a detent 580 to click so that the incremental rotation of advancer knob 570 can be carefully counted to determine the length that the anvil is moved in the anastomosis device as the anvil pull is advanced. As shown in FIG. 7C, detent 580 is threaded into advancer knob mount 572 such that it can contact grooves 578 in the stem of advancer knob 570 to click as each groove is rotated past detent 580.
  • FIG. 7E depicts [0113] advancer knob 570 being rotated to move anvil pull advancer 560 so that it can urge anvil pull 230 in a manner such that anvil 210 is advanced within anastomosis device 300. As advancer knob 570 is rotated, lead screw 562 is thereby rotated. Since anvil pull holder 530 is threadably engaged on rotatable lead screw 562 and is locked in track 730, anvil pull holder 530 can only move forward and backward as lead screw 562 is rotated.
  • FIG. 7F depicts [0114] attachment actuation device 600 being engaged. Attachment actuation device 600 has a first ring engager 600 a and a second ring engager 600 b. First ring engager 600 a and a second ring engager 600 b each respectively utilize an optional adaptor 610 a-b to engage first and second rings 310 a-b. First ring engager 600 a and second ring engager 600 b each have a cutter aperture 620 a and 620 b. Cutter 400 extends through these aligned apertures 620 a-b. First ring engager 600 a is positioned on rail 640 such that it extends slightly beyond cutting edge 414 of cutter 400. This difference in length enables first ring 300 a to be held slightly beyond cutter in a manner that permits the wall of vessel 20 to be pulled into anastomosis device as shown in FIG. 7D-7F and distended as needed.
  • [0115] Rail 640 is attached to body 710 via rail pin 642. A groove pin 644 extends through rail 640. A first ring holder 646 holds first ring engager 600 a on the proximal end of rail 640.
  • [0116] First ring engager 600 a is fixedly mounted on rail 640 via pin 646 while second ring engager 600 b is movably mounted on rail 640. Second ring engager 600 b has a groove 634 through which groove pin 644 extends. The configuration of groove pin 644 in groove 634 enables second ring engager 600 b to be held in a fixed orientation such that it can be moved back and forth as needed with respect to first ring engager 600 a.
  • Second ring engager is moved on [0117] rail 640 by rotating threaded compressor sleeve 650 which engages a threaded rail sleeve 648. Threaded rail sleeve 648 may be adhered onto rail 640 or be an integral component. Rail 640 and its threaded rail sleeve 648 or threaded rail portion combined with compressor sleeve 650 are means for advancing one ring engager towards the other ring engager.
  • Set [0118] screws 615 lock first ring engager 600 a on first ring 310 a. Second ring engager 600 b has a latch (not shown) that enables engager 600 b to lock onto second ring 310 b. Once the anastomosis is complete, set screws 615 and the latch are released to release the first and second ring engagers from the expandable rings. Note that there are many other ways for locking the rings with first and second ring engager 600 a-b such as the use of conventional quick release configurations. Quick release configurations, latches and set screws are all examples of means for locking the ring engagers against the rings.
  • The paired expandable anastomosis device of the present invention is preferably used for vascular anastomosis, however, the present invention is not limited to such use. Nor is the anastomosis device limited to use with any particularly sized vessel. For example, vessels may be joined with diameters ranging from about 2 mm to about 20 mm, but there is no fundamental limitation for using embodiments of this invention with graft vessels with diameters less than 2 mm. [0119]
  • It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments of this invention without departing from the underlying principles thereof. The scope of the present invention should, therefore, be determined only by the following claims. [0120]

Claims (20)

1. A paired anastomosis device for holding a first vessel together with a second vessel comprising:
first ring means for providing support for a first vessel at a first vessel opening, wherein the first ring means has a first ring opening,
second ring means for providing support for a second vessel at a second vessel opening, wherein the second ring means has a second ring opening,
wherein each ring means is adapted to expand and contract to enable each respective vessel opening to change in diameter, and
wherein the ring means are configured to be structurally linked in a manner such that the first and second ring means expand and contract in unison and such that the first vessel remains anastomosed to the second vessel at the first and second vessel openings as the first and second ring means expand and contract.
2. The anastomosis device of claim 1, further comprising locking means for locking the first ring means and the second ring means together such that the first vessel and the second vessel remain anastomosed together.
3. The anastomosis device of claim 2, wherein the locking means comprises guide means for guiding the movement of one ring means relative to the other ring means from a loading position with the first ring means offset from the second ring means to an anastomosis position.
4. The anastomosis device of claim 2, wherein the first and second ring means are adapted to cooperate with attachment actuation means for approximating one of the ring means to the other ring means such that the device is moved from a loading position to an anastomosis position.
5. The anastomosis device of claim 1, wherein the first ring means further comprises holding means for holding the first vessel at the first vessel opening, and
wherein the second ring means further comprises holding means for holding the second vessel at the second vessel opening.
6. The anastomosis device of claim 5, wherein the holding means of at least one of the rings means has anchor means for more securely anchoring a vessel on the holding means.
7. A paired anastomosis device for holding a first vessel together with a second vessel comprising:
a first ring having holding surfaces that define a first ring opening, wherein the holding surfaces are adapted to hold a portion of a first vessel defining a first vessel opening such that the first vessel opening is at the first ring opening,
a second ring having a plurality of holding surfaces that define a second ring opening, wherein the holding surfaces are adapted to hold a portion of a second vessel defining a second vessel opening such that the second vessel opening is at the second ring opening,
wherein each ring is adapted to expand and contract to enable each respective vessel opening to change in diameter, and
wherein the rings are configured to be structurally linked in a manner such that the first and second rings expand and contract in unison and such that the first vessel remains anastomosed to the second vessel at the first and second vessel openings as the first and second rings expand and contract.
8. The anastomosis device of claim 7, further comprising a plurality of guideposts extending from one of the rings and a plurality of guides fixedly connected to the other ring, wherein the guideposts are positioned to slide into the guides in order to guide the rings from a loading position to an anastomosis position.
9. The anastomosis device of claim 8, wherein the guides are sized to frictionally engage the guideposts such that the rings are maintained in the anastomosis position after the rings are brought together.
10. The anastomosis device of claim 7, wherein one of the rings has a plurality of legs with locking extensions and the opposite ring has a plurality of legs with slots positioned to receive the locking extensions, such that the rings are maintained in the anastomosis position after the rings are brought together.
11. The anastomosis device of claim 7, wherein each vessel has an intimal layer, and
wherein the holding surfaces of each ring are positioned to capture vessel tissue in an everted configuration so that when the rings are in an anastomosis position the intimal layer of the portion of the first vessel defining a first vessel opening contacts the inimal layer of the portion of the second vessel defining a second vessel opening.
12. The paired anastomosis device of claim 7, wherein each vessel has an adventitial layer,
wherein the holding surfaces of the first ring contact the adventital surfaces of the portion of the first vessel defining a first vessel opening, and
wherein the holding surfaces of the second ring contact the adventital surfaces of the portion of the second vessel defining a second vessel opening.
13. The anastomosis device of claim 7, wherein each ring comprises a plurality of flexible segments.
14. The anastomosis device of claim 13, wherein each flexible segment comprises two adjoining arms in a V-shaped configuration.
15. The anastomosis device of claim 13, wherein each flexible segment has a configuration that is selected from the group consisting of a U-shaped configuration, a quadrilateral shaped configuration, a circular configuration, an elliptical configuration, a spiral-shaped configuration, and an oval-shaped configuration.
16. The anastomosis device of claim 13, wherein the holding surfaces of each ring are holding tabs.
17. The anastomosis device of claim 16, wherein each flexible segment of the plurality of flexible segments of each ring is adjoined to an adjacent flexible segment by a connecting joint, wherein each flexible segment of each ring has a flexible segment joint, wherein the holding tabs of the first ring extend from the connecting joints, wherein the holding tabs of the second ring extend from the flexible segment joints.
18. A paired anastomosis device for holding a first vessel together with a second vessel comprising:
first ring means for providing support for a first vessel at a first vessel opening, wherein the first ring means has a first ring opening,
second ring means for providing support for a second vessel at a second vessel opening, wherein the second ring means has a second ring opening,
wherein each ring means is adapted to be in a compressed position as the first vessel and second vessel are anastomosed together such that each respective ring opening and respective vessel opening have an initial diameter, and
wherein at least one ring means is adapted to radially expand to a deployed position after the first vessel and second vessel are anastomosed together such that each ring means and vessel opening has a greater diameter than the initial diameter of each respective ring means and vessel opening.
19. A paired anastomosis device for holding a first vessel together with a second vessel comprising:
a first ring having holding surfaces that define a first ring opening, wherein the holding surfaces are adapted to hold a portion of a first vessel defining a first vessel opening such that the first vessel opening is at the first ring opening,
a second ring having a plurality of holding surfaces that define a second ring opening, wherein the holding surfaces are adapted to hold a portion of a second vessel defining a second vessel opening such that the second vessel opening is at the second ring opening,
wherein each ring is adapted to be in a compressed position as the first vessel and second vessel are anastomosed together such that each respective ring opening and respective vessel opening have an initial diameter, and
wherein at least one ring is adapted to radially expand to a deployed position after the first vessel and second vessel are anastomosed together such that each ring and vessel opening has a greater diameter than the initial diameter of each respective ring and vessel opening.
20. A paired anastomosis device for holding a first vessel together with a second vessel comprising:
a first ring having a plurality of holding surfaces that define a first ring opening, wherein the holding surfaces are adapted to hold a portion of a first vessel defining a first vessel opening such that the first vessel opening is at the first ring opening,
a second ring having a plurality of holding surfaces that define a second ring opening, wherein the holding surfaces are adapted to hold a portion of a second vessel defining a second vessel opening such that the second vessel opening is at the second ring opening,
wherein each ring has a plurality of flexible segments from which the respective holding surfaces extend, and
guides positioned to provide guided coaxial movement of the rings relative to each other so that the rings can be moved from a loaded position with the first ring offset from the second ring to an anastomosis position with the first vessel is anastomosed to the second vessel at the first and second vessel openings,
wherein the plurality of flexible segments of each ring are adapted to enable each respective ring opening and respective vessel opening to change in diameter as each ring expands and contracts in response to changes in fluid pressure.
US10/780,110 1999-12-14 2004-02-17 Paired expandable anastomosis devices Abandoned US20040225306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/780,110 US20040225306A1 (en) 1999-12-14 2004-02-17 Paired expandable anastomosis devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/460,740 US6569173B1 (en) 1999-12-14 1999-12-14 Compression plate anastomosis apparatus
US09/737,200 US7981126B2 (en) 1999-04-16 2000-12-14 Locking compression plate anastomosis apparatus
US10/035,084 US6736825B2 (en) 1999-12-14 2001-12-27 Paired expandable anastomosis devices and related methods
US10/780,110 US20040225306A1 (en) 1999-12-14 2004-02-17 Paired expandable anastomosis devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/035,084 Continuation US6736825B2 (en) 1999-12-14 2001-12-27 Paired expandable anastomosis devices and related methods

Publications (1)

Publication Number Publication Date
US20040225306A1 true US20040225306A1 (en) 2004-11-11

Family

ID=21880537

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/035,084 Expired - Fee Related US6736825B2 (en) 1999-12-14 2001-12-27 Paired expandable anastomosis devices and related methods
US10/780,110 Abandoned US20040225306A1 (en) 1999-12-14 2004-02-17 Paired expandable anastomosis devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/035,084 Expired - Fee Related US6736825B2 (en) 1999-12-14 2001-12-27 Paired expandable anastomosis devices and related methods

Country Status (3)

Country Link
US (2) US6736825B2 (en)
AU (1) AU2002359841A1 (en)
WO (1) WO2003057005A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131428A1 (en) * 1999-07-28 2005-06-16 Cardica, Inc. Anastomosis tool having a connector holder
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US7699859B2 (en) 1999-07-28 2010-04-20 Cardica, Inc. Method of performing anastomosis
US20100241218A1 (en) * 2009-03-23 2010-09-23 Medtronic Vascular, Inc. Branch Vessel Prosthesis With a Roll-Up Sealing Assembly
US7850703B2 (en) 1999-07-28 2010-12-14 Cardica, Inc. System for performing anastomosis
US7866523B1 (en) 2007-09-21 2011-01-11 Cardica, Inc. Soft-tipped anvil
US7901417B2 (en) 1999-04-16 2011-03-08 Vital Access Corporation Systems for forming an anastomosis with an anvil and an apparatus having at least one guide
US7963432B2 (en) 2007-09-06 2011-06-21 Cardica, Inc. Driverless surgical stapler
WO2011103542A1 (en) * 2010-02-20 2011-08-25 Blatter Duane D Closure devices and related systems and methods
US8034064B2 (en) 1999-04-16 2011-10-11 Vital Access Corporation Methods for forming an anastomosis opening in a side of a blood vessel
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
US8915934B2 (en) 2003-11-24 2014-12-23 Cardica, Inc. Anastomosis system with anvil entry hole sealer
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US9308015B2 (en) 2007-04-24 2016-04-12 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US9345478B2 (en) 2007-09-06 2016-05-24 Cardica, Inc. Method for surgical stapling
US9532773B2 (en) 2011-01-28 2017-01-03 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US10028741B2 (en) 2013-01-25 2018-07-24 Apica Cardiovascular Limited Systems and methods for percutaneous access, stabilization and closure of organs
US10485909B2 (en) 2014-10-31 2019-11-26 Thoratec Corporation Apical connectors and instruments for use in a heart wall
US10499949B2 (en) 2011-02-01 2019-12-10 Emory University Systems for implanting and using a conduit within a tissue wall
US10518012B2 (en) 2013-03-15 2019-12-31 Apk Advanced Medical Technologies, Inc. Devices, systems, and methods for implanting and using a connector in a tissue wall
US11751876B2 (en) 2019-05-07 2023-09-12 Easyflomicro Inc. Apparatuses for anastomosis of tubular vessels and related methods

Families Citing this family (510)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040049221A1 (en) * 1998-05-29 2004-03-11 By-Pass, Inc. Method and apparatus for forming apertures in blood vessels
US7396359B1 (en) * 1998-05-29 2008-07-08 Bypass, Inc. Vascular port device
US6206913B1 (en) * 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6428550B1 (en) * 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6391038B2 (en) * 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US7892246B2 (en) * 1999-07-28 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting conduits and closing openings in tissue
AU2001244497A1 (en) * 2000-03-20 2001-10-03 By-Pass, Inc. Transvascular bypass method and system
US6776785B1 (en) * 2000-10-12 2004-08-17 Cardica, Inc. Implantable superelastic anastomosis device
US6769590B2 (en) * 2001-04-02 2004-08-03 Susan E. Vresh Luminal anastomotic device and method
DE60226728D1 (en) 2001-06-15 2008-07-03 Donald J Hill DEVICE FOR ATTACHING AN OPERATION PATTERN
US7892247B2 (en) * 2001-10-03 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting vessels
US6974462B2 (en) * 2001-12-19 2005-12-13 Boston Scientific Scimed, Inc. Surgical anchor implantation device
US7182771B1 (en) 2001-12-20 2007-02-27 Russell A. Houser Vascular couplers, techniques, methods, and accessories
WO2004000134A2 (en) 2002-06-19 2003-12-31 Tyco Healthcare Group, Lp Method and apparatus for anastomosis including annular joining member
US7351247B2 (en) 2002-09-04 2008-04-01 Bioconnect Systems, Inc. Devices and methods for interconnecting body conduits
US20060025788A1 (en) * 2002-09-25 2006-02-02 By-Pass, Inc. Anastomotic leg arrangement
US20060116707A1 (en) * 2002-09-25 2006-06-01 By-Pass, Inc Blood vessel cutter
WO2004028378A1 (en) * 2002-09-25 2004-04-08 By-Pass, Inc. Anastomotic connectors
CN101435753B (en) 2002-09-26 2011-08-03 比欧帕斯自动化公司 Box for keeping tissue specimen
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20050209614A1 (en) * 2004-03-04 2005-09-22 Fenter Felix W Anastomosis apparatus and methods with computer-aided, automated features
US8425539B2 (en) * 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
JP5178194B2 (en) * 2004-06-14 2013-04-10 ロックス メディカル, インコーポレイテッド Devices, systems, and methods for arterio-venous fistula generation
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
EP1802237B1 (en) 2004-10-18 2018-08-08 Covidien LP Compression anastomosis device
US20060201989A1 (en) * 2005-03-11 2006-09-14 Ojeda Herminio F Surgical anvil and system for deploying the same
WO2007008209A1 (en) * 2005-07-13 2007-01-18 Boston Scientific Scimed Inc. Snap fit sling anchor system and related methods
TWI289765B (en) 2005-07-20 2007-11-11 Quanta Comp Inc Devices a methods for signal switching and processing
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
ITMI20060410A1 (en) * 2006-03-07 2007-09-08 Ethicon Endo Surgery Inc ANASTOMOTIC DEVICE
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8313013B2 (en) * 2006-04-06 2012-11-20 Synovis Life Technologies, Inc. Method and assembly for anastomosis
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7527185B2 (en) * 2006-07-12 2009-05-05 Niti Surgical Solutions Ltd. Compression anastomosis ring assembly and applicator for use therewith
US8205782B2 (en) * 2006-07-12 2012-06-26 Niti Surgical Solutions Ltd. Compression assemblies and applicators for use therewith
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US7434717B2 (en) 2007-01-11 2008-10-14 Ethicon Endo-Surgery, Inc. Apparatus for closing a curved anvil of a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8690816B2 (en) 2007-08-02 2014-04-08 Bioconnect Systems, Inc. Implantable flow connector
US9282967B2 (en) 2007-08-02 2016-03-15 Bioconnect Systems, Inc. Implantable flow connector
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8048091B2 (en) * 2008-04-08 2011-11-01 Hesham Morsi Suturing device for anastomisis of lumens
US7954686B2 (en) 2008-09-19 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
WO2010039862A1 (en) * 2008-09-30 2010-04-08 Rox Medical, Inc. Methods for screening and treating patients with compromised cardiopulmonary function
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
JP5706341B2 (en) 2009-01-22 2015-04-22 バイオパス・オートメーション・エル・エル・シー Microtome sliced biopsy support for positioning tissue specimens
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
RU2525225C2 (en) 2009-02-06 2014-08-10 Этикон Эндо-Серджери, Инк. Improvement of drive surgical suturing instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8430292B2 (en) 2009-10-28 2013-04-30 Covidien Lp Surgical fastening apparatus
IT1396919B1 (en) * 2009-11-05 2012-12-20 Nazari DEVICE FOR AORTIC VASCULAR ANASTOMOSIS AND ITS RAPID CILLATERAL BRANCHES WITH AEREOSTATIC SEALING WITH STABLE JUSTAPPOSITION AND AEREOSTATIC SEALING OF POSSIBLE DISSECTION LAYERS
US8348128B2 (en) * 2009-11-11 2013-01-08 Biorep Technologies, Inc. Anastomosis system and method
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US8474677B2 (en) 2010-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and a cover
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
RU2013119928A (en) 2010-09-30 2014-11-10 Этикон Эндо-Серджери, Инк. A STAPLING SYSTEM CONTAINING A RETAINING MATRIX AND A LEVELING MATRIX
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
ES2689500T3 (en) 2010-12-15 2018-11-14 Colospan Ltd. Bypass systems of an anastomosis site
US9364237B2 (en) * 2010-12-15 2016-06-14 Meteso Ag Medical device
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
EP2755567B1 (en) 2011-09-15 2018-03-07 I.B.I Israel Biomedical Innovations Ltd. Surgical fastener having a snap lock and devices deploying it
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
MX358135B (en) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Tissue thickness compensator comprising a plurality of layers.
US9314600B2 (en) 2012-04-15 2016-04-19 Bioconnect Systems, Inc. Delivery system for implantable flow connector
US10434293B2 (en) 2012-04-15 2019-10-08 Tva Medical, Inc. Implantable flow connector
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
AU2014241104B2 (en) * 2013-03-14 2016-07-14 Goldberg, Roger P. Urethral anastomosis device
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US20140166726A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US20170265849A1 (en) 2014-10-14 2017-09-21 Cologuard Ltd. Apparatus for delivering a device to a hollow organ
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
TWI583421B (en) * 2015-03-09 2017-05-21 南臺科技大學 Safety needle included needle dislodgement and liquid leakage detection device
TWI572388B (en) * 2015-03-13 2017-03-01 南臺科技大學 Adhesive-tape based multiple-point detection device
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
MX2018002388A (en) 2015-08-26 2018-08-01 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading.
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
MX2022006191A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
CN107536631B (en) * 2017-08-24 2020-01-17 王培吉 Micro-vessel anastomat
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
EP3964141A1 (en) * 2020-09-02 2022-03-09 Technische Universität München Implant and implant applicator for surgical anastomosis
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1052374A (en) * 1912-07-17 1913-02-04 Henry A Parr Combination dental and surgical tool.
US2192699A (en) * 1938-04-01 1940-03-05 Charles R Storz Surgical instrument
US2434030A (en) * 1945-11-13 1948-01-06 Yeomans Theron Grover Sutureless method of rectosigmoid anastomosis and apparatus therefor
US2818852A (en) * 1956-06-27 1958-01-07 Heinz W Kugler Spring-pressed surgical instrument
US3155095A (en) * 1961-02-07 1964-11-03 Adolph M Brown Anastomosis method and means
US3435823A (en) * 1966-04-11 1969-04-01 Miles Lowell Edwards Anastomotic coupling with anti-pulse ring means
US3638652A (en) * 1970-06-01 1972-02-01 James L Kelley Surgical instrument for intraluminal anastomosis
US4018228A (en) * 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US4076162A (en) * 1975-07-11 1978-02-28 Nikolai Nikolaevich Kapitanov Surgical instrument for suturing vessels with metal staples
US4154241A (en) * 1977-07-29 1979-05-15 Rudie Peter S Anastomosis clamp
US4318401A (en) * 1980-04-24 1982-03-09 President And Fellows Of Harvard College Percutaneous vascular access portal and catheter
US4319576A (en) * 1980-02-26 1982-03-16 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4368736A (en) * 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
US4423730A (en) * 1982-03-01 1984-01-03 Shelhigh Inc. Atriotomy button and implantation device
US4493321A (en) * 1982-05-25 1985-01-15 Leather Robert P Venous valve cutter for the incision of valve leaflets in situ
US4503568A (en) * 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
US4523592A (en) * 1983-04-25 1985-06-18 Rollin K. Daniel P.S.C. Anastomotic coupling means capable of end-to-end and end-to-side anastomosis
US4657019A (en) * 1984-04-10 1987-04-14 Idea Research Investment Fund, Inc. Anastomosis devices and kits
US4721109A (en) * 1986-04-08 1988-01-26 Healey Maureen A Temporary anastomotic device
US4803984A (en) * 1987-07-06 1989-02-14 Montefiore Hospital Association Of Western Pennsylvania Method for performing small vessel anastomosis
US4819637A (en) * 1987-09-01 1989-04-11 Interventional Therapeutics Corporation System for artificial vessel embolization and devices for use therewith
US4907591A (en) * 1988-03-29 1990-03-13 Pfizer Hospital Products Group, Inc. Surgical instrument for establishing compression anastomosis
US4917091A (en) * 1982-06-24 1990-04-17 Unilink Ab Annular fastening means
US4917114A (en) * 1986-10-17 1990-04-17 United States Surgical Corporation Surgical fastener and surgical stapling apparatus
US4917087A (en) * 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4917090A (en) * 1982-06-24 1990-04-17 Unilink, Inc. Method for performing an anastomosis
US5005749A (en) * 1988-07-01 1991-04-09 United States Surgical Corp. Anastomosis surgical stapling instrument
US5104025A (en) * 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5188638A (en) * 1992-02-06 1993-02-23 Tzakis Andreas G Apparatus and method for preforming anastomosis fastener securement of hollow organs
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5193731A (en) * 1988-07-01 1993-03-16 United States Surgical Corporation Anastomosis surgical stapling instrument
US5198731A (en) * 1992-06-15 1993-03-30 Thomson Consumer Electronics S.A. Linearization of vertical reference ramp
US5205459A (en) * 1991-08-23 1993-04-27 Ethicon, Inc. Surgical anastomosis stapling instrument
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5392979A (en) * 1987-05-26 1995-02-28 United States Surgical Corporation Surgical stapler apparatus
US5395030A (en) * 1992-06-04 1995-03-07 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5503635A (en) * 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5591178A (en) * 1992-10-09 1997-01-07 United States Surgical Corporation Surgical clip applier
US5609285A (en) * 1992-02-07 1997-03-11 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5616114A (en) * 1994-12-08 1997-04-01 Neocardia, Llc. Intravascular radiotherapy employing a liquid-suspended source
US5620649A (en) * 1989-11-29 1997-04-15 Cordis Corporation Puncture resistant balloon catheter
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US5732872A (en) * 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5732772A (en) * 1995-12-19 1998-03-31 Abb Vetco Gray Inc. Dual split tubing hanger
US5861005A (en) * 1997-02-11 1999-01-19 X-Site, L.L.C. Arterial stapling device
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods
US5865730A (en) * 1997-10-07 1999-02-02 Ethicon Endo-Surgery, Inc. Tissue stabilization device for use during surgery having remotely actuated feet
US5868770A (en) * 1993-12-23 1999-02-09 Oticon A/S Method and instrument for establishing the receiving site of a coronary artery bypass graft
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US5893369A (en) * 1997-02-24 1999-04-13 Lemole; Gerald M. Procedure for bypassing an occlusion in a blood vessel
US6015416A (en) * 1998-02-26 2000-01-18 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6030392A (en) * 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US6036700A (en) * 1998-07-14 2000-03-14 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
US6036704A (en) * 1999-05-13 2000-03-14 Yoon; Inbae Anastomosis apparatus and method for anastomosing an anatomical tubular structure
US6036710A (en) * 1996-10-04 2000-03-14 United States Surgical Apparatus for formation of a hole in a blood vessel
US6036703A (en) * 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
US6042569A (en) * 1994-01-18 2000-03-28 Vasca, Inc. Subcutaneously implanted cannula and methods for vascular access
US6050472A (en) * 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
US6053390A (en) * 1992-05-19 2000-04-25 United States Surgical Anvil for surgical stapler
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6171319B1 (en) * 1997-05-19 2001-01-09 Cardio Medical Solutions, Inc. Anastomosis device with hole punch
US6176413B1 (en) * 1994-06-17 2001-01-23 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US6187020B1 (en) * 1998-04-17 2001-02-13 Laboratoire Perouse Implant Connecting device for anastomosis, device for fitting fasteners and implant including them
US6190396B1 (en) * 1999-09-14 2001-02-20 Perclose, Inc. Device and method for deploying and organizing sutures for anastomotic and other attachments
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US6193129B1 (en) * 2000-01-24 2001-02-27 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
US6206913B1 (en) * 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6210365B1 (en) * 1998-08-14 2001-04-03 Cardiovention, Inc. Perfusion catheter system having sutureless arteriotomy seal and methods of use
US6355050B1 (en) * 1992-12-10 2002-03-12 Abbott Laboratories Device and method for suturing tissue
US6358258B1 (en) * 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6503259B2 (en) * 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
US20030014064A1 (en) * 1999-04-16 2003-01-16 Blatter Duane D. Anvil apparatus for anastomosis and related methods and systems
US6508822B1 (en) * 1998-11-06 2003-01-21 St. Jude Medical Atg, Inc. Medical graft assembly
US6520398B2 (en) * 1998-03-10 2003-02-18 Enrico Nicolo Circular stapler for side to end, side to side and end to side anastomosis
US6524322B1 (en) * 1998-10-23 2003-02-25 Eric Berreklouw Anastomosis device
US6524326B1 (en) * 1995-12-07 2003-02-25 Loma Linda University Medical Center Tissue opening locator and everter and method
US6551334B2 (en) * 1999-04-16 2003-04-22 Integrated Vascular Interventional Technologies, Lc Externally directed anastomosis systems and externally positioned anastomosis fenestra cutting apparatus
US6726694B2 (en) * 1999-04-16 2004-04-27 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Intraluminally directed anvil apparatus and related methods and systems
US6726704B1 (en) * 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
US6866674B2 (en) * 1999-11-30 2005-03-15 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US7022131B1 (en) * 1998-05-29 2006-04-04 By-Pass Inc. Methods and devices for vascular surgery
US7160311B2 (en) * 1999-04-16 2007-01-09 Integrated Vascular Interventional Technologies, L.C. (Ivit Lc) Locking compression plate anastomosis apparatus
US20080045984A1 (en) * 1999-04-16 2008-02-21 Integrated Vascular Interventional Technologies, L.C. Methods for anastomosing an everted vessel with another vessel
US20080086075A1 (en) * 2006-10-09 2008-04-10 Isik F Frank Vascular access devices and methods of use

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1151300A (en) 1915-01-22 1915-08-24 Angelo L Soresi Instrument for the transfusion of blood.
US3258012A (en) 1961-06-30 1966-06-28 Risaburo Aoki Method for blood vessel connection
US3254650A (en) 1962-03-19 1966-06-07 Michael B Collito Surgical anastomosis methods and devices
US3254651A (en) 1962-09-12 1966-06-07 Babies Hospital Surgical anastomosis methods and devices
US3774615A (en) 1971-02-08 1973-11-27 Ceskoslovenska Akademie Ved Device for connecting or joining the ends of interrupted tubular organs in surgical operations without stitching
DE2657255A1 (en) 1976-12-17 1978-06-29 P H Dr Schomacher DEVICE FOR CLOSING SEPARATED BODY BARRELS
US4294255A (en) 1978-04-17 1981-10-13 Andre Geroc Intraluminal anastomosis
US4214587A (en) 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
US4352358A (en) 1979-12-28 1982-10-05 Angelchik Jean P Apparatus for effecting anastomotic procedures
US4474181A (en) 1982-02-18 1984-10-02 Schenck Robert R Method and apparatus for anastomosing small blood vessels
US4624255A (en) 1982-02-18 1986-11-25 Schenck Robert R Apparatus for anastomosing living vessels
US4607637A (en) 1983-07-22 1986-08-26 Anders Berggren Surgical instrument for performing anastomosis with the aid of ring-like fastening elements and the fastening elements for performing anastomosis
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
IT1196026B (en) 1984-02-16 1988-11-10 Carlo Rebuffat CIRCULAR ANASTOMOSIS PE DEVICE
US4667673A (en) 1984-03-12 1987-05-26 American Cyanamid Company Anastomotic device applicator and method
US4593693A (en) 1985-04-26 1986-06-10 Schenck Robert R Methods and apparatus for anastomosing living vessels
US4848367A (en) 1987-02-11 1989-07-18 Odis L. Avant Method of effecting dorsal vein ligation
US4873977A (en) 1987-02-11 1989-10-17 Odis L. Avant Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
DE3710913A1 (en) 1987-04-01 1988-10-13 Manfred Wolfgang Dr Helzel PUNCTURE CATHETER
US4931057A (en) 1988-03-29 1990-06-05 Pfizer Hospital Products Group, Inc. Compression anastomosis coupling assembly
US5336233A (en) 1989-01-26 1994-08-09 Chen Fusen H Anastomotic device
US4930674A (en) 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5549122A (en) 1989-07-26 1996-08-27 Detweilwer; Mark B. Methods of surgical mammalian vessel anastomosis
US5035702A (en) 1990-06-18 1991-07-30 Taheri Syde A Method and apparatus for providing an anastomosis
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5403333A (en) 1990-08-28 1995-04-04 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5047039A (en) 1990-09-14 1991-09-10 Odis Lynn Avant Method and apparatus for effecting dorsal vein ligation and tubular anastomosis and laparoscopic prostatectomy
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
DE69228184T2 (en) 1991-07-04 1999-09-16 Earl Owen TUBULAR, SURGICAL IMPLANT
FR2685208B1 (en) 1991-12-23 1998-02-27 Ela Medical Sa VENTRICULAR CANNULA DEVICE.
US5254113A (en) 1992-08-31 1993-10-19 Wilk Peter J Anastomosis method
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6068637A (en) 1995-10-03 2000-05-30 Cedar Sinai Medical Center Method and devices for performing vascular anastomosis
US5702412A (en) 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
DE69621355T2 (en) 1996-04-30 2003-01-02 Oticon As Hellerup ANASTOMOSIS INSTRUMENT FOR USE IN A TERMINOLATERAL ANASTOMOSIS
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
US5976178A (en) 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
US5972017A (en) 1997-04-23 1999-10-26 Vascular Science Inc. Method of installing tubular medical graft connectors
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
US6007576A (en) 1998-02-06 1999-12-28 Mcclellan; Scott B. End to side anastomic implant
US5951576A (en) 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
US6241743B1 (en) 1999-05-13 2001-06-05 Intellicardia, Inc. Anastomosis device and method
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1052374A (en) * 1912-07-17 1913-02-04 Henry A Parr Combination dental and surgical tool.
US2192699A (en) * 1938-04-01 1940-03-05 Charles R Storz Surgical instrument
US2434030A (en) * 1945-11-13 1948-01-06 Yeomans Theron Grover Sutureless method of rectosigmoid anastomosis and apparatus therefor
US2818852A (en) * 1956-06-27 1958-01-07 Heinz W Kugler Spring-pressed surgical instrument
US3155095A (en) * 1961-02-07 1964-11-03 Adolph M Brown Anastomosis method and means
US3435823A (en) * 1966-04-11 1969-04-01 Miles Lowell Edwards Anastomotic coupling with anti-pulse ring means
US3638652A (en) * 1970-06-01 1972-02-01 James L Kelley Surgical instrument for intraluminal anastomosis
US4018228A (en) * 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US4076162A (en) * 1975-07-11 1978-02-28 Nikolai Nikolaevich Kapitanov Surgical instrument for suturing vessels with metal staples
US4154241A (en) * 1977-07-29 1979-05-15 Rudie Peter S Anastomosis clamp
US4319576B1 (en) * 1980-02-26 1986-02-25
US4319576A (en) * 1980-02-26 1982-03-16 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4318401A (en) * 1980-04-24 1982-03-09 President And Fellows Of Harvard College Percutaneous vascular access portal and catheter
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4368736A (en) * 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
US4503568A (en) * 1981-11-25 1985-03-12 New England Deaconess Hospital Small diameter vascular bypass and method
US4423730A (en) * 1982-03-01 1984-01-03 Shelhigh Inc. Atriotomy button and implantation device
US4493321A (en) * 1982-05-25 1985-01-15 Leather Robert P Venous valve cutter for the incision of valve leaflets in situ
US4917091A (en) * 1982-06-24 1990-04-17 Unilink Ab Annular fastening means
US4917090A (en) * 1982-06-24 1990-04-17 Unilink, Inc. Method for performing an anastomosis
US4523592A (en) * 1983-04-25 1985-06-18 Rollin K. Daniel P.S.C. Anastomotic coupling means capable of end-to-end and end-to-side anastomosis
US4917087A (en) * 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4657019A (en) * 1984-04-10 1987-04-14 Idea Research Investment Fund, Inc. Anastomosis devices and kits
US4721109A (en) * 1986-04-08 1988-01-26 Healey Maureen A Temporary anastomotic device
US4917114A (en) * 1986-10-17 1990-04-17 United States Surgical Corporation Surgical fastener and surgical stapling apparatus
US5392979A (en) * 1987-05-26 1995-02-28 United States Surgical Corporation Surgical stapler apparatus
US4803984A (en) * 1987-07-06 1989-02-14 Montefiore Hospital Association Of Western Pennsylvania Method for performing small vessel anastomosis
US4819637A (en) * 1987-09-01 1989-04-11 Interventional Therapeutics Corporation System for artificial vessel embolization and devices for use therewith
US4907591A (en) * 1988-03-29 1990-03-13 Pfizer Hospital Products Group, Inc. Surgical instrument for establishing compression anastomosis
US5005749A (en) * 1988-07-01 1991-04-09 United States Surgical Corp. Anastomosis surgical stapling instrument
US5193731A (en) * 1988-07-01 1993-03-16 United States Surgical Corporation Anastomosis surgical stapling instrument
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5620649A (en) * 1989-11-29 1997-04-15 Cordis Corporation Puncture resistant balloon catheter
US5613979A (en) * 1989-11-29 1997-03-25 Cordis Corporation Puncture resistant balloon catheter
US5104025A (en) * 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US5285945A (en) * 1991-08-23 1994-02-15 Ethicon, Inc. Surgical anastomosis stapling instrument
US5275322A (en) * 1991-08-23 1994-01-04 Ethicon, Inc. Surgical anastomosis stapling instrument
US5205459A (en) * 1991-08-23 1993-04-27 Ethicon, Inc. Surgical anastomosis stapling instrument
US5292053A (en) * 1991-08-23 1994-03-08 Ethicon, Inc. Surgical anastomosis stapling instrument
US5188638A (en) * 1992-02-06 1993-02-23 Tzakis Andreas G Apparatus and method for preforming anastomosis fastener securement of hollow organs
US5609285A (en) * 1992-02-07 1997-03-11 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US6053390A (en) * 1992-05-19 2000-04-25 United States Surgical Anvil for surgical stapler
US5395030A (en) * 1992-06-04 1995-03-07 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
US5198731A (en) * 1992-06-15 1993-03-30 Thomson Consumer Electronics S.A. Linearization of vertical reference ramp
US5591178A (en) * 1992-10-09 1997-01-07 United States Surgical Corporation Surgical clip applier
US6355050B1 (en) * 1992-12-10 2002-03-12 Abbott Laboratories Device and method for suturing tissue
US5503635A (en) * 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5868770A (en) * 1993-12-23 1999-02-09 Oticon A/S Method and instrument for establishing the receiving site of a coronary artery bypass graft
US6042569A (en) * 1994-01-18 2000-03-28 Vasca, Inc. Subcutaneously implanted cannula and methods for vascular access
US5732872A (en) * 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US6209773B1 (en) * 1994-06-17 2001-04-03 Heartport, Inc. Surgical stapling instrument and method thereof
US6176413B1 (en) * 1994-06-17 2001-01-23 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US5616114A (en) * 1994-12-08 1997-04-01 Neocardia, Llc. Intravascular radiotherapy employing a liquid-suspended source
US6030392A (en) * 1995-01-18 2000-02-29 Motorola, Inc. Connector for hollow anatomical structures and methods of use
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6524326B1 (en) * 1995-12-07 2003-02-25 Loma Linda University Medical Center Tissue opening locator and everter and method
US5732772A (en) * 1995-12-19 1998-03-31 Abb Vetco Gray Inc. Dual split tubing hanger
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US6050472A (en) * 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6190397B1 (en) * 1996-09-16 2001-02-20 Origin Medsystems, Inc. Means and method for performing an anastomosis
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6036710A (en) * 1996-10-04 2000-03-14 United States Surgical Apparatus for formation of a hole in a blood vessel
US5879371A (en) * 1997-01-09 1999-03-09 Elective Vascular Interventions, Inc. Ferruled loop surgical fasteners, instruments, and methods for minimally invasive vascular and endoscopic surgery
US5861005A (en) * 1997-02-11 1999-01-19 X-Site, L.L.C. Arterial stapling device
US5893369A (en) * 1997-02-24 1999-04-13 Lemole; Gerald M. Procedure for bypassing an occlusion in a blood vessel
US6171319B1 (en) * 1997-05-19 2001-01-09 Cardio Medical Solutions, Inc. Anastomosis device with hole punch
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US5865730A (en) * 1997-10-07 1999-02-02 Ethicon Endo-Surgery, Inc. Tissue stabilization device for use during surgery having remotely actuated feet
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US6036703A (en) * 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
US6187019B1 (en) * 1998-02-26 2001-02-13 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
US6015416A (en) * 1998-02-26 2000-01-18 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
US6520398B2 (en) * 1998-03-10 2003-02-18 Enrico Nicolo Circular stapler for side to end, side to side and end to side anastomosis
US6187020B1 (en) * 1998-04-17 2001-02-13 Laboratoire Perouse Implant Connecting device for anastomosis, device for fitting fasteners and implant including them
US6726704B1 (en) * 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
US7022131B1 (en) * 1998-05-29 2006-04-04 By-Pass Inc. Methods and devices for vascular surgery
US6036700A (en) * 1998-07-14 2000-03-14 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
US6206913B1 (en) * 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6210365B1 (en) * 1998-08-14 2001-04-03 Cardiovention, Inc. Perfusion catheter system having sutureless arteriotomy seal and methods of use
US6524322B1 (en) * 1998-10-23 2003-02-25 Eric Berreklouw Anastomosis device
US6508822B1 (en) * 1998-11-06 2003-01-21 St. Jude Medical Atg, Inc. Medical graft assembly
US6726694B2 (en) * 1999-04-16 2004-04-27 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Intraluminally directed anvil apparatus and related methods and systems
US20080045984A1 (en) * 1999-04-16 2008-02-21 Integrated Vascular Interventional Technologies, L.C. Methods for anastomosing an everted vessel with another vessel
US7901417B2 (en) * 1999-04-16 2011-03-08 Vital Access Corporation Systems for forming an anastomosis with an anvil and an apparatus having at least one guide
US20080051811A1 (en) * 1999-04-16 2008-02-28 Integrated Vascular Interventional Technologies, L.C. Systems for anastomosing an everted vessel with another vessel
US6551334B2 (en) * 1999-04-16 2003-04-22 Integrated Vascular Interventional Technologies, Lc Externally directed anastomosis systems and externally positioned anastomosis fenestra cutting apparatus
US20030014064A1 (en) * 1999-04-16 2003-01-16 Blatter Duane D. Anvil apparatus for anastomosis and related methods and systems
US7160311B2 (en) * 1999-04-16 2007-01-09 Integrated Vascular Interventional Technologies, L.C. (Ivit Lc) Locking compression plate anastomosis apparatus
US6036704A (en) * 1999-05-13 2000-03-14 Yoon; Inbae Anastomosis apparatus and method for anastomosing an anatomical tubular structure
US6190396B1 (en) * 1999-09-14 2001-02-20 Perclose, Inc. Device and method for deploying and organizing sutures for anastomotic and other attachments
US6358258B1 (en) * 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6866674B2 (en) * 1999-11-30 2005-03-15 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US6193129B1 (en) * 2000-01-24 2001-02-27 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
US6503259B2 (en) * 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
US20080086075A1 (en) * 2006-10-09 2008-04-10 Isik F Frank Vascular access devices and methods of use

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901417B2 (en) 1999-04-16 2011-03-08 Vital Access Corporation Systems for forming an anastomosis with an anvil and an apparatus having at least one guide
US8109949B2 (en) 1999-04-16 2012-02-07 Vital Access Corporation Systems for forming an anastomosis
US8034064B2 (en) 1999-04-16 2011-10-11 Vital Access Corporation Methods for forming an anastomosis opening in a side of a blood vessel
US7981126B2 (en) 1999-04-16 2011-07-19 Vital Access Corporation Locking compression plate anastomosis apparatus
US7922734B2 (en) 1999-04-16 2011-04-12 Vital Access Corporation Methods for forming an anastomosis with a vessel having everted tissue
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
US7850703B2 (en) 1999-07-28 2010-12-14 Cardica, Inc. System for performing anastomosis
US8475474B2 (en) 1999-07-28 2013-07-02 Cardica, Inc. Anastomosis method utilizing tool with fluid-driven actuator
US20050131428A1 (en) * 1999-07-28 2005-06-16 Cardica, Inc. Anastomosis tool having a connector holder
US7699859B2 (en) 1999-07-28 2010-04-20 Cardica, Inc. Method of performing anastomosis
US9622748B2 (en) 1999-07-28 2017-04-18 Dextera Surgical Inc. Anastomosis system with flexible shaft
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US20060241660A1 (en) * 1999-07-28 2006-10-26 Cardica, Inc. Anastomosis system with flexible shaft
US8915934B2 (en) 2003-11-24 2014-12-23 Cardica, Inc. Anastomosis system with anvil entry hole sealer
US9950146B2 (en) 2007-04-24 2018-04-24 Emory Univeristy Conduit device and system for implanting a conduit device in a tissue wall
US11027103B2 (en) 2007-04-24 2021-06-08 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US9308015B2 (en) 2007-04-24 2016-04-12 Emory University Conduit device and system for implanting a conduit device in a tissue wall
US7963432B2 (en) 2007-09-06 2011-06-21 Cardica, Inc. Driverless surgical stapler
US9144427B2 (en) 2007-09-06 2015-09-29 Cardica, Inc. Surgical method utilizing a true multiple-fire surgical stapler
US8439245B2 (en) 2007-09-06 2013-05-14 Cardica, Inc. True multi-fire endocutter
US8272551B2 (en) 2007-09-06 2012-09-25 Cardica, Inc. Method of utilizing a driverless surgical stapler
US8679155B2 (en) 2007-09-06 2014-03-25 Cardica, Inc. Surgical method utilizing a true multiple-fire surgical stapler
US8789738B2 (en) 2007-09-06 2014-07-29 Cardica, Inc. Surgical method for stapling tissue
US9655618B2 (en) 2007-09-06 2017-05-23 Dextera Surgical Inc. Surgical method utilizing a true multiple-fire surgical stapler
US10405856B2 (en) 2007-09-06 2019-09-10 Aesculap Ag Method for surgical stapling
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US9345478B2 (en) 2007-09-06 2016-05-24 Cardica, Inc. Method for surgical stapling
US8398653B2 (en) 2007-09-21 2013-03-19 Cardica, Inc. Surgical method utilizing a soft-tipped anvil
US7866523B1 (en) 2007-09-21 2011-01-11 Cardica, Inc. Soft-tipped anvil
US8052741B2 (en) * 2009-03-23 2011-11-08 Medtronic Vascular, Inc. Branch vessel prosthesis with a roll-up sealing assembly
US20100241218A1 (en) * 2009-03-23 2010-09-23 Medtronic Vascular, Inc. Branch Vessel Prosthesis With a Roll-Up Sealing Assembly
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
WO2011103542A1 (en) * 2010-02-20 2011-08-25 Blatter Duane D Closure devices and related systems and methods
US9532773B2 (en) 2011-01-28 2017-01-03 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US10357232B2 (en) 2011-01-28 2019-07-23 Apica Cardiovascular Limited Systems for sealing a tissue wall puncture
US10499949B2 (en) 2011-02-01 2019-12-10 Emory University Systems for implanting and using a conduit within a tissue wall
US10028741B2 (en) 2013-01-25 2018-07-24 Apica Cardiovascular Limited Systems and methods for percutaneous access, stabilization and closure of organs
US11116542B2 (en) 2013-01-25 2021-09-14 Apica Cardiovascular Limited Systems and methods for percutaneous access, stabilization and closure of organs
US10518012B2 (en) 2013-03-15 2019-12-31 Apk Advanced Medical Technologies, Inc. Devices, systems, and methods for implanting and using a connector in a tissue wall
US10485909B2 (en) 2014-10-31 2019-11-26 Thoratec Corporation Apical connectors and instruments for use in a heart wall
US11751876B2 (en) 2019-05-07 2023-09-12 Easyflomicro Inc. Apparatuses for anastomosis of tubular vessels and related methods

Also Published As

Publication number Publication date
AU2002359841A1 (en) 2003-07-24
US20020058955A1 (en) 2002-05-16
US6736825B2 (en) 2004-05-18
WO2003057005B1 (en) 2003-10-16
WO2003057005A2 (en) 2003-07-17
WO2003057005A3 (en) 2003-09-12
AU2002359841A8 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
US6736825B2 (en) Paired expandable anastomosis devices and related methods
US7056326B2 (en) System for performing vascular anastomoses
US7160311B2 (en) Locking compression plate anastomosis apparatus
US6551334B2 (en) Externally directed anastomosis systems and externally positioned anastomosis fenestra cutting apparatus
US6726694B2 (en) Intraluminally directed anvil apparatus and related methods and systems
US6652542B2 (en) External anastomosis operators and related systems for anastomosis
CA2394182C (en) Systems for intraluminally directed vascular anastomosis
US8109949B2 (en) Systems for forming an anastomosis

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEGRATED VASCULAR INTERVENTIONAL TECHNOLOGIES (I

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLATTER, DUANE D.;BARRUS, MICHAEL C.;ORR, TROY J.;REEL/FRAME:015550/0234;SIGNING DATES FROM 20011215 TO 20020607

AS Assignment

Owner name: IVIT, INC., UTAH

Free format text: MERGER;ASSIGNOR:INTEGRATED VASCULAR INTERVENTIONAL TECHNOLOGIES, L.C.;REEL/FRAME:020467/0312

Effective date: 20060731

Owner name: VITAL ACCESS CORPORATION, UTAH

Free format text: MERGER;ASSIGNOR:IVIT, INC.;REEL/FRAME:020467/0436

Effective date: 20071129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION