US20050047930A1 - System for controlling a hydraulic variable-displacement pump - Google Patents

System for controlling a hydraulic variable-displacement pump Download PDF

Info

Publication number
US20050047930A1
US20050047930A1 US10/911,166 US91116604A US2005047930A1 US 20050047930 A1 US20050047930 A1 US 20050047930A1 US 91116604 A US91116604 A US 91116604A US 2005047930 A1 US2005047930 A1 US 2005047930A1
Authority
US
United States
Prior art keywords
control device
pressure
section
over
flow regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/911,166
Inventor
Johannes Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch Automotive Steering GmbH
Original Assignee
ZF Lenksysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Lenksysteme GmbH filed Critical ZF Lenksysteme GmbH
Assigned to ZF LENKSYSTEME GMBH reassignment ZF LENKSYSTEME GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMID, JOHANNES
Publication of US20050047930A1 publication Critical patent/US20050047930A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore

Definitions

  • the invention relates to a system for controlling a hydraulic variable-displacement pump for a consumer in accordance with the introductory portion of claim 1 .
  • a operating system with hydraulic consumers such as power-assisted steering devices of motor vehicles
  • Appreciable losses and thermal loads are associated with this, especially at a higher rpm.
  • these are accepted in order to have large flow rates, corresponding even to the maximum requirement of the consumer, available at all times suddenly in case of need and, with that, ensure that the respective hydraulic consumer, such as the operating cylinder, which intensifies the steering power of power-assisted steering devices is acted upon without delay.
  • variable-displacement pump which is constructed as a rotary vane pump, is acted upon, in the direction of an adjustment to a rate of delivery by an energy storage system in the form of a spring and, in the opposite direction, by a hydraulic regulating unit, the latter being connected in a return line, which is branched off from the high-pressure intake to the consumer, discharges excessive amounts pumped and drains into a reservoir.
  • Such a control is relatively complex and the sudden adjustment of the variable displacement pump, aimed for in the case of this solution in the sense of a sudden increase in the pump capacity or in the system pressure, is dependent on that, initially, by applying a control pressure at the flow-control valve, the high-pressure connection of the return line is reset and, by these means, the control pressure at the control valve is lowered in order to open the connection between the hydraulic regulating unit and the reservoir, which passes over the control valve, and so, over the energy storage system in the form of a spring, achieve an appropriate adjustment of the pump, which, in view of the different controlling elements which are to be energized, excludes a spontaneous adjustment of the variable adjustment pump and likewise excludes the loss-affected configuration of the discharge path over the control valve.
  • the discharging cross section of the controlling device is maximized towards the reservoir, when the variable displacement pump is adjusted to the maximum pump capacity, in such a manner, that there is quasi unrestricted drainage, so that the sudden changeover of the variable displacement pump over the energy storage system becomes possible.
  • a constantly high regulating power turns out to be advantageous for the energy storage system within the scope of the invention.
  • the energy storage system is formed, for example, by a highly tensioned spring and the spring advisability also has a high spring rate.
  • the sudden changeover aimed for, if the displaced volume is used to fill the spaces resulting from the changeover, that is, for example, in relation to a piston as control element, if the volume, displaced from the pressure space on the cylinder side is passed to the back of the piston, such a short-circuit connection usually making particularly short pipeline distances and large transfer cross sections possible.
  • the flow regulator preferably is energized as a function of control parameters specified on the part of the consumer.
  • other information which can be derived, for example, from driving dynamics, can be taken into consideration preventively, so that, in energizing the flow regulator, a change in the requirement behavior of the consumer, which is to be expected, can also already be taken into consideration for adjusting the variable displacement pump in an anticipatory manner.
  • the flow-control valve may also, optionally, be constructed adjustably and, if necessary, be provided with an additional energizing device, especially with regard to expanding the inventive basic concept to further functions.
  • an adjustable restrictor may be used in the simplest manner as a flow regulator, so that the adjustment of the pump, or optionally also its adjustment to other control positions may also be attained within the scope of the invention by simple means.
  • a construction with a control piston operating as a pressure-maintaining valve, has proven to be appropriate. It controls the cross section of the passage from the high-pressure side to the hydraulic control device and is spring-loaded on the high-pressure side and in the opposite direction.
  • a pressure which corresponds to the pressure exerted in the pipeline connection between the flow-control valve and the flow regulator and is exerted on the subsequent measurement restrictor downstream from the flow control valve, is superimposed on the spring loading.
  • the consumer 2 is in a supply cycle with a variable displacement pump 1 between a suction pipeline 5 and a pressure pipeline 6 and connection of the consumer 2 to the pressure pipeline 6 over the supply pipeline 3 and to the suction pipeline 5 over the drainage pipeline 4 , with a connection to the reservoir 24 on the suction side.
  • a return pipeline, symbolized by the return pipeline 27 extends between connections 25 and 26 on the pressure side and the suction side respectively and is shown as being in the transition from the pressure pipeline 6 to the intake pipeline 3 or from the drainage pipeline 4 to the suction pipeline 5 .
  • the variable displacement pump 1 is shown highly diagrammatically as a rotary vane pump with a lifting ring 7 , which can be adjusted relative to a rotor, which is not shown, with an axis 8 attached to the housing for changing the pump capacity of the variable displacement pump 1 .
  • an energy storage device 9 formed by a spring arrangement, and, on the other, a hydraulic control device 10 , illustrated by a piston-cylinder arrangement, are provided as control device.
  • the lifting ring 7 can be adjusted over the spring arrangement, which forms the energy storage device 9 , in the sense of raising the pump capacity and, when acted upon in the opposite direction over the control device 10 , that is, against the force of the spring, in the sense of lowering the pump capacity.
  • the hydraulic control device 10 lies in the return pipeline 27 between the flow regulating above 12 and the flow regulator 13 , the free cross section of which is variable and which is formed, for example, by an adjustable restrictor.
  • the flow-control valve 12 is shown diagrammatically and constructively in FIG. 2 and comprises a pressure-maintaining valve in the form of a control slide valve 14 , which, depending upon its position, connects the pipeline section 16 of the return pipeline 27 , starting out from the pressure side (pressure pipeline 6 ), over an annular channel 15 with the pipeline section 17 , which runs out to the hydraulic control device 10 and in which there is a measurement restrictor 18 .
  • the control slide valve 14 is acted upon at the front side by pressure and moreover, on its front, high-pressure side 19 over the branch 20 to the pipeline section 16 , and at its opposite front side 21 over the branch 20 , which starts out from the pipeline section 17 downstream from the measurement restrictor 18 , a compensation spring 23 being supported additionally at the front side 21 .
  • the hydraulic control device 10 is shown as a piston cylinder unit, the piston 28 being supported at the lifting ring 7 and the pipeline section 17 discharging into the pressure space 29 , which is bounded by the piston 28 and going over into the pipeline section 30 of the return pipeline 27 containing the flow regulator 13 .
  • the dimensions of the cross section of this pipeline section 30 with regard to the maximum amount flowing through are such that an almost loss-free drainage and thus unrestricted drainage towards the suction side of the reservoir 24 is possible.
  • the passable cross section of the flow regulator 13 which is constructed as an adjustable restrictor, is adapted to such a maximum drainage cross section.
  • a branch 31 of the pipeline 30 discharges in the rear area 32 of the piston, so that, as shown diagrammatically, the volume, displaced in each case when the variable displacement pump 1 is changed over to a higher pumping capacity by way of the energy storage device 9 , is used to fill cavities resulting from the changeover. This is done along the shortest path.
  • Such a short-circuit connection may also be realized, and this is not shown, internally in the housing of the variable displacement pump.
  • the sudden decrease in pressure in the pressure space 29 is attained by maximizing the drainage cross section, including the cross section of the fully opened restrictor, which forms the flow regulator 13 .
  • This is accomplished at a low cost.
  • minor delays may be associated with the hard design of the energy storage system appropriate for this purpose with the constantly high regulating power, for example, by using a spring, which is under a high tension and preferably also has a high spring rate for adjusting in the opposite direction.
  • no noticeably disadvantageous effects are associated with these delays either energetically or with respect to the function of the system.

Abstract

In the case of a system for controlling a hydraulic variable displacement pump, the latter is acted upon in the direction of increasingly pump capacity over an energy storage system and, in the opposite direction, over a hydraulic adjusting device, the adjustment of the variable displacement pump being controlled over a flow regulator, which is constructed especially as a restrictor and the passable cross section of which is variable and which is located in the connection between the adjusting device and the reservoir, and which, for the sudden increase in the pump capacity of the variable displacement pump, opens up a drainage cross section to the reservoir, over which cross section an almost loss-free drainage of the pressure medium, displaced by the admission over the energy storage system, is possible.

Description

  • The invention relates to a system for controlling a hydraulic variable-displacement pump for a consumer in accordance with the introductory portion of claim 1.
  • In practice, a operating system with hydraulic consumers, such as power-assisted steering devices of motor vehicles, usually employ constant-displacement pumps and excess amounts, obtained as a function of the rpm by means of the driving mechanism of the pump over the internal combustion engine of the vehicle, are decompressed and returned to the suction side of the pump. Appreciable losses and thermal loads are associated with this, especially at a higher rpm. However, these are accepted in order to have large flow rates, corresponding even to the maximum requirement of the consumer, available at all times suddenly in case of need and, with that, ensure that the respective hydraulic consumer, such as the operating cylinder, which intensifies the steering power of power-assisted steering devices is acted upon without delay. Until now, the use of hydraulic variable-displacement pumps, by means of which the pump capacity could be adapted to the respective requirement and, with that, the power dissipated reduced, has failed in practice owing to the fact that the adjusting dynamics of the pumps for increasing the pump capacity could not always satisfy requirements, which could lead to critical conditions from a comfort and also a safety point of view.
  • In the case of a system, working with a hydraulic variable-displacement pump and disclosed in the DE 197 22 495 A1, as acknowledged in the introductory portion of claim 1, the variable-displacement pump, which is constructed as a rotary vane pump, is acted upon, in the direction of an adjustment to a rate of delivery by an energy storage system in the form of a spring and, in the opposite direction, by a hydraulic regulating unit, the latter being connected in a return line, which is branched off from the high-pressure intake to the consumer, discharges excessive amounts pumped and drains into a reservoir. In the return line, there is a flow-control valve in the direction of flow to the reservoir and a restrictor as flow regulator discharging into the reservoir and, between the flow-control valve and the restrictor, the control pressure for a control valve is branched off, over the spool valve of which the cross section of the connection of the hydraulic control device of the variable displacement pump to the high-pressure connection between the pump and the consumer or to the reservoir is controlled. Such a control is relatively complex and the sudden adjustment of the variable displacement pump, aimed for in the case of this solution in the sense of a sudden increase in the pump capacity or in the system pressure, is dependent on that, initially, by applying a control pressure at the flow-control valve, the high-pressure connection of the return line is reset and, by these means, the control pressure at the control valve is lowered in order to open the connection between the hydraulic regulating unit and the reservoir, which passes over the control valve, and so, over the energy storage system in the form of a spring, achieve an appropriate adjustment of the pump, which, in view of the different controlling elements which are to be energized, excludes a spontaneous adjustment of the variable adjustment pump and likewise excludes the loss-affected configuration of the discharge path over the control valve.
  • It is an object of the invention to provide a simplified system for controlling a hydraulic variable displacement pump, which makes possible a practically sudden response in the changing over of the variable displacement pump to higher, especially maximum flow rates and, with that, also a sudden increase in the operating pressure of the system.
  • This is achieved with the distinguishing features of claim 1, according to which the discharging cross section of the controlling device is maximized towards the reservoir, when the variable displacement pump is adjusted to the maximum pump capacity, in such a manner, that there is quasi unrestricted drainage, so that the sudden changeover of the variable displacement pump over the energy storage system becomes possible. A constantly high regulating power turns out to be advantageous for the energy storage system within the scope of the invention. For this purpose, the energy storage system is formed, for example, by a highly tensioned spring and the spring advisability also has a high spring rate. Within the scope of the invention, it proves to be advantageous for the sudden changeover aimed for, if the displaced volume is used to fill the spaces resulting from the changeover, that is, for example, in relation to a piston as control element, if the volume, displaced from the pressure space on the cylinder side is passed to the back of the piston, such a short-circuit connection usually making particularly short pipeline distances and large transfer cross sections possible.
  • For energizing the hydraulic control device, which is controlled quantitatively within the scope of the inventive solution, the flow regulator preferably is energized as a function of control parameters specified on the part of the consumer. In relation to the use, for example, of the inventive system for vehicles, other information, which can be derived, for example, from driving dynamics, can be taken into consideration preventively, so that, in energizing the flow regulator, a change in the requirement behavior of the consumer, which is to be expected, can also already be taken into consideration for adjusting the variable displacement pump in an anticipatory manner.
  • Within the scope of the invention, the flow-control valve may also, optionally, be constructed adjustably and, if necessary, be provided with an additional energizing device, especially with regard to expanding the inventive basic concept to further functions.
  • Within the scope of the invention, an adjustable restrictor may be used in the simplest manner as a flow regulator, so that the adjustment of the pump, or optionally also its adjustment to other control positions may also be attained within the scope of the invention by simple means.
  • For the flow-control valve, a construction with a control piston, operating as a pressure-maintaining valve, has proven to be appropriate. It controls the cross section of the passage from the high-pressure side to the hydraulic control device and is spring-loaded on the high-pressure side and in the opposite direction. A pressure, which corresponds to the pressure exerted in the pipeline connection between the flow-control valve and the flow regulator and is exerted on the subsequent measurement restrictor downstream from the flow control valve, is superimposed on the spring loading.
  • Further details and distinguishing features of the invention arise out of the claims. Moreover, the invention is explained below by means of an example, which diagrammatically shows a system for controlling a hydraulic variable displacement pump for a consumer.
  • In the system for controlling a hydraulic variable displacement pump 1 for a consumer 2, shown in FIG. 1, the consumer 2 is in a supply cycle with a variable displacement pump 1 between a suction pipeline 5 and a pressure pipeline 6 and connection of the consumer 2 to the pressure pipeline 6 over the supply pipeline 3 and to the suction pipeline 5 over the drainage pipeline 4, with a connection to the reservoir 24 on the suction side. A return pipeline, symbolized by the return pipeline 27, extends between connections 25 and 26 on the pressure side and the suction side respectively and is shown as being in the transition from the pressure pipeline 6 to the intake pipeline 3 or from the drainage pipeline 4 to the suction pipeline 5. There is a flow control above 12 and a flow regulator 13 in the return pipeline 27 in the flow direction from the connection 25 on the pressure side to the connection 26 on the suction side.
  • The variable displacement pump 1 is shown highly diagrammatically as a rotary vane pump with a lifting ring 7, which can be adjusted relative to a rotor, which is not shown, with an axis 8 attached to the housing for changing the pump capacity of the variable displacement pump 1. On the one hand, an energy storage device 9, formed by a spring arrangement, and, on the other, a hydraulic control device 10, illustrated by a piston-cylinder arrangement, are provided as control device. The lifting ring 7 can be adjusted over the spring arrangement, which forms the energy storage device 9, in the sense of raising the pump capacity and, when acted upon in the opposite direction over the control device 10, that is, against the force of the spring, in the sense of lowering the pump capacity.
  • With respect to its supply, the hydraulic control device 10 lies in the return pipeline 27 between the flow regulating above 12 and the flow regulator 13, the free cross section of which is variable and which is formed, for example, by an adjustable restrictor.
  • Supplementary to its symbolic representation in FIG. 1, the flow-control valve 12 is shown diagrammatically and constructively in FIG. 2 and comprises a pressure-maintaining valve in the form of a control slide valve 14, which, depending upon its position, connects the pipeline section 16 of the return pipeline 27, starting out from the pressure side (pressure pipeline 6), over an annular channel 15 with the pipeline section 17, which runs out to the hydraulic control device 10 and in which there is a measurement restrictor 18. The control slide valve 14 is acted upon at the front side by pressure and moreover, on its front, high-pressure side 19 over the branch 20 to the pipeline section 16, and at its opposite front side 21 over the branch 20, which starts out from the pipeline section 17 downstream from the measurement restrictor 18, a compensation spring 23 being supported additionally at the front side 21.
  • The hydraulic control device 10 is shown as a piston cylinder unit, the piston 28 being supported at the lifting ring 7 and the pipeline section 17 discharging into the pressure space 29, which is bounded by the piston 28 and going over into the pipeline section 30 of the return pipeline 27 containing the flow regulator 13. As shown in FIG. 2, the dimensions of the cross section of this pipeline section 30 with regard to the maximum amount flowing through are such that an almost loss-free drainage and thus unrestricted drainage towards the suction side of the reservoir 24 is possible. Correspondingly, and this is not shown, the passable cross section of the flow regulator 13, which is constructed as an adjustable restrictor, is adapted to such a maximum drainage cross section.
  • In view of an as unrestricted a drainage and as rapid a pressure relief as possible in the pressure space 29, it is furthermore advantageous if a branch 31 of the pipeline 30 discharges in the rear area 32 of the piston, so that, as shown diagrammatically, the volume, displaced in each case when the variable displacement pump 1 is changed over to a higher pumping capacity by way of the energy storage device 9, is used to fill cavities resulting from the changeover. This is done along the shortest path. Such a short-circuit connection may also be realized, and this is not shown, internally in the housing of the variable displacement pump. With such a short-circuit connection, it is not only possible to avoid pressure differences, which retard the adjustment, but also even to use the remaining residual pressure even for adjusting the piston, in addition to the regulating power of the energy storage system 9. The cross section of the pipeline 13, leading to the reservoir 24, can also be reduced by such a short-circuit connection.
  • Pursuant to the invention, the sudden decrease in pressure in the pressure space 29 is attained by maximizing the drainage cross section, including the cross section of the fully opened restrictor, which forms the flow regulator 13. This is accomplished at a low cost. Admittedly, minor delays may be associated with the hard design of the energy storage system appropriate for this purpose with the constantly high regulating power, for example, by using a spring, which is under a high tension and preferably also has a high spring rate for adjusting in the opposite direction. However, no noticeably disadvantageous effects are associated with these delays either energetically or with respect to the function of the system.
  • As a result of the design of the flow-control valve 12, as the pressure drops in the pipeline section 17, which runs out to the control device 10, the passable cross section from the pipeline section 16 to the pipeline section 17 is decreased by the control slide 14, so that, when the passable cross section of the flow regulator 13 expands, there is initially a rapid decrease in pressure in relation to the hydraulic control device 10. Correspondingly, there is also a decrease in pressure in pipeline section 16. Accordingly, if, starting out from an appropriate energizing of the flow regulator 13 by enlarging the drainage cross section, the pressure of the control device 10 is relieved, the flow into the control device over pipeline section 17 is also simultaneously reduced, even if only briefly, until the flow rate is adjusted once again over the flow-control valve 12 working as a pressure-maintaining valve. A corresponding regulating effect also results in the case of a demand request over the consumer 2 with a reduction in pressure in the intake pipeline 3 and a corresponding reduction in the pressure in the pipeline section 16 of the return pipeline 27, so that the response behavior of the system is also affected positively in this way.

Claims (10)

1. System for controlling a hydraulic variable-displacement in which a variable displacement pump is acted upon in its control direction, corresponding to the increase in the pump capacity, over an energy storage system, and, in the opposite direction, over a hydraulic control device, which is controlled at a return pipeline that is branched off from the a high pressure intake, discharges excess amounts pumped and runs out into a reservoir, and furthermore, is controlled as a function of the return pipeline pressure between a flow-control valve in the return pipeline and a flow regulator downstream therefrom, a connection to the reservoir, variable in the discharging cross section, being assigned to the control device, the flow regulator forming the connection of variable discharging cross section to the reservoir and that the control device is located in the return pipeline between the flow-control valve and the flow regulator, the discharging cross section of the control device, controlled over the flow regulator, being controlled in such a manner with respect to the reservoir that, when the variable displacement pump is adjusted to the maximum pump capacity, the size of the drainage cross section is maximized for an unrestricted drainage.
2. The system of claim 1, wherein the flow regulator is controlled as a function of control parameters specified by the consumer.
3. The system of claim 1, wherein the flow regulator is controlled as a function of parameters determined by the consumer environment.
4. The system of claim 1, wherein the flow regulator is an adjustable restrictor.
5. The system of claim 1, wherein a measurement restrictor is disposed downstream, in the direction of the control device, from the flow-control valve controlling the passable cross section of the hydraulic control device and that a control piston, which is constructed as a pressure-maintaining valve, is acted upon by pressure, on the one hand, through the connection to the pressure side of the variable displacement pump and, in the opposite direction to this, by a spring as well as over a branch, which is connected downstream from the measurement restrictor.
6. The system of claim 1, wherein the control device is adjusted, the volumes of the control device, which change in opposite directions (pressure space, rear area) are connected with one another and communicate with little loss.
7. The system of claim 1, wherein the system is a control agent of a power-assisted steering system.
8. The system of claim 1, wherein the system is for a transmission.
9. The system of claim 1, wherein the variable displacement pump is as a rotary vane pump.
10. The system of claim 1, wherein the system is for a continuous variable automatic transmission (CVT).
US10/911,166 2002-03-06 2004-08-04 System for controlling a hydraulic variable-displacement pump Abandoned US20050047930A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10209880.8 2002-03-06
DE10209880A DE10209880A1 (en) 2002-03-06 2002-03-06 System for controlling a hydraulic variable pump
PCT/EP2003/002138 WO2003074877A1 (en) 2002-03-06 2003-03-03 System for controlling a hydraulic force pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002138 Continuation WO2003074877A1 (en) 2002-03-06 2003-03-03 System for controlling a hydraulic force pump

Publications (1)

Publication Number Publication Date
US20050047930A1 true US20050047930A1 (en) 2005-03-03

Family

ID=27762743

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/911,166 Abandoned US20050047930A1 (en) 2002-03-06 2004-08-04 System for controlling a hydraulic variable-displacement pump

Country Status (6)

Country Link
US (1) US20050047930A1 (en)
EP (1) EP1485621B1 (en)
JP (1) JP2005519223A (en)
DE (2) DE10209880A1 (en)
ES (1) ES2251680T3 (en)
WO (1) WO2003074877A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070234996A1 (en) * 2004-08-17 2007-10-11 Ansgar-Maria Budde-Gottschalk Adjusting device, in particular for a motor vehicle
US20080063537A1 (en) * 2004-09-20 2008-03-13 Matthew Williamson Speed-Related Control Mechanism For A Pump And Control Method
US20100205960A1 (en) * 2009-01-20 2010-08-19 Sustainx, Inc. Systems and Methods for Combined Thermal and Compressed Gas Energy Conversion Systems
US20100229544A1 (en) * 2009-03-12 2010-09-16 Sustainx, Inc. Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
CN105829711A (en) * 2013-12-18 2016-08-03 舍弗勒技术股份两合公司 Variable displacement pump
CN114278530A (en) * 2021-12-24 2022-04-05 浙江利欧水务科技有限公司 Water pump energy-saving control method of secondary water supply equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482215B1 (en) * 2003-05-30 2006-10-04 Robert Bosch Gmbh Hydraulic arrangement for a vehicular transmission
DE102005033293A1 (en) 2005-07-16 2007-01-25 Zf Lenksysteme Gmbh Displacement pump with variable delivery volumes, particularly single stroke vane cell pump, produced pressure medium flow for user and has rotor in housing
WO2007036189A1 (en) * 2005-09-28 2007-04-05 Ixetic Bad Homburg Gmbh Pump
NL1032577C2 (en) * 2006-09-26 2008-03-27 Bosch Gmbh Robert Continuously variable transmission with a hydraulic control system and method for controlling it.
DE102006058691A1 (en) * 2006-12-13 2008-06-19 Schaeffler Kg Device for the hydraulic control of gas exchange valves of a reciprocating internal combustion engine
WO2009095011A2 (en) * 2008-01-31 2009-08-06 Dieter Voigt Pressure switching configuration for oil pumps
DE102008026308B4 (en) * 2008-05-31 2023-04-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft lubricant supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856436A (en) * 1972-12-18 1974-12-24 Sperry Rand Corp Power transmission
US4678412A (en) * 1982-12-23 1987-07-07 Mannesmann Rexroth G.M.B.H. Adjusting apparatus for a vane pump or radial piston pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB913197A (en) * 1960-05-17 1962-12-19 Thompson Grinder Co Improvements in hydraulic systems
DE3214212A1 (en) * 1982-04-17 1983-10-20 Alfred Teves Gmbh, 6000 Frankfurt Pressure control device for pumps, especially vane cell pumps
DE4334167A1 (en) * 1993-10-07 1995-04-13 Rexroth Mannesmann Gmbh Hydraulic system for loading a hydraulic consumer with a regulated consumer pressure and choke valve in particular for use in such a hydraulic system
DE19722495B4 (en) * 1996-06-07 2005-09-29 Volkswagen Ag Pump with adjustable delivery volume

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856436A (en) * 1972-12-18 1974-12-24 Sperry Rand Corp Power transmission
US4678412A (en) * 1982-12-23 1987-07-07 Mannesmann Rexroth G.M.B.H. Adjusting apparatus for a vane pump or radial piston pump

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070234996A1 (en) * 2004-08-17 2007-10-11 Ansgar-Maria Budde-Gottschalk Adjusting device, in particular for a motor vehicle
US7444978B2 (en) * 2004-08-17 2008-11-04 Daimler Ag Adjusting device, in particular for a motor vehicle
US20080063537A1 (en) * 2004-09-20 2008-03-13 Matthew Williamson Speed-Related Control Mechanism For A Pump And Control Method
US8123492B2 (en) * 2004-09-20 2012-02-28 Magna Powertrain Inc. Speed-related control mechanism for a pump and control method
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US20100205960A1 (en) * 2009-01-20 2010-08-19 Sustainx, Inc. Systems and Methods for Combined Thermal and Compressed Gas Energy Conversion Systems
US8234868B2 (en) 2009-03-12 2012-08-07 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US20100229544A1 (en) * 2009-03-12 2010-09-16 Sustainx, Inc. Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN105829711A (en) * 2013-12-18 2016-08-03 舍弗勒技术股份两合公司 Variable displacement pump
CN114278530A (en) * 2021-12-24 2022-04-05 浙江利欧水务科技有限公司 Water pump energy-saving control method of secondary water supply equipment

Also Published As

Publication number Publication date
ES2251680T3 (en) 2006-05-01
EP1485621A1 (en) 2004-12-15
EP1485621B1 (en) 2005-10-12
DE50301362D1 (en) 2006-02-23
WO2003074877A1 (en) 2003-09-12
DE10209880A1 (en) 2003-09-18
JP2005519223A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US20050047930A1 (en) System for controlling a hydraulic variable-displacement pump
KR101454040B1 (en) Pump system
EP1979616B1 (en) Variable displacement variable pressure vane pump system
US6644025B1 (en) Control arrangement for at least two hydraulic consumers and pressure differential valve for said control arrangement
US4383412A (en) Multiple pump load sensing system
JPH0249405B2 (en)
US9587652B2 (en) Hydrostatic drive, in particular hydrostatic fan drive
US20130213030A1 (en) Hydrostatic Drive System
JPS589301B2 (en) Hydrostatic drive
US5046926A (en) Control device for a variable displacement hydrostatic machine
US8408352B2 (en) Energy efficient power steering pump control system
JPS616029A (en) Controller for drive
US11015620B2 (en) Servohydraulic drive
EP0802106A1 (en) Flow rate controller in power steering apparatus
JP2001219857A (en) Hydraulic power steering device for vehicle
US6076350A (en) Hydrostatic drive system for a vehicle
JP3365964B2 (en) Hydraulic circuit of construction machinery
US7357395B2 (en) Device for controlling suspension performance of a vehicle having variable axle loads
JP3596299B2 (en) Flow control device in power steering device
US6786202B2 (en) Hydraulic pump circuit
JPH03229001A (en) Driving circuit for fluid pressure actuator
JPH08324445A (en) Power steering device
JPH09277947A (en) Emergency steering device
RU2188976C2 (en) Positive-displacement hydraulic transmission
JPH0341684B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZF LENKSYSTEME GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHMID, JOHANNES;REEL/FRAME:015752/0526

Effective date: 20040817

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION