US20040252748A1 - Fiber optic sensing systems and methods - Google Patents

Fiber optic sensing systems and methods Download PDF

Info

Publication number
US20040252748A1
US20040252748A1 US10/461,977 US46197703A US2004252748A1 US 20040252748 A1 US20040252748 A1 US 20040252748A1 US 46197703 A US46197703 A US 46197703A US 2004252748 A1 US2004252748 A1 US 2004252748A1
Authority
US
United States
Prior art keywords
sensing system
substance
well
sensor surface
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/461,977
Inventor
Daniel Gleitman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WellDynamics BV
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Priority to US10/461,977 priority Critical patent/US20040252748A1/en
Assigned to HALLIBURTON ENERGY SERVICES, INC. reassignment HALLIBURTON ENERGY SERVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLEITMAN, DANIEL D.
Publication of US20040252748A1 publication Critical patent/US20040252748A1/en
Priority to US11/453,664 priority patent/US20060233217A1/en
Assigned to WELLDYNAMICS, B.V. reassignment WELLDYNAMICS, B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALLIBURTON ENERGY SERVICES, INC.
Assigned to WELLDYNAMICS, B.V. reassignment WELLDYNAMICS, B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALLIBURTON ENERGY SERVICES, INC.
Priority to US12/034,058 priority patent/US8961006B2/en
Priority to US14/596,380 priority patent/US20150122984A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/16Detecting, e.g. by using light barriers using one transmitter and one receiver using optical fibres
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Definitions

  • the present invention relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an embodiment described herein, more particularly provides a fiber optic sensing system and method for measuring properties, such as heat transfer characteristics, of substances and environments in wells and other locations.
  • a fluid interface i.e., liquid/liquid or gas/liquid
  • a sensing system described herein is suitable for permanent installation in a well, does not interfere with fluid flow or production, and utilizes a unique method of operation to detect properties of substances in the well.
  • a fiber optic sensing system for sensing at least one property of a substance.
  • the system includes a sensor surface in contact with the substance.
  • An optical fiber transmits energy to the sensor surface.
  • the sensor surface in turn, transmits energy to the substance.
  • a fiber optic sensing system for use in detecting at least one property of a substance in a well.
  • the sensing system includes a sensor surface configured for contacting the substance in the well, an optical fiber for transmitting energy to the sensor surface and a temperature sensor for detecting a temperature of the substance.
  • the sensor surface is heated when energy is transmitted by the optical fiber.
  • the sensing system includes a sensor surface configured for contacting the substance in the well and an optical fiber for transmitting light energy to the sensor surface.
  • the light energy is transmitted from the optical fiber through the sensor surface and to the substance.
  • the light energy produces a response in the substance, such as a temperature change, fluorescence or a spectral emission.
  • a method of detecting at least one property of a substance in a well includes the steps of: positioning a sensor surface in the well in contact with the substance; transmitting energy through an optical fiber to the sensor surface, thereby heating the sensor surface and the substance in contact with the sensor surface; and detecting a temperature of the heated substance.
  • another method of detecting at least one property of a substance in a well includes the steps of: positioning a sensor surface in the well in contact with the substance; transmitting light energy through an optical fiber to the sensor surface; transmitting the light energy through the sensor surface to the substance; and detecting a response of the substance to the transmitted light energy.
  • FIG. 1 is a schematic partially cross-sectional view of a first fiber optic sensing system embodying principles of the present invention
  • FIG. 2 is an enlarged schematic cross-sectional view of a first fiber optic sensor embodying principles of the present invention
  • FIG. 3 is a flowchart of steps in a first method embodying principles of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a second fiber optic sensing system embodying principles of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a second fiber optic sensor embodying principles of the present invention.
  • FIG. 6 is a flowchart of steps in a second method embodying principles of the present invention.
  • FIG. 7 is a flowchart of steps in a third method embodying principles of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a third fiber optic sensor embodying principles of the present invention.
  • FIG. 9 is a flowchart of steps in a fourth method embodying principles of the present invention.
  • FIG. 1 Representatively and schematically illustrated in FIG. 1 is a fiber optic sensing system 10 which embodies principles of the present invention.
  • directional terms such as “above”, “below”, “upper”, “lower”, etc., are used only for convenience in referring to the accompanying drawings. Additionally, it is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention.
  • the sensing system 10 is depicted in FIG. 1 as being installed in a well which includes a wellbore 12 intersecting an earth formation 14 .
  • the wellbore 12 is lined with protective casing or liner 16 .
  • a hardenable material 18 such as cement, epoxy, etc., is positioned between the casing 16 and the wellbore 12 .
  • casing and “liner” are used to indicate any protective wellbore lining including, but not limited to, segmented or continuous tubular strings, rigid or expandable structures, made from steel, plastics or any other material, etc.
  • a tubular string 20 such as a production tubing string, is positioned in the casing 16 for flowing fluids from the well to the earth's surface, subsea wellhead, etc.
  • a production tubing string such as a production tubing string
  • the principles of the invention may be practiced in circumstances other than a producing well, such as in an injection well or a combined production and injection well.
  • a fiber optic sensing device 22 is positioned in the tubular string 20 to detect properties of fluid flowing through the tubular string.
  • Another fiber optic sensing device 24 is positioned external to the tubular string 20 to detect properties of the tubular string itself and/or to detect properties of fluid in an annulus 32 external to the tubular string.
  • the sensing devices 22 , 24 would preferably be configured so that they are disposed in a sidewall of the tubular string 20 .
  • Another fiber optic sensing device 26 is positioned within the casing 16 to detect properties of the casing itself and/or to detect properties of fluid disposed in the annulus 32 between the tubular string 20 and the casing.
  • Another fiber optic sensing device 28 is positioned external to the casing 16 to detect properties of the cement 18 and/or properties of fluids in the cement. In actual practice, the sensing devices 26 , 28 would preferably be configured so that they are disposed in a sidewall of the casing 16 .
  • Yet another fiber optic sensing device 30 is positioned adjacent the formation 14 to detect properties of the formation itself and/or to detect properties of fluid in the formation.
  • the sensing device 30 may be used to detect the progress or presence of a fluid interface 34 in the formation 14 , such as an oil/water interface.
  • the sensing device 30 may be conveyed into the well attached to the casing 16 , or the sensing device could be flowed into the well along with the cement 18 as described in U.S. Pat. No. 6,408,943, the entire disclosure of which is incorporated herein by this reference.
  • the sensing system 10 illustrated in FIG. 1 includes the various sensing devices 22 , 24 , 26 , 28 , 30 to demonstrate the broad variety of applications of the principles of the invention to the problems of detecting properties of substances in a well.
  • An actual well installation would not necessarily include all of the sensing devices 22 , 24 , 26 , 28 , 30 , and might include other sensing devices which embody principles of the invention. It is also not necessary for the well to be cased, to have any tubular string therein, or to be a production well.
  • the sensor system 10 depicted in FIG. 1 is given only as an example of some of the uses of the inventive concepts described below, and these inventive concepts are in no way limited to the specific details of the sensor system of FIG. 1.
  • the sensing devices 22 , 24 , 26 , 28 , 30 detect properties of a variety of substances in the well. These substances are: 1) fluid flowing through the tubular string 20 , 2) the tubular string itself, 3) fluid in the annulus 32 external to the tubular string, 4) the casing 16 , 5) the cement 18 , 6) fluid in the cement, 7) the formation 14 , and 8) fluid in the formation. Of course, properties of substances other than, or in addition to, these may be detected without departing from the principles of the invention. In addition, or alternatively, the sensing devices 22 , 24 , 26 , 28 , 30 may detect properties of the environment or location, such as heat capacity, heat transfer, etc.
  • the sensing devices 22 , 24 , 26 , 28 , 30 are described herein as “fiber optic” sensing devices, since they each include an optical fiber 36 connected thereto for operation of the sensing device.
  • An individual optical fiber 36 is illustrated for each of the sensing devices 22 , 24 , 26 , 28 , 30 in FIG. 1, but a single optical fiber may be used for more than one sensing device, if desired.
  • known optical multiplexing techniques may be used to permit multiple downhole sensing devices to be operated and/or communicated with via a single optical fiber.
  • the optical fiber 36 may be installed in a capillary tube inside or outside of the tubular string 20 , before or after the capillary tube is installed in the well, for example, as described in U.S. Pat. Nos. 5,163,321 and 4,976,142, the disclosures of which are incorporated herein by this reference.
  • the sensing devices 22 , 24 , 26 , 28 , 30 may be connected to the optical fiber 36 before or after installation in the well, for example, the optical fiber may be “stabbed into” the sensing devices after they are installed in the well.
  • optical fiber 36 and/or any of the sensors 22 , 24 , 26 , 28 , 30 may be integrated into the construction of any structure in the well, for example, integrated into the sidewall of a tubular string as described in U.S. Patent Application Publication No. 2002/0007945, the entire disclosure of which is incorporated herein by this reference.
  • the sensing system 10 utilizing the optical fiber 36 and one or more of the sensing devices 22 , 24 , 26 , 28 , 30 will typically also include an instrument at the surface or another remote location (not shown in FIG. 1, but see the detector 122 depicted in FIG. 8).
  • the instrument may provide light energy, receive the sensing device(s) response, perform signal analysis, including optical signal processing, and may be packaged in one or more individual components in one or more physical locations, etc.
  • a single instrument may be used in conjunction with a single optical fiber 36 , multiple instruments may be used in conjunction with multiple optical fibers, and any combination thereof.
  • a fiber optic sensing device 40 embodying principles of the invention is representatively illustrated.
  • the sensing device 40 may be used for any of the sensing devices 22 , 24 , 26 , 28 , 30 described above, or the sensing device 40 may be used in other sensing systems.
  • the sensing device 40 is depicted as being positioned in a sidewall of a tubular string 42 , such as the tubular string 20 or casing 16 depicted in FIG. 1, but it should be understood that the sensing device may be otherwise positioned in keeping with the principles of the invention.
  • a surface 44 of the sensing device 40 is positioned in contact with a fluid (indicated by arrows 46 ) flowing through a passage 48 in the tubular string 42 .
  • This configuration corresponds to the sensing device 22 in the tubular string 20 , or the sensing device 26 in the casing 16 , in FIG. 1.
  • the fluid 46 could be external to the tubular string 42 , with the surface 44 of the sensing device 40 facing outwardly, which would correspond to the sensing device 24 on the tubular string 20 , or to the sensing device 28 on the casing 16 , as depicted in FIG. 1.
  • An optical fiber 50 extends from a remote location, such as the earth's surface or another location in the well, to an energy converter 52 .
  • Light energy transmitted through the optical fiber 50 is converted to heat in a substrate 54 by the converter 52 .
  • the converter 52 may be a black body interface, or another type of converter.
  • an interface between the optical fiber 50 and the substrate 54 is not necessarily a black body or any type of separate converter 52 .
  • the optical fiber 50 could be connected directly to the substrate 54 (as depicted for the sensing device 120 in FIG. 8).
  • Other connection or interface methods may also be used in keeping with the principles of the invention, for example, the substrate 54 could have a coating integrally formed therewith, etc.
  • Heat produced at the converter 52 is used to increase the temperature of the substrate 54 , which in turn heats a coating 56 on an exterior side of the substrate.
  • the converter 52 could be a special black surface on the coating 56 , or the converter could be a structure interposed between the optical fiber 50 and the substrate 54 .
  • the heated coating 56 in turn, heats the fluid 46 , which enables at least one property of the fluid to be detected, as described in more detail below.
  • coating is used to indicate an outer layer or region of material, and is not used to specify any particular technique of producing such a layer or region. Coatings may be produced by any process, such as heat treatment, chemical treatment, application of a different material to a substrate, etc.
  • the substrate 54 and coating 56 are preferably made of highly thermally conductive materials and are insulated from the tubular string 42 by insulation 58 .
  • the tubular string 42 is made of a low thermal conductivity material, such as a composite material, or in other circumstances, the insulation 58 may not be used.
  • the substrate 54 may be made of a metallic material, such as steel.
  • the coating 56 is preferably made of a material which is very durable, relatively erosion resistant, relatively hard, as well as being highly thermally conductive, since it is exposed to the flow of the fluid 46 .
  • a material suitable for use in the coating 56 is a diamond material.
  • the diamond material is preferably attached to the substrate 54 by chemical vapor deposition, since this results in a reproducible uniform thickness of the diamond material which is permanently bonded to the substrate 54 .
  • the substrate 54 and coating 56 may be used for the substrate 54 and coating 56 , if desired. In fact, it is not necessary for the substrate 54 material and the coating 56 material to be different materials. Thus, it is not necessary for the sensing device 40 to include a separate substrate 54 (for example, as depicted for the sensing device 120 in FIG. 8).
  • a temperature sensor 60 such as a thermocouple or a fiber optic temperature sensor (for example, a Bragg grating-type sensor), detects the temperature of the coating 56 . Due to the high thermal conductivity of the coating 56 , the fluid 46 in direct contact with the surface 44 should reach approximately the same temperature as the coating, but if a more direct measurement of the fluid temperature proximate the surface is desired, the sensor 60 may be positioned so that it is in direct contact with the fluid.
  • Another temperature sensor 62 is positioned downstream from the surface 44
  • yet another temperature sensor 64 is positioned upstream from the surface.
  • the sensors 60 , 62 , 64 are depicted in FIG. 2 as being connected to a single fiber optic line 68 extending to a remote location, such as to the instrument at a remote location as discussed above.
  • a remote location such as to the instrument at a remote location as discussed above.
  • separate lines may be used for the individual sensors 60 , 62 , 64 , and other types of lines (such as electrical lines), power supply and communications may be used, without departing from the principles of the invention.
  • the temperature sensors 60 , 62 , 64 it should be understood that it is not necessary for all of the temperature sensors 60 , 62 , 64 to be included in the fiber optic sensing device 40 , but the use of these temperature sensors does permit a significant number of properties of the fluid 46 to be detected.
  • use of the temperature sensors 62 , 64 upstream and downstream of the surface 44 permits the direction of flow of the fluid 46 to be determined.
  • the fluid 46 will have an increased temperature on the downstream side of the surface 44 .
  • the temperature sensor 62 will detect an increased temperature of the fluid 46 , whereas the sensor 64 will not. If the flow of the fluid 46 were reversed, the sensor 64 would detect the increased temperature of the fluid 46 .
  • the coating 56 will eventually reach an elevated equilibrium temperature, detected by the sensor 60 .
  • This equilibrium temperature is related to the velocity of the flow (or flow rate) of the fluid 46 past the surface 44 , as well as being related to other properties of the fluid.
  • the light energy intensity and the coating 56 temperature are known, the fluid 46 flow rate may be determined.
  • the other properties of the fluid 46 may be determined by utilization of the sensing device 40 , as well.
  • the sensors 60 , 64 may be used to determine the density and thermal characteristics of the fluid 46 .
  • the thermal conductivity of the fluid may be determined.
  • the density of the fluid may be determined. This temperature difference may also be used to determine the velocity of the fluid 46 . If the density of the fluid 46 is determined, then the relative ratio of different liquids (e.g., oil/water) making up the fluid may be determined.
  • the downstream sensor 62 may be used in place of the upstream sensor 64 in these determinations of thermal conductivity, velocity, composition, etc., when flow direction is reversed.
  • a fiber laser 66 interconnected to the optical fiber 50 may be cycled on and off.
  • the laser 66 may be positioned downhole as depicted in FIG. 2, or it may be positioned at a remote location, such as the earth's surface.
  • another type of light energy source or laser may be used instead of, or in addition to, the laser 66 .
  • the coating 56 When the laser 66 is on, the coating 56 will reach an elevated equilibrium temperature. When the laser 66 is off, the coating 56 temperature will reduce to another equilibrium temperature. By detecting multiple sets of these elevated and reduced equilibrium temperatures, more accurate determinations may be made as to the properties of the fluid 46 .
  • the coating 56 may be heated to an elevated equilibrium temperature by turning the laser 66 on. Then, with the laser 66 turned off, the transient decline in temperature of the coating 56 over time is detected by the sensor 60 . This cooling versus time data may then be used in determining the velocity, density, composition, etc. of the fluid 46 .
  • a sensor surface is placed in contact with a fluid.
  • the fluid may be the fluid 46 of FIG. 2, fluid in the annulus 32 of FIG. 1, fluid in the cement 18 , fluid in the formation 14 , etc.
  • the sensor surface may be placed in contact with another substance, such as the tubular string 20 material, the casing 16 material, the cement 18 , the formation 14 , etc.
  • step 74 the sensor surface is heated. As described above for the sensing device 40 , light energy transmitted through the optical fiber 50 may be converted to heat energy to heat the sensor surface 44 . By heating the sensor surface, the substance in contact with the sensor surface is also heated.
  • the light energy transmitted through the optical fiber 50 may be varied to produce variations in the response of the substance to the heating produced by the light energy.
  • the response of the substance to this varied heating is indicative of properties of the substance, such as density, thermal conductivity, velocity, phase, composition (oil/water ratio, ratio of fluids produced from multiple zones), identity (zone of origin), the presence and/or progress of a fracture in a formation, a fluid interface in a formation (see FIG. 1) or in a well (see FIG. 4), integrity of a cementing operation (density of cement, presence of voids and cracks, migration of fluid through cement), etc.
  • the response may be qualitative or indicative of a trend over time. When combined with other data or modeling, the response may produce qualitative and quantitative results on which to base decisions concerning, for example, how production from the well or an injection program should be adjusted, etc.
  • the intensity of the light energy transmitted through the optical fiber 50 may be maintained constant, for example, to produce an equilibrium temperature of the coating 56 and/or of the substance in contact with the surface 44 .
  • the corresponding equilibrium temperature of the coating 56 and/or of the substance in contact with the surface 44 is indicative of properties of the substance, such as those discussed above.
  • Multiple equilibrium temperatures for corresponding multiple light energy intensities may be obtained to increase the accuracy of the determination of properties of the substance.
  • Equilibrium temperatures in the coating 56 or substance may be produced by other methods, such as by varying the light energy in patterns or waves (square waves, sine waves, etc.). Multiple temperature equilibria may also be produced by maintaining the light energy constant and varying a fluid property, for example, by adjusting the flow rate using a choke, etc.
  • the light energy transmitted through the optical fiber 50 may be at times varied or cycled, and at times maintained constant. It is conceived that a combination of techniques will produce reliable “signatures” of the substance properties, so that they may be readily determined given the wealth of information provided by the sensing device 40 . Obtaining these substance property “signatures” is an example of the type of empirical testing that a person skilled in the art would use to employ a new sensing device in a particular application. For example, production log measurements may be used to calibrate the “signatures,” thereby eliminating, or at least reducing, the need to periodically run production logs.
  • a substrate 54 and chemical vapor deposited diamond material coating 56 have been described above.
  • the diamond material in particular has a very high thermal conductivity and is very durable.
  • the invention is not limited to use of any particular material or configuration of the structure used to transfer heat to the substance in contact with the surface 44 .
  • step 76 of the method 70 temperature is sensed. This may be the temperature of the substance in contact with the sensor surface, the temperature of the substance remote from the sensor surface, the temperature of the sensor surface, temperature change over time in the substance or sensor surface, or another temperature or combination of temperatures.
  • the sensed temperature(s) is indicative of a property of the substance in contact with the sensor surface, as discussed above.
  • any type of sensor may be utilized to directly or indirectly detect a temperature in the sensing device 40 . It is also conceived that the sensors may be positioned in any orientation or arrangement relative to the sensor surface 44 as may be determined to be appropriate for sensing a particular substance property. This is another example of the versatility of the sensing device 40 , in that it may be configured as best suits the application.
  • step 78 properties of the fluid or other substance are calculated using the sensed temperature(s) from step 76 .
  • a person of ordinary skill in the art given the appropriate information (e.g., the configuration of the sensing device, well parameters, energy transmission, temperature data, etc.) will be able to determine the desired properties of the substance without undue experimentation. It should, however, be recognized that, for some of the substance properties to be calculated, some empirical parameters may need to be determined through controlled tests before accurate calculations may be made, the sensing device 40 configured and calibrated, etc.
  • FIG. 4 another fiber optic sensing system 80 is representatively and schematically illustrated.
  • the sensing system 80 is similar in many respects to the sensing system 10 of FIG. 1, in that multiple sensing devices 40 are attached to a tubular member or string 82 .
  • the sensing devices 40 are used to detect properties of fluids (indicated by arrows 84 , 86 ) flowing through the tubular 82 .
  • An interface 88 between the fluids 84 , 86 may be detected by the sensing devices 40 which are circumferentially distributed about the tubular 82 .
  • the upper sensing devices 40 will detect one or more properties of the fluid 84 above the interface 88
  • the lower sensing devices will detect one or more properties of the fluid 86 below the interface. This information may be useful where the tubular 82 is positioned in an at least substantially horizontal wellbore and the fluids 84 , 86 are oil and water, or gas and oil, etc.
  • a longitudinal location of the interface 88 may be determined using the sensing devices 40 which are distributed longitudinally on the tubular. These sensing devices 40 may also, or alternatively, be used to determine properties of the tubular 82 and/or the fluids 84 , 86 , such as thermal gradient along the tubular, thermal conductivity, density, heat transfer coefficient, heat capacity, etc.
  • FIG. 5 another sensing device 90 is representatively and schematically illustrated.
  • the sensing device 90 is very similar to the sensing device 40 described above, and so elements of the sensing device 90 which are similar to those previously described are indicated in FIG. 5 using the same reference numbers.
  • the sensing device 90 is separated from any structure on which it may be mounted, for clarity of illustration and description, and to emphasize that it is not necessary for any sensing device described herein to be attached to any particular structure, or any structure at all.
  • the sensing device 90 could be installed prior to cementing or flowed into the well with the cement 18 as shown for the sensor 30 in FIG. 1.
  • the sensing device 90 as depicted in FIG. 5 also does not have temperature sensors. It is not necessary for any sensing device described herein to have one or more temperature sensors in any particular configuration or arrangement relative to the surface 44 . However, the sensing device 90 does preferably include at least one temperature sensor, which is not illustrated in FIG. 5.
  • the sensing device 90 does differ in at least one substantial respect from the sensing device 40 , in that the optical fiber 50 extends to the converter 52 , which is positioned adjacent the coating 56 . This configuration may produce a more direct heating of the surface 44 . The increased heating efficiency of the sensing device 90 may be desirable for use in some methods, such as the method 100 representatively illustrated in flowchart form in FIG. 6.
  • the method 100 is similar in many respects to the method 70 described above, and so steps of the method 100 which are similar to those previously described are indicated in FIG. 6 using the same reference numbers.
  • steps 72 , 74 and 78 are used in the method 100 , for example, a substance in contact with the sensor surface 44 is subjected to a heat transfer detected by the sensing device 40 , which is used to determine one or more properties of the substance.
  • a step 102 is used wherein a phase of the substance is changed.
  • the substance of interest proximate to the sensor surface 44 is a fluid being produced from a formation.
  • the fluid is often predominately a liquid phase (e.g., oil and/or water), and often includes a complex mixture of hydrocarbons, including dissolved gases and/or hydrocarbon fractions, which are liquid under downhole pressure, but at some combination of reduced pressure and/or increased temperature becomes gaseous.
  • the heating of the sensor surface 44 and the fluid immediately proximate can, therefore, cause an evolution of gas from the liquid, i.e., a local phase change.
  • the substance is initially a fluid, such as oil with gas dissolved therein
  • the heat transfer from the sensor surface 44 to the liquid causes a phase change, wherein the gas “bubbles” out of the liquid oil.
  • This phase change (known as the “bubble point”) is detected by the sensors in the sensing device 40 in step 104 of the method 100 .
  • the sensing device 40 may include a pressure sensor 106 which detects the ambient hydrostatic or circulating pressure proximate the sensor surface 44 .
  • the pressure sensor 106 may be a fiber optic sensor (such as a fiber Bragg grating-type sensor), in which case an optical fiber 108 may extend to the sensor from a remote location.
  • This information may be used to determine the PVT (pressure/volume/temperature) characteristics of the fluid 46 .
  • the phase change may be reversed, performed multiple times, be between other phases (such as liquid/solid as in hardening cement, solid/liquid as in chemical treatment of paraffin accumulation), etc., in keeping with the principles of the invention.
  • Wellbore fluids may be separately analyzed, for example, at a suitably equipped commercial laboratory, to precisely determine the PVT characteristics, and then this laboratory analysis may be used to calibrate the sensor measurements.
  • Qualitative measurements may also be used, for example, to identify trends in the PVT characteristics over time.
  • step 112 of the method 110 a structure (not necessarily a fluid) is in contact with the sensor surface 44 , and it is desired to monitor properties of the structure over time.
  • the sensor surface is heated in step 114 , temperature is sensed in step 116 , properties of the structure are calculated in step 118 , and the method 110 is repeated periodically in step 120 .
  • the step 72 was described as possibly being performed with the sensor surface 44 in contact with another substance, such as the tubular string 20 material, the casing 16 material, the cement 18 , the formation 14 , etc.
  • the method lo demonstrates how this may be accomplished for a particular application in which it is desired to monitor properties of a structure over time.
  • element 37 indicates a particular location which can be considered as a local thermal system of interest, wherein sensor 26 is used to detect the thermal properties of this thermal system which includes the formation 14 , cement 18 , casing 16 , annulus 32 , tubing 20 , the proximate trapped and flowing fluids, and the associated thermal interfaces.
  • the steps 112 - 118 could be performed each day, week or month, etc., to give an indication of how these properties change over time.
  • Another example would be placing the sensor surface 44 in contact with the formation 14 in order to detect properties of fluids in the formation. By monitoring the fluid properties in the formation 14 over time, the presence and progress of the fluid interface 34 through the formation, or other useful information, may be determined.
  • the steps 112 - 118 are very similar to the corresponding steps 72 - 78 of the method 70 .
  • the descriptions and variations of these corresponding steps 72 - 78 apply to the steps 112 - 118 of the method 110 , with the exception that the method 110 is more applicable to use with structures experiencing change in a well.
  • the method 110 may be used to calculate heat transfer though a structure, cement integrity (presence of voids and cracks, bond quality), fluid migration through cement or the formation, reservoir evaluation, heat capacities, other thermal properties of multiple structures and/or fluids downhole, physical properties of tubulars or other structures or fluids downhole, etc.
  • FIG. 8 another sensing device 120 embodying principles of the invention is representatively and schematically illustrated.
  • the sensing device 120 is at an enlarged scale and is depicted apart from its supporting structure and any associated sensors for illustrative clarity. However, it should be understood that the sensing device 120 may be positioned and supported in any manner, and may include sensors, such as the temperature sensors 60 , 62 , 64 , in keeping with the principles of the invention.
  • the sensing device 120 instead of heating the sensor surface 44 using light energy transmitted through the optical fiber 50 and converted to heat energy, in the sensing device 120 the light energy is transmitted directly through the diamond material 56 (or other light transmitting material, e.g., another transparent or at least translucent material) to the fluid 46 (or other substance) in contact with the surface 44 .
  • the fluid 46 responds to this energy input, and the response is detected as an indication of one or more properties of the fluid.
  • the sensor surface 44 could be placed in contact with a substance other than a fluid, such as a tubular string material, cement, a formation, etc., in which case a property of that substance (and possibly a fluid therein) may be determined using the sensing device 120 .
  • the light energy transmitted through the optical fiber 50 , and thence through the diamond material 56 is reflected off of the fluid 46 (or other substance) back through the diamond material to the optical fiber.
  • the reflected light is transmitted through the optical fiber 50 to a detector 122 at a remote location, such as the earth's surface or another location in the well.
  • the reflected light may be analyzed to determine certain properties of the fluid 46 .
  • the light energy transmitted through the diamond material 56 to the fluid 46 may cause at least a portion of the fluid to fluoresce.
  • This fluorescence, or lack thereof, is detected by the detector 122 (such as a fluoroscope) in order to determine the composition, identity, source, water/oil ratio, or other property of the fluid 46 .
  • the light energy transmitted through the diamond material 56 to the fluid 46 may excite the fluid to give off a spectrum indicative of the elemental composition of the fluid.
  • This spectrum is detected by the detector 122 (such as a spectrometer) in order to determine the composition, identity, source, water/oil ratio, or other property of the fluid 46 .
  • the light energy transmitted through the diamond material 56 to the fluid 46 may heat the fluid.
  • Such heating of the fluid 46 and/or associated heating of the diamond material 56 may be detected directly or indirectly by sensors, such as the temperature sensors 60 , 62 , 64 , to enable determination of properties of the fluid, such as density, velocity, thermal conductivity, or other property of the fluid.
  • a method 130 embodying principles of the invention is representatively illustrated in flowchart form.
  • the method 130 may be performed using the sensing device 120 of FIG. 8, or other sensing devices may be used in keeping with the principles of the invention.
  • the method 130 is described herein as if a fluid is in contact with the sensor surface 44 , but it should be understood that any type of substance may be used instead of, or in addition to, a fluid.
  • step 132 the fluid 46 contacts the sensor surface 44 .
  • step 134 the fluid 46 is excited by transmission of light energy from the optical fiber 50 through the sensor surface 44 to the fluid.
  • the fluid 46 may be heated by the light energy, a portion of the fluid may fluoresce, the fluid may give off a spectrum, etc. It should be understood that any response of the fluid 46 (or other substance) to the transmission of light energy through the sensor surface 44 is within the principles of the invention.
  • step 136 the response of the fluid 46 to the light energy transmitted through the sensor surface 44 is sensed.
  • This sensing step 136 may be performed in the well proximate the sensing device 120 , or it may be performed at a remote location.
  • a fluoroscope or spectrometer 122 could be positioned at the earth's surface to detect the response of the fluid 46 , or downhole sensors may be used, etc.
  • step 138 the response to the fluid 46 is used to calculate properties of the fluid, such as thermal or physical properties.
  • the fiber optic sensing devices 40 , 90 , 120 as described herein do not obstruct any flow passage in the well, are convenient and reliable in operation, and do not require intervention into the well to operate.
  • one or more of these benefits of the invention may be eliminated, if desired.
  • one of the sensing devices 40 , 90 , 120 could be used in a wireline conveyed production logging tool, which does obstruct a flow passage and requires an intervention into the well to operate.
  • the applications of the principles of the invention are not limited to those described above.

Abstract

Fiber optic sensing systems and methods. In a described embodiment, a fiber optic sensing system includes an optical fiber transmitting energy to a chemical vapor deposited diamond material proximate a substance in a well. The diamond material is deposited as a coating on a substrate. The substrate and coating are heated when the energy is transmitted by the optical fiber. This heats the substance in the well, which is detected to determine a property of the substance. In another embodiment, light energy is transmitted through the diamond material.

Description

    BACKGROUND
  • The present invention relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an embodiment described herein, more particularly provides a fiber optic sensing system and method for measuring properties, such as heat transfer characteristics, of substances and environments in wells and other locations. [0001]
  • It is frequently desirable to be able to detect or measure various properties of substances in a well. For example, it may be desirable to determine a rate of flow of fluid from a producing zone, determine the composition of a fluid mixture in the well, evaluate the quality of a cementing operation, locate a fluid interface (i.e., liquid/liquid or gas/liquid) in the well or in a formation intersected by the well, etc. [0002]
  • Typically, certain measurements are made by conveying a logging tool into the well and using sensors, such as flowmeters and thermocouples, to detect properties of fluid in the well. Unfortunately, the logging tool obstructs a passage for flow of fluid in the well, thereby interfering with production. It is also somewhat time-consuming and costly to make such logging trips into the well. This is particularly so if it is desired to periodically perform the measurements to track changes in the well over time, such as to evaluate the migration of an oil/water interface in a formation drained by the well. [0003]
  • Some fiber optic measurement systems have been developed for permanent installation in a well. However, these are very expensive, and their principles of operation make the measurements obtained using these systems possibly unreliable at certain flow rates, flow regimes and/or hydrocarbon combinations, etc. [0004]
  • Therefore, it may be seen that it would be beneficial to provide improved systems and methods for sensing properties of substances in a well. These systems and methods would preferably, but not necessarily, eliminate any obstruction to fluid flow through the well, be configured for permanent installation in the well, be convenient in use and provide reliable results. [0005]
  • Furthermore, it would be desirable for such systems and methods to be versatile in application to, for example, pipelines, chemical processes, on the surface, remotely controlled and/or monitored, etc. Other examples include production infrastructure immediately downstream of a well, e.g., sea bed flowlines and manifolds, subsea or surface wellheads, risers and production platform pipes. Sensing systems installed at these locations may be used along with other sensors for monitoring of production parameters, as well as formation and deposition of waxes, asphaltines and hydrates. [0006]
  • SUMMARY
  • In carrying out the principles of the present invention, in accordance with an embodiment thereof, fiber optic sensing systems and methods are provided which solve one or more of the above problems in the art. A sensing system described herein is suitable for permanent installation in a well, does not interfere with fluid flow or production, and utilizes a unique method of operation to detect properties of substances in the well. [0007]
  • In one aspect of the invention, a fiber optic sensing system for sensing at least one property of a substance is provided. The system includes a sensor surface in contact with the substance. An optical fiber transmits energy to the sensor surface. The sensor surface, in turn, transmits energy to the substance. [0008]
  • In another aspect of the invention, a fiber optic sensing system for use in detecting at least one property of a substance in a well is provided. The sensing system includes a sensor surface configured for contacting the substance in the well, an optical fiber for transmitting energy to the sensor surface and a temperature sensor for detecting a temperature of the substance. The sensor surface is heated when energy is transmitted by the optical fiber. [0009]
  • In yet another aspect of the invention, another fiber optic sensing system is provided. The sensing system includes a sensor surface configured for contacting the substance in the well and an optical fiber for transmitting light energy to the sensor surface. The light energy is transmitted from the optical fiber through the sensor surface and to the substance. The light energy produces a response in the substance, such as a temperature change, fluorescence or a spectral emission. [0010]
  • In still another aspect of the invention, a method of detecting at least one property of a substance in a well is provided. The method includes the steps of: positioning a sensor surface in the well in contact with the substance; transmitting energy through an optical fiber to the sensor surface, thereby heating the sensor surface and the substance in contact with the sensor surface; and detecting a temperature of the heated substance. [0011]
  • In a further aspect of the invention, another method of detecting at least one property of a substance in a well is provided. The method includes the steps of: positioning a sensor surface in the well in contact with the substance; transmitting light energy through an optical fiber to the sensor surface; transmitting the light energy through the sensor surface to the substance; and detecting a response of the substance to the transmitted light energy. [0012]
  • These and other features, advantages, benefits and objects of the present invention will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative embodiments of the invention hereinbelow and the accompanying drawings.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic partially cross-sectional view of a first fiber optic sensing system embodying principles of the present invention; [0014]
  • FIG. 2 is an enlarged schematic cross-sectional view of a first fiber optic sensor embodying principles of the present invention; [0015]
  • FIG. 3 is a flowchart of steps in a first method embodying principles of the present invention; [0016]
  • FIG. 4 is a schematic cross-sectional view of a second fiber optic sensing system embodying principles of the present invention; [0017]
  • FIG. 5 is a schematic cross-sectional view of a second fiber optic sensor embodying principles of the present invention; [0018]
  • FIG. 6 is a flowchart of steps in a second method embodying principles of the present invention; [0019]
  • FIG. 7 is a flowchart of steps in a third method embodying principles of the present invention; [0020]
  • FIG. 8 is a schematic cross-sectional view of a third fiber optic sensor embodying principles of the present invention; and [0021]
  • FIG. 9 is a flowchart of steps in a fourth method embodying principles of the present invention;[0022]
  • DETAILED DESCRIPTION
  • Representatively and schematically illustrated in FIG. 1 is a fiber [0023] optic sensing system 10 which embodies principles of the present invention. In the following description of the system 10 and other apparatus and methods described herein, directional terms, such as “above”, “below”, “upper”, “lower”, etc., are used only for convenience in referring to the accompanying drawings. Additionally, it is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention.
  • The [0024] sensing system 10 is depicted in FIG. 1 as being installed in a well which includes a wellbore 12 intersecting an earth formation 14. The wellbore 12 is lined with protective casing or liner 16. A hardenable material 18, such as cement, epoxy, etc., is positioned between the casing 16 and the wellbore 12.
  • As used herein, the terms “casing” and “liner” are used to indicate any protective wellbore lining including, but not limited to, segmented or continuous tubular strings, rigid or expandable structures, made from steel, plastics or any other material, etc. [0025]
  • A [0026] tubular string 20, such as a production tubing string, is positioned in the casing 16 for flowing fluids from the well to the earth's surface, subsea wellhead, etc. However, it should be clearly understood that the principles of the invention may be practiced in circumstances other than a producing well, such as in an injection well or a combined production and injection well.
  • A fiber [0027] optic sensing device 22 is positioned in the tubular string 20 to detect properties of fluid flowing through the tubular string. Another fiber optic sensing device 24 is positioned external to the tubular string 20 to detect properties of the tubular string itself and/or to detect properties of fluid in an annulus 32 external to the tubular string. In actual practice, the sensing devices 22, 24 would preferably be configured so that they are disposed in a sidewall of the tubular string 20.
  • Another fiber [0028] optic sensing device 26 is positioned within the casing 16 to detect properties of the casing itself and/or to detect properties of fluid disposed in the annulus 32 between the tubular string 20 and the casing. Another fiber optic sensing device 28 is positioned external to the casing 16 to detect properties of the cement 18 and/or properties of fluids in the cement. In actual practice, the sensing devices 26, 28 would preferably be configured so that they are disposed in a sidewall of the casing 16.
  • Yet another fiber [0029] optic sensing device 30 is positioned adjacent the formation 14 to detect properties of the formation itself and/or to detect properties of fluid in the formation. For example, the sensing device 30 may be used to detect the progress or presence of a fluid interface 34 in the formation 14, such as an oil/water interface. In actual practice, the sensing device 30 may be conveyed into the well attached to the casing 16, or the sensing device could be flowed into the well along with the cement 18 as described in U.S. Pat. No. 6,408,943, the entire disclosure of which is incorporated herein by this reference.
  • The [0030] sensing system 10 illustrated in FIG. 1 includes the various sensing devices 22, 24, 26, 28, 30 to demonstrate the broad variety of applications of the principles of the invention to the problems of detecting properties of substances in a well. An actual well installation would not necessarily include all of the sensing devices 22, 24, 26, 28, 30, and might include other sensing devices which embody principles of the invention. It is also not necessary for the well to be cased, to have any tubular string therein, or to be a production well. Thus, it should be clearly understood that the sensor system 10 depicted in FIG. 1 is given only as an example of some of the uses of the inventive concepts described below, and these inventive concepts are in no way limited to the specific details of the sensor system of FIG. 1.
  • It will be appreciated that the [0031] sensing devices 22, 24, 26, 28, 30 detect properties of a variety of substances in the well. These substances are: 1) fluid flowing through the tubular string 20, 2) the tubular string itself, 3) fluid in the annulus 32 external to the tubular string, 4) the casing 16, 5) the cement 18, 6) fluid in the cement, 7) the formation 14, and 8) fluid in the formation. Of course, properties of substances other than, or in addition to, these may be detected without departing from the principles of the invention. In addition, or alternatively, the sensing devices 22, 24, 26, 28, 30 may detect properties of the environment or location, such as heat capacity, heat transfer, etc.
  • The [0032] sensing devices 22, 24, 26, 28, 30 are described herein as “fiber optic” sensing devices, since they each include an optical fiber 36 connected thereto for operation of the sensing device. An individual optical fiber 36 is illustrated for each of the sensing devices 22, 24, 26, 28, 30 in FIG. 1, but a single optical fiber may be used for more than one sensing device, if desired. For example, known optical multiplexing techniques may be used to permit multiple downhole sensing devices to be operated and/or communicated with via a single optical fiber.
  • The [0033] optical fiber 36 may be installed in a capillary tube inside or outside of the tubular string 20, before or after the capillary tube is installed in the well, for example, as described in U.S. Pat. Nos. 5,163,321 and 4,976,142, the disclosures of which are incorporated herein by this reference. The sensing devices 22, 24, 26, 28, 30 may be connected to the optical fiber 36 before or after installation in the well, for example, the optical fiber may be “stabbed into” the sensing devices after they are installed in the well. Furthermore, the optical fiber 36 and/or any of the sensors 22, 24, 26, 28, 30 may be integrated into the construction of any structure in the well, for example, integrated into the sidewall of a tubular string as described in U.S. Patent Application Publication No. 2002/0007945, the entire disclosure of which is incorporated herein by this reference.
  • The [0034] sensing system 10 utilizing the optical fiber 36 and one or more of the sensing devices 22, 24, 26, 28, 30 will typically also include an instrument at the surface or another remote location (not shown in FIG. 1, but see the detector 122 depicted in FIG. 8). The instrument may provide light energy, receive the sensing device(s) response, perform signal analysis, including optical signal processing, and may be packaged in one or more individual components in one or more physical locations, etc. For example, a single instrument may be used in conjunction with a single optical fiber 36, multiple instruments may be used in conjunction with multiple optical fibers, and any combination thereof.
  • Referring additionally now to FIG. 2, a fiber [0035] optic sensing device 40 embodying principles of the invention is representatively illustrated. The sensing device 40 may be used for any of the sensing devices 22, 24, 26, 28, 30 described above, or the sensing device 40 may be used in other sensing systems. The sensing device 40 is depicted as being positioned in a sidewall of a tubular string 42, such as the tubular string 20 or casing 16 depicted in FIG. 1, but it should be understood that the sensing device may be otherwise positioned in keeping with the principles of the invention.
  • As shown in FIG. 2, a [0036] surface 44 of the sensing device 40 is positioned in contact with a fluid (indicated by arrows 46) flowing through a passage 48 in the tubular string 42. This configuration corresponds to the sensing device 22 in the tubular string 20, or the sensing device 26 in the casing 16, in FIG. 1. Alternatively, the fluid 46 could be external to the tubular string 42, with the surface 44 of the sensing device 40 facing outwardly, which would correspond to the sensing device 24 on the tubular string 20, or to the sensing device 28 on the casing 16, as depicted in FIG. 1.
  • An [0037] optical fiber 50 extends from a remote location, such as the earth's surface or another location in the well, to an energy converter 52. Light energy transmitted through the optical fiber 50 is converted to heat in a substrate 54 by the converter 52. For example, the converter 52 may be a black body interface, or another type of converter.
  • However, it should be clearly understood that an interface between the [0038] optical fiber 50 and the substrate 54 is not necessarily a black body or any type of separate converter 52. Instead, the optical fiber 50 could be connected directly to the substrate 54 (as depicted for the sensing device 120 in FIG. 8). Other connection or interface methods may also be used in keeping with the principles of the invention, for example, the substrate 54 could have a coating integrally formed therewith, etc.
  • Heat produced at the [0039] converter 52 is used to increase the temperature of the substrate 54, which in turn heats a coating 56 on an exterior side of the substrate. The converter 52 could be a special black surface on the coating 56, or the converter could be a structure interposed between the optical fiber 50 and the substrate 54. The heated coating 56, in turn, heats the fluid 46, which enables at least one property of the fluid to be detected, as described in more detail below.
  • As used herein, the term “coating” is used to indicate an outer layer or region of material, and is not used to specify any particular technique of producing such a layer or region. Coatings may be produced by any process, such as heat treatment, chemical treatment, application of a different material to a substrate, etc. [0040]
  • In order for the heat produced at the [0041] converter 52 to be transmitted efficiently to the fluid 46, the substrate 54 and coating 56 are preferably made of highly thermally conductive materials and are insulated from the tubular string 42 by insulation 58. However, if the tubular string 42 is made of a low thermal conductivity material, such as a composite material, or in other circumstances, the insulation 58 may not be used.
  • The [0042] substrate 54 may be made of a metallic material, such as steel. The coating 56 is preferably made of a material which is very durable, relatively erosion resistant, relatively hard, as well as being highly thermally conductive, since it is exposed to the flow of the fluid 46. A material suitable for use in the coating 56 is a diamond material. The diamond material is preferably attached to the substrate 54 by chemical vapor deposition, since this results in a reproducible uniform thickness of the diamond material which is permanently bonded to the substrate 54.
  • It should be understood, however, that other materials may be used for the [0043] substrate 54 and coating 56, if desired. In fact, it is not necessary for the substrate 54 material and the coating 56 material to be different materials. Thus, it is not necessary for the sensing device 40 to include a separate substrate 54 (for example, as depicted for the sensing device 120 in FIG. 8).
  • As the fluid [0044] 46 flows past the surface 44, the fluid is heated as described above. A temperature sensor 60, such as a thermocouple or a fiber optic temperature sensor (for example, a Bragg grating-type sensor), detects the temperature of the coating 56. Due to the high thermal conductivity of the coating 56, the fluid 46 in direct contact with the surface 44 should reach approximately the same temperature as the coating, but if a more direct measurement of the fluid temperature proximate the surface is desired, the sensor 60 may be positioned so that it is in direct contact with the fluid.
  • Another [0045] temperature sensor 62 is positioned downstream from the surface 44, and yet another temperature sensor 64 is positioned upstream from the surface. The sensors 60, 62, 64 are depicted in FIG. 2 as being connected to a single fiber optic line 68 extending to a remote location, such as to the instrument at a remote location as discussed above. However, separate lines may be used for the individual sensors 60, 62, 64, and other types of lines (such as electrical lines), power supply and communications may be used, without departing from the principles of the invention.
  • It should be understood that it is not necessary for all of the [0046] temperature sensors 60, 62, 64 to be included in the fiber optic sensing device 40, but the use of these temperature sensors does permit a significant number of properties of the fluid 46 to be detected. For example, use of the temperature sensors 62, 64 upstream and downstream of the surface 44 permits the direction of flow of the fluid 46 to be determined. The fluid 46 will have an increased temperature on the downstream side of the surface 44. As depicted in FIG. 2, the temperature sensor 62 will detect an increased temperature of the fluid 46, whereas the sensor 64 will not. If the flow of the fluid 46 were reversed, the sensor 64 would detect the increased temperature of the fluid 46.
  • If a known, controlled, constant intensity of light energy is transmitted through the [0047] optical fiber 50, the coating 56 will eventually reach an elevated equilibrium temperature, detected by the sensor 60. This equilibrium temperature is related to the velocity of the flow (or flow rate) of the fluid 46 past the surface 44, as well as being related to other properties of the fluid. Thus, if the light energy intensity and the coating 56 temperature are known, the fluid 46 flow rate may be determined.
  • The other properties of the fluid [0048] 46 may be determined by utilization of the sensing device 40, as well. For example, the sensors 60, 64 may be used to determine the density and thermal characteristics of the fluid 46. By detecting (via the sensor 60) the heat energy transmitted to the fluid 46 proximate the surface 44, as compared to the ambient conditions sensed at the upstream sensor 64, the thermal conductivity of the fluid may be determined.
  • By detecting the difference between the temperature of the fluid [0049] 46 proximate the surface 44 and the temperature of the fluid at the upstream sensor 64, the density of the fluid may be determined. This temperature difference may also be used to determine the velocity of the fluid 46. If the density of the fluid 46 is determined, then the relative ratio of different liquids (e.g., oil/water) making up the fluid may be determined. Of course, the downstream sensor 62 may be used in place of the upstream sensor 64 in these determinations of thermal conductivity, velocity, composition, etc., when flow direction is reversed.
  • Those skilled in the art will recognize that such determinations of density, velocity, identity, composition, etc. depend on known fluid mechanics and heat transfer relationships. Calculations of these properties may require reasonable assumptions to be made and/or measurement of additional variables, etc., to make accurate determinations. [0050]
  • An alternate technique would be to vary the intensity of the light energy transmitted through the [0051] optical fiber 50. For example, a fiber laser 66 interconnected to the optical fiber 50 may be cycled on and off. The laser 66 may be positioned downhole as depicted in FIG. 2, or it may be positioned at a remote location, such as the earth's surface. Of course, another type of light energy source or laser may be used instead of, or in addition to, the laser 66.
  • When the [0052] laser 66 is on, the coating 56 will reach an elevated equilibrium temperature. When the laser 66 is off, the coating 56 temperature will reduce to another equilibrium temperature. By detecting multiple sets of these elevated and reduced equilibrium temperatures, more accurate determinations may be made as to the properties of the fluid 46.
  • As another alternative, the [0053] coating 56 may be heated to an elevated equilibrium temperature by turning the laser 66 on. Then, with the laser 66 turned off, the transient decline in temperature of the coating 56 over time is detected by the sensor 60. This cooling versus time data may then be used in determining the velocity, density, composition, etc. of the fluid 46.
  • A transient increase in temperature of the [0054] coating 56 over time could also be used. Transient cooling and/or heating measurements could be combined with steady state measurements for enhanced accuracy in the fluid property analysis.
  • Referring additionally now to FIG. 3, a [0055] method 70 embodying principles of the invention is representatively illustrated with steps of the method in flowchart form. The method 70 has been described in part above in conjunction with the description of the sensing device 40. However, it should be understood that the method 70 may be used with other sensing devices without departing from the principles of the invention.
  • In [0056] step 72 of the method 70, a sensor surface is placed in contact with a fluid. The fluid may be the fluid 46 of FIG. 2, fluid in the annulus 32 of FIG. 1, fluid in the cement 18, fluid in the formation 14, etc. Alternatively, the sensor surface may be placed in contact with another substance, such as the tubular string 20 material, the casing 16 material, the cement 18, the formation 14, etc.
  • In [0057] step 74, the sensor surface is heated. As described above for the sensing device 40, light energy transmitted through the optical fiber 50 may be converted to heat energy to heat the sensor surface 44. By heating the sensor surface, the substance in contact with the sensor surface is also heated.
  • The light energy transmitted through the [0058] optical fiber 50 may be varied to produce variations in the response of the substance to the heating produced by the light energy. The response of the substance to this varied heating is indicative of properties of the substance, such as density, thermal conductivity, velocity, phase, composition (oil/water ratio, ratio of fluids produced from multiple zones), identity (zone of origin), the presence and/or progress of a fracture in a formation, a fluid interface in a formation (see FIG. 1) or in a well (see FIG. 4), integrity of a cementing operation (density of cement, presence of voids and cracks, migration of fluid through cement), etc.
  • The response may be qualitative or indicative of a trend over time. When combined with other data or modeling, the response may produce qualitative and quantitative results on which to base decisions concerning, for example, how production from the well or an injection program should be adjusted, etc. [0059]
  • The intensity of the light energy transmitted through the [0060] optical fiber 50 may be maintained constant, for example, to produce an equilibrium temperature of the coating 56 and/or of the substance in contact with the surface 44. For a given intensity of light energy transmitted through the optical fiber 50, the corresponding equilibrium temperature of the coating 56 and/or of the substance in contact with the surface 44 is indicative of properties of the substance, such as those discussed above. Multiple equilibrium temperatures for corresponding multiple light energy intensities may be obtained to increase the accuracy of the determination of properties of the substance.
  • Equilibrium temperatures in the [0061] coating 56 or substance may be produced by other methods, such as by varying the light energy in patterns or waves (square waves, sine waves, etc.). Multiple temperature equilibria may also be produced by maintaining the light energy constant and varying a fluid property, for example, by adjusting the flow rate using a choke, etc.
  • The light energy transmitted through the [0062] optical fiber 50 may be at times varied or cycled, and at times maintained constant. It is conceived that a combination of techniques will produce reliable “signatures” of the substance properties, so that they may be readily determined given the wealth of information provided by the sensing device 40. Obtaining these substance property “signatures” is an example of the type of empirical testing that a person skilled in the art would use to employ a new sensing device in a particular application. For example, production log measurements may be used to calibrate the “signatures,” thereby eliminating, or at least reducing, the need to periodically run production logs.
  • For good heat transfer to the substance in contact with the [0063] sensor surface 44, a substrate 54 and chemical vapor deposited diamond material coating 56 have been described above. The diamond material in particular has a very high thermal conductivity and is very durable. However, it should be understood that the invention is not limited to use of any particular material or configuration of the structure used to transfer heat to the substance in contact with the surface 44.
  • In [0064] step 76 of the method 70, temperature is sensed. This may be the temperature of the substance in contact with the sensor surface, the temperature of the substance remote from the sensor surface, the temperature of the sensor surface, temperature change over time in the substance or sensor surface, or another temperature or combination of temperatures. Preferably, the sensed temperature(s) is indicative of a property of the substance in contact with the sensor surface, as discussed above.
  • Although certain types of temperature sensors have been described above, it should be understood that any type of sensor may be utilized to directly or indirectly detect a temperature in the [0065] sensing device 40. It is also conceived that the sensors may be positioned in any orientation or arrangement relative to the sensor surface 44 as may be determined to be appropriate for sensing a particular substance property. This is another example of the versatility of the sensing device 40, in that it may be configured as best suits the application.
  • In [0066] step 78, properties of the fluid or other substance are calculated using the sensed temperature(s) from step 76. A person of ordinary skill in the art, given the appropriate information (e.g., the configuration of the sensing device, well parameters, energy transmission, temperature data, etc.) will be able to determine the desired properties of the substance without undue experimentation. It should, however, be recognized that, for some of the substance properties to be calculated, some empirical parameters may need to be determined through controlled tests before accurate calculations may be made, the sensing device 40 configured and calibrated, etc.
  • Referring additionally now to FIG. 4, another fiber [0067] optic sensing system 80 is representatively and schematically illustrated. The sensing system 80 is similar in many respects to the sensing system 10 of FIG. 1, in that multiple sensing devices 40 are attached to a tubular member or string 82. In the sensing system 80, the sensing devices 40 are used to detect properties of fluids (indicated by arrows 84, 86) flowing through the tubular 82.
  • An [0068] interface 88 between the fluids 84, 86 may be detected by the sensing devices 40 which are circumferentially distributed about the tubular 82. The upper sensing devices 40 will detect one or more properties of the fluid 84 above the interface 88, and the lower sensing devices will detect one or more properties of the fluid 86 below the interface. This information may be useful where the tubular 82 is positioned in an at least substantially horizontal wellbore and the fluids 84, 86 are oil and water, or gas and oil, etc.
  • If the tubular [0069] 82 is not horizontal, a longitudinal location of the interface 88 may be determined using the sensing devices 40 which are distributed longitudinally on the tubular. These sensing devices 40 may also, or alternatively, be used to determine properties of the tubular 82 and/or the fluids 84, 86, such as thermal gradient along the tubular, thermal conductivity, density, heat transfer coefficient, heat capacity, etc.
  • Referring additionally now to FIG. 5, another [0070] sensing device 90 is representatively and schematically illustrated. The sensing device 90 is very similar to the sensing device 40 described above, and so elements of the sensing device 90 which are similar to those previously described are indicated in FIG. 5 using the same reference numbers.
  • As depicted in FIG. 5, the [0071] sensing device 90 is separated from any structure on which it may be mounted, for clarity of illustration and description, and to emphasize that it is not necessary for any sensing device described herein to be attached to any particular structure, or any structure at all. For example, the sensing device 90 could be installed prior to cementing or flowed into the well with the cement 18 as shown for the sensor 30 in FIG. 1.
  • The [0072] sensing device 90 as depicted in FIG. 5 also does not have temperature sensors. It is not necessary for any sensing device described herein to have one or more temperature sensors in any particular configuration or arrangement relative to the surface 44. However, the sensing device 90 does preferably include at least one temperature sensor, which is not illustrated in FIG. 5.
  • The [0073] sensing device 90 does differ in at least one substantial respect from the sensing device 40, in that the optical fiber 50 extends to the converter 52, which is positioned adjacent the coating 56. This configuration may produce a more direct heating of the surface 44. The increased heating efficiency of the sensing device 90 may be desirable for use in some methods, such as the method 100 representatively illustrated in flowchart form in FIG. 6.
  • The [0074] method 100 is similar in many respects to the method 70 described above, and so steps of the method 100 which are similar to those previously described are indicated in FIG. 6 using the same reference numbers. In particular, steps 72, 74 and 78 are used in the method 100, for example, a substance in contact with the sensor surface 44 is subjected to a heat transfer detected by the sensing device 40, which is used to determine one or more properties of the substance.
  • However, in the [0075] method 100, a step 102 is used wherein a phase of the substance is changed. In many applications the substance of interest proximate to the sensor surface 44 is a fluid being produced from a formation. Under downhole conditions the fluid is often predominately a liquid phase (e.g., oil and/or water), and often includes a complex mixture of hydrocarbons, including dissolved gases and/or hydrocarbon fractions, which are liquid under downhole pressure, but at some combination of reduced pressure and/or increased temperature becomes gaseous. The heating of the sensor surface 44 and the fluid immediately proximate can, therefore, cause an evolution of gas from the liquid, i.e., a local phase change.
  • If the substance is initially a fluid, such as oil with gas dissolved therein, the heat transfer from the [0076] sensor surface 44 to the liquid causes a phase change, wherein the gas “bubbles” out of the liquid oil. This phase change (known as the “bubble point”) is detected by the sensors in the sensing device 40 in step 104 of the method 100.
  • For example, one or more of the [0077] temperature sensors 60, 62, 64 may detect the change in heat transfer accompanying the phase change as the equilibrium temperature changes dramatically. Further, the sensing device 40 may include a pressure sensor 106 which detects the ambient hydrostatic or circulating pressure proximate the sensor surface 44. The pressure sensor 106 may be a fiber optic sensor (such as a fiber Bragg grating-type sensor), in which case an optical fiber 108 may extend to the sensor from a remote location.
  • This information may be used to determine the PVT (pressure/volume/temperature) characteristics of the fluid [0078] 46. Of course, the phase change may be reversed, performed multiple times, be between other phases (such as liquid/solid as in hardening cement, solid/liquid as in chemical treatment of paraffin accumulation), etc., in keeping with the principles of the invention. Wellbore fluids may be separately analyzed, for example, at a suitably equipped commercial laboratory, to precisely determine the PVT characteristics, and then this laboratory analysis may be used to calibrate the sensor measurements. Qualitative measurements may also be used, for example, to identify trends in the PVT characteristics over time.
  • Referring additionally now to FIG. 7, another [0079] method 110 embodying principles of the invention is representatively illustrated. The method 110 is very similar to the method 70 of FIG. 3. One significant difference is that, in step 112 of the method 110, a structure (not necessarily a fluid) is in contact with the sensor surface 44, and it is desired to monitor properties of the structure over time. The sensor surface is heated in step 114, temperature is sensed in step 116, properties of the structure are calculated in step 118, and the method 110 is repeated periodically in step 120.
  • In the above description of the [0080] method 70, the step 72 was described as possibly being performed with the sensor surface 44 in contact with another substance, such as the tubular string 20 material, the casing 16 material, the cement 18, the formation 14, etc. The method lo demonstrates how this may be accomplished for a particular application in which it is desired to monitor properties of a structure over time.
  • For example, it may be desired to monitor a physical property, such as stress or strain, or a thermal property of the [0081] tubular string 20 over an extended period. In FIG. 1, element 37 indicates a particular location which can be considered as a local thermal system of interest, wherein sensor 26 is used to detect the thermal properties of this thermal system which includes the formation 14, cement 18, casing 16, annulus 32, tubing 20, the proximate trapped and flowing fluids, and the associated thermal interfaces. The steps 112-118 could be performed each day, week or month, etc., to give an indication of how these properties change over time.
  • Another example would be placing the [0082] sensor surface 44 in contact with the formation 14 in order to detect properties of fluids in the formation. By monitoring the fluid properties in the formation 14 over time, the presence and progress of the fluid interface 34 through the formation, or other useful information, may be determined.
  • The steps [0083] 112-118 are very similar to the corresponding steps 72-78 of the method 70. The descriptions and variations of these corresponding steps 72-78 apply to the steps 112-118 of the method 110, with the exception that the method 110 is more applicable to use with structures experiencing change in a well. For example, the method 110 may be used to calculate heat transfer though a structure, cement integrity (presence of voids and cracks, bond quality), fluid migration through cement or the formation, reservoir evaluation, heat capacities, other thermal properties of multiple structures and/or fluids downhole, physical properties of tubulars or other structures or fluids downhole, etc.
  • Referring additionally now to FIG. 8, another [0084] sensing device 120 embodying principles of the invention is representatively and schematically illustrated. The sensing device 120 is at an enlarged scale and is depicted apart from its supporting structure and any associated sensors for illustrative clarity. However, it should be understood that the sensing device 120 may be positioned and supported in any manner, and may include sensors, such as the temperature sensors 60, 62, 64, in keeping with the principles of the invention.
  • Instead of heating the [0085] sensor surface 44 using light energy transmitted through the optical fiber 50 and converted to heat energy, in the sensing device 120 the light energy is transmitted directly through the diamond material 56 (or other light transmitting material, e.g., another transparent or at least translucent material) to the fluid 46 (or other substance) in contact with the surface 44. The fluid 46 responds to this energy input, and the response is detected as an indication of one or more properties of the fluid. Of course, the sensor surface 44 could be placed in contact with a substance other than a fluid, such as a tubular string material, cement, a formation, etc., in which case a property of that substance (and possibly a fluid therein) may be determined using the sensing device 120.
  • In one application, the light energy transmitted through the [0086] optical fiber 50, and thence through the diamond material 56, is reflected off of the fluid 46 (or other substance) back through the diamond material to the optical fiber. The reflected light is transmitted through the optical fiber 50 to a detector 122 at a remote location, such as the earth's surface or another location in the well. The reflected light may be analyzed to determine certain properties of the fluid 46.
  • In another application, the light energy transmitted through the [0087] diamond material 56 to the fluid 46 may cause at least a portion of the fluid to fluoresce. This fluorescence, or lack thereof, is detected by the detector 122 (such as a fluoroscope) in order to determine the composition, identity, source, water/oil ratio, or other property of the fluid 46.
  • In another application, the light energy transmitted through the [0088] diamond material 56 to the fluid 46 may excite the fluid to give off a spectrum indicative of the elemental composition of the fluid. This spectrum is detected by the detector 122 (such as a spectrometer) in order to determine the composition, identity, source, water/oil ratio, or other property of the fluid 46.
  • In another application, the light energy transmitted through the [0089] diamond material 56 to the fluid 46 may heat the fluid. Such heating of the fluid 46 and/or associated heating of the diamond material 56 may be detected directly or indirectly by sensors, such as the temperature sensors 60, 62, 64, to enable determination of properties of the fluid, such as density, velocity, thermal conductivity, or other property of the fluid.
  • Thus, the [0090] diamond material 56 may be considered as a “window” to permit the light energy transmitted through the optical fiber 50 to be also transmitted to the fluid 46 or other substance in contact with the sensor surface 44. Note that the diamond material 56 may be formed as a coating on a substrate as described above, although FIG. 8 shows the diamond material apart from any substrate.
  • Referring additionally now to FIG. 9, a [0091] method 130 embodying principles of the invention is representatively illustrated in flowchart form. The method 130 may be performed using the sensing device 120 of FIG. 8, or other sensing devices may be used in keeping with the principles of the invention. The method 130 is described herein as if a fluid is in contact with the sensor surface 44, but it should be understood that any type of substance may be used instead of, or in addition to, a fluid.
  • In [0092] step 132, the fluid 46 contacts the sensor surface 44. In step 134, the fluid 46 is excited by transmission of light energy from the optical fiber 50 through the sensor surface 44 to the fluid. The fluid 46 may be heated by the light energy, a portion of the fluid may fluoresce, the fluid may give off a spectrum, etc. It should be understood that any response of the fluid 46 (or other substance) to the transmission of light energy through the sensor surface 44 is within the principles of the invention.
  • In [0093] step 136, the response of the fluid 46 to the light energy transmitted through the sensor surface 44 is sensed. This sensing step 136 may be performed in the well proximate the sensing device 120, or it may be performed at a remote location. For example, a fluoroscope or spectrometer 122 could be positioned at the earth's surface to detect the response of the fluid 46, or downhole sensors may be used, etc. In step 138, the response to the fluid 46 is used to calculate properties of the fluid, such as thermal or physical properties.
  • Note that the fiber [0094] optic sensing devices 40, 90, 120 as described herein do not obstruct any flow passage in the well, are convenient and reliable in operation, and do not require intervention into the well to operate. However, one or more of these benefits of the invention may be eliminated, if desired. For example, one of the sensing devices 40, 90, 120 could be used in a wireline conveyed production logging tool, which does obstruct a flow passage and requires an intervention into the well to operate. Thus, the applications of the principles of the invention are not limited to those described above.
  • Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of the present invention. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents. [0095]

Claims (140)

What is claimed is:
1. A fiber optic sensing system for sensing at least one property of a substance, the system comprising:
a sensor surface proximate the substance;
an optical fiber transmitting energy to the sensor surface; and
the energy being transmitted to the substance via the sensor surface.
2. The sensing system according to claim 1, wherein the sensor surface is formed on a relatively erosion resistant material.
3. The sensing system according to claim 1, wherein the sensor surface is formed on a highly thermally conductive material.
4. The sensing system according to claim 1, wherein the sensor surface is formed on a light transmitting material.
5. The sensing system according to claim 1, wherein the sensor surface is formed on a diamond material.
6. The sensing system according to claim 5, wherein the diamond material is a chemical vapor deposition coating on a substrate of the sensor.
7. The sensing system according to claim 1, wherein the sensor detects a response of the substance to the energy transmitted to the substance from the sensor surface.
8. The sensing system according to claim 7, wherein temperature transmitted to the substance causes a change in phase of the substance.
9. The sensing system according to claim 7, wherein the response is a change in temperature of the substance.
10. The sensing system according to claim 9, wherein the temperature of the substance is detected remote from the sensor surface.
11. The sensing system according to claim 7, wherein the response is a change in phase of the substance.
12. The sensing system according to claim 1, wherein the energy transmitted by the optical fiber is light energy, the light energy being transmitted to the substance through the sensor surface.
13. The sensing system according to claim 1, wherein an intensity of the energy transmitted by the optical fiber is varied, and wherein a transient response of the substance to the varied energy is detected to thereby sense a property of the substance.
14. A fiber optic sensing system for use in detecting at least one property of a substance or heat transfer characteristic of a location proximate to the substance in a subterranean well, the sensing system comprising:
an optical fiber for transmitting energy to a sensor surface, the sensor surface being heated when energy is transmitted by the optical fiber; and
a first temperature sensor for detecting a temperature of the substance.
15. The sensing system according to claim 14, wherein the substance is a fluid, and wherein the first temperature sensor detects a temperature of the fluid proximate the sensor surface.
16. The sensing system according to claim 15, wherein the substance is a fluid, and wherein the first temperature sensor detects a temperature of the fluid remote from the sensor surface.
17. The sensing system according to claim 16, wherein the first temperature sensor detects a temperature of the fluid upstream from the sensor surface.
18. The sensing system according to claim 16, wherein the first temperature sensor detects a temperature of the fluid downstream from the sensor surface.
19. The sensing system according to claim 14, further comprising a second temperature sensor positioned remote from the first temperature sensor.
20. The sensing system according to claim 19, wherein the first temperature sensor detects the temperature of the substance proximate the sensor surface, and the second sensor detects the temperature of the substance remote from the sensor surface.
21. The sensing system according to claim 20, wherein the second temperature sensor is downstream from the first temperature sensor.
22. The sensing system according to claim 20, wherein the second temperature sensor is upstream from the first temperature sensor.
23. The sensing system according to claim 14, further comprising an energy converter between the optical fiber and the sensor surface, the converter converting light energy transmitted by the optical fiber into heat energy in the sensor surface.
24. The sensing system according to claim 23, wherein the energy converter is a black body interface.
25. The sensing system according to claim 14, wherein the sensor surface is on a diamond material.
26. The sensing system according to claim 25 wherein the diamond material is a chemical vapor deposition coating.
27. The sensing system according to claim 14, wherein energy transmitted by the optical fiber heats a substrate on which the sensor surface is disposed.
28. The sensing system according to claim 27, further comprising an energy converter between the optical fiber and the substrate, the converter converting light energy transmitted by the optical fiber into heat energy in the substrate.
29. The sensing system according to claim 28, wherein the energy converter is a black body interface.
30. The sensing system according to claim 27, wherein the sensor surface is on a diamond material attached to the substrate, the diamond material having greater thermal conductivity than the substrate.
31. The sensing system according to claim 14, further comprising a laser transmitting the energy through the optical fiber.
32. The sensing system according to claim 31, wherein the laser is positioned in the well.
33. The sensing system according to claim 31, wherein the laser is positioned at the earth's surface.
34. The sensing system according to claim 14, wherein the substance is a fluid within a tubular string in the well.
35. The sensing system according to claim 14, wherein the substance is a fluid external to a tubular string in the well.
36. The sensing system according to claim 35, wherein the fluid is disposed in an annulus between the tubular string and casing in the well.
37. The sensing system according to claim 35, wherein the tubular string is casing, and wherein the fluid is formation fluid.
38. The sensing system according to claim 14, wherein the substance is a hardenable material positioned in an annulus between a wellbore and casing in the well.
39. The sensing system according to claim 14, wherein the substance is a formation intersected by a wellbore of the well.
40. The sensing system according to claim 14, wherein the substance is a solid structure in the well.
41. The sensing system according to claim 40, wherein the structure is a tubular string.
42. The sensing system according to claim 14, wherein the sensing system includes multiple sensors distributed circumferentially about a tubular string in the well.
43. The sensing system according to claim 14, wherein the sensing system detects a level of an interface between different fluids flowing through a tubular string in the well.
44. The sensing system according to claim 14, wherein the sensing system includes multiple sensors distributed longitudinally along a tubular string in the well.
45. The sensing system according to claim 14, wherein the sensing system detects a level of an interface between different fluids in a formation intersected by the well.
46. The sensing system according to claim 14, wherein the substance is a hardenable material installed external to a tubular string in the well, and wherein the sensing system detects a quality of installation of the hardenable material.
47. The sensing system according to claim 46, wherein the sensing system detects a presence of a fluid in the hardenable material.
48. The sensing system according to claim 46, wherein the sensing system detects a presence of a void in the hardenable material.
49. The sensing system according to claim 46, wherein the sensing system detects a presence of a crack in the hardenable material.
50. The sensing system according to claim 14, wherein the sensing system detects a direction of flow of the substance through a tubular string in the well.
51. The sensing system according to claim 14, wherein the sensing system detects a rate of flow of the substance through a tubular string in the well.
52. The sensing system according to claim 14, wherein the sensing system detects a property indicative of an identity of the substance in the well.
53. The sensing system according to claim 14, wherein the sensing system detects a phase change in the substance in the well.
54. The sensing system according to claim 14, wherein the sensing system detects a ratio between different fluids included in the substance in the well.
55. The sensing system according to claim 14, wherein the substance is a tubular string material, and wherein the sensing system detects a thermal property of the tubular string material.
56. The sensing system according to claim 14, wherein the substance is a formation, and wherein the sensing system detects a thermal property of the formation.
57. The sensing system according to claim 56, wherein the sensing system detects a thermal property of a fluid in the formation.
58. The sensing system according to claim 56, wherein the sensing system detects a location of a fluid in the formation.
59. The sensing system according to claim 56, wherein the sensing system detects a presence of a fracture in the formation.
60. The sensing system according to claim 56, wherein the sensing system detects a location of a fracture in the formation.
61. The sensing system according to claim 14, wherein the detection of the substance temperature by the sensing system is indicative of a heat transfer characteristic of a local well environment.
62. The sensing system according to claim 61, wherein the heat transfer characteristic is a heat capacity of the local well environment.
63. The sensing system according to claim 14, wherein the substance is a hardenable material positioned external to a tubular string, and wherein the sensing system detects a thermal property of the hardenable material.
64. The sensing system according to claim 14, wherein the substance is a tubular string material, and wherein the sensing system detects a thermal property of the tubular string material.
65. The sensing system according to claim 14, wherein the substance is a fluid in the well, and wherein the sensing system detects a thermal property of the fluid.
66. A fiber optic sensing system for use in detecting at least one property of a substance in a subterranean well, the sensing system comprising:
a sensor surface configured for transmitting energy to the substance in the well;
an optical fiber for transmitting light energy to the sensor surface, the light energy being transmitted from the optical fiber through the sensor surface and to the substance; and
the light energy causing a response in the substance.
67. The sensing system according to claim 66, further comprising a sensor for detecting the substance response.
68. The sensing system according to claim 67, wherein the sensor is a spectrometer.
69. The sensing system according to claim 67, wherein the sensor is a fluoroscope.
70. The sensing system according to claim 67, wherein the substance response is transmitted through the optical fiber to the sensor.
71. The sensing system according to claim 66, wherein the light energy excites the substance to give off a spectrum indicative of an elemental composition of the substance.
72. The sensing system according to claim 66, wherein the light energy causes at least a portion of the substance to fluoresce.
73. The sensing system according to claim 66, wherein the light energy heats the substance.
74. The sensing system according to claim 73, wherein the substance undergoes a phase change when the light energy heats the substance.
75. The sensing system according to claim 66, wherein the sensor surface is formed on a diamond material.
76. The sensing system according to claim 66, wherein the sensor surface is formed on a chemical vapor deposited coating.
77. The sensing system according to claim 66, further comprising a laser positioned in the well transmitting the light energy through the optical fiber.
78. The sensing system according to claim 66, further comprising a laser positioned at the earth's surface transmitting the light energy through the optical fiber.
79. The sensing system according to claim 66, wherein the substance is a fluid within a tubular string in the well.
80. The sensing system according to claim 66, wherein the substance is a fluid external to a tubular string in the well.
81. The sensing system according to claim 80, wherein the fluid is disposed in an annulus between the tubular string and casing in the well.
82. The sensing system according to claim 80, wherein the tubular string is casing, and wherein the fluid is formation fluid.
83. The sensing system according to claim 66, wherein the substance is a hardenable material positioned in an annulus between a wellbore and casing in the well.
84. The sensing system according to claim 66, wherein the substance is a formation intersected by a wellbore of the well.
85. The sensing system according to claim 66, wherein the substance is a solid structure in the well.
86. The sensing system according to claim 85, wherein the structure is a tubular string.
87. The sensing system according to claim 66, wherein the sensing system includes multiple sensing devices distributed circumferentially about a tubular string in the well.
88. The sensing system according to claim 66, wherein the sensing system detects a level of an interface between different fluids flowing through a tubular string in the well.
89. The sensing system according to claim 66, wherein the sensing system includes multiple sensing devices distributed longitudinally along a tubular string in the well.
90. The sensing system according to claim 66, wherein the sensing system detects a level of an interface between different fluids in a formation intersected by the well.
91. The sensing system according to claim 66, wherein the substance is a hardenable material installed external to a tubular string in the well, and wherein the sensing system detects a quality of installation of the hardenable material.
92. The sensing system according to claim 91, wherein the sensing system detects a presence of a fluid in the hardenable material.
93. The sensing system according to claim 91, wherein the sensing system detects a presence of a void in the hardenable material.
94. The sensing system according to claim 91, wherein the sensing system detects a presence of a crack in the hardenable material.
95. The sensing system according to claim 66, wherein the sensing system detects a direction of flow of the substance through a tubular string in the well.
96. The sensing system according to claim 66, wherein the sensing system detects a rate of flow of the substance through a tubular string in the well.
97. The sensing system according to claim 66, wherein the sensing system detects an identity of the substance in the well.
98. The sensing system according to claim 66, wherein the sensing system detects a chemical composition of the substance in the well.
99. The sensing system according to claim 66, wherein the sensing system detects a phase change in the substance in the well.
100. The sensing system according to claim 66, wherein the sensing system detects fluorescence of the substance in the well.
101. The sensing system according to claim 66, wherein the sensing system detects a ratio between different fluids included in the substance in the well.
102. The sensing system according to claim 66, wherein the substance is a tubular string material, and wherein the sensing system detects a thermal property of the tubular string material.
103. The sensing system according to claim 66, wherein the substance is a formation, and wherein the sensing system detects a thermal property of the formation.
104. The sensing system according to claim 103, wherein the sensing system detects a thermal property of a fluid in the formation.
105. The sensing system according to claim 103, wherein the sensing system detects a location of a fluid in the formation.
106. The sensing system according to claim 103, wherein the sensing system detects a presence of a fracture in the formation.
107. The sensing system according to claim 103, wherein the sensing system detects a location of a fracture in the formation.
108. The sensing system according to claim 66, wherein the substance is a hardenable material positioned external to a tubular string, and wherein the sensing system detects a thermal property of the hardenable material.
109. The sensing system according to claim 66, wherein the substance is a tubular string material, and wherein the sensing system detects a thermal property of the tubular string material.
110. The sensing system according to claim 66, wherein the substance is a fluid in the well, and wherein the sensing system detects a thermal property of the fluid.
111. A method of detecting at least one property of a substance in a subterranean well, the method comprising the steps of:
positioning a sensor surface in the well proximate the substance;
transmitting energy through an optical fiber to the sensor surface, thereby heating the sensor surface and the substance proximate the sensor surface; and
detecting a temperature of at least one of the heated substance and the sensor surface.
112. The method according to claim 111, wherein the substance is a fluid flowing in the well, and wherein the detecting step is performed using a first temperature sensor positioned downstream relative to the sensor surface.
113. The method according to claim 112, further comprising the step of detecting a temperature of the heated substance using a second temperature sensor proximate the sensor surface.
114. The method according to claim 112, further comprising the step of detecting a temperature of the heated substance using a second temperature sensor upstream relative to the sensor surface.
115. The method according to claim 111, further comprising the step of forming the sensor surface on a chemical vapor deposited diamond material.
116. The method according to claim 115, further comprising the step of chemical vapor depositing the diamond material on a substrate.
117. The method according to claim 116, wherein the transmitting step further comprises heating the substrate positioned between the optical fiber and the diamond material.
118. The method according to claim 111, wherein the transmitting step further comprises varying the transmission of energy through the optical fiber, thereby producing a transient heating of the substance.
119. The method according to claim 118, wherein the energy transmission varying step further comprises varying an intensity of the energy transmitted through the optical fiber.
120. The method according to claim 118, wherein the energy transmission varying step further comprises alternately transmitting and not transmitting the energy through the optical fiber.
121. The method according to claim ill, wherein the transmitting step further comprises heating the substance, thereby causing a phase change in the substance.
122. The method according to claim 121, further comprising the step of detecting a pressure of the substance proximate the sensor.
123. A method of detecting at least one property of a substance in a subterranean well, the method comprising the steps of:
positioning a sensor surface in the well proximate the substance;
transmitting light energy through an optical fiber to the sensor surface;
transmitting the light energy through the sensor surface to the substance; and
detecting a response of the substance to the transmitted light energy.
124. The method according to claim 123, wherein the detecting step further comprises detecting the response as a temperature change in at least one of the substance and the sensor surface.
125. The method according to claim 123, wherein the detecting step further comprises detecting the response as a spectral emission from the substance.
126. The method according to claim 123, wherein the detecting step further comprises detecting the response as a fluorescence of at least a portion of the substance.
127. The method according to claim 123, further comprising the step of forming the sensor surface on a diamond material.
128. The method according to claim 127, wherein the forming step further comprises chemical vapor depositing the diamond material.
129. A method of detecting at least one property of a substance, the method comprising the steps of:
positioning a sensor surface proximate the substance;
transmitting energy through an optical fiber to the sensor surface, thereby heating the sensor surface and the substance proximate the sensor surface; and
detecting a temperature of at least one of the heated substance and the sensor surface.
130. The method according to claim 129, wherein the substance is a flowing fluid, and wherein the detecting step is performed using a first temperature sensor positioned downstream relative to the sensor surface.
131. The method according to claim 130, further comprising the step of detecting a temperature of the heated substance using a second temperature sensor proximate the sensor surface.
132. The method according to claim 130, further comprising the step of detecting a temperature of the heated substance using a second temperature sensor upstream relative to the sensor surface.
133. The method according to claim 129, further comprising the step of forming the sensor surface on a chemical vapor deposited diamond material.
134. The method according to claim 133, further comprising the step of chemical vapor depositing the diamond material on a substrate.
135. The method according to claim 134, wherein the transmitting step further comprises heating the substrate positioned between the optical fiber and the diamond material.
136. The method according to claim 129, wherein the transmitting step further comprises varying the transmission of energy through the optical fiber, thereby producing a transient heating of the substance.
137. The method according to claim 136, wherein the energy transmission varying step further comprises varying an intensity of the energy transmitted through the optical fiber.
138. The method according to claim 136, wherein the energy transmission varying step further comprises alternately transmitting and not transmitting the energy through the optical fiber.
139. The method according to claim 129, wherein the transmitting step further comprises heating the substance, thereby causing a phase change in the substance.
140. The method according to claim 139, further comprising the step of detecting a pressure of the substance proximate the sensor.
US10/461,977 2003-06-13 2003-06-13 Fiber optic sensing systems and methods Abandoned US20040252748A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/461,977 US20040252748A1 (en) 2003-06-13 2003-06-13 Fiber optic sensing systems and methods
US11/453,664 US20060233217A1 (en) 2003-06-13 2006-06-15 Fiber optic sensing systems and methods
US12/034,058 US8961006B2 (en) 2003-06-13 2008-02-20 Fiber optic sensing systems and methods
US14/596,380 US20150122984A1 (en) 2003-06-13 2015-01-14 Fiber optic sensing systems and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/461,977 US20040252748A1 (en) 2003-06-13 2003-06-13 Fiber optic sensing systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/453,664 Division US20060233217A1 (en) 2003-06-13 2006-06-15 Fiber optic sensing systems and methods

Publications (1)

Publication Number Publication Date
US20040252748A1 true US20040252748A1 (en) 2004-12-16

Family

ID=33511366

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/461,977 Abandoned US20040252748A1 (en) 2003-06-13 2003-06-13 Fiber optic sensing systems and methods
US11/453,664 Abandoned US20060233217A1 (en) 2003-06-13 2006-06-15 Fiber optic sensing systems and methods
US12/034,058 Expired - Lifetime US8961006B2 (en) 2003-06-13 2008-02-20 Fiber optic sensing systems and methods
US14/596,380 Abandoned US20150122984A1 (en) 2003-06-13 2015-01-14 Fiber optic sensing systems and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/453,664 Abandoned US20060233217A1 (en) 2003-06-13 2006-06-15 Fiber optic sensing systems and methods
US12/034,058 Expired - Lifetime US8961006B2 (en) 2003-06-13 2008-02-20 Fiber optic sensing systems and methods
US14/596,380 Abandoned US20150122984A1 (en) 2003-06-13 2015-01-14 Fiber optic sensing systems and methods

Country Status (1)

Country Link
US (4) US20040252748A1 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060102343A1 (en) * 2004-11-12 2006-05-18 Skinner Neal G Drilling, perforating and formation analysis
US20060175547A1 (en) * 2005-02-04 2006-08-10 Baker Hughes Incorporated Method and apparatus for analyzing a downhole fluid using a thermal detector
US20060245469A1 (en) * 2002-07-12 2006-11-02 Christian Koeniger Subsea and landing string distributed temperature sensor system
US20070120051A1 (en) * 2005-02-04 2007-05-31 Baker Hughes Incorporated Apparatus and Method for Imaging Fluids Downhole
US20070280605A1 (en) * 2006-05-31 2007-12-06 Mendoza Edgar A Fiber bragg grating sensor interrogator and manufacture thereof
US20080083273A1 (en) * 2006-10-06 2008-04-10 Baker Hughes Incorporated Apparatus and methods for estimating a characteristic of a fluid downhole using thermal properties of the fluid
US20080245960A1 (en) * 2007-04-09 2008-10-09 Baker Hughes Incorporated Method and Apparatus to Determine Characteristics of an Oil-Based Mud Downhole
US20100148049A1 (en) * 2007-11-01 2010-06-17 Baker Hughes Incorporated Method of identification of petroleum compounds using frequency mixing on surfaces
US20110259090A1 (en) * 2007-12-22 2011-10-27 Dan Angelescu Thermal bubble point measurement system and method
US20120170898A1 (en) * 2004-06-22 2012-07-05 Welldynamics, B.V. Fiber optic splice housing and integral dry mate connector system
US8215164B1 (en) * 2012-01-02 2012-07-10 HydroConfidence Inc. Systems and methods for monitoring groundwater, rock, and casing for production flow and leakage of hydrocarbon fluids
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US20130341008A1 (en) * 2012-06-20 2013-12-26 Dominic Brady Thermal optical fluid composition detection
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US20140064329A1 (en) * 2012-08-29 2014-03-06 Frank Selker Monitoring Movement in Fluid-Containing Environment via Variable Heating
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US20140102695A1 (en) * 2011-06-13 2014-04-17 Elena Borisova Methods and Apparatus for Determining Fluid Parameters
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8961006B2 (en) 2003-06-13 2015-02-24 Welldynamics, B.V. Fiber optic sensing systems and methods
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
WO2015172974A1 (en) * 2014-05-13 2015-11-19 Endress+Hauser Flowtec Ag Method for operating a measuring device and measuring device
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
WO2016144342A1 (en) * 2015-03-11 2016-09-15 Halliburton Energy Services, Inc. Determining characteristics of a fluid in a wellbore
WO2016144346A1 (en) * 2015-03-11 2016-09-15 Halliburton Energy Services, Inc. Downhole communications using frequency guard bands
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9638027B2 (en) 2015-03-11 2017-05-02 Halliburton Energy Services, Inc. Antenna for downhole communication using surface waves
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US10047603B2 (en) 2013-08-29 2018-08-14 Halliburton Energy Services, Inc. Analyzing subsurface material properties using a laser vibrometer
US20180245453A1 (en) * 2015-09-01 2018-08-30 Statoil Petroleum As Inflow channel
CN109267991A (en) * 2018-10-10 2019-01-25 北京大德广源石油技术服务有限公司 Oil/gas well output and injection monitoring system
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US10996153B2 (en) * 2019-06-04 2021-05-04 Zhejiang University Corrosion-fatigue-coupled test method and device for steel bridge deck
US11053791B2 (en) 2016-04-07 2021-07-06 Bp Exploration Operating Company Limited Detecting downhole sand ingress locations
US11085836B2 (en) * 2017-03-06 2021-08-10 Tri-Force Management Corporation Force sensor that detects at least one of a force in each axial direction and a moment around each axis in an XYZ three-dimensional coordinate system
US11098576B2 (en) 2019-10-17 2021-08-24 Lytt Limited Inflow detection using DTS features
CN113530524A (en) * 2021-07-12 2021-10-22 中国石油大学(华东) Shaft flow monitoring system and flow and water content interpretation method
US11162353B2 (en) * 2019-11-15 2021-11-02 Lytt Limited Systems and methods for draw down improvements across wellbores
US11199085B2 (en) 2017-08-23 2021-12-14 Bp Exploration Operating Company Limited Detecting downhole sand ingress locations
US11199084B2 (en) 2016-04-07 2021-12-14 Bp Exploration Operating Company Limited Detecting downhole events using acoustic frequency domain features
US11333636B2 (en) 2017-10-11 2022-05-17 Bp Exploration Operating Company Limited Detecting events using acoustic frequency domain features
US11466563B2 (en) 2020-06-11 2022-10-11 Lytt Limited Systems and methods for subterranean fluid flow characterization
US11473424B2 (en) 2019-10-17 2022-10-18 Lytt Limited Fluid inflow characterization using hybrid DAS/DTS measurements
US11593683B2 (en) 2020-06-18 2023-02-28 Lytt Limited Event model training using in situ data
US11643923B2 (en) 2018-12-13 2023-05-09 Bp Exploration Operating Company Limited Distributed acoustic sensing autocalibration
US11859488B2 (en) 2018-11-29 2024-01-02 Bp Exploration Operating Company Limited DAS data processing to identify fluid inflow locations and fluid type

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010289A1 (en) * 2009-02-24 2010-09-02 Siemens Aktiengesellschaft Device for measuring temperature in electromagnetic fields, use of this device and associated measuring arrangement
US9557231B2 (en) * 2010-10-01 2017-01-31 Afl Telecommunications Llc Sensing cable
US8528385B2 (en) 2010-12-30 2013-09-10 Eaton Corporation Leak detection system
US9291521B2 (en) 2010-12-30 2016-03-22 Eaton Corporation Leak detection system
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
DK2700923T3 (en) * 2012-07-04 2017-10-02 Schlumberger Technology Bv Apparatus for determining fluid properties
US9194220B2 (en) * 2013-03-15 2015-11-24 Baker Hughes Incorporated Apparatus and method for determining fluid interface proximate an electrical submersible pump and operating the same in response thereto
RU2671985C2 (en) * 2013-05-17 2018-11-08 Шлюмбергер Текнолоджи Б.В. Method and device for determining the characteristics of the flow of a fluid environment
US9151924B2 (en) 2013-08-16 2015-10-06 General Electric Company Fiber optic sensing apparatus and method for sensing parameters involving different parameter modalities
US20160168980A1 (en) * 2014-12-15 2016-06-16 Mark BEDRY Dual-ended distributed temperature sensor with temperature sensor array
RU2610945C1 (en) * 2015-12-10 2017-02-17 Ильдар Зафирович Денисламов Method of determination of deposit volume in well flow column
US10927661B2 (en) * 2015-12-16 2021-02-23 Halliburton Energy Services, Inc. Using electro acoustic technology to determine annulus pressure
US10458233B2 (en) 2016-12-29 2019-10-29 Halliburton Energy Services, Inc. Sensors for in-situ formation fluid analysis
CN108798649B (en) * 2018-04-18 2022-02-11 中国矿业大学 While-drilling temperature measuring device for coal spontaneous combustion temperature detection
US11213912B2 (en) * 2018-06-25 2022-01-04 Bwxt Nuclear Operations Group, Inc. Methods and systems for monitoring a temperature of a component during a welding operation
US11814946B2 (en) * 2022-01-11 2023-11-14 Halliburton Energy Services, Inc. Evaluating annular material in a wellbore using transient thermal response data

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7945A (en) * 1851-02-25 nokris peters co
US63865A (en) * 1867-04-16 Theodore d
US64206A (en) * 1867-04-30 dickinson
US154028A (en) * 1874-08-11 Improvement in guard-gates for draw-bridges
US174728A (en) * 1876-03-14 Improvement in bottle-stoppers
US4046100A (en) * 1975-10-20 1977-09-06 Trw Inc. Apparatus for thermal deposition of metal
US4302970A (en) * 1980-05-09 1981-12-01 United Technologies Corporation Optical temperature probe employing rare earth absorption
US4375164A (en) * 1981-04-22 1983-03-01 Halliburton Company Formation tester
US4560286A (en) * 1977-12-07 1985-12-24 Luxtron Corporation Optical temperature measurement techniques utilizing phosphors
US4703175A (en) * 1985-08-19 1987-10-27 Tacan Corporation Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
US4710033A (en) * 1981-04-07 1987-12-01 Omron Tateisi Electronics Co. Temperature measurement system
US4729668A (en) * 1986-04-22 1988-03-08 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for optical temperature measurements
US4767937A (en) * 1986-12-30 1988-08-30 The Boeing Company Scanning system with low scan rate and high effective frame rate
US4776827A (en) * 1986-09-01 1988-10-11 The General Electric Company P.L.C. Temperature sensing system using a phosphor having a temperature-dependent luminescent decay time
US4778987A (en) * 1984-07-06 1988-10-18 Saaski Elric W Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4789992A (en) * 1985-10-15 1988-12-06 Luxtron Corporation Optical temperature measurement techniques
US4819658A (en) * 1982-02-11 1989-04-11 American Telephone And Telegraph Company, At&T Bell Laboratories Method and apparatus for measuring the temperature profile of a surface
US4895156A (en) * 1986-07-02 1990-01-23 Schulze John E Sensor system using fluorometric decay measurements
US4906107A (en) * 1986-02-12 1990-03-06 Soundek Oy Fibre-optic thermometer or temperature alarm device
US4976142A (en) * 1989-10-17 1990-12-11 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US4988212A (en) * 1985-10-25 1991-01-29 Luxtron Corporation Fiberoptic sensing of temperature and/or other physical parameters
US5052820A (en) * 1987-06-08 1991-10-01 Electric Power Research Institute, Inc. Thermal refractive materials for optical sensor application
US5112137A (en) * 1991-04-10 1992-05-12 Luxtron Corporation Temperature measurement with combined photo-luminescent and black body sensing techniques
US5163321A (en) * 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5165292A (en) * 1985-12-09 1992-11-24 Ottosensors Corporation Channel Device and tube connection and their fabrication procedures
US5212099A (en) * 1991-01-18 1993-05-18 Eastman Kodak Company Method and apparatus for optically measuring concentration of an analyte
US5364186A (en) * 1992-04-28 1994-11-15 Luxtron Corporation Apparatus and method for monitoring a temperature using a thermally fused composite ceramic blackbody temperature probe
US5378343A (en) * 1993-01-11 1995-01-03 Tufts University Electrode assembly including iridium based mercury ultramicroelectrode array
US5385404A (en) * 1990-07-11 1995-01-31 Jones; Barbara L. Temperature measuring device
US5399868A (en) * 1992-03-12 1995-03-21 Jones; Barbara L. Radiation probe
US5641230A (en) * 1993-04-15 1997-06-24 Japan Energy Corporation Method of determining cloud points and cloud point meter
US5663556A (en) * 1995-03-02 1997-09-02 Northwestern University Optoelectronic ferroelectric sensor and signal generating device
US5721492A (en) * 1994-11-29 1998-02-24 Schlumberger Technology Corporation Electrical logging sensor having conductive and insulating portions formed by layer deposition of hard materials and its method of manufacture
US5758968A (en) * 1996-07-15 1998-06-02 Digimelt Inc. Optically based method and apparatus for detecting a phase transition temperature of a material of interest
US5803607A (en) * 1994-01-26 1998-09-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Method and apparatus for measurement of unsteady gas temperatures
US5839830A (en) * 1994-09-19 1998-11-24 Martin Marietta Energy Systems, Inc. Passivated diamond film temperature sensing probe and measuring system employing same
US5876119A (en) * 1995-12-19 1999-03-02 Applied Materials, Inc. In-situ substrate temperature measurement scheme in plasma reactor
US6005242A (en) * 1997-08-15 1999-12-21 Alconi Sensline Environmental media and pressure sensor
US6164817A (en) * 1998-09-01 2000-12-26 Honeywell, Inc. Fiber optic hygrometer apparatus and method
US6223588B1 (en) * 1997-04-05 2001-05-01 Heriot-Watt University Dew point and bubble point measurement
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US6283632B1 (en) * 1992-11-25 2001-09-04 Terumo Cardiovascular Systems Corporation Method of measuring temperature
US6303411B1 (en) * 1999-05-03 2001-10-16 Vortek Industries Ltd. Spatially resolved temperature measurement and irradiance control
US6324904B1 (en) * 1999-08-19 2001-12-04 Ball Semiconductor, Inc. Miniature pump-through sensor modules
US20020006153A1 (en) * 1998-12-01 2002-01-17 Robert M. Ranson Method of temperature measurement
US6354147B1 (en) * 1998-06-26 2002-03-12 Cidra Corporation Fluid parameter measurement in pipes using acoustic pressures
US6408943B1 (en) * 2000-07-17 2002-06-25 Halliburton Energy Services, Inc. Method and apparatus for placing and interrogating downhole sensors
US6422084B1 (en) * 1998-12-04 2002-07-23 Weatherford/Lamb, Inc. Bragg grating pressure sensor
US6452687B1 (en) * 1998-03-16 2002-09-17 Canon Kabushiki Kaisha Color image forming apparatus and scanning optical apparatus
US6467340B1 (en) * 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
US6480000B1 (en) * 1998-06-18 2002-11-12 Den Norske Stats Oljeselskap A.S. Device and method for measurement of resistivity outside of a wellpipe
US6490931B1 (en) * 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
US6497279B1 (en) * 1998-08-25 2002-12-24 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
US6511222B1 (en) * 1998-09-04 2003-01-28 Talltec Technologies Holdings S.A. Temperature sensor with optical fibre
US20030219190A1 (en) * 2002-05-21 2003-11-27 Pruett Phillip E. Method and apparatus for calibrating a distributed temperature sensing system
US20030234921A1 (en) * 2002-06-21 2003-12-25 Tsutomu Yamate Method for measuring and calibrating measurements using optical fiber distributed sensor
US6726360B2 (en) * 2002-03-27 2004-04-27 Council Of Scientific And Industrial Research Intensity modulated fiber optic temperature switching immersion probe
US20040112848A1 (en) * 2001-02-26 2004-06-17 Takashi Ito Disk standing device and storage device for the disk standing device
US6796710B2 (en) * 2001-06-08 2004-09-28 Ethicon Endo-Surgery, Inc. System and method of measuring and controlling temperature of optical fiber tip in a laser system
US20040240515A1 (en) * 2001-08-03 2004-12-02 David Egan Optical end-point detector for a hygrometer

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US505820A (en) * 1893-10-03 Joseph deader
US2217708A (en) * 1939-05-08 1940-10-15 Oil Equipment Engineering Corp Well cementing method and apparatus
US4437761A (en) * 1981-03-27 1984-03-20 Sperry Corporation Refractive index temperature sensor
JPS58102357A (en) 1981-12-15 1983-06-17 Matsushita Electric Ind Co Ltd Controller for tape running speed
JPS58162824A (en) 1982-03-23 1983-09-27 Toshiba Corp Temperature sensor
US4537067A (en) * 1982-11-18 1985-08-27 Wilson Industries, Inc. Inertial borehole survey system
US4676664A (en) * 1983-07-15 1987-06-30 The Trustees Of Columbia University In The City Of New York Exploring for subsurface hydrocarbons by sea floor temperature gradients preferably using a multiplexed thermistor probe
US4621929A (en) * 1983-10-12 1986-11-11 Luxtron Corporation Fiber optic thermal anemometer
US4575260A (en) * 1984-05-10 1986-03-11 Halliburton Company Thermal conductivity probe for fluid identification
US4756627A (en) * 1984-08-17 1988-07-12 Sperry Corporation Optical temperature sensor using photoelastic waveguides
US5004013A (en) * 1988-04-11 1991-04-02 Great Plains Industries, Inc. Dripless coupling device
US4925701A (en) * 1988-05-27 1990-05-15 Xerox Corporation Processes for the preparation of polycrystalline diamond films
US4986671A (en) * 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US5115127A (en) * 1990-01-03 1992-05-19 The United States Of America As Represented By The Secretary Of The Navy Optical fiber sensor for measuring physical properties of fluids
US5159569A (en) * 1990-11-19 1992-10-27 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Formation evaluation from thermal properties
US5201022A (en) * 1991-05-20 1993-04-06 Johnson Matthey Inc. Coated optical fiber
US5271469A (en) * 1992-04-08 1993-12-21 Ctc International Borehole stressed packer inflation system
US5348093A (en) * 1992-08-19 1994-09-20 Ctc International Cementing systems for oil wells
US5355425A (en) * 1992-09-04 1994-10-11 Braiman Mark S Light coupling device for optical fibers
US5526112A (en) * 1993-03-05 1996-06-11 Sahagen; Armen N. Probe for monitoring a fluid medium
US5821861A (en) * 1994-10-03 1998-10-13 York Sensors Limited Monitoring wall temperatures of reactor vessels
EP1355169B1 (en) * 1997-05-02 2010-02-10 Baker Hughes Incorporated Method and apparatus for controlling chemical injection of a surface treatment system
WO2002057812A2 (en) * 2001-01-17 2002-07-25 Neophotonics Corporation Optical materials with selected index-of-refraction
WO1999045235A1 (en) 1998-03-06 1999-09-10 Shell Internationale Research Maatschappij B.V. Inflow detection apparatus and system for its use
US6023340A (en) * 1998-05-07 2000-02-08 Schlumberger Technology Corporation Single point optical probe for measuring three-phase characteristics of fluid flow in a hydrocarbon well
GB9812465D0 (en) * 1998-06-11 1998-08-05 Abb Seatec Ltd Pipeline monitoring systems
US6769805B2 (en) * 1998-08-25 2004-08-03 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
AU3111900A (en) 1998-12-04 2000-06-19 Cidra Corporation Pressure-isolated bragg grating temperature sensor
ATE247222T1 (en) * 1998-12-23 2003-08-15 Elf Exploraton Production METHOD FOR DETECTING FLUID INFLOW IN THE BOREHOLE DURING DRILLING AND DEVICE FOR IMPLEMENTING THE METHOD
US6429784B1 (en) 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
GB9916022D0 (en) 1999-07-09 1999-09-08 Sensor Highway Ltd Method and apparatus for determining flow rates
US6568864B1 (en) * 1999-11-05 2003-05-27 The Furukawa Electric Co., Ltd. Semiconductor laser module and process for manufacturing the same
US6507401B1 (en) * 1999-12-02 2003-01-14 Aps Technology, Inc. Apparatus and method for analyzing fluids
US6473708B1 (en) * 1999-12-20 2002-10-29 Bechtel Bwxt Idaho, Llc Device and method for self-verifying temperature measurement and control
AU2001237053A1 (en) * 2000-02-17 2001-08-27 Bintech. Lllp Bulk materials management apparatus and method
GB0007587D0 (en) 2000-03-30 2000-05-17 Sensor Highway Ltd Flow-rate measurement
US20020007945A1 (en) 2000-04-06 2002-01-24 David Neuroth Composite coiled tubing with embedded fiber optic sensors
FR2816350B1 (en) * 2000-11-08 2002-12-20 Inst Francais Du Petrole METHOD FOR DETERMINING A THERMAL PROFILE OF A WELLBORE FLUID IN A WELL
US6568846B1 (en) * 2000-11-15 2003-05-27 The United States Of America As Represented By The Secretary Of The Army Pulsed laser heating simulation of thermal damage on coated surface
US6785004B2 (en) 2000-11-29 2004-08-31 Weatherford/Lamb, Inc. Method and apparatus for interrogating fiber optic sensors
US6558036B2 (en) 2000-11-29 2003-05-06 Weatherford/Lamb, Inc. Non-intrusive temperature sensor for measuring internal temperature of fluids within pipes
US7009707B2 (en) 2001-04-06 2006-03-07 Thales Underwater Systems Uk Limited Apparatus and method of sensing fluid flow using sensing means coupled to an axial coil spring
US20030112848A1 (en) * 2001-08-29 2003-06-19 Khan Abid L. Temperature sensing in controlled environment
EP1436488B1 (en) * 2001-09-20 2007-02-14 Baker Hughes Incorporated Fluid skin friction sensing device and method
US6719049B2 (en) * 2002-05-23 2004-04-13 Schlumberger Technology Corporation Fluid sampling methods and apparatus for use in boreholes
GB0216259D0 (en) * 2002-07-12 2002-08-21 Sensor Highway Ltd Subsea and landing string distributed sensor system
US6847034B2 (en) * 2002-09-09 2005-01-25 Halliburton Energy Services, Inc. Downhole sensing with fiber in exterior annulus
WO2005017477A1 (en) * 2002-11-21 2005-02-24 Trustees Of Boston University Fiber optic temperature sensor
US6915686B2 (en) * 2003-02-11 2005-07-12 Optoplan A.S. Downhole sub for instrumentation
GB2401430B (en) * 2003-04-23 2005-09-21 Sensor Highway Ltd Fluid flow measurement
US7086484B2 (en) * 2003-06-09 2006-08-08 Halliburton Energy Services, Inc. Determination of thermal properties of a formation
US20040252746A1 (en) * 2003-06-13 2004-12-16 Kendro Laboratory Products, Lp Method and apparatus for temperature calibration of an incubator
US20040252748A1 (en) 2003-06-13 2004-12-16 Gleitman Daniel D. Fiber optic sensing systems and methods
US7089816B2 (en) * 2004-01-13 2006-08-15 Halliburton Energy Services, Inc. Method and apparatus for testing cement slurries

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US63865A (en) * 1867-04-16 Theodore d
US64206A (en) * 1867-04-30 dickinson
US154028A (en) * 1874-08-11 Improvement in guard-gates for draw-bridges
US174728A (en) * 1876-03-14 Improvement in bottle-stoppers
US7945A (en) * 1851-02-25 nokris peters co
US4046100A (en) * 1975-10-20 1977-09-06 Trw Inc. Apparatus for thermal deposition of metal
US4560286A (en) * 1977-12-07 1985-12-24 Luxtron Corporation Optical temperature measurement techniques utilizing phosphors
US4302970A (en) * 1980-05-09 1981-12-01 United Technologies Corporation Optical temperature probe employing rare earth absorption
US4710033A (en) * 1981-04-07 1987-12-01 Omron Tateisi Electronics Co. Temperature measurement system
US4375164A (en) * 1981-04-22 1983-03-01 Halliburton Company Formation tester
US4819658A (en) * 1982-02-11 1989-04-11 American Telephone And Telegraph Company, At&T Bell Laboratories Method and apparatus for measuring the temperature profile of a surface
US4778987A (en) * 1984-07-06 1988-10-18 Saaski Elric W Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4703175A (en) * 1985-08-19 1987-10-27 Tacan Corporation Fiber-optic sensor with two different wavelengths of light traveling together through the sensor head
US4789992A (en) * 1985-10-15 1988-12-06 Luxtron Corporation Optical temperature measurement techniques
US4988212A (en) * 1985-10-25 1991-01-29 Luxtron Corporation Fiberoptic sensing of temperature and/or other physical parameters
US5165292A (en) * 1985-12-09 1992-11-24 Ottosensors Corporation Channel Device and tube connection and their fabrication procedures
US4906107A (en) * 1986-02-12 1990-03-06 Soundek Oy Fibre-optic thermometer or temperature alarm device
US4729668A (en) * 1986-04-22 1988-03-08 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for optical temperature measurements
US4895156A (en) * 1986-07-02 1990-01-23 Schulze John E Sensor system using fluorometric decay measurements
US4776827A (en) * 1986-09-01 1988-10-11 The General Electric Company P.L.C. Temperature sensing system using a phosphor having a temperature-dependent luminescent decay time
US4767937A (en) * 1986-12-30 1988-08-30 The Boeing Company Scanning system with low scan rate and high effective frame rate
US5052820A (en) * 1987-06-08 1991-10-01 Electric Power Research Institute, Inc. Thermal refractive materials for optical sensor application
US4976142A (en) * 1989-10-17 1990-12-11 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5163321A (en) * 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US5385404A (en) * 1990-07-11 1995-01-31 Jones; Barbara L. Temperature measuring device
US5212099A (en) * 1991-01-18 1993-05-18 Eastman Kodak Company Method and apparatus for optically measuring concentration of an analyte
US5112137A (en) * 1991-04-10 1992-05-12 Luxtron Corporation Temperature measurement with combined photo-luminescent and black body sensing techniques
US5399868A (en) * 1992-03-12 1995-03-21 Jones; Barbara L. Radiation probe
US5364186A (en) * 1992-04-28 1994-11-15 Luxtron Corporation Apparatus and method for monitoring a temperature using a thermally fused composite ceramic blackbody temperature probe
US6283632B1 (en) * 1992-11-25 2001-09-04 Terumo Cardiovascular Systems Corporation Method of measuring temperature
US5378343A (en) * 1993-01-11 1995-01-03 Tufts University Electrode assembly including iridium based mercury ultramicroelectrode array
US5641230A (en) * 1993-04-15 1997-06-24 Japan Energy Corporation Method of determining cloud points and cloud point meter
US5803607A (en) * 1994-01-26 1998-09-08 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britian And Northern Ireland Method and apparatus for measurement of unsteady gas temperatures
US5839830A (en) * 1994-09-19 1998-11-24 Martin Marietta Energy Systems, Inc. Passivated diamond film temperature sensing probe and measuring system employing same
US5721492A (en) * 1994-11-29 1998-02-24 Schlumberger Technology Corporation Electrical logging sensor having conductive and insulating portions formed by layer deposition of hard materials and its method of manufacture
US5663556A (en) * 1995-03-02 1997-09-02 Northwestern University Optoelectronic ferroelectric sensor and signal generating device
US5876119A (en) * 1995-12-19 1999-03-02 Applied Materials, Inc. In-situ substrate temperature measurement scheme in plasma reactor
US5758968A (en) * 1996-07-15 1998-06-02 Digimelt Inc. Optically based method and apparatus for detecting a phase transition temperature of a material of interest
US5933565A (en) * 1996-07-15 1999-08-03 Digimelt Inc. Optically based method and apparatus for detecting a phase transition temperature of a material of interest
US6223588B1 (en) * 1997-04-05 2001-05-01 Heriot-Watt University Dew point and bubble point measurement
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US6005242A (en) * 1997-08-15 1999-12-21 Alconi Sensline Environmental media and pressure sensor
US6452687B1 (en) * 1998-03-16 2002-09-17 Canon Kabushiki Kaisha Color image forming apparatus and scanning optical apparatus
US6480000B1 (en) * 1998-06-18 2002-11-12 Den Norske Stats Oljeselskap A.S. Device and method for measurement of resistivity outside of a wellpipe
US6354147B1 (en) * 1998-06-26 2002-03-12 Cidra Corporation Fluid parameter measurement in pipes using acoustic pressures
US6497279B1 (en) * 1998-08-25 2002-12-24 Sensor Highway Limited Method of using a heater with a fiber optic string in a wellbore
US6164817A (en) * 1998-09-01 2000-12-26 Honeywell, Inc. Fiber optic hygrometer apparatus and method
US6511222B1 (en) * 1998-09-04 2003-01-28 Talltec Technologies Holdings S.A. Temperature sensor with optical fibre
US20020006153A1 (en) * 1998-12-01 2002-01-17 Robert M. Ranson Method of temperature measurement
US6490931B1 (en) * 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
US6422084B1 (en) * 1998-12-04 2002-07-23 Weatherford/Lamb, Inc. Bragg grating pressure sensor
US6303411B1 (en) * 1999-05-03 2001-10-16 Vortek Industries Ltd. Spatially resolved temperature measurement and irradiance control
US6324904B1 (en) * 1999-08-19 2001-12-04 Ball Semiconductor, Inc. Miniature pump-through sensor modules
US6467340B1 (en) * 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
US6408943B1 (en) * 2000-07-17 2002-06-25 Halliburton Energy Services, Inc. Method and apparatus for placing and interrogating downhole sensors
US20040112848A1 (en) * 2001-02-26 2004-06-17 Takashi Ito Disk standing device and storage device for the disk standing device
US6796710B2 (en) * 2001-06-08 2004-09-28 Ethicon Endo-Surgery, Inc. System and method of measuring and controlling temperature of optical fiber tip in a laser system
US20040240515A1 (en) * 2001-08-03 2004-12-02 David Egan Optical end-point detector for a hygrometer
US6726360B2 (en) * 2002-03-27 2004-04-27 Council Of Scientific And Industrial Research Intensity modulated fiber optic temperature switching immersion probe
US20030219190A1 (en) * 2002-05-21 2003-11-27 Pruett Phillip E. Method and apparatus for calibrating a distributed temperature sensing system
US20030234921A1 (en) * 2002-06-21 2003-12-25 Tsutomu Yamate Method for measuring and calibrating measurements using optical fiber distributed sensor

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060245469A1 (en) * 2002-07-12 2006-11-02 Christian Koeniger Subsea and landing string distributed temperature sensor system
US8579504B2 (en) * 2002-07-12 2013-11-12 Schlumberger Oilfield UK PLC, Sensor Highway Limited Subsea and landing string distributed temperature sensor system
US8961006B2 (en) 2003-06-13 2015-02-24 Welldynamics, B.V. Fiber optic sensing systems and methods
US20120170898A1 (en) * 2004-06-22 2012-07-05 Welldynamics, B.V. Fiber optic splice housing and integral dry mate connector system
US8757891B2 (en) * 2004-06-22 2014-06-24 Welldynamics, B.V. Fiber optic splice housing and integral dry mate connector system
US20090133871A1 (en) * 2004-11-12 2009-05-28 Skinner Neal G Drilling, perforating and formation analysis
US20060102343A1 (en) * 2004-11-12 2006-05-18 Skinner Neal G Drilling, perforating and formation analysis
US7938175B2 (en) 2004-11-12 2011-05-10 Halliburton Energy Services Inc. Drilling, perforating and formation analysis
US7490664B2 (en) 2004-11-12 2009-02-17 Halliburton Energy Services, Inc. Drilling, perforating and formation analysis
US20070120051A1 (en) * 2005-02-04 2007-05-31 Baker Hughes Incorporated Apparatus and Method for Imaging Fluids Downhole
US7423258B2 (en) * 2005-02-04 2008-09-09 Baker Hughes Incorporated Method and apparatus for analyzing a downhole fluid using a thermal detector
US8023690B2 (en) 2005-02-04 2011-09-20 Baker Hughes Incorporated Apparatus and method for imaging fluids downhole
US20060175547A1 (en) * 2005-02-04 2006-08-10 Baker Hughes Incorporated Method and apparatus for analyzing a downhole fluid using a thermal detector
US20070280605A1 (en) * 2006-05-31 2007-12-06 Mendoza Edgar A Fiber bragg grating sensor interrogator and manufacture thereof
US20080083273A1 (en) * 2006-10-06 2008-04-10 Baker Hughes Incorporated Apparatus and methods for estimating a characteristic of a fluid downhole using thermal properties of the fluid
US8770835B2 (en) 2006-10-06 2014-07-08 Baker Hughes Incorporated Apparatus and methods for estimating a characteristic of a fluid downhole using thermal properties of the fluid
US20080245960A1 (en) * 2007-04-09 2008-10-09 Baker Hughes Incorporated Method and Apparatus to Determine Characteristics of an Oil-Based Mud Downhole
US20100148049A1 (en) * 2007-11-01 2010-06-17 Baker Hughes Incorporated Method of identification of petroleum compounds using frequency mixing on surfaces
US8487238B2 (en) 2007-11-01 2013-07-16 Baker Hughes Incorporated Method of identification of petroleum compounds using frequency mixing on surfaces
US20110259090A1 (en) * 2007-12-22 2011-10-27 Dan Angelescu Thermal bubble point measurement system and method
US8950246B2 (en) * 2007-12-22 2015-02-10 Schlumberger Technology Corporation Thermal bubble point measurement system and method
US8757292B2 (en) 2008-08-20 2014-06-24 Foro Energy, Inc. Methods for enhancing the efficiency of creating a borehole using high power laser systems
US9284783B1 (en) 2008-08-20 2016-03-15 Foro Energy, Inc. High power laser energy distribution patterns, apparatus and methods for creating wells
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US11060378B2 (en) * 2008-08-20 2021-07-13 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9562395B2 (en) 2008-08-20 2017-02-07 Foro Energy, Inc. High power laser-mechanical drilling bit and methods of use
US9360631B2 (en) 2008-08-20 2016-06-07 Foro Energy, Inc. Optics assembly for high power laser tools
US8636085B2 (en) 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
US8662160B2 (en) 2008-08-20 2014-03-04 Foro Energy Inc. Systems and conveyance structures for high power long distance laser transmission
US10036232B2 (en) 2008-08-20 2018-07-31 Foro Energy Systems and conveyance structures for high power long distance laser transmission
US9267330B2 (en) 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
US10301912B2 (en) * 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US8701794B2 (en) 2008-08-20 2014-04-22 Foro Energy, Inc. High power laser perforating tools and systems
US9027668B2 (en) 2008-08-20 2015-05-12 Foro Energy, Inc. Control system for high power laser drilling workover and completion unit
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US8997894B2 (en) 2008-08-20 2015-04-07 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US8511401B2 (en) 2008-08-20 2013-08-20 Foro Energy, Inc. Method and apparatus for delivering high power laser energy over long distances
US8424617B2 (en) 2008-08-20 2013-04-23 Foro Energy Inc. Methods and apparatus for delivering high power laser energy to a surface
US8936108B2 (en) 2008-08-20 2015-01-20 Foro Energy, Inc. High power laser downhole cutting tools and systems
US8820434B2 (en) 2008-08-20 2014-09-02 Foro Energy, Inc. Apparatus for advancing a wellbore using high power laser energy
US8826973B2 (en) 2008-08-20 2014-09-09 Foro Energy, Inc. Method and system for advancement of a borehole using a high power laser
US8869914B2 (en) 2008-08-20 2014-10-28 Foro Energy, Inc. High power laser workover and completion tools and systems
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9347271B2 (en) 2008-10-17 2016-05-24 Foro Energy, Inc. Optical fiber cable for transmission of high power laser energy over great distances
US9327810B2 (en) 2008-10-17 2016-05-03 Foro Energy, Inc. High power laser ROV systems and methods for treating subsea structures
US9244235B2 (en) 2008-10-17 2016-01-26 Foro Energy, Inc. Systems and assemblies for transferring high power laser energy through a rotating junction
US9138786B2 (en) 2008-10-17 2015-09-22 Foro Energy, Inc. High power laser pipeline tool and methods of use
US8678087B2 (en) 2009-06-29 2014-03-25 Halliburton Energy Services, Inc. Wellbore laser operations
US8534357B2 (en) 2009-06-29 2013-09-17 Halliburton Energy Services, Inc. Wellbore laser operations
US8528643B2 (en) 2009-06-29 2013-09-10 Halliburton Energy Services, Inc. Wellbore laser operations
US8464794B2 (en) 2009-06-29 2013-06-18 Halliburton Energy Services, Inc. Wellbore laser operations
US8540026B2 (en) 2009-06-29 2013-09-24 Halliburton Energy Services, Inc. Wellbore laser operations
US8627901B1 (en) 2009-10-01 2014-01-14 Foro Energy, Inc. Laser bottom hole assembly
US8879876B2 (en) 2010-07-21 2014-11-04 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US8571368B2 (en) 2010-07-21 2013-10-29 Foro Energy, Inc. Optical fiber configurations for transmission of laser energy over great distances
US9291017B2 (en) 2011-02-24 2016-03-22 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US9845652B2 (en) 2011-02-24 2017-12-19 Foro Energy, Inc. Reduced mechanical energy well control systems and methods of use
US8720584B2 (en) 2011-02-24 2014-05-13 Foro Energy, Inc. Laser assisted system for controlling deep water drilling emergency situations
US9074422B2 (en) 2011-02-24 2015-07-07 Foro Energy, Inc. Electric motor for laser-mechanical drilling
US9784037B2 (en) 2011-02-24 2017-10-10 Daryl L. Grubb Electric motor for laser-mechanical drilling
US8684088B2 (en) 2011-02-24 2014-04-01 Foro Energy, Inc. Shear laser module and method of retrofitting and use
US8783360B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted riser disconnect and method of use
US8783361B2 (en) 2011-02-24 2014-07-22 Foro Energy, Inc. Laser assisted blowout preventer and methods of use
US9360643B2 (en) 2011-06-03 2016-06-07 Foro Energy, Inc. Rugged passively cooled high power laser fiber optic connectors and methods of use
US9804291B2 (en) * 2011-06-13 2017-10-31 Schlumberger Technology Corporation Methods and apparatus for determining fluid parameters
US10365400B2 (en) 2011-06-13 2019-07-30 Schlumberger Technology Corporation Methods and apparatus for analyzing operations
US10393919B2 (en) 2011-06-13 2019-08-27 Schlumberger Technology Corporation Methods and apparatus for determining downhole parametes
US9753179B2 (en) 2011-06-13 2017-09-05 Schlumberger Technology Corporation Methods and apparatus for determining downhole fluid parameters
US20140102695A1 (en) * 2011-06-13 2014-04-17 Elena Borisova Methods and Apparatus for Determining Fluid Parameters
US8215164B1 (en) * 2012-01-02 2012-07-10 HydroConfidence Inc. Systems and methods for monitoring groundwater, rock, and casing for production flow and leakage of hydrocarbon fluids
US9242309B2 (en) 2012-03-01 2016-01-26 Foro Energy Inc. Total internal reflection laser tools and methods
US9151152B2 (en) * 2012-06-20 2015-10-06 Schlumberger Technology Corporation Thermal optical fluid composition detection
WO2013191886A1 (en) 2012-06-20 2013-12-27 Schlumberger Canada Limited Thermal optical fluid composition detection
US20130341008A1 (en) * 2012-06-20 2013-12-26 Dominic Brady Thermal optical fluid composition detection
EP2864591A4 (en) * 2012-06-20 2016-04-20 Services Petroliers Schlumberger Thermal optical fluid composition detection
US9557437B2 (en) * 2012-08-29 2017-01-31 Selkermetrics, LLC Monitoring movement in fluid-containing environment via variable heating
US20140064329A1 (en) * 2012-08-29 2014-03-06 Frank Selker Monitoring Movement in Fluid-Containing Environment via Variable Heating
US10047603B2 (en) 2013-08-29 2018-08-14 Halliburton Energy Services, Inc. Analyzing subsurface material properties using a laser vibrometer
WO2015172974A1 (en) * 2014-05-13 2015-11-19 Endress+Hauser Flowtec Ag Method for operating a measuring device and measuring device
WO2016144342A1 (en) * 2015-03-11 2016-09-15 Halliburton Energy Services, Inc. Determining characteristics of a fluid in a wellbore
US10082018B2 (en) 2015-03-11 2018-09-25 Halliburton Energy Services, Inc. Downhole communications using frequency guard bands
WO2016144346A1 (en) * 2015-03-11 2016-09-15 Halliburton Energy Services, Inc. Downhole communications using frequency guard bands
GB2549681B (en) * 2015-03-11 2019-06-12 Halliburton Energy Services Inc Determining characteristics of a fluid in a wellbore
GB2549681A (en) * 2015-03-11 2017-10-25 Halliburton Energy Services Inc Determining characteristics of a fluid in a wellbore
US9638027B2 (en) 2015-03-11 2017-05-02 Halliburton Energy Services, Inc. Antenna for downhole communication using surface waves
US10570734B2 (en) 2015-03-11 2020-02-25 Halliburton Energy Services, Inc. Determining characteristics of a fluid in a wellbore
GB2547620B (en) * 2015-03-11 2021-01-06 Halliburton Energy Services Inc Downhole communications using frequency guard bands
US11352880B2 (en) 2015-03-11 2022-06-07 Halliburton Energy Services, Inc. Determining characteristics of a fluid in a wellbore
GB2547620A (en) * 2015-03-11 2017-08-23 Halliburton Energy Services Inc Downhole communications using frequency guard bands
US20180245453A1 (en) * 2015-09-01 2018-08-30 Statoil Petroleum As Inflow channel
US11814951B2 (en) * 2015-09-01 2023-11-14 Statoil Petroleum As Inflow channel for determining properties of fluid flowing therethrough
US10221687B2 (en) 2015-11-26 2019-03-05 Merger Mines Corporation Method of mining using a laser
US11215049B2 (en) 2016-04-07 2022-01-04 Bp Exploration Operating Company Limited Detecting downhole events using acoustic frequency domain features
US11530606B2 (en) 2016-04-07 2022-12-20 Bp Exploration Operating Company Limited Detecting downhole sand ingress locations
US11199084B2 (en) 2016-04-07 2021-12-14 Bp Exploration Operating Company Limited Detecting downhole events using acoustic frequency domain features
US11053791B2 (en) 2016-04-07 2021-07-06 Bp Exploration Operating Company Limited Detecting downhole sand ingress locations
US11085836B2 (en) * 2017-03-06 2021-08-10 Tri-Force Management Corporation Force sensor that detects at least one of a force in each axial direction and a moment around each axis in an XYZ three-dimensional coordinate system
US11199085B2 (en) 2017-08-23 2021-12-14 Bp Exploration Operating Company Limited Detecting downhole sand ingress locations
US11333636B2 (en) 2017-10-11 2022-05-17 Bp Exploration Operating Company Limited Detecting events using acoustic frequency domain features
CN109267991A (en) * 2018-10-10 2019-01-25 北京大德广源石油技术服务有限公司 Oil/gas well output and injection monitoring system
US11859488B2 (en) 2018-11-29 2024-01-02 Bp Exploration Operating Company Limited DAS data processing to identify fluid inflow locations and fluid type
US11643923B2 (en) 2018-12-13 2023-05-09 Bp Exploration Operating Company Limited Distributed acoustic sensing autocalibration
US10996153B2 (en) * 2019-06-04 2021-05-04 Zhejiang University Corrosion-fatigue-coupled test method and device for steel bridge deck
US11473424B2 (en) 2019-10-17 2022-10-18 Lytt Limited Fluid inflow characterization using hybrid DAS/DTS measurements
US11098576B2 (en) 2019-10-17 2021-08-24 Lytt Limited Inflow detection using DTS features
US11162353B2 (en) * 2019-11-15 2021-11-02 Lytt Limited Systems and methods for draw down improvements across wellbores
US11466563B2 (en) 2020-06-11 2022-10-11 Lytt Limited Systems and methods for subterranean fluid flow characterization
US11593683B2 (en) 2020-06-18 2023-02-28 Lytt Limited Event model training using in situ data
CN113530524A (en) * 2021-07-12 2021-10-22 中国石油大学(华东) Shaft flow monitoring system and flow and water content interpretation method

Also Published As

Publication number Publication date
US20080137711A1 (en) 2008-06-12
US20150122984A1 (en) 2015-05-07
US20060233217A1 (en) 2006-10-19
US8961006B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
US8961006B2 (en) Fiber optic sensing systems and methods
US6268911B1 (en) Monitoring of downhole parameters and tools utilizing fiber optics
US5509474A (en) Temperature logging for flow outside casing of wells
US8800653B2 (en) Systems and methods for monitoring a well
US7219729B2 (en) Permanent downhole deployment of optical sensors
US7580797B2 (en) Subsurface layer and reservoir parameter measurements
US8776609B2 (en) Use of fiber optics to monitor cement quality
NO20151327L (en) Length correction system and method
US11098575B2 (en) Method for flow profiling using active-source heating or cooling and temperature profiling
US20120155508A1 (en) Systems and methods for monitoring a well
AU2010279468B2 (en) Systems and methods for monitoring corrosion in a well
EP3821108A1 (en) Tubing condition monitoring
US9021875B2 (en) Bi-directional flow and distributed temperature sensing in subterranean wells
EP2951394B1 (en) Thermal h2s detection in downhole fluids
RU2424420C1 (en) Procedure for determination of heat conduction coefficient of heat insulation of heat insulated lift pipe in well
US11767753B2 (en) Method for flow profiling using transient active-source heating or cooling and temperature profiling
CA2482487C (en) Permanent downhole deployment of optical sensors
Luft et al. Thermal Performance of Insulated Concentric Coiled Tubing (ICCT) for Continuous Steam Injection in Heavy Oil Production
NO20190589A1 (en) Determination of temperature and temperature profile in pipeline or a wellbore
Gupta Case Histories of Temperature Surveys in Kuwait (includes associated papers 11279 and 11328)
Achinivu et al. Field application of an interpretation method of downhole temperature and pressure data for detecting water entry in horizontal/highly inclined gas wells

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLEITMAN, DANIEL D.;REEL/FRAME:014529/0725

Effective date: 20030915

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: WELLDYNAMICS, B.V.,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIBURTON ENERGY SERVICES, INC.;REEL/FRAME:018767/0859

Effective date: 20061231

Owner name: WELLDYNAMICS, B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIBURTON ENERGY SERVICES, INC.;REEL/FRAME:018767/0859

Effective date: 20061231

AS Assignment

Owner name: WELLDYNAMICS, B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIBURTON ENERGY SERVICES, INC.;REEL/FRAME:019781/0406

Effective date: 20070529

Owner name: WELLDYNAMICS, B.V.,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALLIBURTON ENERGY SERVICES, INC.;REEL/FRAME:019781/0406

Effective date: 20070529