US20050055088A1 - Method and apparatus for performing a procedure on a cardiac valve - Google Patents

Method and apparatus for performing a procedure on a cardiac valve Download PDF

Info

Publication number
US20050055088A1
US20050055088A1 US10/895,272 US89527204A US2005055088A1 US 20050055088 A1 US20050055088 A1 US 20050055088A1 US 89527204 A US89527204 A US 89527204A US 2005055088 A1 US2005055088 A1 US 2005055088A1
Authority
US
United States
Prior art keywords
prosthesis
arterial
valve
manipulation instrument
advancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/895,272
Inventor
John Liddicoat
Gregory Lambrecht
Todd Davenport
William Cohn
Steven Woolfson
Daniel Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US10/895,272 priority Critical patent/US20050055088A1/en
Publication of US20050055088A1 publication Critical patent/US20050055088A1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIACOR, INC.
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIACOR, INC.
Priority to US12/776,136 priority patent/US20100217384A1/en
Priority to US13/012,466 priority patent/US20110118830A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting

Definitions

  • aortic stenosis carries the worst prognosis. Within one year of diagnosis, approximately half of all patients with critical aortic stenosis have died, and by three years, this figure rises to approximately 80%.
  • the most prominent and effective treatment for patients with aortic stenosis is aortic valve replacement via open heart surgery. Unfortunately, this procedure is a substantial and invasive undertaking for the patient.
  • Aortic valve replacement currently requires a sternotomy or thoracotomy, use of cardiopulmonary bypass to arrest the heart and lungs, and a large incision on the aorta.
  • the native valve is resected through this incision and then a prosthetic valve is sutured to the inner surface of the aorta with a multitude of sutures passing only partly into the wall of the aorta.
  • aortic valve replacement surgery is associated with a high risk of morbidity and mortality.
  • the first challenge is to remove the diseased valve without causing stroke or other ischemic events that might result from the liberation of particulate material while removing the diseased valve.
  • the second challenge is to prevent cardiac failure during removal of the diseased valve.
  • the aortic valve continues to serve a critical function even when it is diseased.
  • the diseased valve becomes acutely and severely incompetent, causing the patient to develop heart failure which results in death unless the function of the valve is taken over by another means.
  • the third challenge is placing a prosthetic valve into the vascular system and affixing it to the wall of the aorta. More particularly, during cardiac rhythm, the aortic and arterial pressures are substantially greater than atmospheric pressure. Therefore, any sizable incision made to the aorta in order to insert a standard valve prosthesis into the arterial system creates the potential for uncontrollable bleeding from the incision site. Furthermore, even if bleeding is successfully controlled, pressures within the aorta may result in weakening of the aorta caused by aortic wall dissection. In addition, large incisions on the aorta also increase the potential for liberating plaque from the aortic wall that can lead to embolic complications.
  • valve prostheses potentially suitable for off-pump implantation have relied upon relatively flimsy expandable structures to support and secure the valve within the aorta. More particularly, these prosthetic valves are constructed so that they can be compressed to a relatively small dimension suitable for insertion into the arterial system, advanced to the site of the aortic valve, and then expanded against the aortic wall. Unfortunately, however, none of these relatively flimsy valve prostheses have proven adequate to endure the repetitive stresses undergone by the aortic valve over the ten to twenty years typically required.
  • expandable prosthetic valves In addition to the foregoing, the precise placement of such expandable prosthetic valves in the correct sub-coronary position can be extremely challenging, particularly in view of the high pressure, pulsatile blood flow passing through the aorta. Furthermore, expandable prosthetic valves would typically be positioned from a remote artery, which would reduce the ability to precisely control the placement and positioning of the device and therefore would increases the risk of obstructing the coronary arteries.
  • the expandable prosthetic valves are held on the ends of elongate, flexible catheters that are threaded into the aorta, around the aortic arch and then expanded. The pulsatile flow during cardiac rhythm induces a to-and-fro motion of the valve prosthesis relative to the aorta that makes the timing of valve expansion critical for proper placement of the expandable prosthetic valve and hence the survival of the patient.
  • one object of the present invention to enable the passage of a device from the left atrium, through the left ventricle, and into the arterial system.
  • Another object of the present invention is to enable the implantation of a device in the arterial system without cardiopulmonary bypass.
  • Another object of the present invention is to enable the implantation of a prosthetic valve in the arterial system without cardiopulmonary bypass.
  • Another object of the present invention is to allow the insertion of such a valve while minimizing the risks to the patient posed by large arterial incisions.
  • Another object of the present invention is to simplify the precise placement of such a valve.
  • another object of the present invention is to enable the implantation of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft, in the arterial system without cardiopulmonary bypass.
  • a device other than a valve such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft
  • Another object of the present invention is to allow the insertion of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft, while minimizing the risks to the patient posed by large arterial incisions.
  • a device other than a valve such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft
  • Another object of the present invention is to simplify the precise placement of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft.
  • a device other than a valve such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft.
  • the present invention relates to a method and apparatus for positioning a device in the arterial system. More specifically, the present invention relates to a method and apparatus for positioning an aortic valve prosthesis in the aorta or aortic outflow tract, with or without cardiopulmonary bypass.
  • One aspect of the present invention is a method for deploying an aortic valve prosthesis.
  • This valve prosthesis may include any of the known aortic valves including, but not limited to, stented and unstented bioprosthetic valves, stented mechanical valves, and expandable or self-expanding valves, whether biological or artificial.
  • a method of inserting a prosthesis or device from a lower pressure region into a higher pressure region of the cardiovascular system comprising the steps of: making an opening in a wall of a lower pressure region of the cardiovascular system; advancing the prosthesis or device through the opening and into the lower pressure region; and advancing the prosthesis or device through a natural barrier between the lower pressure region and the higher pressure region.
  • a method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of: making an opening in a wall of a low pressure region of the heart; advancing the prosthesis or device through the opening and into the low pressure region; advancing the prosthesis or device through a natural barrier between the low pressure region and the left ventricle; and advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
  • a method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of: making an opening in a wall of the left atrium; advancing the prosthesis or device through the opening and into the left atrium; advancing the prosthesis or device through the mitral valve and into the left ventricle; and advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
  • a method for positioning a device in the arterial system comprising the steps of: making a first opening leading to the left atrium; passing a valve prosthesis through the first opening and into a cardiac chamber of the left side of the heart using a first manipulation instrument; making a second opening in the arterial system and advancing one end of a second manipulation instrument through the second opening and into the aforementioned cardiac chamber; securing the second manipulation instrument to the valve prosthesis; and then using the second manipulation instrument to retract at least some portion of the valve prosthesis out of the aforementioned cardiac chamber.
  • An alternative method for positioning a device in the arterial system comprises the steps of: making an opening leading to the left atrium; passing a valve prosthesis through the opening and into a cardiac chamber of the left side of the heart using an articulating manipulation instrument; using the articulating manipulation instrument to guide the valve prosthesis into the arterial cardiac chamber; releasing the valve prosthesis into a desired position: and then retracting at least a portion of the articulating manipulation instrument out of the aforementioned cardiac chamber and left atrium.
  • the pressure of blood flowing through the left atrium is very low, peaking at a few inches of water during the cardiac cycle. This pressure is a small fraction of that found within the arterial system and thus permits insertion of a conventional valve prosthesis through a relatively large opening formed in the wall of the left atrium without the risk of uncontrollable bleeding.
  • various methods are known to those skilled in the art for controlling bleeding from an incision into the left atrium.
  • the left atrium also rarely suffers from atherosclerotic plaque formation or calcification, thus minimizing the risk of embolic debris during such incision.
  • FIG. 1 Another aspect of the present invention is the use of a prosthesis holding apparatus for releasably holding the valve prosthesis during manipulation to its implant site.
  • the prosthesis holding apparatus may be secured to the prosthetic valve at any suitable location(s) through the use of any of a variety of approaches including, but not limited to, suture loops, barbs, hooks, grasping jaws, opposing magnetic poles, friction fits and the like.
  • the prosthesis holding apparatus is configured to provides first and second manipulation mounts for engagement by the aforementioned first and second manipulation instruments, respectively, whereby the prosthetic valve can be delivered to its implant site. This construction is highly advantageous in that it permits the valve prosthesis to be passed easily and reliably from the first manipulation instrument to the second manipulation instrument within the vascular system.
  • the prosthetic holding apparatus is attached on the ventricular side of the prosthesis.
  • the aforementioned first manipulation instrument would articulate at or near the prosthetic valve to facilitate manipulation of the prosthesis holding apparatus (and hence the prosthesis itself) through the smallest possible incision site, then through the left atrium, the mitral valve and within the heart to align and position the prosthesis within the aortic annulus or left ventricular outflow track.
  • the manipulation instrument may articulate and may be introduced into the arterial system, brought across the mitral valve into the left atrium, out the left atrium to pick up the prosthesis holding apparatus (and hence the prosthesis) and then retracted back to position the prosthesis directly into the aortic annulus without the need for another manipulation instrument.
  • FIG. 1 is a schematic side view showing the introduction of a valve prosthesis and prosthesis holding apparatus into the left atrium of the heart, through an atriotomy, using a first manipulation instrument;
  • FIG. 2 is a schematic side view showing passage of the apparatus of FIG. 1 from the left atrium, through the mitral valve, and into the left ventricle;
  • FIG. 3 is a schematic side view showing the introduction of a second manipulation instrument into the left ventricle through an arteriotomy into the arterial system;
  • FIG. 4 is a schematic side view showing the second manipulation instrument being attached to the prosthesis holding apparatus while the first manipulation instrument remains secured to the prosthesis holding apparatus;
  • FIG. 5 is a schematic side view similar to that of FIG. 4 , except showing the first manipulation instrument being removed from the surgical site while the second manipulation instrument remains secured to the prosthesis holding apparatus;
  • FIG. 6 is a schematic side view showing the second manipulation instrument positioning the prosthetic valve within the aorta prior to fixation
  • FIG. 7 is a schematic side view showing the prosthetic valve secured to the tissues of the aorta following removal of the second manipulation instrument and prosthesis holding apparatus;
  • FIGS. 8, 9 and 10 are enlarged schematic views showing a preferred construction for the valve holding apparatus, and for the attachment to, and detachment from, the prosthetic valve;
  • FIG. 11 is a schematic view showing a guide for guiding the second manipulation instrument relative to the first manipulation instrument such that the second manipulation instrument will be aimed directly at the second manipulation mount when the first manipulation mount is secured to the first manipulation instrument.
  • the present invention can be used to implant a variety of prostheses into the arterial system or left side of the heart.
  • the prosthesis used in the preferred embodiment is an aortic valve prosthesis.
  • the prosthesis may comprise, but is not limited to, a cylindrical arterial stent, an arterial prosthesis or graft, a ventricular assist device, a device for the treatment of heart failure such as an intraventricular counterpulsation balloon, chordae tendinae prostheses, arterial filters suitable for acute or chronic filtration of emboli from the blood stream, arterial occlusion devices and the like.
  • the present invention may be practiced either “on-pump” or “off-pump”. In other words, the present invention may be performed either with or without the support of cardiopulmonary bypass. The present invention also may be performed either with or without cardiac arrest.
  • FIG. 1 there is shown an exemplary embodiment of the present invention.
  • a prothesis holding apparatus 100 is secured to a prosthetic valve 200 so as to form a temporary prosthetic assembly 300 .
  • a first manipulation instrument 400 is secured to a first manipulation mount 105 formed on prosthesis holding apparatus 100 , whereby temporary prosthetic assembly 300 may be moved about by first manipulation instrument 400 .
  • Temporary prosthetic assembly 300 has been positioned in left atrium 5 by passing first manipulation instrument 400 through atriotomy 10 .
  • the temporary prosthetic assembly 300 could be passed into the left atrium 5 , using first manipulation instrument 400 , through any of the pulmonary veins 15 .
  • temporary prosthesis assembly 300 could be passed into the left atrium by first passing the assembly into the right atrium via an atriotomy, and then into the left atrium through an incision made in the interatrial septum.
  • Prosthetic valve 200 is preferably a conventional mechanical aortic valve of the sort well known in the art, although other forms of valve prostheses may also be used.
  • first manipulation instrument 400 functions by virtue of the relative motion of an outer cannula 405 relative to an inner grasper 410 .
  • inner grasper 410 has an elastically deformable distal gripper 415 which is open when the gripper is outside of outer cannula 405 .
  • gripper 415 is elastically deformed into a closed position, whereby it may grip an object, e.g., first manipulation mount 105 formed on prosthesis holding apparatus 100 .
  • First manipulation instrument 400 is shown in FIG. 1 in its closed position, wherein deformable gripper 415 is closed about first manipulation mount 105 , such that prosthesis holding apparatus 100 , and hence the entire temporary prosthetic assembly 300 , is held secured to the distal end of first manipulation instrument 400 .
  • first manipulation instrument 400 shown in FIG. 1 is presented as an illustrative example only, and is not intended to limit the scope of the present invention. Many other arrangements may be used for releasably gripping first manipulation mount 105 formed on prosthesis holding apparatus 100 . Furthermore, first manipulation mount 105 may itself have many potential shapes and properties to enable releasable attachment to first manipulation instrument 400 . Other possible configurations for releasably securing first manipulation mount 105 to first manipulation instrument 400 include, but are not limited to, opposing magnet poles in the mount and instrument, adhesives, a press fit between mount and instrument, threaded couplings, suture loops, a balloon or balloons expanded within a mating cavity, collapsible barbs, etc. For the purposes of the present invention, the important point is that some arrangement be provided for releasably securing the prosthesis holding apparatus (and hence the prosthetic valve) to a manipulation instrument.
  • first manipulation instrument 400 is shown as having a long axis that extends outside of the heart, with first manipulation instrument 400 being straight along that axis. However, it should also be appreciated that first manipulation instrument 400 may, alternatively, be formed with a curve at one or more location along this length. Furthermore, first manipulation instrument 400 may be constructed so as to allow articulation at the distal end, the proximal end, or both, or at any point therebetween. In addition, first manipulation instrument 400 may be formed either entirely rigid or substantially flexible, along all or part of its length.
  • First manipulation instrument 400 is also shown as having a relatively small dimension perpendicular to its long axis. This configuration allows atriotomy 10 to be reduced in size after the passage of temporary prosthetic assembly 300 into left atrium 5 . This perpendicular dimension may be constant or varied along the long axis of first manipulation instrument 400 .
  • first manipulation mount 105 and second manipulation mount 110 are shown as spherical additions to struts 115 extending away from prosthetic valve 200 . These spheres are intended to fit, respectively, within the deformable gripper 415 of first installation instrument 400 and the deformable gripper 515 of a second installation instrument 500 (discussed below).
  • First manipulation mount 105 and/or second manipulation mount 110 could, alternatively, be indentations within a portion of male or female threaded extensions from, magnetized surfaces of, slots or holes in or through, prosthesis holding apparatus 100 , etc. Furthermore, first manipulation mount 105 and/or second manipulation mount 110 could be portions of the struts 115 extending away from prosthetic valve 200 , where those portions may be either reduced or enlarged in dimension relative to neighboring portions of the struts. Many other constructions may also be used to form first manipulation mount 105 and second manipulation mount 110 . For the purposes of the present invention, the important point is that some arrangement be provided for releasably securing the prosthesis holding apparatus (and hence the prosthetic valve) to manipulation instruments.
  • FIG. 1 it will be appreciated that the native aortic valve has been removed. Removal of the native aortic valve is not a necessary element of the present invention, but may be incorporated into the preferred method. Removal of the native aortic valve may be accomplished either before or after passage of the temporary prosthetic assembly 300 into left atrium 5 .
  • FIG. 2 there is shown a temporary valve 600 which may be used to support cardiac function during and following removal of the diseased cardiac valve.
  • Temporary valve 600 is shown positioned in aorta 20 .
  • temporary valve 600 may be positioned in the aortic arch or the descending aorta.
  • temporary valve 600 may incorporate a filter therein to mitigate the risks of embolic complications.
  • a separate filter may be employed within the aorta and/or the branch arteries extending therefrom.
  • FIG. 2 shows first manipulation instrument 400 being used to manipulate temporary prosthetic assembly 300 (and hence prosthetic valve 200 ) into left ventricle 25 through mitral valve 30 .
  • the first manipulation instrument 400 will continue to traverse mitral valve 30 ; however, the reduced perpendicular cross-section of first manipulation instrument 400 will cause only minimal disruption of the function of mitral valve 30 .
  • FIG. 3 shows the insertion of a second manipulation instrument 500 through the arterial system and into left ventricle 25 .
  • Second manipulation instrument 500 is shown being inserted through an incision 35 on aorta 20 .
  • second manipulation instrument 500 could be inserted into a central or peripheral artery and than advanced into left ventricle 25 .
  • Aortic incision 35 is small relative to the atriotomy 10 formed in left atrium 5 .
  • Bleeding through incision 35 may be readily controlled through a variety of means. These include, but are not limited to, employing a valved or un-valved arterial cannula, a purse-string suture placed around incision 35 and then pulled tight about second manipulation instrument 500 , a side-arm graft sewn to aorta 20 that may be constricted about a region of second manipulation instrument 500 , the use of a tight fit between a portion of second manipulation instrument 500 and aortic incision 35 , etc.
  • Second manipulation instrument 500 is shown in FIG. 3 as being of the same form and function of first manipulation instrument 400 .
  • outer cannula 505 fits around inner grasper 510 , and the relative motion between grasper 510 and cannula 505 can be used to deform gripper 515 between open and closed positions.
  • second manipulation instrument 500 may have any of the variety of other forms and functions described above with respect to first manipulation instrument 400 .
  • second manipulation instrument 500 is preferably of a smaller dimension perpendicular to its long axis than first manipulation instrument 400 so as to reduce the risks posed by arteriotomy 35 .
  • FIG. 4 shows second manipulation instrument 500 being secured to the second manipulation mount 110 formed on prosthesis holding apparatus 100 . This is done while first manipulation instrument 400 is secured to first manipulation mount 105 formed on prosthesis holding apparatus 100 , in order that temporary prosthetic assembly 300 will be under control at all times during the “hand-off” between first manipulation instrument 400 and second manipulation instrument 500 .
  • orientation of second manipulation mount 110 is preferably such as to enable the long axis of second manipulation instrument 500 to be substantially perpendicular to the flow area of prosthetic valve 200 . This arrangement is particularly helpful when guiding prosthetic valve 200 into its final position within aorta 20 as shown hereafter in FIGS. 6 and 7 .
  • valve prosthesis 200 avoids the complex manipulations of valve prosthesis 200 that would be required to position valve 200 within aorta 20 using only a single manipulation instrument introduced through the left atrium.
  • single manipulation instrument such a “single manipulation instrument” technique has been found to be possible, however, and is best facilitated by using a manipulation instrument capable of bending or articulating at or near the site of its attachment to valve holding apparatus 100 .
  • it can be particularly advantageous for such an articulating instrument to be able to deflect its distal tip by an angle of between about 90 to 180 degrees from the long axis of the first manipulation instrument 400 shown in FIG. 4 .
  • first manipulation mount 105 and second manipulation mount 110 is preferably set to facilitate passage of temporary prosthetic assembly 300 from left atrium 5 to aorta 20 using two substantially straight manipulation instruments, e.g., first manipulation instrument 400 and second manipulation instrument 500 .
  • This angle is preferably approximately 45 degrees. However, this angle may also be varied so as to optimize passage of different valve designs or other prostheses using curved, straight or articulating manipulation instruments from various access sites into the left atrium and arterial system. This angle may be fixed or variable on a given prosthesis holding apparatus 100 .
  • first manipulation instrument 400 may be released from first manipulation mount 105 and removed from left ventricle 5 , as shown in FIG. 5 .
  • first manipulation instrument 400 may remain secured to prosthesis holding apparatus 100 or prosthetic valve 200 by a flexible tether so as to facilitate re-attachment of first manipulation instrument 400 to valve holding apparatus 100 if necessary.
  • FIG. 6 shows temporary prosthesis assembly 300 being positioned by second manipulation instrument 500 at a preferred fixation site.
  • This fixation site is preferably upstream of or proximal to the coronary arteries, although this position is not a restrictive requirement of the present invention.
  • FIG. 7 shows valve prosthesis 200 secured to the walls of aorta 30 and removal of second manipulation instrument 500 and prosthesis holding apparatus 100 .
  • prosthesis holding apparatus 100 is preferably wholly or partially flexible, or otherwise collapsible, so as to allow the prosthesis holding apparatus 100 to be collapsed radially and then withdrawn through arteriotomy 35 after prosthesis holding apparatus 100 has been released from prosthetic valve 200 .
  • prosthesis holding apparatus 100 may be removed from the vascular system, either partially or entirely, through atriotomy 10 by first manipulation instrument 400 , by a tether leading therefrom, or a separate instrument.
  • prosthesis holding apparatus 100 should be appropriately mounted to prosthetic valve 200 , i.e., prosthesis holding apparatus 100 should be positioned on the atriotomy side of the valve.
  • valve prosthesis 200 is shown secured to aorta 30 using barbs or staples 700 .
  • Barbs or staples 700 may be a component of, and/or deployed from, prosthesis holding apparatus 100 , and/or valve prosthesis 200 , and/or a separate fixation device.
  • barbs or staples 700 may be deployed by a separate instrument inserted through the outer surface of aorta 30 , from a remote site in the arterial system, through atriotomy 10 or through some other incision into a cardiac chamber or great vessel.
  • prosthesis holding apparatus 100 comprises a base 120 having a longitudinal opening 123 ( FIG. 9 ) therein for slidably receiving a rod 125 therethrough.
  • Base 120 also comprises a plurality of side slots 130 .
  • Each side slot 130 has a strut 115 pivotally connected thereto. Slots 130 are constructed so that each strut 115 can pivot freely between (i) the position shown in FIGS. 8 and 9 , and (ii) the position shown in FIG. 10 .
  • a body 135 is mounted on rod 125 .
  • a plurality of wire fingers 140 are secured to body 135 .
  • Wire fingers 140 extend through holes 145 formed in base 120 and extend around the cuff 205 of prosthetic valve 200 .
  • Second manipulation mount 110 is secured to the proximal end of rod 125 .
  • First manipulation mount 105 is secured to one of the struts 115 .
  • first manipulation mount 105 may be formed by a strut 115 itself, provided that first manipulation instrument 400 is appropriately adapted to engage the strut 15 directly.
  • prosthesis holding apparatus 100 is fit about valve prosthesis 200 so that wire fingers 140 hold valve cuff 205 to struts 115 .
  • Prosthesis holding apparatus 100 is then engaged by first manipulation instrument 400 , using first manipulation mount 105 , and moved into and through right atrium 5 , through mitral valve 30 and into left ventricle 25 .
  • second manipulation tool 500 comprising outer cannula 505 and inner grasper 510 having the deformable gripper 515 , engages second manipulation mount 110 .
  • Second manipulation tool 500 is then used to maneuver temporary prosthetic assembly 300 into position, whereupon the valve's cuff 205 is secured to the side wall of the aorta, e.g., with barbs, staples, suture, etc.
  • prosthesis holding apparatus 100 is detached from prosthetic valve 200 by pulling inner grasper 510 proximally relative to outer cannula 505 so that wire fingers 140 are pulled past valve cuff 205 ( FIG. 9 ), whereby to free prosthesis holding apparatus 100 from the prosthetic valve 200 .
  • second manipulation instrument 500 is withdrawn out aorta 20 and arteriotomy 35 , with struts 115 folding inwardly ( FIG. 10 ) so as to pass through the arteriotomy.
  • Struts 115 can be adapted to fold inwardly through engagement with the walls of the arteriotomy 35 or, alternatively, additional means (such as springs, cams, etc.) can be provided to fold struts 115 inwardly.
  • guide 800 for guiding second manipulation instrument 500 relative to first manipulation instrument 400 such that second manipulation instrument 500 will be aimed directly at second manipulation mount 110 when first manipulation mount 105 is secured to first manipulation instrument 400 .
  • guide 800 comprises a first passageway 805 for slidably receiving first manipulation instrument 400 , and a second passageway 810 for slidably receiving second manipulation instrument 500 .
  • Passageways 805 and 810 are oriented so that second manipulation instrument 500 will be aimed directly at second manipulation mount 110 when temporary prosthesis assembly 300 is held by first manipulation instrument 400 engaging first manipulation mount 105 .
  • the left atrium it is also possible to enter the left atrium other than through an exterior wall of the left atrium.
  • the manipulation instrument(s) do not need to take the form of the installation instrument 400 or 500 . It is also possible to deliver the prosthetic valve to its implant site using a guidewire and a pusher tool riding on the guidewire.
  • a wire, a catheter, a tube or any other filament can be placed from the left atrium, through the ventricle and into the arterial system, over (or through) which a prosthesis or device can be advanced (pushed or pulled).
  • a catheter with a balloon can be placed through an incision in the left atrial wall. The balloon can be inflated and this catheter can then be “floated” along the flow of blood across the mitral valve, into the left ventricle, and out into the arterial system. At that point the catheter can be grasped by an instrument placed through a small incision in the aorta or passed into the aorta by means of a remote vessel such as the femoral artery.
  • the prosthesis or device can be mounted onto the catheter and either be pushed (or pulled) over the catheter into position. This procedure can be similarly performed by the use of a wire or other filament structure. Also, a tube could be employed, with the prosthesis or device being advanced within the tube.

Abstract

The present invention comprises a method for deploying an aortic valve prosthesis. This valve prosthesis may include any of the known aortic valves including, but not limited to, stented and unstented bioprosthetic valves, stented mechanical valves, and expandable or self-expanding valves, whether biological or artificial. The method involves the steps of: making a first opening leading to the left atrium; passing a valve prosthesis through the opening and into a cardiac chamber of the left side of the heart using a first manipulation instrument; making a second opening in the arterial system and advancing one end of a second manipulation instrument through the arterial opening and into the aforementioned cardiac chamber; securing the second manipulation instrument to the valve prosthesis; and using the second manipulation instrument to retract at least some portion of the valve prosthesis out of the aforementioned cardiac chamber.

Description

    REFERENCE TO PENDING PRIOR PATENT APPLICATION
  • This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/215,245, filed Jun. 30, 2000 for CARDIAC VALVE PROCEDURE METHODS AND DEVICES, which patent application is hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • Of all valvular heart lesions, aortic stenosis carries the worst prognosis. Within one year of diagnosis, approximately half of all patients with critical aortic stenosis have died, and by three years, this figure rises to approximately 80%. Currently, the most prominent and effective treatment for patients with aortic stenosis is aortic valve replacement via open heart surgery. Unfortunately, this procedure is a substantial and invasive undertaking for the patient.
  • While there have been significant advances in heart valve technology over the past 30 years, there has been little progress in the development of safer and less invasive valve delivery systems. Aortic valve replacement currently requires a sternotomy or thoracotomy, use of cardiopulmonary bypass to arrest the heart and lungs, and a large incision on the aorta. The native valve is resected through this incision and then a prosthetic valve is sutured to the inner surface of the aorta with a multitude of sutures passing only partly into the wall of the aorta. Given the current invasiveness of this procedure and the requirement to utilize cardiopulmonary bypass, aortic valve replacement surgery is associated with a high risk of morbidity and mortality. This is especially true in elderly patients, and in those patients who require concomitant coronary artery bypass grafting. Even when a good surgical result is achieved, virtually all patients require approximately 6 weeks to several months to fully recover from the procedure. In order to decrease these associated risks of aortic valve surgery, many have pursued novel approaches and technologies.
  • Less invasive approaches to aortic valve surgery have generally followed two paths.
  • In the 1980's, there was a flurry of interest in percutaneous balloon valvotomy. In this procedure, a cardiologist introduced a catheter through the femoral artery to dilate the patient's aortic valve, thereby relieving the stenosis. Using the technology available at that time, success was limited: the valve area was increased only minimally, and nearly all patients had restenosis within one year.
  • More recently, surgeons have approached the aortic valve via smaller chest wall incisions. However, these approaches still require cardiopulmonary bypass and cardiac arrest, which themselves entail significant morbidity and a prolonged post-operative recovery.
  • The ideal minimally invasive approach to the treatment of aortic valve disease requires aortic valve replacement without cardiopulmonary bypass and without cardiac arrest. Such an approach would greatly reduce patient morbidity and mortality and hasten recovery. Unfortunately, although there has been great progress in the treatment of coronary artery disease without cardiopulmonary bypass (e.g., angioplasty, with or without stenting, and “off-pump” coronary artery bypass grafting), similar advances have not yet been realized in heart valve surgery. With an aging population and improved access to advanced diagnostic testing, the incidence and accurate diagnosis of aortic stenosis will continue to increase. The development of a system for “off-pump” aortic valve replacement would be of significant benefit to this increasing patient population.
  • There are three important challenges to replacing a diseased aortic valve without cardiopulmonary bypass.
  • The first challenge is to remove the diseased valve without causing stroke or other ischemic events that might result from the liberation of particulate material while removing the diseased valve.
  • The second challenge is to prevent cardiac failure during removal of the diseased valve. In this respect it must be appreciated that the aortic valve continues to serve a critical function even when it is diseased. However, as the diseased valve is removed, it becomes acutely and severely incompetent, causing the patient to develop heart failure which results in death unless the function of the valve is taken over by another means.
  • The third challenge is placing a prosthetic valve into the vascular system and affixing it to the wall of the aorta. More particularly, during cardiac rhythm, the aortic and arterial pressures are substantially greater than atmospheric pressure. Therefore, any sizable incision made to the aorta in order to insert a standard valve prosthesis into the arterial system creates the potential for uncontrollable bleeding from the incision site. Furthermore, even if bleeding is successfully controlled, pressures within the aorta may result in weakening of the aorta caused by aortic wall dissection. In addition, large incisions on the aorta also increase the potential for liberating plaque from the aortic wall that can lead to embolic complications.
  • For these reasons, prior art valve prostheses potentially suitable for off-pump implantation have relied upon relatively flimsy expandable structures to support and secure the valve within the aorta. More particularly, these prosthetic valves are constructed so that they can be compressed to a relatively small dimension suitable for insertion into the arterial system, advanced to the site of the aortic valve, and then expanded against the aortic wall. Unfortunately, however, none of these relatively flimsy valve prostheses have proven adequate to endure the repetitive stresses undergone by the aortic valve over the ten to twenty years typically required.
  • In addition to the foregoing, the precise placement of such expandable prosthetic valves in the correct sub-coronary position can be extremely challenging, particularly in view of the high pressure, pulsatile blood flow passing through the aorta. Furthermore, expandable prosthetic valves would typically be positioned from a remote artery, which would reduce the ability to precisely control the placement and positioning of the device and therefore would increases the risk of obstructing the coronary arteries. The expandable prosthetic valves are held on the ends of elongate, flexible catheters that are threaded into the aorta, around the aortic arch and then expanded. The pulsatile flow during cardiac rhythm induces a to-and-fro motion of the valve prosthesis relative to the aorta that makes the timing of valve expansion critical for proper placement of the expandable prosthetic valve and hence the survival of the patient.
  • Finally, many of the challenges discussed in the foregoing section pertaining to aortic valve replacement are also relevant to other procedures in the aortic root such as aortic valve resection, aortic valve decalcification, stent grafting for aortic dissections, etc.
  • SUMMARY OF THE INVENTION
  • It is, therefore, one object of the present invention to enable the passage of a device from the left atrium, through the left ventricle, and into the arterial system.
  • Further, another object of the present invention is to enable the implantation of a device in the arterial system without cardiopulmonary bypass.
  • Further, another object of the present invention is to enable the implantation of a prosthetic valve in the arterial system without cardiopulmonary bypass.
  • Another object of the present invention is to allow the insertion of such a valve while minimizing the risks to the patient posed by large arterial incisions.
  • And another object of the present invention is to simplify the precise placement of such a valve.
  • Further, another object of the present invention is to enable the implantation of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft, in the arterial system without cardiopulmonary bypass.
  • Another object of the present invention is to allow the insertion of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft, while minimizing the risks to the patient posed by large arterial incisions.
  • And another object of the present invention is to simplify the precise placement of a device other than a valve, such as but not limited to a valve resection tool, a decalcifying tool, an aortic valve repair tool, or a stented aortic graft.
  • The present invention relates to a method and apparatus for positioning a device in the arterial system. More specifically, the present invention relates to a method and apparatus for positioning an aortic valve prosthesis in the aorta or aortic outflow tract, with or without cardiopulmonary bypass.
  • One aspect of the present invention is a method for deploying an aortic valve prosthesis. This valve prosthesis may include any of the known aortic valves including, but not limited to, stented and unstented bioprosthetic valves, stented mechanical valves, and expandable or self-expanding valves, whether biological or artificial.
  • In one aspect of the invention, there is provided a method of inserting a prosthesis or device from a lower pressure region into a higher pressure region of the cardiovascular system comprising the steps of: making an opening in a wall of a lower pressure region of the cardiovascular system; advancing the prosthesis or device through the opening and into the lower pressure region; and advancing the prosthesis or device through a natural barrier between the lower pressure region and the higher pressure region.
  • In another aspect of the invention, there is provided a method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of: making an opening in a wall of a low pressure region of the heart; advancing the prosthesis or device through the opening and into the low pressure region; advancing the prosthesis or device through a natural barrier between the low pressure region and the left ventricle; and advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
  • And in another aspect of the invention, there is provided a method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of: making an opening in a wall of the left atrium; advancing the prosthesis or device through the opening and into the left atrium; advancing the prosthesis or device through the mitral valve and into the left ventricle; and advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
  • And in another aspect of the present invention, there is provided a method for positioning a device in the arterial system comprising the steps of: making a first opening leading to the left atrium; passing a valve prosthesis through the first opening and into a cardiac chamber of the left side of the heart using a first manipulation instrument; making a second opening in the arterial system and advancing one end of a second manipulation instrument through the second opening and into the aforementioned cardiac chamber; securing the second manipulation instrument to the valve prosthesis; and then using the second manipulation instrument to retract at least some portion of the valve prosthesis out of the aforementioned cardiac chamber.
  • An alternative method for positioning a device in the arterial system comprises the steps of: making an opening leading to the left atrium; passing a valve prosthesis through the opening and into a cardiac chamber of the left side of the heart using an articulating manipulation instrument; using the articulating manipulation instrument to guide the valve prosthesis into the arterial cardiac chamber; releasing the valve prosthesis into a desired position: and then retracting at least a portion of the articulating manipulation instrument out of the aforementioned cardiac chamber and left atrium.
  • The pressure of blood flowing through the left atrium is very low, peaking at a few inches of water during the cardiac cycle. This pressure is a small fraction of that found within the arterial system and thus permits insertion of a conventional valve prosthesis through a relatively large opening formed in the wall of the left atrium without the risk of uncontrollable bleeding. In this respect it will be appreciated that various methods are known to those skilled in the art for controlling bleeding from an incision into the left atrium. The left atrium also rarely suffers from atherosclerotic plaque formation or calcification, thus minimizing the risk of embolic debris during such incision.
  • Another aspect of the present invention is the use of a prosthesis holding apparatus for releasably holding the valve prosthesis during manipulation to its implant site. The prosthesis holding apparatus may be secured to the prosthetic valve at any suitable location(s) through the use of any of a variety of approaches including, but not limited to, suture loops, barbs, hooks, grasping jaws, opposing magnetic poles, friction fits and the like. The prosthesis holding apparatus is configured to provides first and second manipulation mounts for engagement by the aforementioned first and second manipulation instruments, respectively, whereby the prosthetic valve can be delivered to its implant site. This construction is highly advantageous in that it permits the valve prosthesis to be passed easily and reliably from the first manipulation instrument to the second manipulation instrument within the vascular system.
  • In an alternative preferred embodiment, the prosthetic holding apparatus is attached on the ventricular side of the prosthesis. The aforementioned first manipulation instrument would articulate at or near the prosthetic valve to facilitate manipulation of the prosthesis holding apparatus (and hence the prosthesis itself) through the smallest possible incision site, then through the left atrium, the mitral valve and within the heart to align and position the prosthesis within the aortic annulus or left ventricular outflow track. In this alternative embodiment, there is no need for the aforementioned second manipulation instrument or the second manipulation mount.
  • In addition, if the prosthesis holding apparatus is attached on the aortic side of the prosthesis, the manipulation instrument may articulate and may be introduced into the arterial system, brought across the mitral valve into the left atrium, out the left atrium to pick up the prosthesis holding apparatus (and hence the prosthesis) and then retracted back to position the prosthesis directly into the aortic annulus without the need for another manipulation instrument.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like elements and further wherein:
  • FIG. 1 is a schematic side view showing the introduction of a valve prosthesis and prosthesis holding apparatus into the left atrium of the heart, through an atriotomy, using a first manipulation instrument;
  • FIG. 2 is a schematic side view showing passage of the apparatus of FIG. 1 from the left atrium, through the mitral valve, and into the left ventricle;
  • FIG. 3 is a schematic side view showing the introduction of a second manipulation instrument into the left ventricle through an arteriotomy into the arterial system;
  • FIG. 4 is a schematic side view showing the second manipulation instrument being attached to the prosthesis holding apparatus while the first manipulation instrument remains secured to the prosthesis holding apparatus;
  • FIG. 5 is a schematic side view similar to that of FIG. 4, except showing the first manipulation instrument being removed from the surgical site while the second manipulation instrument remains secured to the prosthesis holding apparatus;
  • FIG. 6 is a schematic side view showing the second manipulation instrument positioning the prosthetic valve within the aorta prior to fixation;
  • FIG. 7 is a schematic side view showing the prosthetic valve secured to the tissues of the aorta following removal of the second manipulation instrument and prosthesis holding apparatus;
  • FIGS. 8, 9 and 10 are enlarged schematic views showing a preferred construction for the valve holding apparatus, and for the attachment to, and detachment from, the prosthetic valve; and
  • FIG. 11 is a schematic view showing a guide for guiding the second manipulation instrument relative to the first manipulation instrument such that the second manipulation instrument will be aimed directly at the second manipulation mount when the first manipulation mount is secured to the first manipulation instrument.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention can be used to implant a variety of prostheses into the arterial system or left side of the heart. The prosthesis used in the preferred embodiment is an aortic valve prosthesis. Alternatively, the prosthesis may comprise, but is not limited to, a cylindrical arterial stent, an arterial prosthesis or graft, a ventricular assist device, a device for the treatment of heart failure such as an intraventricular counterpulsation balloon, chordae tendinae prostheses, arterial filters suitable for acute or chronic filtration of emboli from the blood stream, arterial occlusion devices and the like.
  • For clarity of illustration, the present invention will hereinafter be discussed in the context of implanting an aortic valve prosthesis.
  • It should also be appreciated that the present invention may be practiced either “on-pump” or “off-pump”. In other words, the present invention may be performed either with or without the support of cardiopulmonary bypass. The present invention also may be performed either with or without cardiac arrest.
  • Looking now at FIG. 1, there is shown an exemplary embodiment of the present invention. A prothesis holding apparatus 100 is secured to a prosthetic valve 200 so as to form a temporary prosthetic assembly 300. A first manipulation instrument 400 is secured to a first manipulation mount 105 formed on prosthesis holding apparatus 100, whereby temporary prosthetic assembly 300 may be moved about by first manipulation instrument 400. Temporary prosthetic assembly 300 has been positioned in left atrium 5 by passing first manipulation instrument 400 through atriotomy 10. Alternatively, the temporary prosthetic assembly 300 could be passed into the left atrium 5, using first manipulation instrument 400, through any of the pulmonary veins 15. And in another form of the invention, temporary prosthesis assembly 300 could be passed into the left atrium by first passing the assembly into the right atrium via an atriotomy, and then into the left atrium through an incision made in the interatrial septum.
  • Prosthetic valve 200 is preferably a conventional mechanical aortic valve of the sort well known in the art, although other forms of valve prostheses may also be used.
  • In one preferred form of the invention, first manipulation instrument 400 functions by virtue of the relative motion of an outer cannula 405 relative to an inner grasper 410. More particularly, inner grasper 410 has an elastically deformable distal gripper 415 which is open when the gripper is outside of outer cannula 405. However, when deformable gripper 415 is pulled at least partially into or against outer cannula 405, gripper 415 is elastically deformed into a closed position, whereby it may grip an object, e.g., first manipulation mount 105 formed on prosthesis holding apparatus 100. First manipulation instrument 400 is shown in FIG. 1 in its closed position, wherein deformable gripper 415 is closed about first manipulation mount 105, such that prosthesis holding apparatus 100, and hence the entire temporary prosthetic assembly 300, is held secured to the distal end of first manipulation instrument 400.
  • The specific embodiment of first manipulation instrument 400 shown in FIG. 1 is presented as an illustrative example only, and is not intended to limit the scope of the present invention. Many other arrangements may be used for releasably gripping first manipulation mount 105 formed on prosthesis holding apparatus 100. Furthermore, first manipulation mount 105 may itself have many potential shapes and properties to enable releasable attachment to first manipulation instrument 400. Other possible configurations for releasably securing first manipulation mount 105 to first manipulation instrument 400 include, but are not limited to, opposing magnet poles in the mount and instrument, adhesives, a press fit between mount and instrument, threaded couplings, suture loops, a balloon or balloons expanded within a mating cavity, collapsible barbs, etc. For the purposes of the present invention, the important point is that some arrangement be provided for releasably securing the prosthesis holding apparatus (and hence the prosthetic valve) to a manipulation instrument.
  • Still looking now at FIG. 1, first manipulation instrument 400 is shown as having a long axis that extends outside of the heart, with first manipulation instrument 400 being straight along that axis. However, it should also be appreciated that first manipulation instrument 400 may, alternatively, be formed with a curve at one or more location along this length. Furthermore, first manipulation instrument 400 may be constructed so as to allow articulation at the distal end, the proximal end, or both, or at any point therebetween. In addition, first manipulation instrument 400 may be formed either entirely rigid or substantially flexible, along all or part of its length.
  • First manipulation instrument 400 is also shown as having a relatively small dimension perpendicular to its long axis. This configuration allows atriotomy 10 to be reduced in size after the passage of temporary prosthetic assembly 300 into left atrium 5. This perpendicular dimension may be constant or varied along the long axis of first manipulation instrument 400.
  • The specific embodiment of the prosthesis holding apparatus 100 shown in FIG. 1 is presented as an illustrative example only, and is not intended to limit the scope of the present invention. Many other arrangements may be used for releasably gripping prosthetic valve 200 and for providing first manipulation mount 105, as well as providing a second manipulation mount 110 that will be discussed below. In FIG. 1, first manipulation mount 105 and second manipulation mount 110 are shown as spherical additions to struts 115 extending away from prosthetic valve 200. These spheres are intended to fit, respectively, within the deformable gripper 415 of first installation instrument 400 and the deformable gripper 515 of a second installation instrument 500 (discussed below). First manipulation mount 105 and/or second manipulation mount 110 could, alternatively, be indentations within a portion of male or female threaded extensions from, magnetized surfaces of, slots or holes in or through, prosthesis holding apparatus 100, etc. Furthermore, first manipulation mount 105 and/or second manipulation mount 110 could be portions of the struts 115 extending away from prosthetic valve 200, where those portions may be either reduced or enlarged in dimension relative to neighboring portions of the struts. Many other constructions may also be used to form first manipulation mount 105 and second manipulation mount 110. For the purposes of the present invention, the important point is that some arrangement be provided for releasably securing the prosthesis holding apparatus (and hence the prosthetic valve) to manipulation instruments.
  • Still looking now at FIG. 1, it will be appreciated that the native aortic valve has been removed. Removal of the native aortic valve is not a necessary element of the present invention, but may be incorporated into the preferred method. Removal of the native aortic valve may be accomplished either before or after passage of the temporary prosthetic assembly 300 into left atrium 5.
  • When the methods and devices of the present invention are employed during an off-pump valve replacement procedure, it may be beneficial to provide temporary valves and/or filters in the arterial system, downstream of the site of the native aortic valve. Thus, for example, in FIG. 2 there is shown a temporary valve 600 which may be used to support cardiac function during and following removal of the diseased cardiac valve. Temporary valve 600 is shown positioned in aorta 20. Alternatively, temporary valve 600 may be positioned in the aortic arch or the descending aorta. In addition, temporary valve 600 may incorporate a filter therein to mitigate the risks of embolic complications. Alternatively, a separate filter may be employed within the aorta and/or the branch arteries extending therefrom.
  • FIG. 2 shows first manipulation instrument 400 being used to manipulate temporary prosthetic assembly 300 (and hence prosthetic valve 200) into left ventricle 25 through mitral valve 30. After temporary prosthetic assembly 300 has passed into left ventrical 25, the first manipulation instrument 400 will continue to traverse mitral valve 30; however, the reduced perpendicular cross-section of first manipulation instrument 400 will cause only minimal disruption of the function of mitral valve 30.
  • FIG. 3 shows the insertion of a second manipulation instrument 500 through the arterial system and into left ventricle 25. Second manipulation instrument 500 is shown being inserted through an incision 35 on aorta 20. Alternatively, second manipulation instrument 500 could be inserted into a central or peripheral artery and than advanced into left ventricle 25. Aortic incision 35 is small relative to the atriotomy 10 formed in left atrium 5.
  • Bleeding through incision 35 may be readily controlled through a variety of means. These include, but are not limited to, employing a valved or un-valved arterial cannula, a purse-string suture placed around incision 35 and then pulled tight about second manipulation instrument 500, a side-arm graft sewn to aorta 20 that may be constricted about a region of second manipulation instrument 500, the use of a tight fit between a portion of second manipulation instrument 500 and aortic incision 35, etc.
  • Second manipulation instrument 500 is shown in FIG. 3 as being of the same form and function of first manipulation instrument 400. Again, outer cannula 505 fits around inner grasper 510, and the relative motion between grasper 510 and cannula 505 can be used to deform gripper 515 between open and closed positions. Alternatively, second manipulation instrument 500 may have any of the variety of other forms and functions described above with respect to first manipulation instrument 400. Furthermore, second manipulation instrument 500 is preferably of a smaller dimension perpendicular to its long axis than first manipulation instrument 400 so as to reduce the risks posed by arteriotomy 35.
  • FIG. 4 shows second manipulation instrument 500 being secured to the second manipulation mount 110 formed on prosthesis holding apparatus 100. This is done while first manipulation instrument 400 is secured to first manipulation mount 105 formed on prosthesis holding apparatus 100, in order that temporary prosthetic assembly 300 will be under control at all times during the “hand-off” between first manipulation instrument 400 and second manipulation instrument 500.
  • It should be appreciated that the orientation of second manipulation mount 110 is preferably such as to enable the long axis of second manipulation instrument 500 to be substantially perpendicular to the flow area of prosthetic valve 200. This arrangement is particularly helpful when guiding prosthetic valve 200 into its final position within aorta 20 as shown hereafter in FIGS. 6 and 7.
  • The use of two separate manipulation instruments, and the method of passing valve prosthesis 200 from one to the other, avoids the complex manipulations of valve prosthesis 200 that would be required to position valve 200 within aorta 20 using only a single manipulation instrument introduced through the left atrium. In this respect it should be appreciated that such a “single manipulation instrument” technique has been found to be possible, however, and is best facilitated by using a manipulation instrument capable of bending or articulating at or near the site of its attachment to valve holding apparatus 100. In this respect it has been found that it can be particularly advantageous to provide a manipulation instrument capable of bending or articulating within about 4 cm or so of the point of attachment to valve holding apparatus 100. It has also been found that it can be particularly advantageous for such an articulating instrument to be able to deflect its distal tip by an angle of between about 90 to 180 degrees from the long axis of the first manipulation instrument 400 shown in FIG. 4.
  • The angular offset of first manipulation mount 105 and second manipulation mount 110 is preferably set to facilitate passage of temporary prosthetic assembly 300 from left atrium 5 to aorta 20 using two substantially straight manipulation instruments, e.g., first manipulation instrument 400 and second manipulation instrument 500. This angle is preferably approximately 45 degrees. However, this angle may also be varied so as to optimize passage of different valve designs or other prostheses using curved, straight or articulating manipulation instruments from various access sites into the left atrium and arterial system. This angle may be fixed or variable on a given prosthesis holding apparatus 100.
  • Once second manipulation instrument 500 is safely secured to second manipulation mount 110, first manipulation instrument 400 may be released from first manipulation mount 105 and removed from left ventricle 5, as shown in FIG. 5. Alternatively, first manipulation instrument 400 may remain secured to prosthesis holding apparatus 100 or prosthetic valve 200 by a flexible tether so as to facilitate re-attachment of first manipulation instrument 400 to valve holding apparatus 100 if necessary.
  • FIG. 6 shows temporary prosthesis assembly 300 being positioned by second manipulation instrument 500 at a preferred fixation site. This fixation site is preferably upstream of or proximal to the coronary arteries, although this position is not a restrictive requirement of the present invention.
  • FIG. 7 shows valve prosthesis 200 secured to the walls of aorta 30 and removal of second manipulation instrument 500 and prosthesis holding apparatus 100. In this respect it should be appreciated that prosthesis holding apparatus 100 is preferably wholly or partially flexible, or otherwise collapsible, so as to allow the prosthesis holding apparatus 100 to be collapsed radially and then withdrawn through arteriotomy 35 after prosthesis holding apparatus 100 has been released from prosthetic valve 200. Alternatively, prosthesis holding apparatus 100 may be removed from the vascular system, either partially or entirely, through atriotomy 10 by first manipulation instrument 400, by a tether leading therefrom, or a separate instrument. Of course, in the situation where prosthesis holding apparatus 100 is to be removed via atriotomy 10, the prosthesis holding apparatus 100 should be appropriately mounted to prosthetic valve 200, i.e., prosthesis holding apparatus 100 should be positioned on the atriotomy side of the valve.
  • In FIG. 7, valve prosthesis 200 is shown secured to aorta 30 using barbs or staples 700. Barbs or staples 700 may be a component of, and/or deployed from, prosthesis holding apparatus 100, and/or valve prosthesis 200, and/or a separate fixation device. Alternatively, barbs or staples 700 may be deployed by a separate instrument inserted through the outer surface of aorta 30, from a remote site in the arterial system, through atriotomy 10 or through some other incision into a cardiac chamber or great vessel.
  • Looking next at FIGS. 8-10, there is shown one preferred configuration for prosthesis holding apparatus 100. More particularly, prosthesis holding apparatus 100 comprises a base 120 having a longitudinal opening 123 (FIG. 9) therein for slidably receiving a rod 125 therethrough. Base 120 also comprises a plurality of side slots 130. Each side slot 130 has a strut 115 pivotally connected thereto. Slots 130 are constructed so that each strut 115 can pivot freely between (i) the position shown in FIGS. 8 and 9, and (ii) the position shown in FIG. 10. A body 135 is mounted on rod 125. A plurality of wire fingers 140 are secured to body 135. Wire fingers 140 extend through holes 145 formed in base 120 and extend around the cuff 205 of prosthetic valve 200. Second manipulation mount 110 is secured to the proximal end of rod 125. First manipulation mount 105 is secured to one of the struts 115. Alternatively, as noted above, first manipulation mount 105 may be formed by a strut 115 itself, provided that first manipulation instrument 400 is appropriately adapted to engage the strut 15 directly.
  • In use, prosthesis holding apparatus 100 is fit about valve prosthesis 200 so that wire fingers 140 hold valve cuff 205 to struts 115. Prosthesis holding apparatus 100 is then engaged by first manipulation instrument 400, using first manipulation mount 105, and moved into and through right atrium 5, through mitral valve 30 and into left ventricle 25. Then second manipulation tool 500, comprising outer cannula 505 and inner grasper 510 having the deformable gripper 515, engages second manipulation mount 110. The distal tip 520 of outer cannula 505 is placed against edge 150 of base 120 and gripper 515 is drawn proximally within outer cannula 505 until deformable gripper 515 engages shoulder 525, whereupon prosthesis holding apparatus 100 (and hence prosthetic valve 200) will be mounted to second manipulation tool 500. Second manipulation tool 500 is then used to maneuver temporary prosthetic assembly 300 into position, whereupon the valve's cuff 205 is secured to the side wall of the aorta, e.g., with barbs, staples, suture, etc. Then prosthesis holding apparatus 100 is detached from prosthetic valve 200 by pulling inner grasper 510 proximally relative to outer cannula 505 so that wire fingers 140 are pulled past valve cuff 205 (FIG. 9), whereby to free prosthesis holding apparatus 100 from the prosthetic valve 200. Then second manipulation instrument 500 is withdrawn out aorta 20 and arteriotomy 35, with struts 115 folding inwardly (FIG. 10) so as to pass through the arteriotomy. Struts 115 can be adapted to fold inwardly through engagement with the walls of the arteriotomy 35 or, alternatively, additional means (such as springs, cams, etc.) can be provided to fold struts 115 inwardly.
  • In practice, it has been found that it can sometimes be difficult to locate second manipulation mount 110 with second manipulation instrument 500 so as to “hand off” temporary prosthesis assembly 300 from first manipulation instrument 400 to second manipulation instrument 500. This can be particularly true where the procedure is to be conducted “off-pump”, i.e., without stopping the heart. To this end, and looking now at FIG. 11, there is shown a guide 800 for guiding second manipulation instrument 500 relative to first manipulation instrument 400 such that second manipulation instrument 500 will be aimed directly at second manipulation mount 110 when first manipulation mount 105 is secured to first manipulation instrument 400. More particularly, guide 800 comprises a first passageway 805 for slidably receiving first manipulation instrument 400, and a second passageway 810 for slidably receiving second manipulation instrument 500. Passageways 805 and 810 are oriented so that second manipulation instrument 500 will be aimed directly at second manipulation mount 110 when temporary prosthesis assembly 300 is held by first manipulation instrument 400 engaging first manipulation mount 105.
  • In accordance with the present invention, it is also possible to enter the left atrium other than through an exterior wall of the left atrium. Thus, for example, it is possible to introduce the prosthetic valve through an opening in an exterior wall of the right atrium, pass the prosthetic valve through an incision in the interatrial septum and across to the left atrium, and then advance the prosthetic valve to its implantation site via the mitral valve and the left ventricle.
  • As noted above, the manipulation instrument(s) do not need to take the form of the installation instrument 400 or 500. It is also possible to deliver the prosthetic valve to its implant site using a guidewire and a pusher tool riding on the guidewire.
  • Thus, for example, in an alternative preferred embodiment, a wire, a catheter, a tube or any other filament can be placed from the left atrium, through the ventricle and into the arterial system, over (or through) which a prosthesis or device can be advanced (pushed or pulled). As an example, a catheter with a balloon can be placed through an incision in the left atrial wall. The balloon can be inflated and this catheter can then be “floated” along the flow of blood across the mitral valve, into the left ventricle, and out into the arterial system. At that point the catheter can be grasped by an instrument placed through a small incision in the aorta or passed into the aorta by means of a remote vessel such as the femoral artery. At this point, the prosthesis or device can be mounted onto the catheter and either be pushed (or pulled) over the catheter into position. This procedure can be similarly performed by the use of a wire or other filament structure. Also, a tube could be employed, with the prosthesis or device being advanced within the tube.

Claims (46)

1. A method of inserting a prosthesis or device from a lower pressure region into a higher pressure region of the cardiovascular system comprising the steps of:
making an opening in a wall of a lower pressure region of the cardiovascular system;
advancing the prosthesis or device through the opening and into the lower pressure region; and
advancing the prosthesis or device through a natural barrier between the lower pressure region and the higher pressure region.
2. The method of claim 1 wherein the lower pressure region comprises at least one from the group consisting of the left atrium, the right atrium, a pulmonary vein, the pulmonary artery, and the venous system.
3. The method of claim 1 wherein the higher pressure region comprises at least one from the group consisting of the left ventricle, the right ventricle and the arterial system.
4. The method of claim 1 wherein the natural barrier comprises at least one of the group consisting of a valve, a wall between chambers of the heart, and the venous system.
5. The method of claim 4 wherein the valve is a cardiac valve.
6. The method of claim 5 wherein the cardiac valve is an atrioventricular valve.
7. The method of claim 6 wherein the cardiac valve is the mitral valve.
8. The method of claim 6 wherein the cardiac valve is the tricuspid valve.
9. The method of claim 5 wherein the cardiac valve is the aortic valve.
10. The method of claim 5 wherein the cardiac valve is the pulmonic valve.
11. The method of claim 4 wherein the wall between chambers of the heart comprises at least one from the group consisting of the interatrial septum and the interventricular septum.
12. A method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of:
making an opening in a wall of a low pressure region of the heart;
advancing the prosthesis or device through the opening and into the low pressure region;
advancing the prosthesis or device through a natural barrier between the low pressure region and the left ventricle; and
advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
13. The method of claim 12 wherein the natural barrier comprises at least one from the group consisting of the mitral valve and the interatrial septum.
14. The method of claim 12 wherein the wall is the external wall of the left atrium, and the natural barrier is the mitral valve.
15. The method of claim 12 wherein the wall is the wall of the right atrium, and the natural barrier is the interatrial septum and the mitral valve.
16. A method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of:
making an opening in a wall of the left atrium;
advancing the prosthesis or device through the opening and into the left atrium;
advancing the prosthesis or device through the mitral valve and into the left ventricle; and
advancing the prosthesis or device from the left ventricle into the arterial system and the vessel.
17. The method of claim 16 further comprising the use of first and second manipulation instruments for advancing the prosthesis or device, wherein:
the first manipulation instrument is used to advance the prosthesis or device through the opening, into the left atrium, through the mitral valve and into the left ventricle; and
the second manipulation instrument, passing through a second incision into the arterial system and advanced into the left ventricle, is used to advance the prosthesis or device from the left ventricle into the arterial system and the vessel.
18. The method of claim 16 wherein the prosthesis or device is an aortic valve prosthesis.
19. The method of claim 16 wherein the vessel is the aorta.
20. The method of claim 16 further comprising the use of a manipulation instrument capable of advancing the prosthesis or device and articulating in a region near the attachment site of the manipulation instrument to the prosthesis or device, wherein the manipulation instrument is used to advance the prosthesis or device into the left ventricle and is then articulated at said region in order to allow advancement of the prosthesis or device into the arterial system.
21. A method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of:
making an opening in a pulmonary vein;
advancing the prosthesis or device through the opening into the left atrium;
advancing the prosthesis or device through the mitral valve and into the left ventricle; and
advancing the prosthesis or device from the left ventricle into the arterial system and to the vessel.
22. A method of inserting a prosthesis or device into a vessel within the arterial system comprising the steps of:
making an opening into the right atrium;
advancing the prosthesis through this incision;
making an opening in the interatrial septum;
advancing the prosthesis through this opening in the interatrial septum;
advancing the prosthesis or device through the opening into the left atrium;
advancing the prosthesis or device through the mitral valve and into the left ventricle; and
advancing the prosthesis or device from the left ventricle into the arterial system and to the vessel.
23. A method for inserting a prosthesis or device into a vessel within the arterial system comprising the steps of:
inserting a manipulation instrument into the left ventricle;
advancing the manipulation instrument through the mitral valve and into the left atrium;
attaching the prosthesis or device onto the manipulation instrument; and
withdrawing the manipulation instrument out of the left atrium, across the mitral valve and into the left ventricle.
24. The method of claim 16 wherein the prosthesis or device is releasably attached to a prosthesis holding apparatus as the prosthesis or device is advanced through the left atrium and the left ventricle to the vessel.
25. The method of claim 16 wherein the prosthesis holding apparatus and the attached prosthesis are advanced by means of a manipulation instrument to which the prosthesis holding apparatus is releasably attached.
26. An apparatus for deploying an arterial prosthesis comprising:
a flexible holder having means for engaging and supporting an arterial prosthesis; and
at least one mount projecting from said holder in position to be releasably engaged by a manipulation instrument.
27. An apparatus according to claim 26 wherein said holder has two mounts projecting therefrom at different angles relative to said prosthesis.
28. An apparatus according to claim 26 wherein said holder has a substantially conical shape.
29. An arterial prothesis assembly for deploying an arterial prosthesis for implantation in an arterial vessel, said assembly comprising:
an arterial prosthesis adapted for implantation in a vessel within an arterial system; and
a holder having means for releasably engaging and supporting said arterial prosthesis, and at least one mount for attachment to a manipulation instrument, said mount projecting outwardly from said holder.
30. An arterial prosthesis assembly according to claim 29 wherein said holder has two mounts for attachment to a manipulation instrument, said mounts projecting outwardly from said holder at different angles relative to said prosthesis.
31. An arterial prosthesis assembly according to claim 30 wherein said prosthesis is an arterial valve prosthesis.
32. An arterial prosthesis assembly according to claim 31 wherein said prosthesis is an aortic valve prosthesis.
33. An arterial prosthesis assembly to claim 29 wherein said prosthesis has a flow orifice, and said mount is aligned with said orifice.
34. An arterial prosthesis assembly according to claim 29 wherein said mount comprises a spherical termination.
35. An arterial prosthesis assembly according to claim 34 wherein said holder comprises a hollow conically-shaped body with an open end, and said prosthesis is attached to said holder at said open end.
36. An arterial prosthesis assembly for deploying an arterial prosthesis for implantation in an arterial vessel, said assembly comprising:
an arterial prosthesis adapted for implantation in a vessel within an arterial system, said prosthesis comprising an annular portion defining an orifice; and
a holder having first and second means for releasably supporting said arterial prosthesis, said first means releasably engaging said annular portion on a first side of said orifice and said second means extending through said orifice and releasably engaging said annular portion on a second side of said orifice, whereby said first and second means exert opposing forces on said annular portion to prevent movement of said prosthesis relative to said holder.
37. An assembly according to claim 36 wherein each of said first and second means engage said annular portion at a plurality of circumferentially spaced points.
38. An assembly according to claim 36 wherein said holder comprises a central portion and said first means comprises a plurality of arms pivotally attached to said central portion.
39. An assembly according to claim 38 wherein said arms are pivotable between a first retracted position in which they extend substantially parallel to the center axis of said central portion and a second expanded position in which they extend at an acute angle to said central portion.
40. An assembly according to claim 39 wherein said arms have first ends pivotally connected to said central portion and second ends that are adapted to engage said annular portion of said prosthesis.
41. An assembly according to claim 40 wherein said second means comprises a plurality of spring fingers having curved outer ends that engage said annular portion of said prosthesis.
42. A holder for an arterial prosthesis comprising:
a hollow center member having first and second opposite ends;
a plurality of supporting arms mutually spaced about the center axis of said center member, said arms having inner and outer ends and being pivotally attached to said center member adjacent said first end of said center member so that said arms can pivot between a first retracted position in which said outer ends lie close to said center member and a second extended position in which said outer ends are spaced from said center member;
an actuating shaft having first and second opposite ends, said actuating shaft being slidably disposed within said center member and movable between first and second limit positions relative to said center member;
means acting between said actuating shaft and said inner ends of said arms for causing said arms to pivot to said first retracted position from said second extended position when said actuating shaft is moved from its second limit position to its first limit position and for causing said arms to pivot to said second extended position from said first retracted position when said actuating shaft is moved from its said first limit position to its said second limit position; and
a plurality of spring fingers mutually spaced about the center axis of said center member, said fingers each having first and second ends, with said first ends attached to said actuating shaft and said second ends projecting beyond the said first end of said center member, said second ends of said spring fingers being curved outwardly from said center axis of said center member, whereby said outer ends of said arms and said second ends of said spring fingers can coact to grip a prosthesis.
43. A holder according to claim 42 further including means for biasing said spring fingers so as to move said second ends of said spring fingers inwardly toward said center axis of said center member when said actuating shaft is moved to its first limit position.
44. The method of claim 1 wherein a filament is positioned in the left atrium, advanced across the mitral valve, and advanced across the left ventricle and into the arterial system and the vessel, and further wherein the prosthesis or device is advanced along the filament from the left atrium to the vessel.
45. The method of claim 1 wherein a tube is positioned in the left atrium, advanced across the mitral valve, and advanced across the left ventricle and into the arterial system and the vessel, and further wherein the prosthesis or device is advanced within the tube from the left atrium to the vessel.
46. A system for deploying an arterial prosthesis comprising:
a first manipulation instrument for attachment to the arterial prosthesis;
a second manipulation instrument for attachment to the arterial prosthesis; and
a guide for directing the second manipulation instrument to the arterial prosthesis when the arterial prosthesis is attached to the first manipulation instrument, said guide comprising a first mount for mounting said first manipulation instrument to said guide, and a second mount for mounting said second manipulation instrument to said guide, said second mount being configured relative to said first mount so as to direct said second manipulation instrument at the arterial prosthesis when the arterial prosthesis is held by said first manipulation instrument and said first manipulation instrument is mounted to said first mount.
US10/895,272 2000-06-30 2004-07-20 Method and apparatus for performing a procedure on a cardiac valve Abandoned US20050055088A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/895,272 US20050055088A1 (en) 2000-06-30 2004-07-20 Method and apparatus for performing a procedure on a cardiac valve
US12/776,136 US20100217384A1 (en) 2000-06-30 2010-05-07 Method For Replacing Native Valve Function Of A Diseased Aortic Valve
US13/012,466 US20110118830A1 (en) 2000-06-30 2011-01-24 System For Replacing Native Valve Function Of A Diseased Aortic Valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21524500P 2000-06-30 2000-06-30
US09/896,259 US6769434B2 (en) 2000-06-30 2001-06-29 Method and apparatus for performing a procedure on a cardiac valve
US10/895,272 US20050055088A1 (en) 2000-06-30 2004-07-20 Method and apparatus for performing a procedure on a cardiac valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/896,259 Continuation US6769434B2 (en) 2000-01-27 2001-06-29 Method and apparatus for performing a procedure on a cardiac valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/776,136 Continuation US20100217384A1 (en) 2000-06-30 2010-05-07 Method For Replacing Native Valve Function Of A Diseased Aortic Valve

Publications (1)

Publication Number Publication Date
US20050055088A1 true US20050055088A1 (en) 2005-03-10

Family

ID=22802236

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/896,259 Expired - Lifetime US6769434B2 (en) 2000-01-27 2001-06-29 Method and apparatus for performing a procedure on a cardiac valve
US10/895,272 Abandoned US20050055088A1 (en) 2000-06-30 2004-07-20 Method and apparatus for performing a procedure on a cardiac valve
US12/776,136 Abandoned US20100217384A1 (en) 2000-06-30 2010-05-07 Method For Replacing Native Valve Function Of A Diseased Aortic Valve
US13/012,466 Abandoned US20110118830A1 (en) 2000-06-30 2011-01-24 System For Replacing Native Valve Function Of A Diseased Aortic Valve

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/896,259 Expired - Lifetime US6769434B2 (en) 2000-01-27 2001-06-29 Method and apparatus for performing a procedure on a cardiac valve

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/776,136 Abandoned US20100217384A1 (en) 2000-06-30 2010-05-07 Method For Replacing Native Valve Function Of A Diseased Aortic Valve
US13/012,466 Abandoned US20110118830A1 (en) 2000-06-30 2011-01-24 System For Replacing Native Valve Function Of A Diseased Aortic Valve

Country Status (4)

Country Link
US (4) US6769434B2 (en)
EP (1) EP1401358B1 (en)
AU (1) AU2001271667A1 (en)
WO (1) WO2002001999A2 (en)

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137697A1 (en) * 2003-12-23 2005-06-23 Amr Salahieh Leaflet engagement elements and methods for use thereof
US20050137681A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US20050137676A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US20050209580A1 (en) * 2002-12-30 2005-09-22 Scimed Life Systems, Inc. Valve treatment catheter and methods
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US20060173475A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060178550A1 (en) * 2005-02-04 2006-08-10 Boston Scientific Scimed, Inc. Ventricular assist and support device
US20060206202A1 (en) * 2004-11-19 2006-09-14 Philippe Bonhoeffer Apparatus for treatment of cardiac valves and method of its manufacture
US20080161910A1 (en) * 2004-09-07 2008-07-03 Revuelta Jose M Replacement prosthetic heart valve, system and method of implant
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US20090240264A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Medical suturing device and method for use thereof
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7682390B2 (en) 2001-07-31 2010-03-23 Medtronic, Inc. Assembly for setting a valve prosthesis in a corporeal duct
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7758606B2 (en) 2000-06-30 2010-07-20 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7780726B2 (en) 2001-07-04 2010-08-24 Medtronic, Inc. Assembly for placing a prosthetic valve in a duct in the body
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20100268226A1 (en) * 2009-04-06 2010-10-21 Myra Epp System and method for resecting a valve
US7871436B2 (en) 2007-02-16 2011-01-18 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7892281B2 (en) 1999-11-17 2011-02-22 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20110066232A1 (en) * 2007-11-15 2011-03-17 Riveron Fernando A Bioprosthetic valve holder and handle with cutting mechanism and method of using same
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8070801B2 (en) 2001-06-29 2011-12-06 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20120016469A1 (en) * 2003-12-23 2012-01-19 Sadra Medical Inc. Methods and Apparatus for Endovascularly Replacing a Heart Valve
US8109996B2 (en) 2004-03-03 2012-02-07 Sorin Biomedica Cardio, S.R.L. Minimally-invasive cardiac-valve prosthesis
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8231670B2 (en) 2003-12-23 2012-07-31 Sadra Medical, Inc. Repositionable heart valve and method
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8246678B2 (en) 2003-12-23 2012-08-21 Sadra Medicl, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8252052B2 (en) 2003-12-23 2012-08-28 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8328868B2 (en) 2004-11-05 2012-12-11 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8506620B2 (en) 2005-09-26 2013-08-13 Medtronic, Inc. Prosthetic cardiac and venous valves
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US8539662B2 (en) 2005-02-10 2013-09-24 Sorin Group Italia S.R.L. Cardiac-valve prosthesis
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8613765B2 (en) 2008-02-28 2013-12-24 Medtronic, Inc. Prosthetic heart valve systems
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8623076B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Low profile heart valve and delivery system
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8668733B2 (en) 2004-06-16 2014-03-11 Sadra Medical, Inc. Everting heart valve
US8685084B2 (en) 2011-12-29 2014-04-01 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US8747459B2 (en) 2006-12-06 2014-06-10 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8784478B2 (en) 2006-10-16 2014-07-22 Medtronic Corevalve, Inc. Transapical delivery system with ventruculo-arterial overlfow bypass
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US8894703B2 (en) 2003-12-23 2014-11-25 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8951280B2 (en) 2000-11-09 2015-02-10 Medtronic, Inc. Cardiac valve procedure methods and devices
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US9011521B2 (en) 2003-12-23 2015-04-21 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US9161836B2 (en) 2011-02-14 2015-10-20 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9237886B2 (en) 2007-04-20 2016-01-19 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US9248017B2 (en) 2010-05-21 2016-02-02 Sorin Group Italia S.R.L. Support device for valve prostheses and corresponding kit
US9289289B2 (en) 2011-02-14 2016-03-22 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9370421B2 (en) 2011-12-03 2016-06-21 Boston Scientific Scimed, Inc. Medical device handle
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9539088B2 (en) 2001-09-07 2017-01-10 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9775704B2 (en) 2004-04-23 2017-10-03 Medtronic3F Therapeutics, Inc. Implantable valve prosthesis
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US20170325938A1 (en) 2016-05-16 2017-11-16 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10201418B2 (en) 2010-09-10 2019-02-12 Symetis, SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10258465B2 (en) 2003-12-23 2019-04-16 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US10278805B2 (en) 2000-08-18 2019-05-07 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US10485976B2 (en) 1998-04-30 2019-11-26 Medtronic, Inc. Intracardiovascular access (ICVA™) system
US10555809B2 (en) 2012-06-19 2020-02-11 Boston Scientific Scimed, Inc. Replacement heart valve
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US10898325B2 (en) 2017-08-01 2021-01-26 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11191641B2 (en) 2018-01-19 2021-12-07 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US11771544B2 (en) 2011-05-05 2023-10-03 Symetis Sa Method and apparatus for compressing/loading stent-valves
US11951007B2 (en) 2020-04-13 2024-04-09 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves

Families Citing this family (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
ATE484241T1 (en) 1999-04-09 2010-10-15 Evalve Inc METHOD AND DEVICE FOR HEART VALVE REPAIR
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
WO2002019951A1 (en) * 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US6676702B2 (en) 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6800090B2 (en) 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US20060106415A1 (en) * 2004-11-12 2006-05-18 Shlomo Gabbay Apparatus to facilitate implantation
US6893460B2 (en) * 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7635387B2 (en) 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US6824562B2 (en) * 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7311729B2 (en) 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6949122B2 (en) 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6976995B2 (en) 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US7179282B2 (en) 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
WO2003055417A1 (en) 2001-12-28 2003-07-10 Edwards Lifesciences Ag Delayed memory device
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20050209690A1 (en) * 2002-01-30 2005-09-22 Mathis Mark L Body lumen shaping device with cardiac leads
US6960229B2 (en) 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6797001B2 (en) * 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US7007698B2 (en) 2002-04-03 2006-03-07 Boston Scientific Corporation Body lumen closure
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
CA2877641C (en) * 2002-05-08 2017-01-17 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US7578843B2 (en) 2002-07-16 2009-08-25 Medtronic, Inc. Heart valve prosthesis
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7217287B2 (en) 2002-08-28 2007-05-15 Heart Leaflet Technologies, Inc. Method of treating diseased valve
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
CN1705462A (en) 2002-10-21 2005-12-07 米特拉利根公司 Method and apparatus for performing catheter-based annuloplasty using local plications
US20050119735A1 (en) 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
CA2502967A1 (en) 2002-10-24 2004-05-06 Boston Scientific Limited Venous valve apparatus and method
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US6945978B1 (en) 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
AU2003290979A1 (en) * 2002-11-15 2004-06-15 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Method and device for catheter-based repair of cardiac valves
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7404824B1 (en) * 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7316708B2 (en) 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US8551162B2 (en) * 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US7314485B2 (en) * 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040186566A1 (en) * 2003-03-18 2004-09-23 Hindrichs Paul J. Body tissue remodeling methods and apparatus
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US10667823B2 (en) 2003-05-19 2020-06-02 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US7351259B2 (en) * 2003-06-05 2008-04-01 Cardiac Dimensions, Inc. Device, system and method to affect the mitral valve annulus of a heart
US7887582B2 (en) * 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
WO2005018507A2 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US10219899B2 (en) * 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US9526616B2 (en) * 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US7431726B2 (en) * 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US20090132035A1 (en) * 2004-02-27 2009-05-21 Roth Alex T Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same
EP1722711A4 (en) * 2004-02-27 2009-12-02 Aortx Inc Prosthetic heart valve delivery systems and methods
US20070073387A1 (en) * 2004-02-27 2007-03-29 Forster David C Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US7641686B2 (en) 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
ES2407684T3 (en) 2004-05-05 2013-06-13 Direct Flow Medical, Inc. Heart valve without stent with support structure formed on site
CA2566666C (en) 2004-05-14 2014-05-13 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
JP5124274B2 (en) 2004-09-27 2013-01-23 エヴァルヴ インコーポレイテッド Method and apparatus for grasping and evaluating tissue
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060167468A1 (en) * 2004-11-12 2006-07-27 Shlomo Gabbay Implantation system and method for loading an implanter with a prosthesis
US7211110B2 (en) 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
AU2006206254B2 (en) 2005-01-20 2012-02-09 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
WO2006130505A2 (en) 2005-05-27 2006-12-07 Arbor Surgical Technologies, Inc. Gasket with collar for prosthetic heart valves and methods for using them
CN101247773B (en) 2005-05-27 2010-12-15 心叶科技公司 Stentless support structure
CA2610669A1 (en) 2005-06-07 2006-12-14 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US20070067029A1 (en) * 2005-09-16 2007-03-22 Shlomo Gabbay Support apparatus to facilitate implantation of cardiac prosthesis
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US9259317B2 (en) * 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8852270B2 (en) * 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US7785366B2 (en) * 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US8216302B2 (en) 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US8778017B2 (en) * 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
CN101365392B (en) * 2005-11-17 2011-02-02 K·R·秦 System and method for implanting spinal stabilization devices
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7749266B2 (en) 2006-02-27 2010-07-06 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7431692B2 (en) * 2006-03-09 2008-10-07 Edwards Lifesciences Corporation Apparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US7503932B2 (en) * 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
WO2007136532A2 (en) * 2006-05-03 2007-11-29 St. Jude Medical, Inc. Soft body tissue remodeling methods and apparatus
US8585594B2 (en) * 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
US20090209955A1 (en) * 2006-06-20 2009-08-20 Forster David C Prosthetic valve implant site preparation techniques
CN101506538A (en) 2006-06-20 2009-08-12 奥尔特克斯公司 Torque shaft and torque drive
CA2657442A1 (en) * 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic heart valves, support structures and systems and methods for implanting the same
CA2657446A1 (en) * 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
US7744527B2 (en) * 2006-07-06 2010-06-29 Apaxis Medical, Inc. Surgical coring system
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
CA2661959A1 (en) * 2006-09-06 2008-03-13 Aortx, Inc. Prosthetic heart valves, systems and methods of implanting
WO2008031103A2 (en) 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Integrated heart valve delivery system
US7854849B2 (en) * 2006-10-10 2010-12-21 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US8133213B2 (en) 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US8057539B2 (en) 2006-12-19 2011-11-15 Sorin Biomedica Cardio S.R.L. System for in situ positioning of cardiac valve prostheses without occluding blood flow
US8070799B2 (en) * 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
WO2008088835A1 (en) * 2007-01-18 2008-07-24 Valvexchange Inc. Tools for removal and installation of exchangeable cardiovascular valves
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US20080262603A1 (en) * 2007-04-23 2008-10-23 Sorin Biomedica Cardio Prosthetic heart valve holder
US8480730B2 (en) * 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
US8006535B2 (en) 2007-07-12 2011-08-30 Sorin Biomedica Cardio S.R.L. Expandable prosthetic valve crimping device
US8663318B2 (en) * 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Method and apparatus for percutaneous aortic valve replacement
US8663319B2 (en) 2007-07-23 2014-03-04 Hocor Cardiovascular Technologies Llc Methods and apparatus for percutaneous aortic valve replacement
EP2182860A4 (en) 2007-08-21 2013-07-24 Valvexchange Inc Method and apparatus for prosthetic valve removal
CA2697364C (en) 2007-08-23 2017-10-17 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
US8808367B2 (en) * 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US20110035018A1 (en) * 2007-09-25 2011-02-10 Depuy Products, Inc. Prosthesis with composite component
US8715359B2 (en) * 2009-10-30 2014-05-06 Depuy (Ireland) Prosthesis for cemented fixation and method for making the prosthesis
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US8597347B2 (en) * 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US8591460B2 (en) * 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8006594B2 (en) * 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
EP2331015A1 (en) * 2008-09-12 2011-06-15 ValveXchange Inc. Valve assembly with exchangeable valve member and a tool set for exchanging the valve member
US8852225B2 (en) * 2008-09-25 2014-10-07 Medtronic, Inc. Emboli guarding device
US9839518B2 (en) * 2008-10-20 2017-12-12 St. Jude Medical, Cardiology Division, Inc. Method of post-operative adjustment for mitral valve implant
EP2367504B1 (en) * 2008-10-30 2014-08-06 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valve delivery system and methods
US8715207B2 (en) 2009-03-19 2014-05-06 Sorin Group Italia S.R.L. Universal valve annulus sizing device
WO2010111621A1 (en) 2009-03-26 2010-09-30 Sorin Group Usa, Inc. Annuloplasty sizers for minimally invasive procedures
EP2250970B1 (en) * 2009-05-13 2012-12-26 Sorin Biomedica Cardio S.r.l. Device for surgical interventions
US8353953B2 (en) * 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
US8403982B2 (en) * 2009-05-13 2013-03-26 Sorin Group Italia S.R.L. Device for the in situ delivery of heart valves
CA2767856A1 (en) * 2009-07-14 2011-01-20 Apaxis Medical, Inc. Balloon catheter for use with a surgical coring system
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
JP5827991B2 (en) 2010-05-10 2015-12-02 エイチエルティー, インコーポレイテッド Stentless support structure
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US9586024B2 (en) * 2011-04-18 2017-03-07 Medtronic Vascular, Inc. Guide catheter with radiopaque filaments for locating an ostium
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US20120303048A1 (en) 2011-05-24 2012-11-29 Sorin Biomedica Cardio S.R.I. Transapical valve replacement
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
JP6074672B2 (en) * 2011-10-28 2017-02-08 株式会社ミツトヨ Displacement detection device, displacement detection method, and displacement detection program
EP2620125B1 (en) 2012-01-24 2017-10-11 Medtentia International Ltd Oy An arrangement, a loop-shaped support, a prosthetic heart valve and a method of repairing or replacing a native heart valve
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
EP2887890A4 (en) * 2012-08-23 2016-05-18 Minimally Invasive Surgical Access Ltd Direct aortic access system for transcatheter aortic valve procedures
US20150351906A1 (en) 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
CN105208973B (en) 2013-03-15 2018-04-03 Hlt股份有限公司 Low profile prosthetic valve structures
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US9980812B2 (en) 2013-06-14 2018-05-29 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
EP4066786A1 (en) 2014-07-30 2022-10-05 Cardiovalve Ltd. Articulatable prosthetic valve
EP2979664B1 (en) 2014-08-01 2019-01-09 Alvimedica Tibbi Ürünler Sanayi Ve Dis Ticaret A.S Aortic valve prosthesis, particularly suitable for transcatheter implantation
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
CN104367351B (en) * 2014-12-03 2017-12-19 李鸿雁 A kind of artificial cords intervention device
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
WO2016100334A1 (en) 2014-12-19 2016-06-23 Heartware, Inc. Guidewire system and method of pump installation using same
WO2016125160A1 (en) 2015-02-05 2016-08-11 Mitraltech Ltd. Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
EP3270827B1 (en) 2015-03-19 2023-12-20 Caisson Interventional, LLC Systems for heart valve therapy
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
EP3397208B1 (en) 2015-12-30 2020-12-02 Caisson Interventional, LLC Systems for heart valve therapy
EP3407835A4 (en) 2016-01-29 2019-06-26 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
CA3042588A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11065119B2 (en) 2017-05-12 2021-07-20 Evalve, Inc. Long arm valve repair clip
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10856984B2 (en) 2017-08-25 2020-12-08 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
JP7170127B2 (en) 2018-05-23 2022-11-11 コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ Loading system and associated loading method for implantable prostheses
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
WO2020093172A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11090463B2 (en) 2018-12-13 2021-08-17 Cook Medical Technologies Llc Device with medusa wire group
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
CN113543750A (en) 2019-03-05 2021-10-22 维迪内股份有限公司 Tricuspid valve regurgitation control apparatus for orthogonal transcatheter heart valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
CN110123392B (en) * 2019-03-26 2022-09-02 江苏省人民医院(南京医科大学第一附属医院) Accurate location aortic valve passes through device
CA3135753C (en) 2019-04-01 2023-10-24 Neovasc Tiara Inc. Controllably deployable prosthetic valve
AU2020271896B2 (en) 2019-04-10 2022-10-13 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN114072106A (en) 2019-05-04 2022-02-18 维迪内股份有限公司 Cinching device and method for deploying a laterally delivered prosthetic heart valve in a native annulus
CN114025813A (en) 2019-05-20 2022-02-08 内奥瓦斯克迪亚拉公司 Introducer with hemostatic mechanism
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
JP2022544707A (en) 2019-08-20 2022-10-20 ブイダイン,インコーポレイテッド Devices and methods for delivery and retrieval of laterally deliverable transcatheter valve prostheses
WO2021040996A1 (en) 2019-08-26 2021-03-04 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
AU2021400419A1 (en) 2020-12-14 2023-06-29 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642004A (en) * 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3795246A (en) * 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US4373216A (en) * 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4501030A (en) * 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4643732A (en) * 1984-11-17 1987-02-17 Beiersdorf Aktiengesellschaft Heart valve prosthesis
US4647283A (en) * 1982-03-23 1987-03-03 American Hospital Supply Corporation Implantable biological tissue and process for preparation thereof
US4909252A (en) * 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5002559A (en) * 1989-11-30 1991-03-26 Numed PTCA catheter
US5080668A (en) * 1988-11-29 1992-01-14 Biotronik Mess- und Therapiegerate GmbH & Co. KG Ingenieurburo Berlin Cardiac valve prosthesis
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5480423A (en) * 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5489294A (en) * 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5489297A (en) * 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5496346A (en) * 1987-01-06 1996-03-05 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5599305A (en) * 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5713953A (en) * 1991-05-24 1998-02-03 Sorin Biomedica Cardio S.P.A. Cardiac valve prosthesis particularly for replacement of the aortic valve
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5855602A (en) * 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5861028A (en) * 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6019790A (en) * 1995-05-24 2000-02-01 St. Jude Medical, Inc. Heart valve holder having a locking collar
US6022370A (en) * 1996-10-01 2000-02-08 Numed, Inc. Expandable stent
US6029671A (en) * 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US6174327B1 (en) * 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
US6338735B1 (en) * 1991-07-16 2002-01-15 John H. Stevens Methods for removing embolic material in blood flowing through a patient's ascending aorta
US20020010508A1 (en) * 1997-11-25 2002-01-24 Chobotov Michael V. Layered endovascular graft
US6348063B1 (en) * 1999-03-11 2002-02-19 Mindguard Ltd. Implantable stroke treating device
US6503272B2 (en) * 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US20030014104A1 (en) * 1996-12-31 2003-01-16 Alain Cribier Value prosthesis for implantation in body channels
US6508833B2 (en) * 1998-06-02 2003-01-21 Cook Incorporated Multiple-sided intraluminal medical device
US20030023300A1 (en) * 1999-12-31 2003-01-30 Bailey Steven R. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US20030019374A1 (en) * 2001-07-26 2003-01-30 Ulrich Harte Flexographic printing machine
US20030023303A1 (en) * 1999-11-19 2003-01-30 Palmaz Julio C. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US20030028247A1 (en) * 2001-01-29 2003-02-06 Cali Douglas S. Method of cutting material for use in implantable medical device
US20030036791A1 (en) * 2001-08-03 2003-02-20 Bonhoeffer Philipp Implant implantation unit and procedure for implanting the unit
US20030040771A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Methods for creating woven devices
US20030040792A1 (en) * 2000-09-12 2003-02-27 Shlomo Gabbay Heart valve prosthesis and sutureless implantation of a heart valve prosthesis
US6673089B1 (en) * 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
US6673109B2 (en) * 1993-11-01 2004-01-06 3F Therapeutics, Inc. Replacement atrioventricular heart valve
US6676698B2 (en) * 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6682558B2 (en) * 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US6682559B2 (en) * 2000-01-27 2004-01-27 3F Therapeutics, Inc. Prosthetic heart valve
US6685739B2 (en) * 1999-10-21 2004-02-03 Scimed Life Systems, Inc. Implantable prosthetic valve
US6689144B2 (en) * 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US6689164B1 (en) * 1999-10-12 2004-02-10 Jacques Seguin Annuloplasty device for use in minimally invasive procedure
US6692513B2 (en) * 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US6692512B2 (en) * 1998-10-13 2004-02-17 Edwards Lifesciences Corporation Percutaneous filtration catheter for valve repair surgery and methods of use
US20040034411A1 (en) * 2002-08-16 2004-02-19 Quijano Rodolfo C. Percutaneously delivered heart valve and delivery means thereof
US6695878B2 (en) * 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
US20040039436A1 (en) * 2001-10-11 2004-02-26 Benjamin Spenser Implantable prosthetic valve
US20050010285A1 (en) * 1999-01-27 2005-01-13 Lambrecht Gregory H. Cardiac valve procedure methods and devices
US20050010287A1 (en) * 2000-09-20 2005-01-13 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20050015112A1 (en) * 2000-01-27 2005-01-20 Cohn William E. Cardiac valve procedure methods and devices
US6846325B2 (en) * 2000-09-07 2005-01-25 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20050027348A1 (en) * 2003-07-31 2005-02-03 Case Brian C. Prosthetic valve devices and methods of making such devices
US20050033398A1 (en) * 2001-07-31 2005-02-10 Jacques Seguin Assembly for setting a valve prosthesis in a corporeal duct
US20050043790A1 (en) * 2001-07-04 2005-02-24 Jacques Seguin Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body
US6893459B1 (en) * 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US20060004469A1 (en) * 2004-06-16 2006-01-05 Justin Sokel Tissue prosthesis processing technology
US20060004439A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Device and method for assisting in the implantation of a prosthetic valve
US20060009841A1 (en) * 2003-05-05 2006-01-12 Rex Medical Percutaneous aortic valve
US6986742B2 (en) * 2001-08-21 2006-01-17 Boston Scientific Scimed, Inc. Pressure transducer protection valve
US6989027B2 (en) * 2003-04-30 2006-01-24 Medtronic Vascular Inc. Percutaneously delivered temporary valve assembly
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6991649B2 (en) * 2003-08-29 2006-01-31 Hans-Hinrich Sievers Artificial heart valve
US20070005131A1 (en) * 2005-06-13 2007-01-04 Taylor David M Heart valve delivery system
US20070005129A1 (en) * 2000-02-28 2007-01-04 Christoph Damm Anchoring system for implantable heart valve prostheses
US7160319B2 (en) * 1999-11-16 2007-01-09 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US20070010878A1 (en) * 2003-11-12 2007-01-11 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
US20070016286A1 (en) * 2003-07-21 2007-01-18 Herrmann Howard C Percutaneous heart valve
US20070027518A1 (en) * 2003-04-01 2007-02-01 Case Brian C Percutaneously deployed vascular valves
US20070027533A1 (en) * 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US7175656B2 (en) * 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US20070038295A1 (en) * 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US20070043431A1 (en) * 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
US20080004696A1 (en) * 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
US7316706B2 (en) * 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20080015671A1 (en) * 2004-11-19 2008-01-17 Philipp Bonhoeffer Method And Apparatus For Treatment Of Cardiac Valves
US20080021552A1 (en) * 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US7329278B2 (en) * 1999-11-17 2008-02-12 Corevalve, Inc. Prosthetic valve for transluminal delivery
US7335218B2 (en) * 2002-08-28 2008-02-26 Heart Leaflet Technologies, Inc. Delivery device for leaflet valve
US20080048656A1 (en) * 2006-07-14 2008-02-28 Fengshun Tan Thermal controlling method, magnetic field generator and mri apparatus
US20090005863A1 (en) * 2006-02-16 2009-01-01 Goetz Wolfgang Minimally invasive heart valve replacement
US20090012600A1 (en) * 2005-04-05 2009-01-08 Mikolaj Witold Styrc Kit Which Is Intended to Be Implanted in a Blood Vessel, and Associated Tubular Endoprosthesis
US7481838B2 (en) * 1999-01-26 2009-01-27 Edwards Lifesciences Corporation Flexible heart valve and associated connecting band
US20090048656A1 (en) * 2005-11-09 2009-02-19 Ning Wen Delivery Device for Delivering a Self-Expanding Stent
US20090054976A1 (en) * 2007-08-20 2009-02-26 Yosi Tuval Stent loading tool and method for use thereof
US20100036479A1 (en) * 2008-04-23 2010-02-11 Medtronic, Inc. Stented Heart Valve Devices

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628535A (en) * 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US5011469A (en) * 1988-08-29 1991-04-30 Shiley, Inc. Peripheral cardiopulmonary bypass and coronary reperfusion system
US5041130A (en) 1989-07-31 1991-08-20 Baxter International Inc. Flexible annuloplasty ring and holder
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5584803A (en) * 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5972030A (en) 1993-02-22 1999-10-26 Heartport, Inc. Less-invasive devices and methods for treatment of cardiac valves
US6125852A (en) * 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
DE69431122T2 (en) * 1993-12-22 2003-03-27 St Jude Medical HEART VALVE HOLDER
US5476510A (en) * 1994-04-21 1995-12-19 Medtronic, Inc. Holder for heart valve
US5443502A (en) * 1994-06-02 1995-08-22 Carbomedics, Inc. Rotatable heart valve holder
EP0819014B1 (en) * 1995-03-30 2003-02-05 Heartport, Inc. Endovascular cardiac venting catheter
US6214043B1 (en) * 1995-05-24 2001-04-10 St. Jude Medical, Inc. Releasable hanger for heart valve prosthesis low profile holder
US5807405A (en) * 1995-09-11 1998-09-15 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US5989281A (en) * 1995-11-07 1999-11-23 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US5716370A (en) * 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6673040B1 (en) * 1996-04-16 2004-01-06 Cardeon Corporation System and methods for catheter procedures with circulatory support in high risk patients
US5792179A (en) * 1996-07-16 1998-08-11 Sideris; Eleftherios B. Retrievable cardiac balloon placement
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5972020A (en) * 1997-02-14 1999-10-26 Cardiothoracic Systems, Inc. Surgical instrument for cardiac valve repair on the beating heart
US5957949A (en) * 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6241699B1 (en) * 1998-07-22 2001-06-05 Chase Medical, Inc. Catheter system and method for posterior epicardial revascularization and intracardiac surgery on a beating heart
US5910144A (en) * 1998-01-09 1999-06-08 Endovascular Technologies, Inc. Prosthesis gripping system and method
US20020144696A1 (en) * 1998-02-13 2002-10-10 A. Adam Sharkawy Conduits for use in placing a target vessel in fluid communication with a source of blood
US7569062B1 (en) * 1998-07-15 2009-08-04 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6398726B1 (en) * 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
ATE484241T1 (en) * 1999-04-09 2010-10-15 Evalve Inc METHOD AND DEVICE FOR HEART VALVE REPAIR
US7226467B2 (en) * 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US6596003B1 (en) * 2000-06-28 2003-07-22 Genzyme Corporation Vascular anastomosis device
US7223291B2 (en) * 2001-07-16 2007-05-29 Spinecore, Inc. Intervertebral spacer device having engagement hole pairs for manipulation using a surgical tool
US6673100B2 (en) * 2001-05-25 2004-01-06 Cordis Neurovascular, Inc. Method and device for retrieving embolic coils
MXPA04011144A (en) * 2002-05-10 2005-08-16 Johnson & Johnson Method of making a medical device having a thin wall tubular membrane over a structural frame.
US7399315B2 (en) * 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
ES2407684T3 (en) * 2004-05-05 2013-06-13 Direct Flow Medical, Inc. Heart valve without stent with support structure formed on site
JP2008506497A (en) * 2004-07-19 2008-03-06 セント ジュード メディカル インコーポレイテッド Heart valve support and lid lining system and method
WO2007130881A2 (en) * 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642004A (en) * 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3795246A (en) * 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US4373216A (en) * 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4501030A (en) * 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4647283A (en) * 1982-03-23 1987-03-03 American Hospital Supply Corporation Implantable biological tissue and process for preparation thereof
US4648881A (en) * 1982-03-23 1987-03-10 American Hospital Supply Corporation Implantable biological tissue and process for preparation thereof
US4643732A (en) * 1984-11-17 1987-02-17 Beiersdorf Aktiengesellschaft Heart valve prosthesis
US5496346A (en) * 1987-01-06 1996-03-05 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4909252A (en) * 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5080668A (en) * 1988-11-29 1992-01-14 Biotronik Mess- und Therapiegerate GmbH & Co. KG Ingenieurburo Berlin Cardiac valve prosthesis
US5002559A (en) * 1989-11-30 1991-03-26 Numed PTCA catheter
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5282847A (en) * 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
US5713953A (en) * 1991-05-24 1998-02-03 Sorin Biomedica Cardio S.P.A. Cardiac valve prosthesis particularly for replacement of the aortic valve
US6029671A (en) * 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US6338735B1 (en) * 1991-07-16 2002-01-15 John H. Stevens Methods for removing embolic material in blood flowing through a patient's ascending aorta
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5489297A (en) * 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US5480423A (en) * 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US6673109B2 (en) * 1993-11-01 2004-01-06 3F Therapeutics, Inc. Replacement atrioventricular heart valve
US5489294A (en) * 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5599305A (en) * 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US6019790A (en) * 1995-05-24 2000-02-01 St. Jude Medical, Inc. Heart valve holder having a locking collar
US6334869B1 (en) * 1995-10-30 2002-01-01 World Medical Manufacturing Corporation Endoluminal prosthesis
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5861028A (en) * 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5855602A (en) * 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US6022370A (en) * 1996-10-01 2000-02-08 Numed, Inc. Expandable stent
US20080009940A1 (en) * 1996-12-31 2008-01-10 Alain Cribier Valve prosthesis for implantation in body channels
US20030014104A1 (en) * 1996-12-31 2003-01-16 Alain Cribier Value prosthesis for implantation in body channels
US20020010508A1 (en) * 1997-11-25 2002-01-24 Chobotov Michael V. Layered endovascular graft
US6174327B1 (en) * 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
US6508833B2 (en) * 1998-06-02 2003-01-21 Cook Incorporated Multiple-sided intraluminal medical device
US6692512B2 (en) * 1998-10-13 2004-02-17 Edwards Lifesciences Corporation Percutaneous filtration catheter for valve repair surgery and methods of use
US7481838B2 (en) * 1999-01-26 2009-01-27 Edwards Lifesciences Corporation Flexible heart valve and associated connecting band
US20050010285A1 (en) * 1999-01-27 2005-01-13 Lambrecht Gregory H. Cardiac valve procedure methods and devices
US20030040771A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Methods for creating woven devices
US20030040772A1 (en) * 1999-02-01 2003-02-27 Hideki Hyodoh Delivery devices
US6348063B1 (en) * 1999-03-11 2002-02-19 Mindguard Ltd. Implantable stroke treating device
US6673089B1 (en) * 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
US6689164B1 (en) * 1999-10-12 2004-02-10 Jacques Seguin Annuloplasty device for use in minimally invasive procedure
US6685739B2 (en) * 1999-10-21 2004-02-03 Scimed Life Systems, Inc. Implantable prosthetic valve
US7160319B2 (en) * 1999-11-16 2007-01-09 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US7329278B2 (en) * 1999-11-17 2008-02-12 Corevalve, Inc. Prosthetic valve for transluminal delivery
US20030023303A1 (en) * 1999-11-19 2003-01-30 Palmaz Julio C. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US20030023300A1 (en) * 1999-12-31 2003-01-30 Bailey Steven R. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6682559B2 (en) * 2000-01-27 2004-01-27 3F Therapeutics, Inc. Prosthetic heart valve
US20050015112A1 (en) * 2000-01-27 2005-01-20 Cohn William E. Cardiac valve procedure methods and devices
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US20070005129A1 (en) * 2000-02-28 2007-01-04 Christoph Damm Anchoring system for implantable heart valve prostheses
US6695878B2 (en) * 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
US6676698B2 (en) * 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6692513B2 (en) * 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US20050010246A1 (en) * 2000-06-30 2005-01-13 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US6846325B2 (en) * 2000-09-07 2005-01-25 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030040792A1 (en) * 2000-09-12 2003-02-27 Shlomo Gabbay Heart valve prosthesis and sutureless implantation of a heart valve prosthesis
US20050010287A1 (en) * 2000-09-20 2005-01-13 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US6893459B1 (en) * 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US20030028247A1 (en) * 2001-01-29 2003-02-06 Cali Douglas S. Method of cutting material for use in implantable medical device
US6503272B2 (en) * 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US6682558B2 (en) * 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US20050043790A1 (en) * 2001-07-04 2005-02-24 Jacques Seguin Kit enabling a prosthetic valve to be placed in a body enabling a prosthetic valve to be put into place in a duct in the body
US20030019374A1 (en) * 2001-07-26 2003-01-30 Ulrich Harte Flexographic printing machine
US20050033398A1 (en) * 2001-07-31 2005-02-10 Jacques Seguin Assembly for setting a valve prosthesis in a corporeal duct
US20030036791A1 (en) * 2001-08-03 2003-02-20 Bonhoeffer Philipp Implant implantation unit and procedure for implanting the unit
US6986742B2 (en) * 2001-08-21 2006-01-17 Boston Scientific Scimed, Inc. Pressure transducer protection valve
US20080021552A1 (en) * 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US20040039436A1 (en) * 2001-10-11 2004-02-26 Benjamin Spenser Implantable prosthetic valve
US6689144B2 (en) * 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US20040034411A1 (en) * 2002-08-16 2004-02-19 Quijano Rodolfo C. Percutaneously delivered heart valve and delivery means thereof
US7335218B2 (en) * 2002-08-28 2008-02-26 Heart Leaflet Technologies, Inc. Delivery device for leaflet valve
US20070027518A1 (en) * 2003-04-01 2007-02-01 Case Brian C Percutaneously deployed vascular valves
US7175656B2 (en) * 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US6989027B2 (en) * 2003-04-30 2006-01-24 Medtronic Vascular Inc. Percutaneously delivered temporary valve assembly
US20060009841A1 (en) * 2003-05-05 2006-01-12 Rex Medical Percutaneous aortic valve
US7316706B2 (en) * 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20070016286A1 (en) * 2003-07-21 2007-01-18 Herrmann Howard C Percutaneous heart valve
US20050027348A1 (en) * 2003-07-31 2005-02-03 Case Brian C. Prosthetic valve devices and methods of making such devices
US6991649B2 (en) * 2003-08-29 2006-01-31 Hans-Hinrich Sievers Artificial heart valve
US20070010878A1 (en) * 2003-11-12 2007-01-11 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
US20060004469A1 (en) * 2004-06-16 2006-01-05 Justin Sokel Tissue prosthesis processing technology
US20060004439A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Device and method for assisting in the implantation of a prosthetic valve
US20080015671A1 (en) * 2004-11-19 2008-01-17 Philipp Bonhoeffer Method And Apparatus For Treatment Of Cardiac Valves
US20090012600A1 (en) * 2005-04-05 2009-01-08 Mikolaj Witold Styrc Kit Which Is Intended to Be Implanted in a Blood Vessel, and Associated Tubular Endoprosthesis
US20070005131A1 (en) * 2005-06-13 2007-01-04 Taylor David M Heart valve delivery system
US20070027533A1 (en) * 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US20070038295A1 (en) * 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US20070043431A1 (en) * 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
US20090048656A1 (en) * 2005-11-09 2009-02-19 Ning Wen Delivery Device for Delivering a Self-Expanding Stent
US20090005863A1 (en) * 2006-02-16 2009-01-01 Goetz Wolfgang Minimally invasive heart valve replacement
US20080004696A1 (en) * 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
US20080048656A1 (en) * 2006-07-14 2008-02-28 Fengshun Tan Thermal controlling method, magnetic field generator and mri apparatus
US20090054976A1 (en) * 2007-08-20 2009-02-26 Yosi Tuval Stent loading tool and method for use thereof
US20100036479A1 (en) * 2008-04-23 2010-02-11 Medtronic, Inc. Stented Heart Valve Devices

Cited By (326)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10485976B2 (en) 1998-04-30 2019-11-26 Medtronic, Inc. Intracardiovascular access (ICVA™) system
US8603159B2 (en) 1999-11-17 2013-12-10 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8721708B2 (en) 1999-11-17 2014-05-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8801779B2 (en) 1999-11-17 2014-08-12 Medtronic Corevalve, Llc Prosthetic valve for transluminal delivery
US8876896B2 (en) 1999-11-17 2014-11-04 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7892281B2 (en) 1999-11-17 2011-02-22 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US10219901B2 (en) 1999-11-17 2019-03-05 Medtronic CV Luxembourg S.a.r.l. Prosthetic valve for transluminal delivery
US9962258B2 (en) 1999-11-17 2018-05-08 Medtronic CV Luxembourg S.a.r.l. Transcatheter heart valves
US8986329B2 (en) 1999-11-17 2015-03-24 Medtronic Corevalve Llc Methods for transluminal delivery of prosthetic valves
US8998979B2 (en) 1999-11-17 2015-04-07 Medtronic Corevalve Llc Transcatheter heart valves
US9060856B2 (en) 1999-11-17 2015-06-23 Medtronic Corevalve Llc Transcatheter heart valves
US9066799B2 (en) 1999-11-17 2015-06-30 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US9949831B2 (en) 2000-01-19 2018-04-24 Medtronics, Inc. Image-guided heart valve placement
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8092487B2 (en) 2000-06-30 2012-01-10 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US7758606B2 (en) 2000-06-30 2010-07-20 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US8777980B2 (en) 2000-06-30 2014-07-15 Medtronic, Inc. Intravascular filter with debris entrapment mechanism
US10278805B2 (en) 2000-08-18 2019-05-07 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US8951280B2 (en) 2000-11-09 2015-02-10 Medtronic, Inc. Cardiac valve procedure methods and devices
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8070801B2 (en) 2001-06-29 2011-12-06 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8956402B2 (en) 2001-06-29 2015-02-17 Medtronic, Inc. Apparatus for replacing a cardiac valve
US9149357B2 (en) 2001-07-04 2015-10-06 Medtronic CV Luxembourg S.a.r.l. Heart valve assemblies
US8002826B2 (en) 2001-07-04 2011-08-23 Medtronic Corevalve Llc Assembly for placing a prosthetic valve in a duct in the body
US8628570B2 (en) 2001-07-04 2014-01-14 Medtronic Corevalve Llc Assembly for placing a prosthetic valve in a duct in the body
US7780726B2 (en) 2001-07-04 2010-08-24 Medtronic, Inc. Assembly for placing a prosthetic valve in a duct in the body
US7682390B2 (en) 2001-07-31 2010-03-23 Medtronic, Inc. Assembly for setting a valve prosthesis in a corporeal duct
US10342657B2 (en) 2001-09-07 2019-07-09 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US9539088B2 (en) 2001-09-07 2017-01-10 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20050209580A1 (en) * 2002-12-30 2005-09-22 Scimed Life Systems, Inc. Valve treatment catheter and methods
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20050137676A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US20050137681A1 (en) * 2003-12-19 2005-06-23 Scimed Life Systems, Inc. Venous valve apparatus, system, and method
US10413412B2 (en) 2003-12-23 2019-09-17 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US11696825B2 (en) 2003-12-23 2023-07-11 Boston Scientific Scimed, Inc. Replacement valve and anchor
US9861476B2 (en) 2003-12-23 2018-01-09 Boston Scientific Scimed Inc. Leaflet engagement elements and methods for use thereof
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9320599B2 (en) 2003-12-23 2016-04-26 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9308085B2 (en) 2003-12-23 2016-04-12 Boston Scientific Scimed, Inc. Repositionable heart valve and method
US8231670B2 (en) 2003-12-23 2012-07-31 Sadra Medical, Inc. Repositionable heart valve and method
US9872768B2 (en) 2003-12-23 2018-01-23 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US8246678B2 (en) 2003-12-23 2012-08-21 Sadra Medicl, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8252052B2 (en) 2003-12-23 2012-08-28 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9358106B2 (en) 2003-12-23 2016-06-07 Boston Scientific Scimed Inc. Methods and apparatus for performing valvuloplasty
US11285002B2 (en) 2003-12-23 2022-03-29 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8840662B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve and method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8858620B2 (en) * 2003-12-23 2014-10-14 Sadra Medical Inc. Methods and apparatus for endovascularly replacing a heart valve
US11185408B2 (en) 2003-12-23 2021-11-30 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US10925724B2 (en) 2003-12-23 2021-02-23 Boston Scientific Scimed, Inc. Replacement valve and anchor
US9956075B2 (en) 2003-12-23 2018-05-01 Boston Scientific Scimed Inc. Methods and apparatus for endovascularly replacing a heart valve
US10716663B2 (en) 2003-12-23 2020-07-21 Boston Scientific Scimed, Inc. Methods and apparatus for performing valvuloplasty
US9358110B2 (en) 2003-12-23 2016-06-07 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US9277991B2 (en) 2003-12-23 2016-03-08 Boston Scientific Scimed, Inc. Low profile heart valve and delivery system
US9393113B2 (en) 2003-12-23 2016-07-19 Boston Scientific Scimed Inc. Retrievable heart valve anchor and method
US10206774B2 (en) 2003-12-23 2019-02-19 Boston Scientific Scimed Inc. Low profile heart valve and delivery system
US10258465B2 (en) 2003-12-23 2019-04-16 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8894703B2 (en) 2003-12-23 2014-11-25 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US10314695B2 (en) 2003-12-23 2019-06-11 Boston Scientific Scimed Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9532872B2 (en) 2003-12-23 2017-01-03 Boston Scientific Scimed, Inc. Systems and methods for delivering a medical implant
US9011521B2 (en) 2003-12-23 2015-04-21 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US10335273B2 (en) 2003-12-23 2019-07-02 Boston Scientific Scimed Inc. Leaflet engagement elements and methods for use thereof
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US20120016469A1 (en) * 2003-12-23 2012-01-19 Sadra Medical Inc. Methods and Apparatus for Endovascularly Replacing a Heart Valve
US9585749B2 (en) 2003-12-23 2017-03-07 Boston Scientific Scimed, Inc. Replacement heart valve assembly
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US10478289B2 (en) 2003-12-23 2019-11-19 Boston Scientific Scimed, Inc. Replacement valve and anchor
US10357359B2 (en) 2003-12-23 2019-07-23 Boston Scientific Scimed Inc Methods and apparatus for endovascularly replacing a patient's heart valve
US8623078B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Replacement valve and anchor
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8623076B2 (en) 2003-12-23 2014-01-07 Sadra Medical, Inc. Low profile heart valve and delivery system
US9585750B2 (en) 2003-12-23 2017-03-07 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US10426608B2 (en) 2003-12-23 2019-10-01 Boston Scientific Scimed, Inc. Repositionable heart valve
US20050137697A1 (en) * 2003-12-23 2005-06-23 Amr Salahieh Leaflet engagement elements and methods for use thereof
US10413409B2 (en) 2003-12-23 2019-09-17 Boston Scientific Scimed, Inc. Systems and methods for delivering a medical implant
US9867695B2 (en) 2004-03-03 2018-01-16 Sorin Group Italia S.R.L. Minimally-invasive cardiac-valve prosthesis
US8109996B2 (en) 2004-03-03 2012-02-07 Sorin Biomedica Cardio, S.R.L. Minimally-invasive cardiac-valve prosthesis
US8535373B2 (en) 2004-03-03 2013-09-17 Sorin Group Italia S.R.L. Minimally-invasive cardiac-valve prosthesis
US9775704B2 (en) 2004-04-23 2017-10-03 Medtronic3F Therapeutics, Inc. Implantable valve prosthesis
US8668733B2 (en) 2004-06-16 2014-03-11 Sadra Medical, Inc. Everting heart valve
US11484405B2 (en) 2004-06-16 2022-11-01 Boston Scientific Scimed, Inc. Everting heart valve
US9744035B2 (en) 2004-06-16 2017-08-29 Boston Scientific Scimed, Inc. Everting heart valve
US8992608B2 (en) 2004-06-16 2015-03-31 Sadra Medical, Inc. Everting heart valve
US20060004442A1 (en) * 2004-06-30 2006-01-05 Benjamin Spenser Paravalvular leak detection, sealing, and prevention
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20080161910A1 (en) * 2004-09-07 2008-07-03 Revuelta Jose M Replacement prosthetic heart valve, system and method of implant
US9480556B2 (en) 2004-09-07 2016-11-01 Medtronic, Inc. Replacement prosthetic heart valve, system and method of implant
US11253355B2 (en) 2004-09-07 2022-02-22 Medtronic, Inc. Replacement prosthetic heart valve, system and method of implant
US8591570B2 (en) 2004-09-07 2013-11-26 Medtronic, Inc. Prosthetic heart valve for replacing previously implanted heart valve
US10531952B2 (en) 2004-11-05 2020-01-14 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US8328868B2 (en) 2004-11-05 2012-12-11 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8617236B2 (en) 2004-11-05 2013-12-31 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US9498329B2 (en) 2004-11-19 2016-11-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US20060206202A1 (en) * 2004-11-19 2006-09-14 Philippe Bonhoeffer Apparatus for treatment of cardiac valves and method of its manufacture
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US20060173475A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) * 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US20060178550A1 (en) * 2005-02-04 2006-08-10 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8920492B2 (en) 2005-02-10 2014-12-30 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US8539662B2 (en) 2005-02-10 2013-09-24 Sorin Group Italia S.R.L. Cardiac-valve prosthesis
US9895223B2 (en) 2005-02-10 2018-02-20 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US8540768B2 (en) 2005-02-10 2013-09-24 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US9486313B2 (en) 2005-02-10 2016-11-08 Sorin Group Italia S.R.L. Cardiac valve prosthesis
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9649495B2 (en) 2005-04-25 2017-05-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US9415225B2 (en) 2005-04-25 2016-08-16 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US10549101B2 (en) 2005-04-25 2020-02-04 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US10478291B2 (en) 2005-05-13 2019-11-19 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
US8226710B2 (en) 2005-05-13 2012-07-24 Medtronic Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US9060857B2 (en) 2005-05-13 2015-06-23 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US11284997B2 (en) 2005-05-13 2022-03-29 Medtronic CV Luxembourg S.a.r.l Heart valve prosthesis and methods of manufacture and use
US9504564B2 (en) 2005-05-13 2016-11-29 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US8506620B2 (en) 2005-09-26 2013-08-13 Medtronic, Inc. Prosthetic cardiac and venous valves
US10314701B2 (en) 2005-12-22 2019-06-11 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US10299922B2 (en) 2005-12-22 2019-05-28 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US9331328B2 (en) 2006-03-28 2016-05-03 Medtronic, Inc. Prosthetic cardiac valve from pericardium material and methods of making same
US10058421B2 (en) 2006-03-28 2018-08-28 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US9642704B2 (en) 2006-09-19 2017-05-09 Medtronic Ventor Technologies Ltd. Catheter for implanting a valve prosthesis
US8771346B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthetic fixation techniques using sandwiching
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
US9301834B2 (en) 2006-09-19 2016-04-05 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8876894B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Leaflet-sensitive valve fixation member
US10543077B2 (en) 2006-09-19 2020-01-28 Medtronic, Inc. Sinus-engaging valve fixation member
US9827097B2 (en) 2006-09-19 2017-11-28 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US9387071B2 (en) 2006-09-19 2016-07-12 Medtronic, Inc. Sinus-engaging valve fixation member
US8747460B2 (en) 2006-09-19 2014-06-10 Medtronic Ventor Technologies Ltd. Methods for implanting a valve prothesis
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
US11304801B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8771345B2 (en) 2006-09-19 2014-07-08 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US10195033B2 (en) 2006-09-19 2019-02-05 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US11304802B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US9138312B2 (en) 2006-09-19 2015-09-22 Medtronic Ventor Technologies Ltd. Valve prostheses
US10004601B2 (en) 2006-09-19 2018-06-26 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US9913714B2 (en) 2006-09-19 2018-03-13 Medtronic, Inc. Sinus-engaging valve fixation member
US8784478B2 (en) 2006-10-16 2014-07-22 Medtronic Corevalve, Inc. Transapical delivery system with ventruculo-arterial overlfow bypass
US8747459B2 (en) 2006-12-06 2014-06-10 Medtronic Corevalve Llc System and method for transapical delivery of an annulus anchored self-expanding valve
US9295550B2 (en) 2006-12-06 2016-03-29 Medtronic CV Luxembourg S.a.r.l. Methods for delivering a self-expanding valve
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US7871436B2 (en) 2007-02-16 2011-01-18 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US9504568B2 (en) 2007-02-16 2016-11-29 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9585754B2 (en) 2007-04-20 2017-03-07 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US9237886B2 (en) 2007-04-20 2016-01-19 Medtronic, Inc. Implant for treatment of a heart valve, in particular a mitral valve, material including such an implant, and material for insertion thereof
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US9393112B2 (en) 2007-08-20 2016-07-19 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US10188516B2 (en) 2007-08-20 2019-01-29 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US10966823B2 (en) 2007-10-12 2021-04-06 Sorin Group Italia S.R.L. Expandable valve prosthesis with sealing mechanism
US20110066232A1 (en) * 2007-11-15 2011-03-17 Riveron Fernando A Bioprosthetic valve holder and handle with cutting mechanism and method of using same
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US9333100B2 (en) 2008-01-24 2016-05-10 Medtronic, Inc. Stents for prosthetic heart valves
US8673000B2 (en) 2008-01-24 2014-03-18 Medtronic, Inc. Stents for prosthetic heart valves
US9339382B2 (en) 2008-01-24 2016-05-17 Medtronic, Inc. Stents for prosthetic heart valves
US9925079B2 (en) 2008-01-24 2018-03-27 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11786367B2 (en) 2008-01-24 2023-10-17 Medtronic, Inc. Stents for prosthetic heart valves
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US8157852B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11607311B2 (en) 2008-01-24 2023-03-21 Medtronic, Inc. Stents for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US10016274B2 (en) 2008-01-24 2018-07-10 Medtronic, Inc. Stent for prosthetic heart valves
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US11083573B2 (en) 2008-01-24 2021-08-10 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US10820993B2 (en) 2008-01-24 2020-11-03 Medtronic, Inc. Stents for prosthetic heart valves
US10758343B2 (en) 2008-01-24 2020-09-01 Medtronic, Inc. Stent for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US10639182B2 (en) 2008-01-24 2020-05-05 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US10646335B2 (en) 2008-01-24 2020-05-12 Medtronic, Inc. Stents for prosthetic heart valves
US8685077B2 (en) 2008-01-24 2014-04-01 Medtronics, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8961593B2 (en) 2008-02-28 2015-02-24 Medtronic, Inc. Prosthetic heart valve systems
US8613765B2 (en) 2008-02-28 2013-12-24 Medtronic, Inc. Prosthetic heart valve systems
US10856979B2 (en) 2008-03-18 2020-12-08 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US11278408B2 (en) 2008-03-18 2022-03-22 Medtronic Venter Technologies, Ltd. Valve suturing and implantation procedures
US11602430B2 (en) 2008-03-18 2023-03-14 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US20090240264A1 (en) * 2008-03-18 2009-09-24 Yosi Tuval Medical suturing device and method for use thereof
US9592120B2 (en) 2008-03-18 2017-03-14 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US10245142B2 (en) 2008-04-08 2019-04-02 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8511244B2 (en) 2008-04-23 2013-08-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
US11026786B2 (en) 2008-09-15 2021-06-08 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US9943407B2 (en) 2008-09-15 2018-04-17 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US10806570B2 (en) 2008-09-15 2020-10-20 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US11166815B2 (en) 2008-09-17 2021-11-09 Medtronic CV Luxembourg S.a.r.l Delivery system for deployment of medical devices
US10321997B2 (en) 2008-09-17 2019-06-18 Medtronic CV Luxembourg S.a.r.l. Delivery system for deployment of medical devices
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US9532873B2 (en) 2008-09-17 2017-01-03 Medtronic CV Luxembourg S.a.r.l. Methods for deployment of medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US10098733B2 (en) 2008-12-23 2018-10-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
US20100268226A1 (en) * 2009-04-06 2010-10-21 Myra Epp System and method for resecting a valve
US8496655B2 (en) 2009-04-06 2013-07-30 Michael J. O'Donnell System and method for resecting a valve
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US11833041B2 (en) 2010-04-01 2023-12-05 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US9925044B2 (en) 2010-04-01 2018-03-27 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US10716665B2 (en) 2010-04-01 2020-07-21 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US11554010B2 (en) 2010-04-01 2023-01-17 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US9248017B2 (en) 2010-05-21 2016-02-02 Sorin Group Italia S.R.L. Support device for valve prostheses and corresponding kit
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US10835376B2 (en) 2010-09-01 2020-11-17 Medtronic Vascular Galway Prosthetic valve support structure
US11786368B2 (en) 2010-09-01 2023-10-17 Medtronic Vascular Galway Prosthetic valve support structure
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
US10869760B2 (en) 2010-09-10 2020-12-22 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US10201418B2 (en) 2010-09-10 2019-02-12 Symetis, SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9161836B2 (en) 2011-02-14 2015-10-20 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9289289B2 (en) 2011-02-14 2016-03-22 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US11771544B2 (en) 2011-05-05 2023-10-03 Symetis Sa Method and apparatus for compressing/loading stent-valves
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9370421B2 (en) 2011-12-03 2016-06-21 Boston Scientific Scimed, Inc. Medical device handle
US9138314B2 (en) 2011-12-29 2015-09-22 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US8685084B2 (en) 2011-12-29 2014-04-01 Sorin Group Italia S.R.L. Prosthetic vascular conduit and assembly method
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US11382739B2 (en) 2012-06-19 2022-07-12 Boston Scientific Scimed, Inc. Replacement heart valve
US10555809B2 (en) 2012-06-19 2020-02-11 Boston Scientific Scimed, Inc. Replacement heart valve
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10568739B2 (en) 2013-05-03 2020-02-25 Medtronic, Inc. Valve delivery tool
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US11793637B2 (en) 2013-05-03 2023-10-24 Medtronic, Inc. Valve delivery tool
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US11065113B2 (en) 2015-03-13 2021-07-20 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US11730595B2 (en) 2015-07-02 2023-08-22 Boston Scientific Scimed, Inc. Adjustable nosecone
US10856973B2 (en) 2015-08-12 2020-12-08 Boston Scientific Scimed, Inc. Replacement heart valve implant
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US11382742B2 (en) 2016-05-13 2022-07-12 Boston Scientific Scimed, Inc. Medical device handle
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US20170325938A1 (en) 2016-05-16 2017-11-16 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10709552B2 (en) 2016-05-16 2020-07-14 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US10828154B2 (en) 2017-06-08 2020-11-10 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US10898325B2 (en) 2017-08-01 2021-01-26 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11191641B2 (en) 2018-01-19 2021-12-07 Boston Scientific Scimed, Inc. Inductance mode deployment sensors for transcatheter valve system
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11229517B2 (en) 2018-05-15 2022-01-25 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11951007B2 (en) 2020-04-13 2024-04-09 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves

Also Published As

Publication number Publication date
AU2001271667A1 (en) 2002-01-14
WO2002001999A3 (en) 2004-01-15
EP1401358A2 (en) 2004-03-31
US6769434B2 (en) 2004-08-03
EP1401358A4 (en) 2006-10-04
US20020042651A1 (en) 2002-04-11
US20100217384A1 (en) 2010-08-26
EP1401358B1 (en) 2016-08-17
US20110118830A1 (en) 2011-05-19
WO2002001999A2 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
US6769434B2 (en) Method and apparatus for performing a procedure on a cardiac valve
US8956402B2 (en) Apparatus for replacing a cardiac valve
US8070801B2 (en) Method and apparatus for resecting and replacing an aortic valve
US7201761B2 (en) Method and apparatus for resecting and replacing an aortic valve
US8771302B2 (en) Method and apparatus for resecting and replacing an aortic valve
CA2360185C (en) Methods and devices for implanting cardiac valves
US8951280B2 (en) Cardiac valve procedure methods and devices
US9192467B2 (en) Valve prostheses
EP4183372A1 (en) Prosthetic valve for avoiding obstruction of outflow
EP2345380B1 (en) Cardiac valve procedure devices
EP1335683B1 (en) Percutaneous aortic valve
US20120203333A1 (en) Percutaneous aortic valve
AU2001295074A1 (en) Minimally-invasive annuloplasty repair segment delivery template system
WO2002028321A2 (en) Minimally-invasive annuloplasty repair segment delivery template system
CN215915077U (en) Delivery system for implantable tissue fixation devices
CN115804670A (en) Delivery system for implantable tissue fixation devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIACOR, INC.;REEL/FRAME:016883/0440

Effective date: 20041210

AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIACOR, INC.;REEL/FRAME:016793/0975

Effective date: 20041230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION