Recherche Images Maps Play YouTube Actualités Gmail Drive Plus »
Connexion
Les utilisateurs de lecteurs d'écran peuvent cliquer sur ce lien pour activer le mode d'accessibilité. Celui-ci propose les mêmes fonctionnalités principales, mais il est optimisé pour votre lecteur d'écran.

Brevets

  1. Recherche avancée dans les brevets
Numéro de publicationUS20040240073 A1
Type de publicationDemande
Numéro de demandeUS 10/883,849
Date de publication2 déc. 2004
Date de dépôt6 juil. 2004
Date de priorité15 mai 2001
Autre référence de publicationDE10124566A1, DE50204916D1, EP1258780A2, EP1258780A3, EP1258780B1, US6774984, US7199864, US7961298, US20020186462, US20060119826, US20070139636, US20080186469
Numéro de publication10883849, 883849, US 2004/0240073 A1, US 2004/240073 A1, US 20040240073 A1, US 20040240073A1, US 2004240073 A1, US 2004240073A1, US-A1-20040240073, US-A1-2004240073, US2004/0240073A1, US2004/240073A1, US20040240073 A1, US20040240073A1, US2004240073 A1, US2004240073A1
InventeursMichael Gerhard
Cessionnaire d'origineCarl Zeiss Smt Ag
Exporter la citationBiBTeX, EndNote, RefMan
Liens externes: USPTO, Cession USPTO, Espacenet
Polarization rotator and a crystalline-quartz plate for use in an optical imaging system
US 20040240073 A1
Résumé
A polarization rotator and crystalline quartz plate for use with an optical imaging system. The system has several imaging optical components (L1-L16) sequentially arranged along an optical axis (16), a means for creating radially polarized light arranged at a given location in that region extending up to the last of said imaging optical components, and a crystalline-quartz plate employable in such a system. A polarization rotator (14) for rotating the planes of polarization of radially polarized light and transforming same into tangentially polarized light, particularly in the form of a crystalline-quartz plate as noted above, is provided at a given location within a region commencing where those imaging optical components that follow said means for creating radially polarized light in the optical train are arranged. The optical imaging system is particularly advantageous when embodied as a microlithographic projection exposure system.
Images(2)
Previous page
Next page
Revendications(18)
1-6 (canceled).
7. A crystalline quartz plate configured as a polarization rotator (14), wherein a crystal axis (17) of said plate is at least approximately normal to the plane of said plate.
8. A crystalline quartz plate according to claim 7, configured as a component for an optical imaging system.
9. A crystalline quartz plate according to claim 7, wherein said plate has a thickness of 500 μm or less.
10. A crystalline quartz plate according to claim 9, wherein said plate has a thickness of 200 μm or less.
11-14 (canceled).
15. A polarization rotator for an optical imaging system comprising a final optical element of a plurality of imaging optical elements arranged as an optical train along an optical axis, and a radial polarizer radially polarizing light transiting said optical imaging system and arranged at a location ahead of said final imaging optical element,
wherein said polarization rotator transforms said radially polarized light into a tangentially polarized light, and
said polarization rotator is configured to be arranged at a location following an imaging optical element of said plurality of imaging optical elements that follows said radial polarizer in the optical train.
16. The polarization rotator according to claim 15, wherein said optical imaging system is a microlithographic projection exposure system.
17. The polarization rotator according to claim 15, comprising a plate fabricated from an optically active material.
18. The polarization rotator according to claim 17, wherein said plate is fabricated from crystalline quartz whose optical axis is aligned parallel to said optical axis of said optical imaging system.
19. The polarization rotator according to claim 15,
wherein said optical imaging system forms a microlithographic projection exposure system, and
said polarization rotator is arranged within a section of a projection lens of said microlithographic projection exposure system where the path of an imaging beam of the projection lens is at least approximately parallel to said optical axis of said optical imaging system.
20. The polarization rotator according to claim 15,
wherein said optical imaging system forms a microlithographic projection exposure system, and
said polarization rotator is arranged between a pupillary plane and an image plane of a projection lens of said microlithographic projection exposure system.
21. A polarization rotator for an optical imaging system comprising a plurality of imaging optical elements arranged as an optical train along an optical axis, a radial polarizer radially polarizing light transiting the optical imaging system, said plurality of imaging optical elements including an imaging optical element arranged behind said radial polarizer in the optical train and a final imaging optical element in the optical train, said radial polarizer being arranged ahead of said final imaging optical element in the optical train,
wherein said polarization rotator transforms the radially polarized light into tangentially polarized light, and
said polarization rotator is configured to be arranged behind said imaging optical element in the optical train.
22. The polarization rotator according to claim 21, comprising a plate of optically active material.
23. The polarization rotator according to claim 22, wherein said material is a crystalline quartz material.
24. The polarization rotator according to claim 23, wherein said plate has a crystal axis that is at least approximately normal to a plane of said plate and is at least approximately aligned parallel to the optical axis.
25. The polarization rotator according to claim 17, wherein said plate is arranged so that an optical activity of said optically active material transforms said radially polarized light into said tangentially polarized light.
26. The polarization rotator according to claim 22, wherein said plate is arranged so that an optical activity of said optically active material transforms said radially polarized light into said tangentially polarized light.
Description
  • [0001]
    The following disclosure is based on German Patent Application No. 101 24 566.1, filed on May 15, 2001, which is incorporated in this application by reference.
  • FIELD OF AND BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The invention relates to an optical imaging system having several imaging optical components arranged in succession along an optical axis, means for creating radially polarized light arranged within that region extending up to the last of said imaging optical components, and a crystalline-quartz plate employable on such a system.
  • [0004]
    2. Description of the Related Art
  • [0005]
    German laid-open publication DE 195 35 392 A1 discloses an optical imaging system of said type in the form of a microlithographic projection exposure system having, e.g., an i-line mercury discharge lamp as a light source. Said system's employment of radially polarized light for exposing wafers was intended to improve the coupling of said light into the layer of photoresist, particularly at very large angles of incidence, while simultaneously achieving maximum suppression of any standing waves that might be caused by reflections at the inner and outer interfaces of said photoresist. Various types of radial polarizers that employ birefringent materials were mentioned as prospective means for creating radially polarized light. That radial polarizer chosen was arranged within that region that followed said system's final phase-correcting or polarizing optical element in the optical train in order that the degree of radial polarization attained prior to incidence on said wafers would remain unchanged. In the event that a catadioptic optical system were employed as said system's projection lens, the radial polarizer involved should be preferably arranged, e.g., following said optical system's final deflecting mirror. Otherwise, it might be arranged, e.g., within the preceding illumination system of the projection exposure system.
  • [0006]
    Radially polarized light, i.e., light that is linearly polarized parallel to its plane of incidence on an interface, is, in general, preferable in cases involving imaging optics, e.g., the imaging optics of microlithographic projection exposure systems, since radially polarized light allows employing highly effective antireflection coatings on their imaging optical components, particularly their lenses, which is a matter of major importance, particularly in the case of microlithographic projection exposure systems with high numerical apertures and at short wavelengths, e.g., wavelengths falling in the UV spectral range, since there are few coating materials that are suitable for use in that spectral range. On the other hand, tangentially polarized light, i.e., light that is linearly polarized orthogonal to the plane of incidence of an imaging light beam on the respective interfaces of the lenses, or similar, involved, should preferably be employed for illumination in order to allow creating the best possible interference-fringe contrasts when imaging objects on, e.g., wafers. In order to allow same, the older German patent application 100 10 131.3 proposed employing a tangentially polarizing element arranged in the vicinity of a pupillary plane of the projection lens, or within the illumination system that precedes same in the optical train that may be assembled from segmented birefringent plates instead of the radial polarizer of German patent disclosure DE 195 35 392 A1.
  • OBJECTS OF THE INVENTION
  • [0007]
    The invention is based on the technical problem of providing an optical imaging system of the type mentioned at the outset that will both allow comparatively highly antireflective coatings on its optics, which will minimize disturbing reflected stray light, and be capable of yielding an exiting light beam that will allow creating high-contrast interference fringes on an image plane. The invention has a further object of providing a crystalline-quartz plate that can be used in such an optical imaging system.
  • SUMMARY OF THE INVENTION
  • [0008]
    According to one formulation, the invention solves these and other objects by providing an optical imaging system, in particular a microlithographic projection exposure system, that includes several imaging optical elements arranged one after the other along an optical axis, and a radial polarizer radially polarizing light transiting said optical imaging system and arranged at a location ahead of the final imaging optical element. A polarization rotator that transforms the radially polarized light into tangentially polarized light is arranged at a location following that imaging optical element that follows said radial polarizer in the optical train. The invention additionally addresses these objects by providing a crystalline-quartz plate configured as a polarization rotator, wherein a crystal axis of said plate is at least approximately normal to the plane of said plate.
  • [0009]
    The optical imaging system according to the invention is characterized therein that it both provides a means for creating radially polarized light with which at least part of the imaging optical components of said system operate, and provides a polarization rotator for rotating the planes of polarization of said radially polarized light and for transforming same into tangentially polarized light in order to yield light that will be tangentially polarized in an imaging plane. Said polarization rotator is arranged following at least one, and preferably several, or even all, of the imaging optical components of said system.
  • [0010]
    A consequence of said measures according to the invention is that all imaging optical components of said system that are situated between said means for creating radially polarized light and said polarization rotator may operate with radially polarized light, for which they may be highly effectively antireflection coated. In particular, a conventional type of radial polarizer situated at an arbitrary location in the beam path between said light source, i.e., a location ahead of said system's first imaging optical component, and said system's final imaging optical component, but ahead of said polarization rotator, may serve as said means for creating radially polarized light. Said polarization rotator will simultaneously transform said radially polarized light, which is preferable for the imaging optical components involved, into tangentially polarized light that will then be incident on said image plane, which will allow creating high-contrast interference fringes thereon. Since said polarization transformation is effected by rotating planes of polarization, the associated intensity losses may be held to low levels.
  • [0011]
    Under another embodiment of the invention, a plate having an optically active material is employed as said polarization rotator. Optically active materials are known to rotate the planes of polarization of transmitted light, where the angles through which same are rotated will be proportional to the thicknesses of said materials and the constants of proportionality involved will increase as the wavelengths involved decrease. Under another embodiment of the invention, a crystalline-quartz plate serves as said polarization rotator. Although said crystalline-quartz plate will also have birefringent properties, suitably dimensioning and orienting said plate will allow maintaining same at levels so low that the desired polarization rotation will not be significantly altered by the optical activity of said crystalline quartz, at least not in cases involving UV-light, e.g., light having wavelengths of about 157 nm or less.
  • [0012]
    Under beneficial other embodiments of the invention in which said optical imaging system is a microlithographic projection exposure system, said polarization rotator for rotating the planes of polarization of radially polarized light and transforming same into tangentially polarized light is arranged within a section of said system's projection lens where the beam path is approximately parallel to its optical axis, in particular, in a pupillary plane, or within a section lying between a pupillary plane and an image plane of same containing, e.g., a wafer to be illuminated. In the case of the first of said arrangements, arranging said polarization rotator in said pupillary plane has the advantage that the approximately normal incidence of light on said polarization rotator yields a high optical activity of same and the effects of off-axis illumination of same, such as birefringence effects, will remain minimal. On the other hand, arranging said polarization rotator closer to said image plane has the advantages that those imaging optical elements situated between said pupillary plane and said polarization rotator will also be penetrated by radially polarized light and that employment of a smaller polarization rotator will be sufficient.
  • [0013]
    In the case of the crystalline-quartz plate according to the invention, the crystal axis of said plate is oriented approximately parallel to the normal to its surface. A crystalline-quartz plate having said orientation is particularly well-suited to employment as a polarization rotator on optical imaging systems according to the invention.
  • [0014]
    Under a modified embodiment of the invention, the thickness of said crystalline-quartz plate is 500 μm or less and preferably about 200 μm or less. Plates that thin are particularly suitable for accomplishing the polarization-rotation function on optical imaging systems according to the invention when operated at far-UV wavelengths of 157 nm or less.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0015]
    A beneficial embodiment of the invention is depicted in the accompanying drawings and will be described below. Said drawings depict:
  • [0016]
    [0016]FIG. 1: a schematic drawing of a microlithographic projection exposure system that has a means for creating radially polarized light arranged within its illumination system and a polarization rotator for rotating the planes of polarization of same and for transforming same into tangentially polarized light arranged within its projection lens and
  • [0017]
    [0017]FIG. 2: a detailed drawing of the projection lens depicted in FIG. 1.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIEMENTS
  • [0018]
    [0018]FIG. 1 depicts a conventional microlithographic projection exposure system that is similar to that cited in German patent disclosure DE 195 35 392 A1, except for the arrangement of its polarization rotator within its projections lens. Light from a light source (1), e.g., an i-line mercury discharge lamp, that emits illuminating UV-radiation at a desired wavelength focused by a mirror (2) illuminates an aperture stop (3) that is followed by a lens (4) such as, in particular, a zoom lens, and that allows making various adjustments, in particular, choosing a desired circular aperture. Instead of a mercury discharge lamp, a laser light source emitting at a wavelength of around 260 nm or less, e.g., at 157 nm, may be employed as said light source (1), in which case said mirror (2) will be superfluous.
  • [0019]
    A radial polarizer (5) that transforms unpolarized incident light into radially polarized light is arranged following said lens, (4). Said radial polarizer (5) may be, e.g., a truncated-cone polarizer having the configuration described in German patent laid-open publication DE 195 35 392 A1, which performs said transformation without causing significant light losses. The resultant largely radially polarized light then travels from said radial polarizer (5) to a honeycomb condenser (6) and a relay and field lens (7) that follows same in the optical train. The latter components collectively serve to provide optimal illumination of a mask (8), which is also termed a “reticle,” bearing the pattern to be imaged. A projection lens (9), which has been configured as a reducing lens and follows said components in the optical train, images said pattern, which lies in the object plane of said projection lens (9), onto a film of photoresist (10) on a wafer (11) lying in the image plane of said projection lens (9) with ultrahigh spatial resolution, preferably with a spatial resolution of better than 1 μm. The numerical aperture of said system should preferably exceed 0.5, in particular, should preferably range from 0.7 to 0.9.
  • [0020]
    [0020]FIG. 2 schematically depicts a prospective configuration of said projection lens (9), which has numerous lenses (L1-L16). Since many of the lens arrangements typically employed on projection lenses of that type are known, those lenses (L1-L16) that have been depicted in FIG. 2 are to be interpreted as representing lenses typically employed on said conventional types of lens arrangements and have thus been symbolically indicated by rectangles that, of course, are not intended to represent their true geometric shapes. In order to clarify the operation of said projection lens (9), the paths of the principal rays (12 a, 13 a) and the marginal rays (12 b, 13 b) of the imaging beams (12, 13) associated with a central point (8 a) of said mask and a point (8 b) near the edge of said mask, respectively, have been schematically indicated.
  • [0021]
    The distinctive feature of the projection lens depicted in FIG. 2 is its arrangement of a polarization rotator (14) that, in the case of this particular example, is situated right after a pupillary plane (15) of said projection lens where a typical aperture stop is arranged. Said polarization rotator (14) has been designed to rotate the planes of polarization of incident radially polarized light and transform same into tangentially polarized light. A thin crystalline-quartz plate whose crystal axis (17), which has been schematically indicated in FIG. 2, is oriented approximately parallel to the optical axis of said projection lens may be employed for that purpose, where said crystal axis (17) of said crystalline-quartz plate (14) is oriented approximately orthogonal to the plane of said plate, i.e., approximately parallel to the normal to its surface.
  • [0022]
    Crystalline quartz is known to be optically active and, unlike the case of normal birefringence, rotates the planes of polarization of incident light, regardless of their original orientations, due to its optical activity. Another advantage of optically active materials is that they create no double images. The angle of rotation for a given material will be proportional to its thickness, where the constant of proportionality involved will vary with its temperature and be largely determined by the wavelength involved. In the case of the application involved here, it is particularly beneficial that said constant of proportionality markedly increases with decreasing wavelength and is several times greater for wavelengths falling within the UV spectral range, e.g., the wavelength range 150 nm to 260 nm, than for visible light. This is the reason why it will be sufficient to employ a very thin crystalline-quartz plate (14) whose thickness is only around 500 μm, and preferably 200 μm or less, in order to produce the desired rotation in cases where UV-radiation is employed on microlithographic projection illumination systems. Since birefringence effects will not simultaneously significantly increase at shorter wavelengths, the ratio of the aforesaid desired function of said optical activity to any disturbing birefringence effects will be correspondingly improved at short wavelengths falling within the UV spectral range.
  • [0023]
    Arranging said polarization rotator (14) near said pupillary plane (15) or at some other location in the beam path where light rays propagate parallel to, or at a small angle of inclination with respect to, said optical axis (16) has the advantage that light rays incident on same will be approximately normal to its surface, in which case the ratio of said desirable function of said optical activity to said, in the case of the example considered here, undesirable, birefringence effects of crystalline quartz, will be particularly large. In the case of that particular location of said polarization rotator (14) shown in FIG. 2, eleven of said sixteen lenses (L1-L16) of said projection lens and the entire optical train of said illumination system, commencing with said radial polarizer (5), will lie within that portion of the beam path where light is largely radially polarized. This will allow providing highly effective antireflection coatings on the lenses involved, while said polarization rotator (14) will provide light incident on said wafer (11) that has the desired, largely tangential, polarization.
  • [0024]
    Alternatively, said polarization rotator (14) may also be positioned at any arbitrary, location along said optical axis (16) of said system, but should preferably be positioned as close as possible to said image plane or said wafer (11) in order to ensure that as many as possible of said imaging optical components will be penetrated by radially polarized light. Relocating said polarization rotator (14) from the vicinity of said pupillary plane (15) to a location closer to said wafer (11) will allow choosing a smaller diameter for said polarization rotator (14), while providing that at least some of those lenses (L12-L16) situated between the indicated location of said polarization rotator (14) and said wafer (11) will still be irradiated by radially polarized light. However, the divergence, i.e., the maximum angle of inclination with respect to said optical axis (16), of the beam incident on said polarization rotator (14) will then increase.
  • [0025]
    The ratio of the strength of said optical activity to that of said birefringence effects will decrease with increasing angle of incidence, which will slightly worsen the effects due to said crystalline-quartz material's birefringence. However, decisions regarding the maximum angles of incidence that may be tolerated may be made based on the particular applications to be involved. Those decisions will also depend upon the extent to which light has been radially polarized with respect to the optical axis of the crystal of said polarization rotator (14) prior to its arrival at same, since, in the ideal case of totally radially polarized light, no birefringence effects will occur, even for high beam divergences, i.e., at large angles of incidence on same. However, said ideal case will usually be unachievable in actual practice, since light supplied by said illumination system will not be perfectly radially polarized and slight departures from perfect radial polarization will occur due to stress-induced birefringence in said lenses. Nevertheless, fairly high beam divergences may be tolerated due to the resultant very high degrees of optical activity, particularly at short UV-wavelengths, and said polarization rotator (14) might even be positioned between the last of said lenses (L16) and said wafer (11). The latter placement of said polarization rotator (14) has the particularly beneficial advantage that all imaging optical components of said optical imaging system will be able to operate with radially polarized light and said polarization rotator (14) will no longer need to be incorporated into said projection lens, i.e., may be positioned outside same.
  • [0026]
    The foregoing description of a beneficial sample embodiment makes it clear that an optical imaging system according to the invention will allow achieving high-quality imaging largely free of the disturbing effects of stray light by providing that a large majority of said imaging optical components, preferably at least ⅔ thereof, will be irradiated by radially polarized light for which said imaging optical components have highly effective antireflection coatings. Said optical imaging system will also be capable of providing a largely tangentially polarized beam that will allow creating high-contrast interference fringes, such as those that will be of benefit when same is employed as, e.g., a microlithographic projection illumination system for exposing photoresists on wafers, at its image plane.
Citations de brevets
Brevet cité Date de dépôt Date de publication Déposant Titre
US3484714 *16 déc. 196416 déc. 1969American Optical CorpLaser having a 90 polarization rotator between two rods to compensate for the effects of thermal gradients
US3719415 *22 sept. 19716 mars 1973Bell Telephone Labor IncRadial and tangential polarizers
US3915553 *20 déc. 197328 oct. 1975Xerox CorpElectrooptic color filter system
US4194168 *25 nov. 197718 mars 1980Spectra-Physics, Inc.Unidirectional ring laser apparatus and method
US4755027 *30 juin 19865 juil. 1988Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V.Method and device for polarizing light radiation
US5300972 *5 févr. 19935 avr. 1994Mitsubishi Denki Kabushiki KaishaProjection exposure apparatus
US5365371 *5 févr. 199315 nov. 1994Mitsubishi Denki Kabushiki KaishaProjection exposure apparatus
US5442184 *10 déc. 199315 août 1995Texas Instruments IncorporatedSystem and method for semiconductor processing using polarized radiant energy
US5459000 *4 oct. 199317 oct. 1995Canon Kabushiki KaishaImage projection method and device manufacturing method using the image projection method
US5465200 *19 juil. 19937 nov. 1995General Motors CorporationLamp assembly fastening system
US5541026 *7 juin 199530 juil. 1996Nikon CorporationExposure apparatus and photo mask
US5673103 *23 août 199630 sept. 1997Kabushiki Kaisha ToshibaExposure apparatus and method
US5677755 *28 oct. 199414 oct. 1997Hitachi, Ltd.Method and apparatus for pattern exposure, mask used therefor, and semiconductor integrated circuit produced by using them
US5815247 *21 sept. 199529 sept. 1998Siemens AktiengesellschaftAvoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
US5933219 *19 avr. 19953 août 1999Canon Kabushiki KaishaProjection exposure apparatus and device manufacturing method capable of controlling polarization direction
US6163367 *16 juil. 199819 déc. 2000International Business Machines CorporationApparatus and method for in-situ adjustment of light transmission in a photolithography process
US6191880 *14 juil. 199920 févr. 2001Carl-Zeiss-StiftungRadial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
US6466303 *11 juin 199915 oct. 2002Nikon CorporationProjection exposure apparatus with a catadioptric projection optical system
US6483573 *14 févr. 200019 nov. 2002Carl-Zeiss-StiftungProjection exposure system and an exposure method in microlithography
US6636295 *30 mars 200121 oct. 2003Canon Kabushiki KaishaExposure apparatus and device manufacturing method
US6661499 *23 août 20029 déc. 2003Nikon CorporationProjection exposure apparatus with a catadioptric projection optical system
US20010019404 *5 mars 20016 sept. 2001Karl-Heinz SchusterProjection exposure system for microlithography and method for generating microlithographic images
US20040057036 *19 sept. 200325 mars 2004Miyoko KawashimaExposure method
Référencé par
Brevet citant Date de dépôt Date de publication Déposant Titre
US79163914 mars 200529 mars 2011Carl Zeiss Smt GmbhApparatus for providing a pattern of polarization
US825939328 oct. 20094 sept. 2012Carl Zeiss Smt GmbhPolarization-modulating optical element
US827007725 mai 200618 sept. 2012Carl Zeiss Smt GmbhPolarization-modulating optical element
US827952414 janv. 20052 oct. 2012Carl Zeiss Smt GmbhPolarization-modulating optical element
US828962323 mars 201016 oct. 2012Carl Zeiss Smt GmbhPolarization-modulating optical element
US83200435 sept. 200827 nov. 2012Carl Zeiss Smt GmbhIllumination apparatus for microlithographyprojection system including polarization-modulating optical element
US83395785 févr. 201025 déc. 2012Nikon CorporationOptical system, exposure system, and exposure method
US83510215 févr. 20108 janv. 2013Nikon CorporationOptical system, exposure system, and exposure method
US843698314 janv. 20057 mai 2013Nikon CorporationOptical system, exposure system, and exposure method
US848271729 août 20089 juil. 2013Carl Zeiss Smt GmbhPolarization-modulating optical element
US867517720 sept. 200718 mars 2014Nikon CorporationExposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US871147913 mars 201329 avr. 2014Carl Zeiss Smt GmbhIllumination apparatus for microlithography projection system including polarization-modulating optical element
US886108428 août 200814 oct. 2014Carl Zeiss Smt AgPolarization-modulating optical element
US914099011 juil. 201122 sept. 2015Nikon CorporationPolarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US914099226 avr. 200622 sept. 2015Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US914099323 déc. 200822 sept. 2015Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US914647412 mars 200929 sept. 2015Nikon CorporationExposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US91464769 mai 201329 sept. 2015Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US916420914 juil. 201120 oct. 2015Nikon CorporationIllumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US916439320 sept. 200720 oct. 2015Nikon CorporationExposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US924435917 juil. 200926 janv. 2016Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US9274435 *31 mars 20091 mars 2016Carl Zeiss Smt GmbhIllumination system or projection objective of a microlithographic projection exposure apparatus
US931677217 déc. 201319 avr. 2016Carl Zeiss Smt GmbhProducing polarization-modulating optical element for microlithography system
US941124511 janv. 20139 août 2016Carl Zeiss Smt GmbhPolarization-influencing optical arrangement, in particular in a microlithographic projection exposure apparatus
US94236948 oct. 201323 août 2016Nikon CorporationPolarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US94236978 mai 201323 août 2016Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US942369815 mai 201523 août 2016Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US942984829 oct. 200830 août 2016Nikon CorporationPolarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US94709822 juil. 201318 oct. 2016Carl Zeiss Smt GmbhPolarization-modulating optical element
US95819112 juil. 201328 févr. 2017Carl Zeiss Smt GmbhPolarization-modulating optical element
US95884329 mai 20137 mars 2017Nikon CorporationIllumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US96784378 mai 201313 juin 2017Nikon CorporationIllumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US976001415 mai 201512 sept. 2017Nikon CorporationIllumination optical apparatus and projection exposure apparatus
US20040150877 *26 janv. 20045 août 2004Artur HogeleOptical arrangement having a lens of single-axis, double-refracting material
US20060170901 *6 févr. 20063 août 2006Nikon CorporationPolarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20070019179 *25 mai 200625 janv. 2007Damian FiolkaPolarization-modulating optical element
US20080130109 *4 mars 20055 juin 2008Carl Zeiss Smt AgApparatus For Providing A Pattern Of Polarization
US20090195766 *31 mars 20096 août 2009Carl Zeiss Smt AgIllumination system or projection objective of a microlithographic projection exposure apparatus
US20090316132 *25 août 200924 déc. 2009Nikon CorporationPolarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
DE102008043321A130 oct. 200823 juil. 2009Carl Zeiss Smt AgOptical system for use in micro-lithographic projection exposure system, has polarization manipulator increasing maximum value of delay in light cluster for field point in comparison to appropriate optical system without manipulator
Classifications
Classification aux États-Unis359/649, 355/53, 359/492.01
Classification internationaleH01L21/027, G02B5/30, G02B13/24, G02B27/28, G02B13/14, G03F7/20
Classification coopérativeG02B13/143, G02B27/286, G03F7/70966, G03F7/70566, G03F7/70241, G03B27/72
Classification européenneG03F7/70L4D, G03F7/70F6, G03F7/70P10B2, G03B27/72, G02B27/28C, G02B13/14B