US20050054515A1 - Optical colored glasses - Google Patents

Optical colored glasses Download PDF

Info

Publication number
US20050054515A1
US20050054515A1 US10/971,981 US97198104A US2005054515A1 US 20050054515 A1 US20050054515 A1 US 20050054515A1 US 97198104 A US97198104 A US 97198104A US 2005054515 A1 US2005054515 A1 US 2005054515A1
Authority
US
United States
Prior art keywords
glass
weight
iii
glasses
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/971,981
Inventor
Uwe Kolberg
Ruediger Hentschel
Simone Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to US10/971,981 priority Critical patent/US20050054515A1/en
Publication of US20050054515A1 publication Critical patent/US20050054515A1/en
Assigned to SCHOTT AG reassignment SCHOTT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHOTT GLAS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S501/00Compositions: ceramic
    • Y10S501/90Optical glass, e.g. silent on refractive index and/or ABBE number

Definitions

  • the subject of the invention is an optical colored glass, its use as optical square edge filter as well as an optical square edge filter.
  • the subject of the invention is also a procedure for the production of optical colored glasses.
  • Optical square edge filters are characterized by characteristic transmission properties. Thus ones with long pass characteristic show a low transmission in the short-wave range, which rises over a narrow spectral region to high transmission and remains high in the long-wave range.
  • the range of low transmission (pure transmission value is # 10 ⁇ ) is called stop band, the range of high transmission (pure transmission value ip ⁇ 0.99) as pass range or pass band.
  • Optical square edge filters are characterized by means of certain parameters.
  • the absorption edge of such a filter is usually indicated as the so-called edge wavelength 8 C. It corresponds to the wavelength, for which the spectral pure transmission factor between stop band and pass band amounts to half of the maximum value.
  • Optical square edge filters are usually realized by colored glasses, in which through colloidal elimination of semiconductor compounds during the cooling of the molten mass or through additional thermal treatment the coloring is produced.
  • colored glasses in which through colloidal elimination of semiconductor compounds during the cooling of the molten mass or through additional thermal treatment the coloring is produced.
  • tarnish glasses One speaks of so-called tarnish glasses.
  • alternative doping factors must likewise consist of semiconductors with direct optical transitions, because only through the special band structure of the semiconductors, the energy gap between valence band and conduction band, the sharp transitions between absorption range and transmission range of the glasses and thus to the filter characteristics of these glasses take place.
  • the I-III-VI semiconductor system e.g. copper-indium-bisulfide and copper-indium-biselenide could also represent an alternative to the CdS -, CdSe -, CdTe-compounds. These for a long time well-known semiconductors are so far only of greater practical importance in the photovoltaic.
  • the tasks are solved through a glass according to claim 1 , a procedure according to claim 9 , a usage according to claim 10 and a square edge filter according to claim 11 .
  • Alkali-zinc-silicate-glass serves as basic glass.
  • the basic glass is based on the oxides SiO 2 , which have the function of forming the structure, ZnO, which has the function of forming the structure and transforming the structure, and K 2 O and optional Na 2 O, which have the function of transforming the structure.
  • SiO 2 constitutes the main part of the glass with 50 to 62% in weight. Higher portions would increase the crystallization tendency and would worsen the fusibility.
  • ZnO is present with 13.5 to 37% in weight. It increases the resistance to thermal shock of the glass, a characteristic, which is substantial for the intended use of the glass behind or in front of strong radiation sources, which are always accompanied by a high temperature emission.
  • ZnO supports in addition the homogeneous nano-crystallization of the doping material in the glass. I.e. during the warming up of the glass in such a way homogeneous crystal growth of the semiconductor doping factors is ensured.
  • the very pure and bright color and the sharp absorption edge of the glasses result from these mono dispersive crystallites. With ZnO contents lower than 13.5% in weight the glasses show a worse or no tarnish behavior.
  • a ZnO portion of at least 18% in weight is preferred.
  • the mentioned upper limit of ZnO is meaningful, since glasses, which exhibit a higher ZnO content, have a tendency for the formation of drip-like elimination areas and thus for separation.
  • the separation tendency of such “Zinc-silicate glasses” can be lowered by the use of the structure transformer K 2 O.
  • the glasses In order to prevent micro elimination of ZnO enriched areas and to reduce their processing temperature, the glasses contain 10 to 25% in weight, preferably 18 to 25% in weight K 2 O.
  • the glass can contain in addition up to 14% in weight Na 2 O, which affects mainly the physical characteristics like the fixed viscosity reference points and the coefficients of expansion. With higher concentration of Na 2 O the chemical stability would decrease, the coefficient of expansion would be too high and the transformation temperature would be too low.
  • the sum of amounts of K 2 O and Na 2 O are 29% in weight at the most.
  • the other expensive alkali oxides Li 2 O, Rb 2 O, Cs 2 O can in principle also be used, however due to their price disadvantage they are preferably are not used.
  • B 2 O 3 promotes the resistance to thermal shock of the glass.
  • B 2 O 3 is contained with 3 to 5% in weight in the glass.
  • B 2 O 3 improves the fusibility of the glass.
  • the glass can contain further up to 1% in weight F.
  • F serves for the improvement of the fusibility, i.e. it lowers the viscosity of the glass.
  • the glass can contain also up to 1% in weight C.
  • C serves as reducing agent, in order to prevent an oxidation of the compound semiconductors.
  • the glass is suitable in an outstanding fashion for the formation of nano-crystals from compound semiconductors of the class I-III-VI which is distributed colloidal in the glass.
  • the nano-crystallization is affected during the tarnish process by the glass viscosity, the oversaturation, the solubility product and the growth rate of the color carriers.
  • the tarnish process which contains the coloring and thus the elimination of the crystallites of the semiconductor compounds, takes place either already at the cooling of the glasses and/or through a further temperature treatment within the range Tg # 200K.
  • the specialist knows how to control these factors if possible.
  • the sum of the compound semiconductors in the glass amounts to at least 0.1% in weight, which corresponds to the minimum concentration of colloidal micro crystals distributed in the glass for the light absorption, and at the most 3% in weight, preferably at the most 1% in weight. Higher contents than 3% in weight would lower the transmission within the pass range after the tarnish process in an unacceptable manner.
  • edge components thus e.g. CuInS 2 , CuInSe 2 , CuGaS 2 , CuGaSe 2 , AgInS 2 , AgInSe 2 , AgGaS 2 and AgGaSe 2 as well as all mixed compounds of two component systems or multi component systems usable. It is also possible to use two or several edge components at the same time.
  • Particularly preferable is a doping factor content from 0.1 to 0.5% in weight.
  • the absorption edge in the area between 360 nm to 1200 nm can be shifted by variations of the portions of the respective compounds and the conditions of the tarnish process.
  • doping factor contents between 0.1 and 0.5% in weight, in particular CuIn(Se 1x S x ) 2 edge lengths between 400 nm and 1200 nm can be achieved.
  • the components In 2 O 3 and Ga 2 O 3 with contents of 0-2% in weight in each case as well as SO 3 and SeO 2 with contents of 0-1% in weight are very favorable. These components prevent possible evaporations of the components In 2 O 3 , Ga 2 O 3 , S and Se from the compound semiconductors. Thus the chalcopyrite remains as the chromophore component in or close to the intended stoichiometry and thus at the desired specific edge position.
  • the glasses contain at least 0.1% in weight of the oxide of the M III , thus M 2 O 3 , which is/are present in M I M III Y II 2 , and at least 0.2% in nweight of the oxide of Y II , which is/are present in M I M III Y II 2 .
  • SO 3 and/or SeO 2 not with elemental S and/or Se but in the form of ZnS and/or ZnSe.
  • Preferable 0.1-4% in weight ZnS and/or ZnSe are used. Both components promote the structure of the chromophore crystals of the semiconductor compounds such as CuInS 2 and CuInSe 2 as auxiliary crystal components and thus the edge steepness and the transmission in the pass range.
  • the glass can contain up to 4% in weight MgO, up to 10% in weight CaO, up to 10% in weight BaO, up to 10% in weight SrO, up to 10% in weight P 2 O 5 , up to 2% in weight Al 2 O 3 and up to 7% in weight TiO 2 .
  • Al 2 O 3 improves the crystallization ability of the glass, MgO and CaO function in the basic glass similar to ZnO. They improve the chemical stability, and they are less expensive than ZnO.
  • BaO and SrO serve for the fine tuning of the coefficient of expansion, transformation temperature and processing temperature. However, since BaO and SrO are more expensive than MgO and SrO, which are similar in many properties, they are preferably not used.
  • P2O5 can partially be exchanged against SiO2 or B2O3 as structure formers. It is useful for the lowering of the viscosity at certain temperatures. P2O5 reduces however the chemical resistance and is therefore preferably not used.
  • the component TiO2 in this glass system takes over mainly the function of the supporting UV-blocking.
  • Square edge filters must fulfill an optical density in the stop band. Additional UV absorbers such as TiO2 can support this.
  • the glasses can be molten with the help of the well-known usual melting procedures for tarnish glasses, i.e. under neutral and/or reducing conditions at temperatures of approx. 1100-1550° C.
  • the glasses build already during the cooling process and/or through an additional temperature treatment finely divided nano-crystallites, which cause the color and/or a tarnishing of the glass.
  • one or more well-known refining media in the usual quantities can be added to the glass batch for the refining of the glass.
  • the glass exhibits a particularly good internal glass quality regarding the non-existence of bubbles and streaks.
  • Table 1 shows a melting example, for the glass in accordance with example 1 from Table 2.
  • the glass was cooled with 20 K/h and afterwards temperature treated for 3 h at approx. 560° C.
  • the glass possesses an edge wavelength 8 c of 420 nm.
  • TABLE 1 Melting example of a 0.5-l-glass batch Originally weighted-in Component % in weight Raw material quantity [g] SiO 2 52.84 SiO 2 524.67 B 2 O 3 4.07 B 2 O 3 40.80 ZnO 19.71 ZnO 194.96 K 2 O 22.84 K 2 CO 3 332.91 SO 3 0.1 ZnS 1.02 CuInSe 2 0.23 CuInSe 2 2.55
  • M I -Al (S, Se) compound semiconductors like e.g. CuAlS 2 and CuAlSe 2 or their mixed components alone or in combination with the other mentioned M′ M′′ Y′′ systems, then edge lengths up to a minimum of 360 nm are produced.
  • edge lengths between 460 nm and 360 nm is produced preferably between 0.1 and 0.5% in weight.
  • FIG. 1 shows the transmissions course (transmission factor versus wave length 8) at samples of the thickness 3 mm of the examples 1 and 2 (reference numbers 2 and 3 ) as well as a comparison example (reference number 1 ).
  • the comparison example is the commercially available Cd-containing glass GG 420 of the applicant.
  • the glasses according to the invention are environmental friendly, as they do not need any Cd-containing components. Due to their composition they can be easily melted, they are chemically resistant and resistant to thermal shock.

Abstract

The invention concerns an optical colored glass of the composition (in % in weight on oxide basis) SiO2 50-62; K2O 10-25; Na2O 0-14; Al2O3 0-2; B2O3 3-5; ZnO 13.5-37; F 0-1; TiO2 0-7; In2O3 0-2; Ga2O3 0-2; SO3 0-1; SeO2 0-1; C 0-1; MIMIIIY2 II 0.1-3, whereby MI=Cu+ and/or Ag+ and/or MIII=In3+ and/or Ga3+ and/or Al3+ and/or YII=S2− and/or Se2− and at least 0.1% in weight of the oxide (M2O3) of the MIII, which is/ar present in MIMIIIYII 2, and with at least 0.2% in weight of the oxide, of YII, which/are present in MIMIIIYII 2.

Description

  • The subject of the invention is an optical colored glass, its use as optical square edge filter as well as an optical square edge filter. The subject of the invention is also a procedure for the production of optical colored glasses.
  • Optical square edge filters are characterized by characteristic transmission properties. Thus ones with long pass characteristic show a low transmission in the short-wave range, which rises over a narrow spectral region to high transmission and remains high in the long-wave range. The range of low transmission (pure transmission value
    Figure US20050054515A1-20050310-P00900
    is# 10) is called stop band, the range of high transmission (pure transmission value
    Figure US20050054515A1-20050310-P00900
    ip ∃0.99) as pass range or pass band.
  • Optical square edge filters are characterized by means of certain parameters. Thus the absorption edge of such a filter is usually indicated as the so-called edge wavelength 8C. It corresponds to the wavelength, for which the spectral pure transmission factor between stop band and pass band amounts to half of the maximum value.
  • Optical square edge filters are usually realized by colored glasses, in which through colloidal elimination of semiconductor compounds during the cooling of the molten mass or through additional thermal treatment the coloring is produced. One speaks of so-called tarnish glasses.
  • Commercial square edge filters are manufactured by doping the basic glasses with cadmium semiconductor compounds. Depending upon the edge position CdS, CdSe, CdTe or also mixed compounds of these semiconductors are used for this. With these square edge filters edge wavelengths of a maximum of 850 nm can be reached. In addition, for the use e.g. in IR cameras or as laser protecting glass longer-wave square edges are desired. Due to the toxic and the carcinogenic characteristics of cadmium it is desired to be able to do without these compounds and to use other doping factors instead. In order to achieve equal or similar absorption properties of the glasses, alternative doping factors must likewise consist of semiconductors with direct optical transitions, because only through the special band structure of the semiconductors, the energy gap between valence band and conduction band, the sharp transitions between absorption range and transmission range of the glasses and thus to the filter characteristics of these glasses take place.
  • The I-III-VI semiconductor system, e.g. copper-indium-bisulfide and copper-indium-biselenide could also represent an alternative to the CdS -, CdSe -, CdTe-compounds. These for a long time well-known semiconductors are so far only of greater practical importance in the photovoltaic.
  • In a number of Russian and Soviet patent applications for a very close glass composition range are already CuInS2 doped and/or CuInS2-CuInSe2 mix doped glasses described, which are supposed to be applied as filters: SU 167702A1, SU 1527199A1, RU 2073657C1, SU 1770297A1, SU 1770298A1, SU 1678786A1, SU 1678785A1, SU 1701658A1, SU 1677025, SU 1675239A1, SU 1675240A1 and SU 1787963A1. All these glasses have in common that they contain no or very little B2O3 and no or very little ZnO and that they have with portions of up to 79% in weight a high SiO2 content. The glasses of these applications do not possess good chemical stabilities.
  • It is subject of the invention to make chemically resistant optical Cd-free colored glasses available, which possess square edge characteristics and exhibit absorption edges between >0.4 μm and 1.2 μm.
  • It is further a subject of the invention to make such square edge filters available.
  • It is further a subject of the invention to make a procedure available for the production of optical colored glasses.
  • The tasks are solved through a glass according to claim 1, a procedure according to claim 9, a usage according to claim 10 and a square edge filter according to claim 11.
  • Alkali-zinc-silicate-glass serves as basic glass. The basic glass is based on the oxides SiO2, which have the function of forming the structure, ZnO, which has the function of forming the structure and transforming the structure, and K2O and optional Na2O, which have the function of transforming the structure.
  • SiO2 constitutes the main part of the glass with 50 to 62% in weight. Higher portions would increase the crystallization tendency and would worsen the fusibility.
  • ZnO is present with 13.5 to 37% in weight. It increases the resistance to thermal shock of the glass, a characteristic, which is substantial for the intended use of the glass behind or in front of strong radiation sources, which are always accompanied by a high temperature emission. ZnO supports in addition the homogeneous nano-crystallization of the doping material in the glass. I.e. during the warming up of the glass in such a way homogeneous crystal growth of the semiconductor doping factors is ensured. The very pure and bright color and the sharp absorption edge of the glasses result from these mono dispersive crystallites. With ZnO contents lower than 13.5% in weight the glasses show a worse or no tarnish behavior. A ZnO portion of at least 18% in weight is preferred. The mentioned upper limit of ZnO is meaningful, since glasses, which exhibit a higher ZnO content, have a tendency for the formation of drip-like elimination areas and thus for separation. The separation tendency of such “Zinc-silicate glasses” can be lowered by the use of the structure transformer K2O. In order to prevent micro elimination of ZnO enriched areas and to reduce their processing temperature, the glasses contain 10 to 25% in weight, preferably 18 to 25% in weight K2O. The glass can contain in addition up to 14% in weight Na2O, which affects mainly the physical characteristics like the fixed viscosity reference points and the coefficients of expansion. With higher concentration of Na2O the chemical stability would decrease, the coefficient of expansion would be too high and the transformation temperature would be too low. Preferably the sum of amounts of K2O and Na2O are 29% in weight at the most. The other expensive alkali oxides Li2O, Rb2O, Cs2O can in principle also be used, however due to their price disadvantage they are preferably are not used.
  • Besides ZnO also B2O3 promotes the resistance to thermal shock of the glass. B2O3 is contained with 3 to 5% in weight in the glass. B2O3 improves the fusibility of the glass.
  • The glass can contain further up to 1% in weight F. F serves for the improvement of the fusibility, i.e. it lowers the viscosity of the glass.
  • The glass can contain also up to 1% in weight C. C serves as reducing agent, in order to prevent an oxidation of the compound semiconductors.
  • The glass is suitable in an outstanding fashion for the formation of nano-crystals from compound semiconductors of the class I-III-VI which is distributed colloidal in the glass.
  • The nano-crystallization is affected during the tarnish process by the glass viscosity, the oversaturation, the solubility product and the growth rate of the color carriers. The tarnish process, which contains the coloring and thus the elimination of the crystallites of the semiconductor compounds, takes place either already at the cooling of the glasses and/or through a further temperature treatment within the range Tg # 200K. The tarnish temperature and tarnish times thereby affect the crystallite size. The larger the crystallites become, the smaller becomes the band gap of the semiconductors and the more longer-waved (=red) is the inherent color of the glass. The specialist knows how to control these factors if possible.
  • The glasses contain the compound semiconductors MI MIII YII 2 (whereby MI=Cu+, Ag+, MIII=In3+, Ga3+, Al3+, YII=S2−, Se2− can be) as chromophore components, thus as doping factors to impart the filter characteristics.
  • The sum of the compound semiconductors in the glass amounts to at least 0.1% in weight, which corresponds to the minimum concentration of colloidal micro crystals distributed in the glass for the light absorption, and at the most 3% in weight, preferably at the most 1% in weight. Higher contents than 3% in weight would lower the transmission within the pass range after the tarnish process in an unacceptable manner. From the mentioned ternary semiconductor systems MI MIII YII 2 are all edge components, thus e.g. CuInS2, CuInSe2, CuGaS2, CuGaSe2, AgInS2, AgInSe2, AgGaS2 and AgGaSe2 as well as all mixed compounds of two component systems or multi component systems usable. It is also possible to use two or several edge components at the same time.
  • Doping factors of one or several components from the system CuIn(Se1-x Sx)2 with x=0 to 1, i.e. of the edge components CuInSe2 and CuInS2 as well as by their mixed compounds are particularly preferable. Particularly preferable is a doping factor content from 0.1 to 0.5% in weight.
  • The absorption edge in the area between 360 nm to 1200 nm can be shifted by variations of the portions of the respective compounds and the conditions of the tarnish process. With doping factor contents between 0.1 and 0.5% in weight, in particular CuIn(Se1x Sx)2 edge lengths between 400 nm and 1200 nm can be achieved.
  • For the characteristics as tarnish gas the components In2O3 and Ga2O3 with contents of 0-2% in weight in each case as well as SO3 and SeO2 with contents of 0-1% in weight are very favorable. These components prevent possible evaporations of the components In2O3, Ga2O3, S and Se from the compound semiconductors. Thus the chalcopyrite remains as the chromophore component in or close to the intended stoichiometry and thus at the desired specific edge position. Therefore the glasses contain at least 0.1% in weight of the oxide of the MIII, thus M2O3, which is/are present in MI MIII YII 2, and at least 0.2% in nweight of the oxide of YII, which is/are present in MI MIII YII 2.
  • It is particularly preferable, to use SO3 and/or SeO2 not with elemental S and/or Se but in the form of ZnS and/or ZnSe. Preferable 0.1-4% in weight ZnS and/or ZnSe are used. Both components promote the structure of the chromophore crystals of the semiconductor compounds such as CuInS2 and CuInSe2 as auxiliary crystal components and thus the edge steepness and the transmission in the pass range.
  • With this procedure for the production of optical colored glasses of the composition range (in % in weight on oxide basis) SiO2 50-62, K2O 10-25; Na2O 0-14; MgO 0-4; CaO 0-10, BaO 0-10, SrO 0-10; P2O5 0-10; Al2O3 0-2; B2O3 3-5; ZnO 13.5-37; F 0-1, TiO2 0-7; In2O3 0-2; Ga2O3 0-2; SO3 0-1; SeO2 0-1; C 0-1; and the doping factor MI MIII YII 2 with MI=Cu+Ag+, MIII=In3+, Ga3+, Ga3+, Al3+, Y″=S2−, Se3− with at least 0.1% in weight of the oxide (M2O3) of the MIII, which is/are present in MI MIII YII 2, and with at least 0.2% in weight of the oxide, or Y″, which is/are present in MI MIII YII 2, with the process steps glass batch preparation, melting of the glass, cooling and warming up, with which 0.1- 4% in weight ZnS and/or ZnSe are added to the glass batch, tarnish glasses with defined edge length can be manufactured easily, purposeful and reproducible. The requirements of the to be met conditions regarding temperature and time of the process steps cooling and warming up are smaller than with conventional procedures. The term melting here combines the steps refining, homogenizing and conditioning for further processing, which follow the melting itself.
  • In addition the glass can contain up to 4% in weight MgO, up to 10% in weight CaO, up to 10% in weight BaO, up to 10% in weight SrO, up to 10% in weight P2O5, up to 2% in weight Al2O3 and up to 7% in weight TiO2. Al2O3 improves the crystallization ability of the glass, MgO and CaO function in the basic glass similar to ZnO. They improve the chemical stability, and they are less expensive than ZnO. BaO and SrO serve for the fine tuning of the coefficient of expansion, transformation temperature and processing temperature. However, since BaO and SrO are more expensive than MgO and SrO, which are similar in many properties, they are preferably not used.
  • P2O5 can partially be exchanged against SiO2 or B2O3 as structure formers. It is useful for the lowering of the viscosity at certain temperatures. P2O5 reduces however the chemical resistance and is therefore preferably not used.
  • The component TiO2 in this glass system takes over mainly the function of the supporting UV-blocking. Square edge filters must fulfill an optical density in the stop band. Additional UV absorbers such as TiO2 can support this.
  • The glasses can be molten with the help of the well-known usual melting procedures for tarnish glasses, i.e. under neutral and/or reducing conditions at temperatures of approx. 1100-1550° C. The glasses build already during the cooling process and/or through an additional temperature treatment finely divided nano-crystallites, which cause the color and/or a tarnishing of the glass.
  • For the improvement of the glass quality, one or more well-known refining media in the usual quantities can be added to the glass batch for the refining of the glass. Thus the glass exhibits a particularly good internal glass quality regarding the non-existence of bubbles and streaks.
  • EXAMPLES
  • Six examples of glasses according to the invention were molten from the usual optical raw materials. The raw materials were weighed, afterwards mixed thoroughly, melted in usual procedures with approx. 1300° C. to 1550° C. and well homogenized. The temperature at pouring was approx. 1450° C.
  • In Table 2 the following are indicated: the respective composition (in % in weight) and the edge wavelength 8c [nm] (sample thickness d=3 mm), tarnish temperatures [° C.] and rise times [h].
  • Table 1 shows a melting example, for the glass in accordance with example 1 from Table 2. The glass was cooled with 20 K/h and afterwards temperature treated for 3 h at approx. 560° C. The glass possesses an edge wavelength 8 c of 420 nm.
    TABLE 1
    Melting example of a 0.5-l-glass batch
    Originally
    weighted-in
    Component % in weight Raw material quantity [g]
    SiO2 52.84 SiO2 524.67
    B2O3 4.07 B2O3 40.80
    ZnO 19.71 ZnO 194.96
    K2O 22.84 K2CO3 332.91
    SO3 0.1 ZnS 1.02
    CuInSe2 0.23 CuInSe2 2.55
  • TABLE 2
    Glass composition (in % in weight), edge wavelength 8C, tarnish temperature
    [° C.] and tarnish time [h]
    (the difference to 100% results from taking into account CuInS2/CuInSe2
    as CuO, In2O3, SO3/SeO2)
    1 2 3 4 5 6
    SiO2  52.84  52.9  52.5  52  61.95  52.75
    B2O3  4.07  4.07 4.05   4  3  4.05
    ZnO  19.71  19.74  19.64  19.4  13.99  19.68
    Na2O  8.99
    K2O  22.84  22.86  22.75  22.47  11.59  22.8
    SO3  0.1  0.16  0.21
    CuInS2  0.22   1  0.22  0.091
    CuInSe2  0.23  0.5  0.094
    C  0.05
    8C [nm] d = 3 mm, 420 324 507 1010 780 416
    (tarnish temperature (560/3) (—/0) (—/0) (—/0) (—/0) (—/0)
    [° C.]/tarnish time [h])
    8C [nm] d = 3 mm, 460 415 613 1030 898
    (tarnish temperature (560/57) (500/150) (560/57) (590/150) (595/50)
    [° C.]/tarnish time [h])
    8C [nm] d = 3 mm, 521 960
    (tarnish temperature (515/150) (610/150)
    [° C.]/tarnish time [h])
  • The glasses according to the invention and the glasses manufactured in the procedure according to the invention are especially suitable for the use as optical square edge filters with long pass characteristic due to their transmission course. They show in the stop band a good optical density of ∃3, whereby the optical density is defined as OD (8)=1 g (1/
    Figure US20050054515A1-20050310-P00900
    (8)). Their transmission in approximately the pass band, which is longer-waved compared to the stop band, is sufficiently high with ∃88%. Their absorption edge is sufficiently steep. It can be moved with MI MIII YII doped glasses, for which is MI=Cu+, Ag+, MIII=In3+, Ga3+, YII=S2−, Se2− between 400 nm and 1200 nm. Therefore the glasses cover with the area of edge position of the usual Cd-containing tarnish glasses as far as possible and go in the long-wave are far beyond these.
  • If the glasses contain aluminum doping factors, thus MI-Al (S, Se) compound semiconductors like e.g. CuAlS2 and CuAlSe2 or their mixed components alone or in combination with the other mentioned M′ M″ Y″ systems, then edge lengths up to a minimum of 360 nm are produced.
  • When using exclusively the MI-Al—(S, Se) doping factors, preferably the Cu—Al—(S,Se) doping factor, edge lengths between 460 nm and 360 nm is produced preferably between 0.1 and 0.5% in weight.
  • FIG. 1 shows the transmissions course (transmission factor
    Figure US20050054515A1-20050310-P00900
    versus wave length 8) at samples of the thickness 3 mm of the examples 1 and 2 (reference numbers 2 and 3) as well as a comparison example (reference number 1). The comparison example is the commercially available Cd-containing glass GG 420 of the applicant.
  • The glasses according to the invention are environmental friendly, as they do not need any Cd-containing components. Due to their composition they can be easily melted, they are chemically resistant and resistant to thermal shock.
  • Their tarnish behavior is easily controllable. This applies in particular to the glasses manufactured in the procedure according to the invention, which exhibit steep absorption edges.

Claims (3)

1-20. (canceled)
21. A method of using a glass comprising:
providing an optical colored glass having
SiO2 50-62 K2O 10-25 Na2O  0-14 Al2O3 0-2 B2O3 3-5 ZnO 13.5-37   F 0-1 TiO2 0-7 In2O3 0-2 Ga2O3 0-2 SO3 0-1 SeO2 0-1 C 0-1 MI MIII YII 2 0.1-3  
whereby MI=Cu+ and/or Ag+
MIII=In3+ and/or Ga3+ and/or
Al3+, YII=S2− and/or Se2−
with at least 0.1% in weight of the oxide (M2O3) of the MIII which is/are present in MI MIII YII 2, and with at least 0.2% in weight of the oxide, of YII, which is/are present in MI MIII YII 2,
as well as usual refining media if necessary in usual quantities; and
using said glass as an optical square edge filter.
22. A method of using a glass comprising:
producing an optical colored glass of the composition range
SiO2 50-62 K2O 10-25 Na2O  0-14 MgO 0-4 CaO  0-10 BaO  0-10 SrO  0-10 P2O5  0-10 Al2O3 0-2 B2O3 3-5 ZnO 13.5-37   F 0-1 TiO2 0-7 In2O3 0-2 Ga2O3 0-2 SO3 0-1 SeO2 0-1 C 0-1 MI MIII YII 2 0.1-1  
whereby MI=Cu+, Ag+
MIII=In3+, Ga3+, Al3+
YII=S2−, Se2−
with at least 0.1% in weight of the oxide (M2O3) of the M′″ which is/are present in MIMIIIYII 2, and with at least 0.2% in weight of the oxide, of YII, which is/are present in MI MIII YII 2,
as well as usual refining media if necessary in usual quantities,
with the process steps glass batch preparation, melting of the glass, cooling, warming up, whereby 0.1-4% in weight ZnS and/or ZnSe are added to the glass batch; and
using said glass as an optical square edge filter.
US10/971,981 2001-08-22 2004-10-22 Optical colored glasses Abandoned US20050054515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/971,981 US20050054515A1 (en) 2001-08-22 2004-10-22 Optical colored glasses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10141101A DE10141101C1 (en) 2001-08-22 2001-08-22 Optical colored glasses, their use and process for their preparation
DE10141101.4 2001-08-22
US10/224,071 US6852657B2 (en) 2001-08-22 2002-08-20 Optical colored glasses
US10/971,981 US20050054515A1 (en) 2001-08-22 2004-10-22 Optical colored glasses

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/224,071 Continuation US6852657B2 (en) 2001-08-22 2002-08-20 Optical colored glasses

Publications (1)

Publication Number Publication Date
US20050054515A1 true US20050054515A1 (en) 2005-03-10

Family

ID=7696221

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/224,071 Expired - Fee Related US6852657B2 (en) 2001-08-22 2002-08-20 Optical colored glasses
US10/971,981 Abandoned US20050054515A1 (en) 2001-08-22 2004-10-22 Optical colored glasses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/224,071 Expired - Fee Related US6852657B2 (en) 2001-08-22 2002-08-20 Optical colored glasses

Country Status (6)

Country Link
US (2) US6852657B2 (en)
EP (1) EP1288171A3 (en)
JP (1) JP2003160357A (en)
CN (1) CN1281538C (en)
DE (1) DE10141101C1 (en)
TW (1) TW593193B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060199018A1 (en) * 2005-02-25 2006-09-07 Axel Engel Standard for referencing luminescence signals
US7769902B2 (en) 2002-07-31 2010-08-03 Brocade Communications Systems, Inc. Topology database synchronization
RU2642679C1 (en) * 2017-03-28 2018-01-25 Юлия Алексеевна Щепочкина Crystal glass

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141103B4 (en) * 2001-08-22 2007-01-18 Schott Ag Process for producing optical glasses and colored glasses at low temperatures
WO2004009504A1 (en) * 2002-07-24 2004-01-29 Nippon Sheet Glass Company, Limited Glass capable of being machined by laser
JP2005321421A (en) * 2004-05-06 2005-11-17 Okamoto Glass Co Ltd Diffraction optical element and glass material
CN100407338C (en) * 2006-03-24 2008-07-30 中国科学院上海硅酸盐研究所 Brass ore type material for p type transparent conductor and preparing process
DE102009015076A1 (en) 2009-03-31 2010-10-14 Heraeus Quarzglas Gmbh & Co. Kg Doped quartz glass optical filter material for use with a UV lamp
US9371247B2 (en) 2009-05-29 2016-06-21 Corsam Technologies Llc Fusion formable sodium free glass
US8210678B1 (en) 2009-12-21 2012-07-03 Farwig Michael J Multiband contrast-enhancing light filter and polarized sunglass lens comprising same
US8770749B2 (en) 2010-04-15 2014-07-08 Oakley, Inc. Eyewear with chroma enhancement
WO2013070417A1 (en) 2011-10-20 2013-05-16 Oakley, Inc. Eyewear with chroma enhancement
WO2013169987A1 (en) 2012-05-10 2013-11-14 Oakley, Inc. Eyewear with laminated functional layers
US9575335B1 (en) 2014-01-10 2017-02-21 Oakley, Inc. Eyewear with chroma enhancement for specific activities
US10871661B2 (en) 2014-05-23 2020-12-22 Oakley, Inc. Eyewear and lenses with multiple molded lens components
EP3218763A4 (en) 2014-11-13 2018-06-13 Oakley, Inc. Variable light attenuation eyewear with color enhancement
US9905022B1 (en) 2015-01-16 2018-02-27 Oakley, Inc. Electronic display for demonstrating eyewear functionality
US11112622B2 (en) 2018-02-01 2021-09-07 Luxottica S.R.L. Eyewear and lenses with multiple molded lens components
CN111574049B (en) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 Glass composition
CN111517640B (en) * 2020-06-30 2021-03-02 成都光明光电股份有限公司 Environment-friendly glass material
CN111777326B (en) * 2020-07-20 2021-02-09 成都光明光电股份有限公司 Environment-friendly glass material, environment-friendly glass product and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037985A (en) * 1996-10-31 2000-03-14 Texas Instruments Incorporated Video compression

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1596844B1 (en) * 1966-11-25 1970-10-29 Jenaer Glaswerk Schott & Gen Process for the production of a partial absorption filter for the wavelength range from 380 to 475 nm with a pure transmittance of 0.80
DE2621741C3 (en) * 1976-05-15 1979-06-28 Jenaer Glaswerk Schott & Gen., 6500 Mainz Glasses containing cadmium for filters with partial absorption edges in the wavelength range λ
DE3206347A1 (en) 1982-02-22 1983-09-01 Standard Elektrik Lorenz Ag, 7000 Stuttgart Process for producing CdS layers for solar cells
SU1527199A1 (en) * 1987-07-29 1989-12-07 Институт физики АН БССР Glass composition
JPH01248627A (en) 1988-03-30 1989-10-04 Matsushita Electric Ind Co Ltd Manufacture of cuinse2 film
SU1677026A1 (en) 1989-04-18 1991-09-15 Минский радиотехнический институт Glass
SU1677025A1 (en) 1989-04-18 1991-09-15 Минский радиотехнический институт Glass
SU1675239A1 (en) 1989-04-18 1991-09-07 Минский радиотехнический институт Glass
SU1678786A1 (en) 1989-04-18 1991-09-23 Минский радиотехнический институт Glass
SU1675240A1 (en) 1989-04-18 1991-09-07 Минский радиотехнический институт Glass
SU1701658A1 (en) 1989-04-18 1991-12-30 Минский радиотехнический институт Glass
SU1678785A1 (en) * 1989-04-18 1991-09-23 Минский радиотехнический институт Glass
JP3181074B2 (en) 1991-07-16 2001-07-03 松下電器産業株式会社 Method for producing Cu-based chalcopyrite film
JPH06263442A (en) 1993-03-12 1994-09-20 Hitachi Maxell Ltd Production of powdery agins2 and agins2 film
RU2073657C1 (en) 1993-03-31 1997-02-20 Минский радиотехнический институт Glass
DE10141104C1 (en) * 2001-08-22 2003-04-17 Schott Glas Optical colored glasses and their use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037985A (en) * 1996-10-31 2000-03-14 Texas Instruments Incorporated Video compression

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769902B2 (en) 2002-07-31 2010-08-03 Brocade Communications Systems, Inc. Topology database synchronization
US20060199018A1 (en) * 2005-02-25 2006-09-07 Axel Engel Standard for referencing luminescence signals
US7521670B2 (en) 2005-02-25 2009-04-21 Schott Ag Standard for referencing luminescence signals
RU2642679C1 (en) * 2017-03-28 2018-01-25 Юлия Алексеевна Щепочкина Crystal glass

Also Published As

Publication number Publication date
JP2003160357A (en) 2003-06-03
EP1288171A2 (en) 2003-03-05
EP1288171A3 (en) 2003-03-12
TW593193B (en) 2004-06-21
DE10141101C1 (en) 2003-07-03
US20030114292A1 (en) 2003-06-19
CN1406897A (en) 2003-04-02
US6852657B2 (en) 2005-02-08
CN1281538C (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US6852657B2 (en) Optical colored glasses
US11312653B2 (en) Articles including glass and/or glass-ceramics and methods of making the same
EP1837312B1 (en) Lithium-aluminium-silicate glass with short ceramisation time
TWI811252B (en) Glass-ceramics and glasses
US10106456B2 (en) Glass and glass ceramic
DE102008050263C5 (en) Transparent, colored cooking surface with improved colored display ability and method for producing such a cooking surface
EP1837314B1 (en) Plate of transparent, colourless lithium aluminium slicate glass ceramic with opaque, coloured underside coating
DE19939787C2 (en) Transparent glass-ceramic, which can be colored dark with the addition of vanadium oxide, with high-quartz mixed crystals as the predominant crystal phase, process for their production and their use
JP5867415B2 (en) Heat-absorbing glass plate and manufacturing method thereof
EP1236695A2 (en) Glass ceramics
EP1228013A1 (en) Alkaline-earth aluminoborosilicate glass and the uses thereof
KR0179319B1 (en) Aluminophosphate salt glass containing copper(ñ oxide
US6667259B2 (en) Optical colored glass, its use, and an optical long-pass cutoff filter
RU2448917C2 (en) Uv-transmitting sodium-potassium-silicate glass
DE10245880A1 (en) White glasses / borosilicate glasses with a special UV edge
JPS60145930A (en) Glass filter and production thereof
WO2016098554A1 (en) Glass for near infrared absorption filter
WO2015194456A1 (en) Near-infrared ray-absorbing glass plate
EP1144325A1 (en) Fusion sealed article and method
JP7020428B2 (en) UV absorbing glass
DE19816380C1 (en) Cadmium-free red glass-ceramic based starting glass for use as a red traffic light glass
DE202023104159U1 (en) Transparent lithium aluminum silicate glass ceramic

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHOTT AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHOTT GLAS;REEL/FRAME:015766/0926

Effective date: 20050209

Owner name: SCHOTT AG,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHOTT GLAS;REEL/FRAME:015766/0926

Effective date: 20050209

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE