US20040260045A1 - Cyanoacrylate compositions - Google Patents

Cyanoacrylate compositions Download PDF

Info

Publication number
US20040260045A1
US20040260045A1 US10/463,461 US46346103A US2004260045A1 US 20040260045 A1 US20040260045 A1 US 20040260045A1 US 46346103 A US46346103 A US 46346103A US 2004260045 A1 US2004260045 A1 US 2004260045A1
Authority
US
United States
Prior art keywords
cyanoacrylate
accelerator
composition according
composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/463,461
Other versions
US6835789B1 (en
Inventor
Brendan Kneafsey
Ruth Kelly
Fergal Tierney
David Birkett
Hanns Misiak
Kieran Mulcahy
Harry Woolfson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel IP and Holding GmbH
Original Assignee
Henkel Loctite Ireland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Loctite Ireland Ltd filed Critical Henkel Loctite Ireland Ltd
Assigned to LOCTITE (IRELAND) LTD. reassignment LOCTITE (IRELAND) LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIRKETT, DAVID P., KELLY, RUTH A., KNEAFSEY, BRENDAN J., MISIAK, HANNS R., MULCAHY, KIERAN, TIERNEY, FERGAL W., WOOLFSON, HARRY J.
Priority to US10/463,461 priority Critical patent/US6835789B1/en
Assigned to LOCTITE (R&D) LTD. reassignment LOCTITE (R&D) LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOCTITE (IRELAND) LTD.
Priority to EP04737052A priority patent/EP1633827A2/en
Priority to PCT/IE2004/000086 priority patent/WO2004111147A2/en
Priority to KR1020057024049A priority patent/KR100964088B1/en
Priority to CN2004800133648A priority patent/CN1791649B/en
Priority to BRPI0411472-8A priority patent/BRPI0411472A/en
Priority to CA2525011A priority patent/CA2525011C/en
Priority to JP2006516790A priority patent/JP4624997B2/en
Priority to MXPA05012296A priority patent/MXPA05012296A/en
Publication of US20040260045A1 publication Critical patent/US20040260045A1/en
Publication of US6835789B1 publication Critical patent/US6835789B1/en
Application granted granted Critical
Assigned to HENKEL IRELAND LIMITED reassignment HENKEL IRELAND LIMITED MERGER (SEE DOCUMENT FOR DETAILS). Assignors: HENKEL IRELAND HOLDING B.V.
Assigned to HENKEL IRELAND HOLDING B.V. reassignment HENKEL IRELAND HOLDING B.V. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: LOCTITE (R&D) LIMITED
Assigned to HENKEL IRELAND LIMITED reassignment HENKEL IRELAND LIMITED CHANGE OF ADDRESS Assignors: HENKEL IRELAND LIMITED
Assigned to Henkel IP & Holding GmbH reassignment Henkel IP & Holding GmbH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HENKEL AG & CO. KGAA
Assigned to HENKEL AG & CO. KGAA reassignment HENKEL AG & CO. KGAA MERGER (SEE DOCUMENT FOR DETAILS). Assignors: HENKEL IRELAND LIMITED
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/30Nitriles
    • C08F22/32Alpha-cyano-acrylic acid; Esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/30Nitriles
    • C08F222/32Alpha-cyano-acrylic acid; Esters thereof
    • C08F222/322Alpha-cyano-acrylic acid ethyl ester, e.g. ethyl-2-cyanoacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • This invention relates to cyanoacrylate-containing compositions that include, in addition to the cyanoacrylate component, a certain accelerator to improve fixture speeds on certain substrates.
  • Cyanoacrylate adhesive compositions are well known, and widely used as quick setting, instant adhesives with a wide variety of uses. See H. V. Coover, D. W. Dreifus and J. T. O'Connor, “Cyanoacrylate Adhesives” in Handbook of Adhesives, 27, 463-77, I. Skeist, ed., Van Nostrand Reinhold, N.Y., 3rd ed. (1990). See also G. H. Millet “Cyanoacrylate Adhesives” in Structural Adhesives: Chemistry and Technology , S. R. Hartshorn, ed., Plenun Press, New York, p. 249-307 (1986).
  • Henkel Loctite Corporation [then Loctite Corporation, at least in part through its Loctite (Ireland) Ltd. affiliate] developed a technology based on calixarene and oxacalixarene compounds. Generally, the addition of such materials to a cyanoacrylate allow for accelerated fixturing of substrates to-be-bonded together. See U.S. Pat. Nos. 4,556,700, 4,622,414, 4,636,539, 4,695,615, 4,718,966, and 4,855,461.
  • Henkel Loctite Corporation also developed technology based on the addition of silacrown compounds to cyanoacrylate adhesive compositions to accelerate fixturing.
  • U.S. Pat. No. 4,906,317 (Liu) is directed to cyanoacrylate adhesive compositions which include silacrown compounds as additives to give substantially reduced fixture and cure times on de-activating substrates such as wood.
  • the silacrown compounds are preferably employed at levels of about 0.1-5% by weight of the composition.
  • cyanoacrylate adhesive composition is provided with a first accelerator component selected from calixarenes and oxacalixarenes, silacrowns, cyclodextrins, crown ethers, and combinations thereof; and a second accelerator component selected from poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds, and combinations thereof.
  • first accelerator component selected from calixarenes and oxacalixarenes, silacrowns, cyclodextrins, crown ethers, and combinations thereof
  • second accelerator component selected from poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds, and combinations thereof.
  • Henkel Loctite Corporation developed a cyanoacrylate adhesive composition, based on a cyanoacrylate component; and an accelerator component consisting essentially of (i) calixarenes, oxcalixarenes, or a combination thereof, and (ii) at least one crown ether, where the composition exhibits a fixturing speed of less than 20 seconds for bonding two substrates, at least one of which is constructed of a material selected from steel, epoxy glass or balsawood, as described in U.S. Pat. No. 6,475,331 (O'Connor).
  • the present invention is directed to a cyanoacrylate-based composition, which includes beyond the cyanoacrylate component,
  • R is hydrogen, alkyl, alkyloxy, alkyl thioethers, haloalkyl, carboxylic acid and esters thereof, sulfinic, sulfonic and sulfurous acids and esters, phosphinic, phosphonic and phosphorous acids and esters thereof, X is optional, but when present is an aliphatic or aromatic hydrocarbyl linkage, which may be substituted by oxygen or sulfur, and Z is a single or double bond, such as
  • a particularly desirable chemical within this class as an accelerator component is
  • This invention is also directed to a method of bonding together two substrates, at least one of which is constructed of certain woods, and ceramic, and combinations thereof.
  • the method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates.
  • the present invention is directed to reaction products of the inventive compositions.
  • the invention is directed to a method of preparing the inventive compositions.
  • FIG. 1 shows a comparative chart of Samples A-D, where MDF is medium density fiberboard, ABS is acrylonitrile butadiene styrene copolymer, Al is aluminum and SS is stainless steel.
  • this invention is directed to a cyanoacrylate-based composition, which includes beyond the cyanoacrylate component,
  • R is hydrogen, alkyl, alkyloxy, alkyl thioethers, haloalkyl, carboxylic acid and esters thereof, sulfinic, sulfonic and sulfurous acids and esters, phosphinic, phosphonic and phosphorous acids and esters thereof, X is optional, but when present is an aliphatic or aromatic hydrocarbyl linkage, which may be substituted by oxygen or sulfur, and Z is a single or double bond, such as
  • a particularly desirable chemical within this class as an accelerator component is
  • the cyanoacrylate component includes cyanoacrylate monomers which may be chosen with a raft of substituents, such as those represented by H 2 C ⁇ C(CN)—COOR, where R is selected from C 1-15 alkyl, alkoxyalkyl, cycloalkyl, alkenyl, aralkyl, aryl, allyl and haloalkyl groups.
  • the cyanoacrylate monomer is selected from methyl cyanoacrylate, ethyl-2-cyanoacrylate, propyl cyanoacrylates, butyl cyanoacrylates (such as n-butyl-2-cyanoacrylate), octyl cyanoacrylates, allyl cyanoacrylate, ⁇ -methoxyethyl cyanoacrylate and combinations thereof.
  • a particularly desirable one is ethyl-2-cyanoacrylate.
  • the cyanoacrylate component should be included in the compositions in an amount within the range of from about 50% to about 99.98% by weight, with the range of about 90% to about 99% by weight being desirable, and about 95% by weight of the total composition being particularly desirable.
  • accelerators may also be included in the composition.
  • Such accelerators may be selected from calixarenes and oxacalixarenes, silacrowns, crown ethers, cyclodextrins, poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds and combinations thereof.
  • R 1 is alkyl, alkoxy, substituted alkyl or substituted alkoxy
  • R 2 is H or alkyl
  • n is 4, 6 or 8.
  • TBTEOCA tetrabutyl tetra[2-ethoxy-2-oxoethoxy]calix-4-arene
  • a host of crown ethers are known.
  • examples which may be used herein either individually or in combination, or in combination with other first accelerators include 15-crown-5, 18-crown-6, dibenzo-18-crown-6, benzo-15-crown-5-dibenzo-24-crown-8, dibenzo-30-crown-10, tribenzo-18-crown-6, asym-dibenzo-22-crown-6, dibenzo-14-crown-4, dicyclohexyl-18-crown-6, dicyclohexyl-24-crown-8, cyclohexyl-12-crown-4, 1,2-decalyl-15-crown-5, 1,2-naphtho-15-crown-5, 3,4,5-naphtyl-16-crown-5, 1,2-methyl-benzo-18-crown-6, 1,2-methylbenzo-5, 6-methylbenzo-18-crown-6, 1,2-t-butyl-18-c
  • silacrowns again many are known, and are reported in the literature.
  • a typical silacrown may be represented within the following structure (VI):
  • R 3 and R 4 are organo groups which do not themselves cause polymerization of the cyanoacrylate monomer
  • R 5 is H or CH 3 and n is an integer of between 1 and 4.
  • suitable R 3 and R 4 groups are R groups, alkoxy groups, such as methoxy, and aryloxy groups, such as phenoxy.
  • the R 3 and R 4 groups may contain halogen or other substituents, an example being trifluoropropyl.
  • groups not suitable as R 4 and R 5 groups are basic groups, such as amino, substituted amino and alkylamino.
  • silacrown compounds useful in the inventive compositions include:
  • cyclodextrins may be used in connection with the present invention.
  • those described and claimed in U.S. Pat. No. 5,312,864 (Wenz), the disclosure of which is hereby expressly incorporated herein by reference, as hydroxyl group derivatives of an ⁇ , ⁇ or ⁇ -cyclodextrin which is at least partly soluble in the cyanoacrylate would be appropriate choices for use herein as the first accelerator component.
  • poly(ethylene glycol) di(meth)acrylates suitable for use herein include there within structure X below:
  • n is greater than 3, such as within the range of 3 to 12, with n being 9 as particularly desirable. More specific examples include PEG 200 DMA, (where n is about 4) PEG 400 DMA (where n is about 9), PEG 600 DMA (where n is about 14), and PEG 800 DMA (where n is about 19), where the number (e.g., 400) represents the average molecular weight of the glycol portion of the molecule, excluding the two methacrylate groups, expressed as grams/mole (i.e., 400 g/mol).
  • a particularly desirable PEG DMA is PEG 400 DMA.
  • ethoxylated hydric compounds or ethoxylated fatty alcohols that may be employed
  • appropriate ones may be chosen from those within structure XI:
  • C m can be a linear or branched alkyl or alkenyl chain
  • m is an integer between 1 to 30, such as from 5 to 20
  • n is an integer between 2 to 30, such as from 5 to 15, and R may be H or alkyl, such as C 1-6 alkyl.
  • the accelerator embraced by structures I-IV should be included in the compositions in an amount within the range of from about 0.01% to about 10% by weight, with the range of about 0.1 to about 0.5% by weight being desirable, and about 0.4% by weight of the total composition being particularly desirable.
  • additives may be included in the inventive compositions to confer additional physical properties, such as improved shelf-life stability, flexibility, thixotropy, increased viscosity, color, improved toughness, and enhanced resistance to thermal degradation.
  • additives therefore may be selected from free radical stabilizers, anionic stabilizers, gelling agents, thickeners [such as polymethyl methacrylate (PMMA)], thixotropy conferring agents (such as fumed silica), dyes, toughening agents, thermal degradation enhancers, plasticizers and combinations thereof.
  • a method of bonding together two substrates at least one of which is constructed of materials, such as certain woods, cotton and cork.
  • the method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates for a time sufficient to permit the adhesive to fixture.
  • the substrate should become fixed in less than 30 seconds, and depending on substrate as little as 1-3 seconds.
  • reaction products of the so-described compositions there is provided reaction products of the so-described compositions.
  • a method of preparing the so-described compositions includes providing a cyanoacrylate component, and combining therewith with mixing a first and second accelerator component.
  • a method of bonding together two substrates at least one of which is constructed of a material selected from the group consisting of wood, cotton and cork, using the compositions of this invention.
  • the method includes applying the compositions to at least one of the substrates and mating together the substrates for a time sufficient to permit the composition to fixture.
  • Samples A and B (cyanoacrylate with compound IV) demonstrates improved fixture speeds on certain substrates, namely the woods, obechi; ash and limba, and ceramic, as compared with Sample D, which is the cyanoacrylate with the combination of the noted calixarenes and polyethylene glycol dimethacrylate.

Abstract

This invention relates to cyanoacrylate-containing compositions that include, in addition to the cyanoacrylate component, certain accelerators to improve fixture speeds on certain substrates.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to cyanoacrylate-containing compositions that include, in addition to the cyanoacrylate component, a certain accelerator to improve fixture speeds on certain substrates. [0002]
  • 2. Brief Description of Related Technology [0003]
  • Cyanoacrylate adhesive compositions are well known, and widely used as quick setting, instant adhesives with a wide variety of uses. See H. V. Coover, D. W. Dreifus and J. T. O'Connor, “Cyanoacrylate Adhesives” in [0004] Handbook of Adhesives, 27, 463-77, I. Skeist, ed., Van Nostrand Reinhold, N.Y., 3rd ed. (1990). See also G. H. Millet “Cyanoacrylate Adhesives” in Structural Adhesives: Chemistry and Technology, S. R. Hartshorn, ed., Plenun Press, New York, p. 249-307 (1986).
  • Nonetheless, various techniques have been used to improve further the fixture times of such adhesive compositions for certain applications where it is important to be able to secure one substrate to another quickly, while allowing the bond strength to develop over time. In addition, substrates constructed of certain materials have proven in the past difficult to bond, irrespective of the application to which the adhesive and the substrate are to be placed. [0005]
  • To combat these issues, Henkel Loctite Corporation [then Loctite Corporation, at least in part through its Loctite (Ireland) Ltd. affiliate] developed a technology based on calixarene and oxacalixarene compounds. Generally, the addition of such materials to a cyanoacrylate allow for accelerated fixturing of substrates to-be-bonded together. See U.S. Pat. Nos. 4,556,700, 4,622,414, 4,636,539, 4,695,615, 4,718,966, and 4,855,461. [0006]
  • In addition to calixarene compounds, Henkel Loctite Corporation also developed technology based on the addition of silacrown compounds to cyanoacrylate adhesive compositions to accelerate fixturing. For instance, U.S. Pat. No. 4,906,317 (Liu) is directed to cyanoacrylate adhesive compositions which include silacrown compounds as additives to give substantially reduced fixture and cure times on de-activating substrates such as wood. The silacrown compounds are preferably employed at levels of about 0.1-5% by weight of the composition. [0007]
  • Henkel KGaA developed technology based on the addition to cyanoacrylate compositions of cyclodextrins to accelerate fixturing. In U.S. Pat. No. 5,312,864 (Wenz), the acceleration of the setting properties of a cyanoacrylate adhesive composition by adding thereto a hydroxyl group derivative of an α-, β- or γ-cyclodextrin which is at least partly soluble in the cyanoacrylate is described. [0008]
  • Other approaches have also been investigated, such as in U.S. Pat. No. 4,837,260 (Sato), in which it is reported the use of crown ethers in cyanoacrylate adhesive compositions. [0009]
  • More recently, Loctite (R&D) Ltd. investigated other ways in which to accelerate the curing of cyanoacrylate adhesive compositions. In U.S. Pat. No. 6,294,629 (O'Dwyer), a cyanoacrylate adhesive composition is provided with a first accelerator component selected from calixarenes and oxacalixarenes, silacrowns, cyclodextrins, crown ethers, and combinations thereof; and a second accelerator component selected from poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds, and combinations thereof. [0010]
  • And Henkel Loctite Corporation developed a cyanoacrylate adhesive composition, based on a cyanoacrylate component; and an accelerator component consisting essentially of (i) calixarenes, oxcalixarenes, or a combination thereof, and (ii) at least one crown ether, where the composition exhibits a fixturing speed of less than 20 seconds for bonding two substrates, at least one of which is constructed of a material selected from steel, epoxy glass or balsawood, as described in U.S. Pat. No. 6,475,331 (O'Connor). [0011]
  • Notwithstanding the state-of-the-technology it would be desirable to provide alternative technologies to improve the fixturing speed of cyanoacrylates. [0012]
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a cyanoacrylate-based composition, which includes beyond the cyanoacrylate component, [0013]
    Figure US20040260045A1-20041223-C00001
  • I, as an accelerator, where R is hydrogen, alkyl, alkyloxy, alkyl thioethers, haloalkyl, carboxylic acid and esters thereof, sulfinic, sulfonic and sulfurous acids and esters, phosphinic, phosphonic and phosphorous acids and esters thereof, X is optional, but when present is an aliphatic or aromatic hydrocarbyl linkage, which may be substituted by oxygen or sulfur, and Z is a single or double bond, such as [0014]
    Figure US20040260045A1-20041223-C00002
  • II, where R and X are as defined above, and n is 1-12, m is 1-4, and p is 1-3. [0015]
  • For instance, a particularly desirable chemical class embraced by these structures is [0016]
    Figure US20040260045A1-20041223-C00003
  • III, where R, Z and n are as defined above, and R′ is the same as R, where g is the same as n. [0017]
  • A particularly desirable chemical within this class as an accelerator component is [0018]
    Figure US20040260045A1-20041223-C00004
  • IV, where n and m combined is greater than or equal to 12. [0019]
  • The inclusion of these accelerators into a cyanoacrylate composition provides for a demonstrated improved fixture speeds, particularly on substrates constructed of certain woods, and ceramic and combinations thereof, without sacrificing shelf life. [0020]
  • This invention is also directed to a method of bonding together two substrates, at least one of which is constructed of certain woods, and ceramic, and combinations thereof. The method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates. [0021]
  • In addition, the present invention is directed to reaction products of the inventive compositions. [0022]
  • Also, the invention is directed to a method of preparing the inventive compositions. [0023]
  • The invention will be more fully understood by a reading of the section entitled “Detailed Description of the Invention”, which follows.[0024]
  • BRIEF DESCRIPTION OF THE FIGURE
  • FIG. 1 shows a comparative chart of Samples A-D, where MDF is medium density fiberboard, ABS is acrylonitrile butadiene styrene copolymer, Al is aluminum and SS is stainless steel.[0025]
  • DETAILED DESCRIPTION OF THE INVENTION
  • As noted above, this invention is directed to a cyanoacrylate-based composition, which includes beyond the cyanoacrylate component, [0026]
    Figure US20040260045A1-20041223-C00005
  • I, as an accelerator, where R is hydrogen, alkyl, alkyloxy, alkyl thioethers, haloalkyl, carboxylic acid and esters thereof, sulfinic, sulfonic and sulfurous acids and esters, phosphinic, phosphonic and phosphorous acids and esters thereof, X is optional, but when present is an aliphatic or aromatic hydrocarbyl linkage, which may be substituted by oxygen or sulfur, and Z is a single or double bond, such as [0027]
    Figure US20040260045A1-20041223-C00006
  • II, where R and X are as defined above. [0028]
  • For instance, a particularly desirable chemical class embraced by these structures is [0029]
    Figure US20040260045A1-20041223-C00007
  • III, where R, Z and n are as defined above, and R′ is the same as R, and g is the same as n. [0030]
  • A particularly desirable chemical within this class as an accelerator component is [0031]
    Figure US20040260045A1-20041223-C00008
  • IV, where n and m combined are greater than or equal to 12. [0032]
  • The inclusion of such an accelerator into a cyanoacrylate composition provides for a demonstrated improved fixture speeds, particularly on substrates constructed of certain woods, such as obechi, and ceramic, and combinations thereof, without sacrificing shelf life. [0033]
  • The cyanoacrylate component includes cyanoacrylate monomers which may be chosen with a raft of substituents, such as those represented by H[0034] 2C═C(CN)—COOR, where R is selected from C1-15 alkyl, alkoxyalkyl, cycloalkyl, alkenyl, aralkyl, aryl, allyl and haloalkyl groups. Desirably, the cyanoacrylate monomer is selected from methyl cyanoacrylate, ethyl-2-cyanoacrylate, propyl cyanoacrylates, butyl cyanoacrylates (such as n-butyl-2-cyanoacrylate), octyl cyanoacrylates, allyl cyanoacrylate, β-methoxyethyl cyanoacrylate and combinations thereof. A particularly desirable one is ethyl-2-cyanoacrylate.
  • The cyanoacrylate component should be included in the compositions in an amount within the range of from about 50% to about 99.98% by weight, with the range of about 90% to about 99% by weight being desirable, and about 95% by weight of the total composition being particularly desirable. [0035]
  • In addition to the accelerator embraced by the chemical structures above, one or more additional accelerators may also be included in the composition. Such accelerators may be selected from calixarenes and oxacalixarenes, silacrowns, crown ethers, cyclodextrins, poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds and combinations thereof. [0036]
  • Of the calixarenes and oxacalixarenes, many are known, and are reported in the patent literature. See e.g. U.S. Pat. Nos. 4,556,700, 4,622,414, 4,636,539, 4,695,615, 4,718,966, and 4,855,461, the disclosures of each of which are hereby expressly incorporated herein by reference. [0037]
  • For instance, as regards calixarenes, those within structure V are useful herein: [0038]
    Figure US20040260045A1-20041223-C00009
  • where R[0039] 1 is alkyl, alkoxy, substituted alkyl or substituted alkoxy; R2 is H or alkyl; and n is 4, 6 or 8.
  • One particularly desirable calixarene is tetrabutyl tetra[2-ethoxy-2-oxoethoxy]calix-4-arene (“TBTEOCA”). [0040]
  • A host of crown ethers are known. For instance, examples which may be used herein either individually or in combination, or in combination with other first accelerators include 15-crown-5, 18-crown-6, dibenzo-18-crown-6, benzo-15-crown-5-dibenzo-24-crown-8, dibenzo-30-crown-10, tribenzo-18-crown-6, asym-dibenzo-22-crown-6, dibenzo-14-crown-4, dicyclohexyl-18-crown-6, dicyclohexyl-24-crown-8, cyclohexyl-12-crown-4, 1,2-decalyl-15-crown-5, 1,2-naphtho-15-crown-5, 3,4,5-naphtyl-16-crown-5, 1,2-methyl-benzo-18-crown-6, 1,2-methylbenzo-5, 6-methylbenzo-18-crown-6, 1,2-t-butyl-18-crown-6, 1,2-vinylbenzo-15-crown-5, 1,2-vinylbenzo-18-crown-6, 1,2-t-butyl-cyclohexyl-18-crown-6, asym-dibenzo-22-crown-6 and 1,2-benzo-1,4-benzo-5-oxygen-20-crown-7. See U.S. Pat. No. 4,837,260 (Sato), the disclosure of which is hereby expressly incorporated here by reference. [0041]
  • Of the silacrowns, again many are known, and are reported in the literature. For instance, a typical silacrown may be represented within the following structure (VI): [0042]
    Figure US20040260045A1-20041223-C00010
  • where R[0043] 3 and R4 are organo groups which do not themselves cause polymerization of the cyanoacrylate monomer, R5 is H or CH3 and n is an integer of between 1 and 4. Examples of suitable R3 and R4 groups are R groups, alkoxy groups, such as methoxy, and aryloxy groups, such as phenoxy. The R3 and R4 groups may contain halogen or other substituents, an example being trifluoropropyl. However, groups not suitable as R4 and R5 groups are basic groups, such as amino, substituted amino and alkylamino.
  • Specific examples of silacrown compounds useful in the inventive compositions include: [0044]
    Figure US20040260045A1-20041223-C00011
  • dimethylsila-11-crown-4 (VII); [0045]
    Figure US20040260045A1-20041223-C00012
  • dimethylsila-14-crown-5 (VIII); [0046]
    Figure US20040260045A1-20041223-C00013
  • and dimethylsila-17-crown-6 (IX). [0047]
  • See e.g., U.S. Pat. No. 4,906,317 (Liu), the disclosure of which is hereby expressly incorporated herein by reference. [0048]
  • Many cyclodextrins may be used in connection with the present invention. For instance, those described and claimed in U.S. Pat. No. 5,312,864 (Wenz), the disclosure of which is hereby expressly incorporated herein by reference, as hydroxyl group derivatives of an α, β or γ-cyclodextrin which is at least partly soluble in the cyanoacrylate would be appropriate choices for use herein as the first accelerator component. [0049]
  • For instance, poly(ethylene glycol) di(meth)acrylates suitable for use herein include there within structure X below: [0050]
    Figure US20040260045A1-20041223-C00014
  • where n is greater than 3, such as within the range of 3 to 12, with n being 9 as particularly desirable. More specific examples include PEG 200 DMA, (where n is about 4) PEG 400 DMA (where n is about 9), PEG 600 DMA (where n is about 14), and PEG 800 DMA (where n is about 19), where the number (e.g., 400) represents the average molecular weight of the glycol portion of the molecule, excluding the two methacrylate groups, expressed as grams/mole (i.e., 400 g/mol). A particularly desirable PEG DMA is PEG 400 DMA. [0051]
  • And of the ethoxylated hydric compounds (or ethoxylated fatty alcohols that may be employed), appropriate ones may be chosen from those within structure XI: [0052]
    Figure US20040260045A1-20041223-C00015
  • where C[0053] m can be a linear or branched alkyl or alkenyl chain, m is an integer between 1 to 30, such as from 5 to 20, n is an integer between 2 to 30, such as from 5 to 15, and R may be H or alkyl, such as C1-6 alkyl.
  • Commercially available examples of materials within structure XI include those offered under the DEHYDOL tradename from Cognis Deutschland GmbH & Co. KG, Dusseldorf, Germany, such as DEHYDOL 100. [0054]
  • The accelerator embraced by structures I-IV should be included in the compositions in an amount within the range of from about 0.01% to about 10% by weight, with the range of about 0.1 to about 0.5% by weight being desirable, and about 0.4% by weight of the total composition being particularly desirable. [0055]
  • Additives may be included in the inventive compositions to confer additional physical properties, such as improved shelf-life stability, flexibility, thixotropy, increased viscosity, color, improved toughness, and enhanced resistance to thermal degradation. Such additives therefore may be selected from free radical stabilizers, anionic stabilizers, gelling agents, thickeners [such as polymethyl methacrylate (PMMA)], thixotropy conferring agents (such as fumed silica), dyes, toughening agents, thermal degradation enhancers, plasticizers and combinations thereof. [0056]
  • In another aspect of the invention, there is provided a method of bonding together two substrates, at least one of which is constructed of materials, such as certain woods, cotton and cork. The method includes applying to at least one of the substrates a composition as described above, and thereafter mating together the substrates for a time sufficient to permit the adhesive to fixture. For many applications, the substrate should become fixed in less than 30 seconds, and depending on substrate as little as 1-3 seconds. [0057]
  • In yet another aspect of the invention, there is provided reaction products of the so-described compositions. [0058]
  • In still another aspect of the invention, there is provided a method of preparing the so-described compositions. The method includes providing a cyanoacrylate component, and combining therewith with mixing a first and second accelerator component. [0059]
  • In an additional aspect of the invention, there is provided a method of bonding together two substrates, at least one of which is constructed of a material selected from the group consisting of wood, cotton and cork, using the compositions of this invention. The method includes applying the compositions to at least one of the substrates and mating together the substrates for a time sufficient to permit the composition to fixture. [0060]
  • These aspects of the invention will be further illustrated by the examples which follow. [0061]
  • EXAMPLES
  • We prepared four samples to evaluate their fixture speeds on a variety of substrates. The samples were prepared by mixing together the constituents in any order for a sufficient period of time to ensure substantial homogeneity of the constituents. Ordinarily, about 30 minutes would suffice, depending of course on the quantity of the constituents used. The constituents of these samples are listed below in Table 1. [0062]
    TABLE 1
    Component Sample
    Type Identity A B C D
    CA Ethyl-2-CA 82.4983 82.4983 82.3983 82.3983
    Accelerator Compound IV 0.5 0.5 0.4
    TBTEOCA 0.2 0.2
    PEG 400 DMA 0.4
    Plasticizer Glycerol 12.5 12.5 12.5 12.5
    triacetate
    Stabilizer HQ 0.5 0.5 0.5 0.5
    Thickener PMMA 4.0 4.0 4.0 4.0
  • We applied each of Samples A-D to the substrates listed below in Table 2, and measured their fixture speeds in bonding the substrates (each being made from the same material) to one another. The fixture speed is the time from joining the two substrates (each of which being about 1 inch wide and being aligned with about a 0.5 inch overlap) sufficient to hold a 3 kg weight. The results are illustrated below in Table 2 and shown in FIG. 1. [0063]
    TABLE 2
    Physical Sample/(secs)
    Properties Substrate A B C D
    Fixture Paper 40 40 10 10
    Times MOF 40 40 25 40
    Obechi 10 10 15 15
    Yellow Pine 30 30 25 20
    Ash 10 10 10 15
    W. Deal 40 40 15 40
    Limba 10 10 10 15
    Ceramic/butt 10 10 15 15
    Balsa 3 3 3 3
    Cardboard 10 10 5 5
    Polycarbonate 25 25 25 25
    ABS 3 3 3 3
    Aluminum 3 3 3 3
    Stainless 3 3 3 3
    steel
  • As can be seen from Table 2 and FIG. 1, Samples A and B (cyanoacrylate with compound IV) demonstrates improved fixture speeds on certain substrates, namely the woods, obechi; ash and limba, and ceramic, as compared with Sample D, which is the cyanoacrylate with the combination of the noted calixarenes and polyethylene glycol dimethacrylate. [0064]
  • In addition, the combination of the accelerator used in the present invention together with the noted calixarene (Sample C) improves fixture speed compared with the combination of the noted calixarene together with the noted polyethylene glycol dimethacrylate on certain substrates namely, MDF, ash, white deal and limba. [0065]
    TABLE 3
    Physical Sample
    Properties A B C D
    Viscosity (MPas) 32 32 34.4 34.1
    GBMS Bond 13.57 +/− 12.70 +/− 13.86 +/− 12.70 +/−
    Strength 24 hr. 1.56 1.54 1.00 1.15
    (N/mm2)
  • The results shown in Table 3 illustrate that the inventive compositions (Samples A-C) behave as adhesives, yielding bond strength comparable to the control composition (Sample D), while demonstrating with reference to Table 2 improved fixture speeds on certain substrates, namely the woods, obechi, ash and limba, and ceramic. [0066]
  • In Table 4, stability data for Samples A-D filled in aluminum tubes and aged at 82° C. for the specified period of time is shown. The results in Table 4 demonstrate that the inventive compositions retain the benefits noted above even after ageing under the noted conditions. [0067]
    TABLE 4
    Aged Sample
    Data A B C D
    3 days @ 82° C.
    Viscosity (Mps) 36 35.7 35.3 36.5
    Ratio 1.13 1.12 1.04 1.07
    Fixture time 40-50 40-50  5-10 10-15
    (secs) on paper
    6 days @ 82° C.
    Viscosity (Mps) 38.2 39.4 40.3 39.2
    Ratio 1.19 1.23 1.17 1.15
    Fixture time  80-100  80-100 15-20 30-40
    (secs) on paper

Claims (14)

1. A cyanoacrylate adhesive composition comprising:
a cyanoacrylate component; and
an accelerator represented by the following chemical structure
Figure US20040260045A1-20041223-C00016
 wherein R is a member selected from the group consisting of hydrogen, alkyl, alkyloxy, alkyl thioethers, haloalkyl, carboxylic acid and esters thereof, sulfinic, sulfonic and sulfurous acids and esters, phosphinic, phosphonic and phosphorous acids and esters thereof, X is [optional, but when present is] an aliphatic or aromatic hydrocarbyl linkage, which may be substituted by oxygen or sulfur, Z is a single or double bond, n is 1-12, m is 1-4, and p is 1-3.
2. The composition of claim 1, wherein the accelerator is represented by the following chemical structure
Figure US20040260045A1-20041223-C00017
wherein R, X, n, m, and p are as defined above.
3. The composition of claim 1, wherein the accelerator is represented by the following chemical structure
Figure US20040260045A1-20041223-C00018
wherein R, Z, n, and p are as defined above, R′ is the same as R, and g is 1-12.
4. The composition of claim 1, wherein the accelerator is represented by the following chemical structure
Figure US20040260045A1-20041223-C00019
wherein n and m combined are greater than or equal to 12.
5. The composition according to claim 1, wherein the cyanoacrylate component is selected from materials within the structure H2C═C(CN)—COOR, wherein R is selected from C1-15 alkyl, alkoxyalkyl, cycloalkyl, alkenyl, aralkyl, aryl, allyl and haloalkyl groups.
6. The composition according to claim 1, wherein the cyanoacrylate component comprises ethyl-2-cyanoacrylate.
7. The composition according to claim 1, further comprising an additional accelerator component selected from the group consisting of calixarenes, oxacalixarenes, silacrowns, cyclodextrins, crown ethers, poly(ethyleneglycol) di(meth)acrylates, ethoxylated hydric compounds, and combinations thereof.
8. The composition according to claim 1, wherein the accelerator is used in an amount within the range of from about 0.01% by weight to about 5% by weight based on the total composition.
9. The composition according to claim 7, wherein the additional accelerator component is used in an amount within the range of from about 0.01% by weight to about 5% by weight based on the total composition.
10. The composition according to claim 1, further comprising additives selected from the group consisting of free radical stabilizers, anionic stabilizers, plasticizers, thixotropy conferring agents, thickeners, dyes, toughening agents, thermal degradation enhancers, and combinations thereof.
11. (Cancelled).
12. Reaction products of the composition according to claim 1.
13. A method of bonding together two substrates, at least one of which is constructed of a material selected from the group consisting of wood and ceramic, comprising the steps of:
applying a cyanoacrylate-containing adhesive composition according to claim 1, to at least one of the substrates and
mating together the substrates for a time sufficient to permit the adhesive to fixture.
14. A method of preparing a cyanoacrylate-containing composition according to claim 1, comprising the steps of:
providing a cyanoacrylate component, and
combining therewith with mixing an accelerator component.
US10/463,461 2003-06-18 2003-06-18 Cyanoacrylate compositions Expired - Fee Related US6835789B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/463,461 US6835789B1 (en) 2003-06-18 2003-06-18 Cyanoacrylate compositions
MXPA05012296A MXPA05012296A (en) 2003-06-18 2004-06-18 Cyanoacrylate compositions.
JP2006516790A JP4624997B2 (en) 2003-06-18 2004-06-18 Cyanoacrylate composition
PCT/IE2004/000086 WO2004111147A2 (en) 2003-06-18 2004-06-18 Cyanoacrylate compositions
KR1020057024049A KR100964088B1 (en) 2003-06-18 2004-06-18 Cyanoacrylate Compositions
CN2004800133648A CN1791649B (en) 2003-06-18 2004-06-18 Cyanoacrylate compositions
BRPI0411472-8A BRPI0411472A (en) 2003-06-18 2004-06-18 cyanoacrylate adhesive composition, method of preparation thereof, and method of agglutination of two substrates together
CA2525011A CA2525011C (en) 2003-06-18 2004-06-18 Cyanoacrylate compositions
EP04737052A EP1633827A2 (en) 2003-06-18 2004-06-18 Cyanoacrylate compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/463,461 US6835789B1 (en) 2003-06-18 2003-06-18 Cyanoacrylate compositions

Publications (2)

Publication Number Publication Date
US20040260045A1 true US20040260045A1 (en) 2004-12-23
US6835789B1 US6835789B1 (en) 2004-12-28

Family

ID=33517106

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/463,461 Expired - Fee Related US6835789B1 (en) 2003-06-18 2003-06-18 Cyanoacrylate compositions

Country Status (9)

Country Link
US (1) US6835789B1 (en)
EP (1) EP1633827A2 (en)
JP (1) JP4624997B2 (en)
KR (1) KR100964088B1 (en)
CN (1) CN1791649B (en)
BR (1) BRPI0411472A (en)
CA (1) CA2525011C (en)
MX (1) MXPA05012296A (en)
WO (1) WO2004111147A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008971A1 (en) 2005-07-11 2007-01-18 Henkel Corporation Toughened cyanoacrylate compositions
US20100010159A1 (en) * 2008-07-11 2010-01-14 Tyco Healthcare Group Lp Functionalized Inclusion Complexes As Crosslinkers
CN103980397A (en) * 2014-04-30 2014-08-13 中国科学院化学研究所 3D printing composition, preparation and application methods and product thereof
CN104193919A (en) * 2014-08-26 2014-12-10 太仓碧奇新材料研发有限公司 Polyethylene terephthalate composite material for 3D printing and preparation method thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270932B2 (en) * 2004-02-06 2007-09-18 Rohm And Haas Electronic Materials Llc Imaging composition and method
CN101305064A (en) * 2005-11-10 2008-11-12 汉高两合股份公司 Binding agent, sealant and paint containing glass particle as filling material
WO2007054112A1 (en) * 2005-11-10 2007-05-18 Henkel Ag & Co. Kgaa Adhesives, sealants and coatings containing glass particles as a filler
US7659423B1 (en) 2006-04-18 2010-02-09 Loctite (R&D) Limited Method of preparing electron deficient olefins in polar solvents
ATE461255T1 (en) * 2006-09-08 2010-04-15 3M Innovative Properties Co COLOR-CHANGING CYANOACRYLATE ADHESIVES
US7569719B1 (en) 2006-10-25 2009-08-04 Loctite (R&D) Limited Method of preparing electron deficient olefins
US7718821B1 (en) 2006-12-19 2010-05-18 Loctite (R&D) Limited Method of preparing electron deficient olefins
US8053589B1 (en) 2007-10-24 2011-11-08 Henkel Ireland Limited Imines and methods of preparing electron deficient olefins using such novel imines
CA2703603A1 (en) * 2007-10-24 2009-04-30 Loctite (R&D) Limited Electron deficient olefins
JP5518726B2 (en) * 2007-10-24 2014-06-11 ヘンケル アイルランド リミテッド Active methylene reagent and curable composition produced therefrom
US7973119B1 (en) 2007-10-24 2011-07-05 Loctite (R&D) Limited Adhesive systems using imines and salts thereof and precursurs to electron deficient olefins
EP2116126A1 (en) 2008-05-06 2009-11-11 Henkel AG & Co. KGaA Method and apparatus for grafting plants with fast-curing adhesives
KR20150083127A (en) * 2008-09-26 2015-07-16 헨켈 아이피 앤드 홀딩 게엠베하 Cyanoacrylate compositions in non-flowable forms
US8399698B1 (en) 2008-10-24 2013-03-19 Henkel Ireland Limited Substituted activated methylene reagents and methods of using such reagents to form electron deficient olefins
US10196471B1 (en) 2008-10-24 2019-02-05 Henkel IP & Holding GmbH Curable composition having an electron deficient olefin
WO2010125195A1 (en) 2009-05-01 2010-11-04 Loctite (R&D) Limited Cyanoacrylate compositions
JP5618194B2 (en) * 2010-09-09 2014-11-05 国立大学法人筑波大学 Azacalix [3] pyridinium salt, method for producing the same, and method for producing polyalkylene glycol using the same
PT2511355E (en) 2011-04-12 2014-01-28 Henkel Ireland Ltd Cyanoacrylate adhesive with improved water resistance
JP5878631B2 (en) * 2011-07-15 2016-03-08 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Cyanoacrylate composition
WO2013112315A1 (en) * 2012-01-25 2013-08-01 Henkel Corporation Cyanoacrylate compositions
GB2534548B (en) 2014-12-29 2020-08-12 Adv Med Solutions Ltd Adhesive applicator
TWI752043B (en) * 2016-06-28 2022-01-11 日商東亞合成股份有限公司 2-cyanoacrylate-based adhesive composition
GB2567868B (en) * 2017-10-27 2020-05-06 Henkel IP & Holding GmbH Toughened low odour cyanoacrylate compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004655A1 (en) * 1992-05-28 2001-06-21 Shin Takahashi Cyanoacrylate adhesive composition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE792064A (en) * 1971-12-02 1973-05-29 Bayer Ag ANTISTATIC POLYMERS OF ACRYLONITRILE
DE3209238A1 (en) * 1982-03-13 1983-09-15 Henkel KGaA, 4000 Düsseldorf ADHESIVES BASED ON CYANACRYLIC ACID ESTERS
US4906317A (en) 1983-11-10 1990-03-06 Loctite Corporation Instant adhesive composition and bonding method employing same
US4622414A (en) 1984-01-27 1986-11-11 Loctite Limited Novel calixarene compounds
US4636539A (en) 1984-01-30 1987-01-13 Loctite (Ireland) Limited Instant adhesive composition utilizing calixarene accelerators
US4718966A (en) 1984-01-30 1988-01-12 Loctite (Ireland) Ltd. Bonding method utilizing cyanoacrylate adhesive having calixarene accelerator
US4556700A (en) 1984-01-30 1985-12-03 Loctite Limited Instant adhesive composition utilizing calixarene accelerators
US4695615A (en) 1984-11-21 1987-09-22 Loctite (Ireland) Limited Instant adhesive composition utilizing mixed functionality calixarenes as accelerators
IE59509B1 (en) 1987-01-21 1994-03-09 Loctite Ireland Ltd Functionalised oxacalixarenes, their preparation and use in instant adhesive compositions
US4837260A (en) 1986-05-23 1989-06-06 Toagosei Chemical Industry Co., Ltd. Cyanoacrylate compositions
DE4009621A1 (en) 1990-03-26 1991-10-02 Henkel Kgaa (ALPHA) -CYANACRYLATE ADHESIVE COMPOSITIONS
IES990974A2 (en) 1998-11-23 2000-05-31 Loctite R & D Ltd Cyanoacrylate Compositions
JP2000191600A (en) * 1998-12-28 2000-07-11 Toagosei Co Ltd Cyclic compound, curing accelerator for 2-cyanoacrylate comprising the compound and 2-cyanoacrylate-based composition
JP3613321B2 (en) * 1999-04-07 2005-01-26 東亞合成株式会社 2-Cyanoacrylate composition
JP2001164199A (en) * 1999-12-09 2001-06-19 Taoka Chem Co Ltd Alpha-cyanoacrylate-based adhesive composition
US6475331B1 (en) 2001-06-26 2002-11-05 Henkel Loctite Corporation Cyanoacrylate compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004655A1 (en) * 1992-05-28 2001-06-21 Shin Takahashi Cyanoacrylate adhesive composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008971A1 (en) 2005-07-11 2007-01-18 Henkel Corporation Toughened cyanoacrylate compositions
US20080314519A1 (en) * 2005-07-11 2008-12-25 Henkel Corporation Toughened Cyanoacrylate Compositions
EP1907496A4 (en) * 2005-07-11 2009-07-29 Henkel Corp Toughened cyanoacrylate compositions
US20100010159A1 (en) * 2008-07-11 2010-01-14 Tyco Healthcare Group Lp Functionalized Inclusion Complexes As Crosslinkers
US8207264B2 (en) 2008-07-11 2012-06-26 Tyco Healthcare Group Lp Functionalized inclusion complexes as crosslinkers
CN103980397A (en) * 2014-04-30 2014-08-13 中国科学院化学研究所 3D printing composition, preparation and application methods and product thereof
CN104193919A (en) * 2014-08-26 2014-12-10 太仓碧奇新材料研发有限公司 Polyethylene terephthalate composite material for 3D printing and preparation method thereof

Also Published As

Publication number Publication date
KR100964088B1 (en) 2010-06-16
JP4624997B2 (en) 2011-02-02
KR20060024799A (en) 2006-03-17
EP1633827A2 (en) 2006-03-15
US6835789B1 (en) 2004-12-28
CN1791649A (en) 2006-06-21
JP2006527782A (en) 2006-12-07
BRPI0411472A (en) 2006-07-11
CA2525011A1 (en) 2004-12-23
WO2004111147A3 (en) 2005-03-24
CA2525011C (en) 2012-07-31
CN1791649B (en) 2010-05-26
WO2004111147A2 (en) 2004-12-23
MXPA05012296A (en) 2006-07-03

Similar Documents

Publication Publication Date Title
US6835789B1 (en) Cyanoacrylate compositions
US6294629B1 (en) Cyanoacrylate compositions
US20060094833A1 (en) Shock resistant cyanoacrylate compositions
US6475331B1 (en) Cyanoacrylate compositions
EP2732000B1 (en) Cyanoacrylate compositions
US10947418B2 (en) Cyanoacrylate compositions
EP2121777B1 (en) Cyanoacrylate compositions incorporating graphite platelets
KR102593346B1 (en) Cyanoacrylate composition
US20200255692A1 (en) Cyanoacrylate compositions
KR102063507B1 (en) Cyanoacrylate compositions
JP7374084B2 (en) Enhanced low odor/low bloom cyanoacrylate composition
US7687561B1 (en) Toughened cyanoacrylate compositions
US20040131827A1 (en) Toughened cyanoacrylate compositions
US8303705B2 (en) Cyanoacrylate compositions
US11725119B2 (en) Cyanoacrylate compositions
KR102657838B1 (en) Cyanoacrylate composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: LOCTITE (IRELAND) LTD., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNEAFSEY, BRENDAN J.;WOOLFSON, HARRY J.;BIRKETT, DAVID P.;AND OTHERS;REEL/FRAME:014212/0202

Effective date: 20030610

Owner name: LOCTITE (R&D) LTD., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCTITE (IRELAND) LTD.;REEL/FRAME:014212/0116

Effective date: 20030617

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: HENKEL IRELAND HOLDING B.V., IRELAND

Free format text: MERGER;ASSIGNOR:LOCTITE (R&D) LIMITED;REEL/FRAME:029741/0063

Effective date: 20111121

Owner name: HENKEL IRELAND LIMITED, IRELAND

Free format text: MERGER;ASSIGNOR:HENKEL IRELAND HOLDING B.V.;REEL/FRAME:029741/0205

Effective date: 20111122

AS Assignment

Owner name: HENKEL IRELAND LIMITED, GERMANY

Free format text: CHANGE OF ADDRESS;ASSIGNOR:HENKEL IRELAND LIMITED;REEL/FRAME:032319/0955

Effective date: 20121113

AS Assignment

Owner name: HENKEL IP & HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HENKEL AG & CO. KGAA;REEL/FRAME:032329/0172

Effective date: 20131121

Owner name: HENKEL AG & CO. KGAA, GERMANY

Free format text: MERGER;ASSIGNOR:HENKEL IRELAND LIMITED;REEL/FRAME:032329/0132

Effective date: 20130829

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20161228