US20050065601A1 - Annuloplasty apparatus and methods - Google Patents

Annuloplasty apparatus and methods Download PDF

Info

Publication number
US20050065601A1
US20050065601A1 US10/985,768 US98576804A US2005065601A1 US 20050065601 A1 US20050065601 A1 US 20050065601A1 US 98576804 A US98576804 A US 98576804A US 2005065601 A1 US2005065601 A1 US 2005065601A1
Authority
US
United States
Prior art keywords
implant
annulus
valve
wire
annuloplasty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/985,768
Inventor
Andrew Lee
Norman Fung
John Nguyen
Nga Doan
Laurent Schaller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coalescent Surgical Inc
Original Assignee
Coalescent Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coalescent Surgical Inc filed Critical Coalescent Surgical Inc
Priority to US10/985,768 priority Critical patent/US20050065601A1/en
Publication of US20050065601A1 publication Critical patent/US20050065601A1/en
Priority to US12/880,823 priority patent/US8167933B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve

Definitions

  • the invention relates to heart valve repair and particularly to annuloplasty apparatus and methods.
  • the invention is especially useful in mitral valve annuloplasty procedures, which generally involve mitral insufficiency (e.g., regurgitation when the mitral valve does not properly close).
  • the valves have either two or three cusps, flaps, or leaflets, which comprise fibrous tissue that attaches to the walls of the heart.
  • the cusps open when the blood flow is flowing correctly and then close to form a tight seal to prevent backflow.
  • the four chambers are known as the right and left atria (upper chambers) and right and left ventricles (lower chambers).
  • the four valves that control blood flow are known as the tricuspid, mitral, pulmonary, and aortic valves.
  • the tricuspid valve allows one-way flow of deoxygenated blood from the right upper chamber (right atrium) to the right lower chamber (right ventricle).
  • the pulmonary valve allows one-way blood flow from the right ventricle to the pulmonary artery, which carries the deoxygenated blood to the lungs.
  • the mitral valve also a one-way valve, allows oxygenated blood, which has returned to the left upper chamber (left atrium), to flow to the left lower chamber (left ventricle). When the left ventricle contracts, the oxygenated blood is pumped through the aortic valve to the aorta.
  • mitral valve insufficiency also known as mitral regurgitation
  • mitral regurgitation is a common cardiac abnormality where the mitral valve leaflets do not completely close when the left ventricle contracts. This allows blood to flow back into the left atrium, which then requires the heart to work harder as it must pump both the regular volume of blood and the blood that has regurgitated back into the left atrium. Obviously, if this insufficiency is not corrected, the added workload can eventually result in heart failure.
  • valve replacement One option to correct valve defects is complete valve replacement. This intervention, however, is quite invasive and traumatic. There are more conservative surgical interventions that are less traumatic than implanting valvular prostheses. These approaches include valve leaflet repair, chordae tendinae shortening or replacement, and or valve annulus repair also known as annuloplasty. One example where annuloplasty procedures have been developed is in the field of mitral valve insufficiency correction.
  • Mitral valve insufficiency typically results from a change in the size and shape of the mitral valve annulus.
  • Mitral valve annuloplasty involves reestablishing the normal shape and size of the mitral valve annulus so that it can effect full closure of the valve leaflets.
  • C-shaped bands or partial annuloplasty rings also have been developed. These devices can be attached solely to the posterior portion of the valve annulus which eliminates the need to attach material to the anterior portion of the annulus.
  • the annulus is fibrous and generally does not require plication and/or reinforcement.
  • the partial rings can preserve the normal function of the anterior portion of the annulus.
  • Full and partial ring devices are disclosed, for example, in U.S. Pat. No. 3,656,185, which issued to Carpentier.
  • the O'Connor patent discloses a plication approach, particularly suitable for use with an annuloplasty operation on heart valves (e.g., mitral or tricuspid valves).
  • the approach involves a ligament, which can comprise a wide, flexible strip of expanded polytetrafluorethylene or similar material, and sutures to retain the ligament in place.
  • the ligament has at least an end of constricted diameter and a needle attached thereto, or it can have two constricted ends and a needle attached to each of the ends.
  • This construction permits the ligament to be drawn through an area of tissue to be plicated. Once in place, a first end of the ligament is anchored, preferably with sewing of conventional sutures through the ligament, and the tissue is cinched along the length of the ligament to provide the desired amount of plication. Once the tissue is correctly oriented, the second end of the ligament is then likewise anchored in place, again preferably through the use of a suture sewn through the ligament.
  • the Howanec patent describes a system that includes an elongate flexible band with a needle attached to one end of the band and a fit adjuster attached to the other end of the band.
  • the needle is used to introduce the band into the atrioventricular groove (hereafter “AV groove”) and then pull a portion of the band out of the tissue.
  • AV groove atrioventricular groove
  • a fit adjuster is used to couple the exposed ends of the band and size and position the band in the annulus.
  • the band is pulled to cinch the tissue in the AV groove until the valve annulus is reconfigured to an optimal shape, the band can be secured to the valve annulus with sutures and the exposed portions of the annuloplasty system removed.
  • the Cox patent describes a system that comprises a combined annuloplasty ring implant, which has a rigid section and a flexible section.
  • a needle is coupled to one end of the implant.
  • the needle facilitates introducing the implant into the fatty pad of the AV groove, which surrounds the valve annulus, at one end of the posterior portion of the annulus and pulling one end portion of the implant out of the AV groove in the vicinity of the other end of the posterior portion of the annulus.
  • the flexible section of the ring extends adjacent to the flexible posterior portion of the annulus, while the rigid section of the ring spans the substantially rigid inter-trigone section of the annulus. Cox advances that with this procedure one need not suture the flexible section directly to the mitral valve annulus, thereby substantially eliminating scarring and stiffening of the annulus.
  • the flexible material is also elastic to accommodate the expansion and contraction of the annulus, in addition to flexing.
  • the system further includes means for joining the ends of the ring, which are positioned along the inter-trigone section, after the needle is removed. Sutures can be added to secure the annuloplasty ring to the annulus, for example, along the inter-trigone section.
  • annuloplasty ring and band recipients are required to undergo anticoagulation therapy for a minimum of several months post-operatively due to the high risk of prosthesis-induced thrombosis.
  • anticoagulation therapy increases the risk of bleeding complications due to the inhibition of blood clot formation.
  • the present invention involves annuloplasty systems that avoid problems and disadvantages of the prior art.
  • the present invention involves an annuloplasty system for repairing a valve in a patient's heart.
  • the system comprises a surgical implant, which includes a member having first and second end portions.
  • the implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus.
  • the implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member to anchor the implant in tissue such as the mitral or tricuspid valve annulus.
  • the system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the anterior annulus of the tricuspid valve) and reinforcement of a valve annulus.
  • the partial ring configuration may reduce or minimize the risk of stenosis as compared to more bulky systems using full rings. This configuration also can reduce the amount of prosthetic material that is exposed to blood flow, thus, minimizing or eliminating the requirement for post-operative anticoagulation. Further, since the ends are not joined, the surgeon need not place anything on the anterior portion of the annulus (in the case of mitral valve repair), which otherwise could obstruct flow intake.
  • clips can be used in lieu of sutures to anchor or fasten the implant in the desired position. This eliminates cumbersome suturing approaches, simplifies implantation as compared to conventional methods, and facilitates minimally invasive (e.g., endoscopic) approaches to valve annuloplasty (e.g., mitral or tricuspid valve annuloplasty).
  • minimally invasive e.g., endoscopic
  • valve annuloplasty e.g., mitral or tricuspid valve annuloplasty
  • the implant member has a small cross-sectional dimension, but it is curved to form an implant of much greater overall transverse dimension or diameter.
  • the implant member can comprise a wire formed to have, for example, an undulating configuration adapted for implantation within the valve annulus.
  • the implant wire with a wire diameter for example, can range from about 0.002 to 0.062 inches, yet have an overall transverse dimension (measured from peak to trough) of about 0.010 to 0.375 inches.
  • the overall transverse dimension which also may be described as the width or amplitude of the undulating member, taken along a portion of the implant is about 5 to 10 times greater than the implant wire diameter.
  • the curved wire construction of the present invention also can be configured to provide desirable flexibility so that the implant can comply with annulus flexure during normal cardiac function.
  • the implant also can be configured to be axially elastic or compliant. With such axial elasticity, the implant can expand and contract to accommodate annulus expansion and contraction during relaxation (i.e., expansion) and contraction of the left ventricle.
  • the implant member can comprise a wire formed to have a plurality of loops formed therein.
  • Anchors or sutures can be attached to the loops and tissue to secure the implant member to the tissue.
  • the wire diameter typically is about 0.002 to 0.062 inches and the diameter of the loops preferably range from about 0.010 to 0.050 inches.
  • a needle can be releasably coupled to one end of the implant.
  • the needle simplifies implant delivery and avoids the need for time-consuming suture procedures.
  • FIG. 1A is a perspective view of an annuloplasty system constructed in accordance with the present invention.
  • FIG. 1B is a longitudinal sectional view of the annuloplasty system depicted in FIG. 1 .
  • FIG. 1C is a variation of the annuloplasty system of FIG. 1 .
  • FIGS. 2A, 2B , 2 C, and 2 D diagrammatically show release of the implant illustrated in FIG. 1 .
  • FIG. 3A is a perspective view of the pivotally mounted retainer illustrated in longitudinal and transverse positions in FIGS. 2A-2D .
  • FIG. 3B is an end view taken along line 3 B- 3 B in FIG. 3A .
  • FIG. 3C is a sectional view taken along line 3 C- 3 C in FIG. 3A .
  • FIGS. 4A and 4B depicts a straight and curved embodiment of the implant shown in FIG. 1A .
  • FIGS. 5A, 5B , 5 C, 5 D, and 5 E diagrammatically illustrate a method using of the annuloplasty system of FIG. 1 .
  • FIGS. 6A, 6B , 6 C, 6 D, and 6 E diagrammatically illustrate another method of using the annuloplasty system of FIG. 1A .
  • FIGS. 7A, 7B , 7 C, and 7 D diagrammatically illustrate a further method of using the annuloplasty system of FIG. 1A .
  • FIG. 8A shows another annuloplasty system in accordance with principles of the present invention.
  • FIG. 8B is a sectional view of the release mechanism of FIG. 8A taken along line 8 B- 8 B.
  • FIG. 8C is a sectional view of taken along line 8 C- 8 C in FIG. 8B .
  • FIG. 9 diagrammatically illustrates one juncture configuration between one of the surgical clips and the implant member of FIG. 8A .
  • FIGS. 10A, 10B , 10 C, 10 D, and 10 E show a method of using the annuloplasty system of FIG. 8A .
  • FIG. 11 is a perspective view of the delivery and release apparatus of FIG. 1 coupled to a self-closing clip such as the self-closing clip of FIG. 11 .
  • FIGS. 12A, 12B , 12 C, and 12 D diagrammatically illustrate the operation of one release apparatus for use with the system of FIGS. 1 or 11 .
  • FIGS. 13A, 13B , 13 C, and 13 D diagrammatically illustrate the operation of another release apparatus for use with the system of FIGS. 1 or 11 .
  • FIGS. 14A, 14B , 14 C, and 14 D diagrammatically illustrate the operation of yet another release apparatus for use with the system of FIGS. 1 or 11 .
  • FIG. 1 illustrates an annuloplasty system 100 constructed in accordance with the principles of the invention.
  • Annuloplasty system 100 generally comprises an implant member 102 , a flexible member 104 , and a needle 106 .
  • system 100 also includes anchors or stoppers 112 ( FIG. 1A ) and 114 ( FIG. 1B ) and a release mechanism 108 to releasably couple the implant to the flexible member.
  • the distal end of the implant member may have an enlarged portion 110 as shown in the drawings.
  • a stopper or anchor 112 preferably in the form of a disc and preferably welded to the distal end of the implant member, may be provided adjacent to the enlarged portion 110 .
  • another stopper or anchor 114 may be provided adjacent to the implant's proximal enlarged portion 116 as shown in FIG. 1B . Stopper or anchors 112 and 114 also may referred to as retainers. Stopper 114 will be described in further detail in the discussion of FIGS. 2A-2D and 3 A- 3 C. Pledgets 118 and 120 (see e.g. FIG.
  • TEFLON® polytetrafluoroethylene material or DACRON® synthetic polyester textile fiber
  • DACRON® synthetic polyester textile fiber also may coupled to the implant adjacent to the stoppers to minimize or eliminate the risk of having the implant tear the tissue in which is it embedded.
  • release mechanism 108 generally includes a plurality of arms or cables 122 , which releasably engage enlarged portion 116 of implant 102 , and a sleeve 124 that retains the arms 122 in a closed configuration such that enlarged portion 116 is locked or secured therein.
  • Arms 122 have notches 126 and 128 ( FIG. 2D ) formed therein to form inner annular grooves 130 and 132 , respectively.
  • Annular groove 130 holds or retains enlarged portion 116 and annular groove 132 holds or retains enlarged portion 134 , which is formed on the end of cable or wire 136 , which, in turn, is secured to needle 106 .
  • a band 138 is fit into an outer annular channel 140 ( FIG. 2C ), which is formed by forming notches 142 in the outer surface of cables or arms 122 .
  • Band 138 retains the portion of the bundle of cables or arms 122 adjacent thereto tightly together so that enlarged portion 134 remains secured therein.
  • a flexible tubular member 104 is provided between needle 106 and release mechanism sleeve 124 .
  • one end oftubular member receives one end of release mechanism sleeve 124 .
  • Release mechanism sleeve 124 is sufficiently flexible so that it can slide within tubular member 104 as it is retracted or removed from the bundle of cables or arms 122 to release enlarged portion 116 and, thus, implant member 102 as will be described in more detail below.
  • the other end of tubular member 104 together with the end of wire 136 is inserted in a recess 146 ( FIG. 1B ) formed in the needle and secured therein such as by swaging.
  • FIG. 1C a variant of the system illustrated in FIG. 1B is shown where tubular member 104 is eliminated and the tubular sleeve 124 of the release mechanism 108 is directly coupled to the needle.
  • a needle 106 ′ is formed with a deep recess 146 ′ so that release mechanism sleeve 124 can sufficiently slide into the recess and be sufficiently removed from the cable bundle to release enlarged portion 116 and, thus, implant 102 .
  • FIGS. 2A-2D sequentially depict release of implant member 102 , which in the illustrated embodiments includes straight portion 102 ( a ) and undulating portion 102 ( b ) the length of which is indicated in FIG. 2D with reference characters “ a ” and “ b ,” respectively.
  • the surgeon or assistant can slide pledget 120 over needle 106 , tube 104 , and release mechanism 108 ( FIG. 2A ) so that it can be positioned adjacent to undulating portion 102 ( b ) of the implant prior to actuating release of the implant member ( FIG. 2B ).
  • Sleeve 124 is retracted and drawn into tubular member 104 first releasing pivotally mounted stopper or anchor 114 , which also may be referred to as a retainer, so that it may pivot to a transverse position relative to the wire of which the illustrated implant comprises. As sleeve 124 is further retracted, it releases arms 122 of release mechanism 108 , which in turn release enlarged portion 116 of implant member 102 ( FIG. 2D ). Since sleeve 124 biases arms 122 , which normally assume the radially outward expanded configuration shown in FIG. 2D , to the closed configuration shown in FIGS. 2 A-C, the arms open as shown in FIG. 2D when sleeve 124 is retracted.
  • proximal stopper or anchor 114 which also may be referred to as a retainer, is shown in further detail.
  • Stopper 114 can be formed from a tube by removing two half tubular sections as shown in the drawings. One can remove one have tubular section along one section of the tube and another half tubular section along another section of the tube on the other side thereof as illustrated in FIGS. 3 A-C. As shown, surfaces 112 ( a ) and 112 ( b ) can be angled to simplify the material removal process in forming stopper 112 .
  • undulating portion 102 ( b ) of implant 102 can comprise a wire, which is formed so that it is generally two-dimensional (flat or planar) and straight as previously shown prior to implantation.
  • a curved, arc-shaped, or crescent shaped undulating wire member that is generally two-dimensional (flat or planar) can be used for implantation as shown in FIG. 4B .
  • These configurations afford orientation stability when embedded in a mitral valve annulus, for example and as will be further described below, while minimizing the size or bulk of the implant. It is believed that the reduced valve implant bulk can reduce the risk of thrombosis.
  • the undulating portion also may be formed so that it has two and three dimensional portions or so that is entirely three dimensional, the two dimensional variation is believed to offer optimal stability.
  • the wire diameter can vary from application to application. For example, when applied to normal human mitral valves, it can range from about 0.002 to 0.062 inches, more preferably in the range of about 0.005 to 0.015 inches, and typically will be about 0.089 inches.
  • the wire diameter range is the same when applied to tricuspid valves.
  • the transverse dimension or width “W” ( FIG. 2C ) of the undulating member can range from about 0.010 to 0.375 inches and thus can be 5 to 10 times greater than the wire diameter.
  • the implant length also can vary depending on the application. When used for mitral annuloplasty it is embedded in the annulus from one trigone to the other trigone. Therefore, its length ranges from about 25 to 85 mm when applied to normal adult human mitral valves. When applied to human tricuspid valves it is implanted along the posterior annulus and extends in a circumferential direction from trigone to trigone, and its length can be in the same ranges.
  • the implant or implant wire preferably comprises a shape memory alloy or elastic material.
  • shape memory material has thermal or stress relieved properties that enable it to return to a memory shape. When stress is applied to shape memory alloy material causing at least a portion of the material to be in its martensitic form, it will retain its new shape until the stress is relieved. Then it returns to its original, memory shape. On the other hand, when shape memory material is cooled to where it is in its martensitic form and then deformed, it retains the deformed shape until its temperature is increased so that the material becomes austenitic. Then it returns to its original, memory shape.
  • One preferred shape memory material for the implant member is nitinol.
  • the shape memory wire (e.g., nitinol) can be shape set into the undulating configuration by weaving the wire through a fixture having a row of rods and affixing the two ends of the nitinol wire under tension.
  • the nitinol wire can be shape set by press molding using a mold with a crimped pattern.
  • the heat treatment to permanently set the shape of the nitinol wire can be achieved by heat-treating in either a convection oven or bath at a temperature range of 100 to 600° C. for a duration of 2 to 20 minutes.
  • the distal stopper can be welded to one end of the shape set imbedded wire.
  • the retractable stopper is loaded onto the proximal end of the imbedded wire.
  • a ball is formed onto the proximal end of the imbedded wire by welding.
  • the release mechanism is assembled with a flexible member and a taper component to transition from the flexible member to the release mechanism.
  • the release mechanism is attached to the ball of the imbedded wire at the proximal end and the retractable stopper is placed into its retracted position within the release mechanism component. Then, a needle is swaged onto the flexible member.
  • annuloplasty system 100 for mitral valve annuloplasty is shown in accordance with the present invention.
  • MV competent mitral valve
  • the left ventricle then pumps the oxygenated blood to the rest of the body.
  • the mitral valve comprises a pair of leaflets, the anterior leaflet (AL) and the posterior leaflet (PL) of which the latter is larger.
  • the base of each leaflet is attached to the mitral valve annulus (MVA).
  • the mitral valve annulus includes a posterior portion (PP) and an anterior portion (AP) also known as the inter-trigone section, which is a generally straight substantially rigid section.
  • the posterior portion of the annulus is a flexible, curved section that encompasses a larger portion of the annulus circumference than the anterior portion.
  • the right and left fibrous trigones (generally indicated with reference characters RT and LT) mark the end of the generally straight section (inter-trigone section) and define the intersection points between the posterior and anterior portions (PP, AP).
  • the leaflets open and close in response to pressure differences on either side of thereof. However, when the leaflets do not fully close, regurgitation and valve insufficiency can result.
  • One method to treat the insufficiency using the annuloplasty system of FIG. 1 will be described with reference to FIGS. 5B-5E .
  • needle 106 of annuloplasty system 100 is passed though the endocardium and the left atrial myocardial wall and into the right fibrous trigone (RT).
  • the needle is then moved in a clockwise direction through the fibrous structure of mitral valve annulus toward the left fibrous trigone (LT).
  • the needle is passed back through the left atrial myocardial wall from the epicardium and back through the endocardium at the left fibrous trigone ( FIG. 5C ).
  • the needle is further drawn from the annulus until the release mechanism is fully withdrawn from the annulus and above the tissue surface. This preloads the implant wire and plicates the annulus.
  • Pledget 120 is drawn over the needle and slid over the flexible member and release mechanism and then positioned between the undulating implant member and the release mechanism as described above.
  • the surgeon withdraws sleeve 124 , thereby releasing implant member 102 from the release mechanism 108 , flexible member 104 , and needle 106 , and deploying proximal retainer or anchor 112 so that is opens to its active position as previously shown in FIGS. 2C and 2D and here in FIG. 5E where both retainers or anchors are firmly set at the fibrous trigones.
  • the needle can be introduced through the left fibrous trigone and withdrawn from the right fibrous trigone.
  • the undulating wire is fully embedded within the valve annulus with the anterior and posterior leaflets restored in a sealed configuration.
  • the only non-embedded, blood contacting components are the anchors or retainers 112 and 114 , which are positioned at the two fibrous trigones (RT, LT). Due to the implant wire's undulating configuration, the wire can be elongated in the axial direction. In the elongated condition (partially in FIG. 5C and fully in FIG. 5D ), the wire, which has shape memory to regain its original unloaded length, applies a recoil force to draw the two ends of the implant together in the axial direction.
  • the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size ( FIG. 5C ).
  • the procedure generally provides annuloplasty plication and reinforcement, while maintaining annular compliance.
  • FIGS. 6A-6E a variation on the procedure described above is illustrated.
  • This procedure is the same as that shown in FIGS. 5A-5E with the exception that needle 106 is not drawn through the entire posterior annulus in a single pass.
  • the surgeon makes multiple bites (see FIGS. 6B and 6C ) with the needle to cover the distance of the posterior annulus.
  • the procedure is completed in the same way as that described above ( FIGS. 6D & E are the same as FIGS. 5D & E)
  • FIGS. 7A-7D a further variation on the procedures described above is illustrated.
  • multiple undulated implants are used to span the length of the posterior annulus.
  • two implants are used to span the annulus.
  • the initial needle penetration occurs at either fibrous trigone.
  • a needle bite length segment of wire is terminated with each needle bite resulting in the plication of discrete sections of the annulus.
  • Subsequent wire segments are penetrated at and are linked to the terminating distal retainer 112 . In this manner, separate, but joined wire segments span the posterior annulus to the opposite fibrous trigone resulting in the plication of the entire posterior annulus and reduction in annular size.
  • the implant member returns to its memory shape upon stress release (i.e., actuation of release mechanism 108 ).
  • stress release i.e., actuation of release mechanism 108
  • the tissue and pulling forces placed on the device to pull it into position cause it to axially expand.
  • the release mechanism is actuated, thereby removing the pulling force and allowing the implant to axially contract toward its memory shape.
  • the device can be designed to have thermal properties to return to its memory shape at a predetermined temperature. It can be deformed at a first temperature to generally remove or reduce the amplitude(s) or period(s) of the undulations and then inserted into the tissue. After insertion, its temperature rises to the predetermined temperature and it assumes its original, undulating memory configuration. As it returns to its memory shape, it axially contracts and decreases the circumferential dimension of the valve annulus.
  • the wire can be flat.
  • the undulations can have varying or changing amplitude or frequency.
  • the radius of the crests and troughs also can vary from implant to implant or within a single implant.
  • the implant wire can be a single length of wire as shown in the drawings or it can be made up of multiple lengths of wire joined together.
  • the undulating implant can provide high strength and elasticity to material volume (or diameter) ratio.
  • the implant configuration and construction can provide desirable elasticity that allows for physiological motion in the linear direction (annular dilatation) and planar surface. Since the undulating member can be self-terminating at the trigones, it does not require knot tying, connectors, or cutting.
  • the implant can be less traumatic to the annular tissue as compared to other devices. For example, it does not require multiple suture passes.
  • the implant configuration and placement also can minimize the amount of implant surface that comes into contact with blood flow.
  • Annuloplasty system 200 generally comprises an implant member 202 , anchors comprising or in the form of surgical clips 204 coupled to ends of implant member 202 , flexible members or wires 206 , release mechanisms 208 , which releasably couple the flexible members to implant member 202 , and tissue piercing members or needles 210 , which are secured to the flexible members or wires 206 .
  • Implant member 202 can be straight (not shown), or crescent or arc-shaped so as to form a partial ring as shown in FIG. 8A .
  • Implant member 202 has a plurality of attachment loops 212 formed therein such as by folding the wire of which the implant comprises according to this embodiment.
  • loops 212 may be separately formed and secured to implant member 202 by welding, soldering or other suitable process.
  • the loops are equidistantly spaced from one another.
  • each anchor-clip, release mechanism, flexible member and needle combination forms a tissue connector assembly 214 similar to tissue connector assemblies described in U.S. patent application Ser. Nos. 09/089,884 and 09/090,305 both filed Jun. 3, 1998 and Ser. Nos. 09/259,705 and 09/260,623 both filed Mar. 1, 2000 and International Application Nos. PCT/US99/12563 and PCT/US99/12566 both filed Jun. 3, 1999 and published under International Publication Nos. WO 99/62409 and WO 99/62406, all of which are hereby incorporated by reference herein. Although one tissue connector assembly configuration is shown herein, any other suitable assemblies described in the applications cited in the preceding sentence can be used.
  • tissue connector assemblies having self-closing clips which can be characterized as having two end points, which tend to come closer together either by elasticity or so-called pseudoelasticity.
  • a clip may be made by heat-treating a NiTi wire to a certain temperature and time to have a desired undeformed shape.
  • the surgical clip generally comprises a wire, preferably, comprise shape memory alloy.
  • each clips preferably has two end points, an unbiased closed configuration, the ability to be moved or biased to an open configuration, the tendency to return to the naturally closed memory configuration, which reduces the separation between the two end points as compared to the spaced end point orientation when the clip is in an open configuration.
  • the clips disclosed in aforementioned U.S. and PCT patent applications describe a clip comprising a deformable wire made of a shape memory alloy, which clip can assume a U-shape when in the open configuration and one example of a suitable clip for this embodiment of the present invention.
  • Such a clip may be deployed, for example, in the form of a single-arm clip assembly as shown in FIG. 8A and designated with reference numeral 214 and as generally described in the aforementioned U.S. patent applications Ser. Nos. 09/089,884 and 09/090,305, and the section of International Application No. PCT/US99/12566 from page 10, line 10 through page 11, line 21, which section and accompanying FIG. 1 is hereby specifically incorporated by reference herein.
  • the ends of the clip coil 204 ( b ) are constrained with the coil in compression to urge or bias clip wire 204 ( a ) into a generally U-shaped open configuration.
  • a release mechanism 208 such as disclosed in aforementioned U.S. patent application Ser. No. 09/260,623 (or International Application No. PCT/US99/12566, which published on Dec. 9, 1999 under International Publication No. WO 99/62406 is provided so that clip wire 204 ( a ) can readily be released by squeezing the release mechanism with a surgical instrument.
  • One suitable release mechanism is specifically described in International Application No. PCT/US99/12566 from page 25, line 12 through page 27, line 30 ending with the text “mechanism 23 c ” (but without the text “such as needle 17 as shown in FIG. 1” on line 27 of page 27) and the referenced figures are hereby incorporated by reference herein.
  • a summary of such a release mechanism is provided below with reference to FIGS. 8B and 8C .
  • release mechanism 208 generally comprises a plurality of substantially rigid strands, cables or wires 216 (which are the same as cables or strands 122 in FIG. 1B ).
  • Cables 208 can be metal and are arranged substantially parallel to one another and circularly about a longitudinal axis.
  • the hidden end portions of the strands are coupled to tapered section “T,” which is coupled to piercing member a needle 210 .
  • the strands can be coupled to rod 218 , which is fixed to the tapered section.
  • End portions of the strands include notches, which form a chamber 220 for releasably receiving and/or holding enlarged portion “E 1 ” of the clip and/or fastener wire 204 ( a ) which also has and enlarged portion “E 2 ” at its other end to facilitate compression of coil 204 ( b ).
  • the notches preferably are placed about 0.015 inches from the free ends of the strands, but this distance can vary depending upon the desired compression on the coil or spring 204 ( b ).
  • a shrink wrap layer 222 preferably in the form of tubing, is provided around at lest the free end portions of the strands and the shrink wrap heated to compress against the strands and hold them in place against enlarged wire portion “E 1 ” to effectively hold the enlarged portion captive until the shrink wrap is squeezed, the strands displaced and the enlarged portion released.
  • implant member 202 and the surgical clip can be formed from a single element or wire.
  • a single wire forms the surgical clip and implant member 202 .
  • clip wire 204 ( a ) is long enough to form implant member 202 . It can also form a similar clip wire at the other end of the implant as well.
  • the wire can be passed through a washer 224 ( FIG. 9 ) or similar device having a hole formed therethrough and the washer secured to the wire by swaging, for example.
  • the washer is placed at a location along the wire to provide the desired compression of coil 204 ( b ).
  • a clip having an enlarged portion E 2 can be used and the enlarged portion E 2 secured to the implant member 202 by any suitable means such as welding.
  • the loops and the general curve shape of member 202 are made from the same piece of wire.
  • the loops are formed by wrapping the wire around mandrels.
  • the mandrels are arranged in the general curve shape, thus giving the appearance of loops superposed onto a general curve shape.
  • Wire cross section diameters can range from about 0.002 to 0.062 inches.
  • Loop diameters can range from about 0.010 to 0.050 inches.
  • the radius of curvature of the overall implant member 202 , having loops formed therein, can range from about 0.25 to 1.25 inches, but can be made to any radius.
  • the straight-line distance between the ends of the implant member 202 (between washers 224 ) ranges from about 0.5 to 2.5 inches.
  • the length of the implant member (measured from washer 224 to washer 224 ) can range from about 0.75 to 3.0 inches.
  • the profile is essentially the thickness of prosthetic material attached to the annulus. The smaller the diameter, the lower the profile. Lower profile may prevent nonphysiological blood flow, which can lead to undesirable hemodynamic effects, e.g., thrombosis, disruption of red blood cells, or slower tissue healing.
  • the last loop is the one that abuts washer 224 , which is passed onto the multiloop member and crimped to act as a stopper for the coil 204 ( b ), which surrounds a portion of the wire that forms the implant member and surgical clip.
  • the release mechanism 208 compresses the coil against washer or constraint 224 , which maintains the surgical clip in a U-shaped configuration.
  • implant member 202 is implanted onto the mitral valve annulus of the target mitral valve such that the implant member or wire is attached to the surface of the annular tissue.
  • the implant member or wire is secured along the posterior annulus with the ends of the implant member secured to the annulus at the two fibrous trigones.
  • the surgeon first secures tissue connector assemblies 214 at the right and left fibrous trigones. This is accomplished by threading needles 210 into the fibrous structure of the annulus and then drawing the needles out from the annulus sufficiently so that anchors 204 extend out from the annulus at incisions “I.”
  • a 5-0 needle can be used in this example.
  • Release mechanisms 208 are squeezed to release the anchors 204 from the release mechanisms 208 , flexible members 206 , and needles 210 and allow anchors to close as shown in FIG. 10B .
  • discrete or individual tissue connector assemblies 214 are passed through loops 212 ( FIG. 10C ) and released so that the clips or anchors 204 of the individual tissue connector assemblies close and secure the loops to the tissue as shown in FIG. 10D , which shows inserting clips 204 radially.
  • the anchors or clips 204 can be inserted circumferentially as shown in FIG. 10E .
  • the attachment loops provide elasticity and act as torsion springs.
  • the spring properties generally provide elasticity.
  • the implant having shape memory to regain its original unloaded length, applies a recoil force to draw the two ends together along the length of the implant.
  • the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size.
  • the preloaded condition of the implant wire continues to provide a reinforcement force to prevent further dilation of the valve annulus.
  • the elastic nature of the loops allow for the natural compliance and physiological motion of the annulus.
  • the low profile characteristic of the implant as compared to conventional annuloplasty rings or bands reduces the amount or volume of prosthetic material that is exposed to blood flow. This can substantially reduce the need for post-operative anticoagulation therapy.
  • annuloplasty system 200 has been described with self-closing clip type anchors, other surgical clips can be used as anchors such as that disclosed in U.S. Pat. No. 5,972,024, which issued to Northrop, III et al. Further, sutures can be used to form the anchors as will be discussed in more detail below.
  • FIGS. 8 A-C Although a particular system embodiment having two clip anchors, release mechanisms, and delivery needles has been described and illustrated in FIGS. 8 A-C, variations of this system can be made within the scope of the invention.
  • only one clip anchor, release mechanism, and delivery member may be used.
  • the clip anchor with its release mechanism and delivery needle can be coupled to one end of the implant member as shown in FIG. 8A .
  • the other end of the implant member can be constructed to end with one of the loops illustrated in FIG. 8A . That loop is then sutured to the tissue with conventional suture techniques.
  • it can be secured to the tissue using a surgical clip such as any one of the clips described above.
  • both clip anchors and their release mechanisms and delivery needles can be eliminated and both ends of the implant member constructed to end in a loop as described above. Both loops can then be fastened to the tissue using a suture or clip as described with respect to the previous example.
  • the implant member can be a full ring and the loops secured to tissue thereunder.
  • the tissue connector assembly 400 generally comprises a needle 106 , tubular flexible member 104 , clip or anchor 204 (all of which have been described above) and a remote release mechanism “R.”
  • a remote release mechanism is especially advantageous where the operative space or field is limited such as in the case of valve annuloplasty.
  • FIGS. 12A-12D , 13 A- 13 D, and 14 A- 14 D Various remote release mechanisms in accordance with the invention are illustrated in FIGS. 12A-12D , 13 A- 13 D, and 14 A- 14 D.
  • the remote release mechanism “R” comprises a holding mechanism, such as the plurality of arms or wires 122 illustrated in FIGS. 2 A-D, and a sheath or tubular member for holding the holding mechanism closed, such as tubular member 124 illustrated in FIGS. 2 A-D and, therefore can be the same as release mechanism 108 .
  • the holding mechanism or member(s) when constructed for holding a clip or anchor, can comprise multiple strands, cables or wires 122 having a radially outward bias as shown in FIGS. 12A-12D , two halves 122 ′ of hypodermic tubing as shown in FIGS. 13A-13D (with recesses 126 ′ for receiving the surgical clip and having an inner diameter less than the diameter of enlarged portion E 2 ), or one piece of hypodermic tubing 122 ′′ as shown in FIGS. 14A-14D . That is the holding mechanism has recesses 126 , 126 ′, or 126 ′′ formed therein to receive and/or hold the enlarged end E 2 of the clip or anchor 204 . In the embodiment of FIGS.
  • the strands 122 have notches 128 , as shown in FIGS. 2 A-D, to hold enlarged portion 134 .
  • Sleeve 124 is retracted to release the holding mechanism and the clip or anchor 204 as shown in FIGS. 12D, 13D , and 14 D. The longer the sleeve, the more remotely one can actuate release of the clip.
  • the hypodermic halves shown in FIGS. 13 A-D also have cut out portions that form arms 240 and collars 242 .
  • Collars 242 surround wire 136 and have inner diameters less than the diameter of enlarged portion or ball 134 to secure halves 122 ′ to wire 136 . In this manner, the delivery apparatus can be readily removed, while leaving the clip or anchor at the desired site.
  • the one-piece hypodermic tubing embodiment of FIGS. 14 A-D has a cut out to form a longitudinal opening for releasing a clip or anchor 204 from holding member 122 ′′.
  • the tubing also has cut outs to form arm 240 ′ and collar 242 ′ having an inner diameter less than the diameter of enlarged portion or ball 134 to secure the tubing to wire 136 and facilitate removal of the delivery apparatus, while leaving the clip or anchor at the desired site.

Abstract

An annuloplasty system for repairing a valve in a patient's heart comprises a surgical implant including a member having first and second end portions. The implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus. The implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member. The anchors are adapted to anchor the implant in tissue such as the mitral or tricuspid valve annulus. The system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the annulus of the tricuspid valve) and reinforcement of a valve annulus.

Description

    FIELD OF THE INVENTION
  • The invention relates to heart valve repair and particularly to annuloplasty apparatus and methods. The invention is especially useful in mitral valve annuloplasty procedures, which generally involve mitral insufficiency (e.g., regurgitation when the mitral valve does not properly close).
  • BACKGROUND OF THE INVENTION
  • Essential to normal heart function are four heart valves, which allow blood to pass through the four chambers of the heart in one direction. The valves have either two or three cusps, flaps, or leaflets, which comprise fibrous tissue that attaches to the walls of the heart. The cusps open when the blood flow is flowing correctly and then close to form a tight seal to prevent backflow.
  • The four chambers are known as the right and left atria (upper chambers) and right and left ventricles (lower chambers). The four valves that control blood flow are known as the tricuspid, mitral, pulmonary, and aortic valves. In a normally functioning heart, the tricuspid valve allows one-way flow of deoxygenated blood from the right upper chamber (right atrium) to the right lower chamber (right ventricle). When the right ventricle contracts, the pulmonary valve allows one-way blood flow from the right ventricle to the pulmonary artery, which carries the deoxygenated blood to the lungs. The mitral valve, also a one-way valve, allows oxygenated blood, which has returned to the left upper chamber (left atrium), to flow to the left lower chamber (left ventricle). When the left ventricle contracts, the oxygenated blood is pumped through the aortic valve to the aorta.
  • Certain heart abnormalities result from heart valve defects, such as valvular insufficiency. For example, mitral valve insufficiency, also known as mitral regurgitation, is a common cardiac abnormality where the mitral valve leaflets do not completely close when the left ventricle contracts. This allows blood to flow back into the left atrium, which then requires the heart to work harder as it must pump both the regular volume of blood and the blood that has regurgitated back into the left atrium. Obviously, if this insufficiency is not corrected, the added workload can eventually result in heart failure.
  • One option to correct valve defects is complete valve replacement. This intervention, however, is quite invasive and traumatic. There are more conservative surgical interventions that are less traumatic than implanting valvular prostheses. These approaches include valve leaflet repair, chordae tendinae shortening or replacement, and or valve annulus repair also known as annuloplasty. One example where annuloplasty procedures have been developed is in the field of mitral valve insufficiency correction.
  • Mitral valve insufficiency typically results from a change in the size and shape of the mitral valve annulus. Mitral valve annuloplasty involves reestablishing the normal shape and size of the mitral valve annulus so that it can effect full closure of the valve leaflets.
  • There have been a number of annuloplasty approaches to repair the mitral annulus of a patient's heart. Dr. Norberto G. De Vega developed a procedure in the early 1970s. One laces a suture along the periphery of a compromised portion of the heart valve. The suture is drawn in a “purse string” manner to cinch the tissue and reduce the size of the valve opening. Then the suture ends are knotted. Although the procedure can reduce the size of the valve opening and improve valve efficiency, it is not free from drawbacks. One disadvantage of this approach is that the sutures can pull out of the tissue and “guitar sting” across the valve annulus. The purse string also may cause tissue bunching, which may distort the natural shape of the valve.
  • Other approaches to improve valve function (e.g., with the mitral or tricuspid valves) include tissue plication devices and reinforcement of the valve annulus with annuloplasty rings. These approaches also are claimed to reestablish the original annulus size and shape and/or prevent further annulus dilation.
  • Both rigid and flexible annuloplasty rings have been developed. Rigid rings, which generally tend to dictate the shape and contour of the mitral valve annulus, have been considered to somewhat compromise the natural flexibility of the annulus. Flexible annuloplasty rings emerged to provide some degree of compliance in the valve annulus so that the valve could maintain normal physiological motion throughout the cardiac cycle of a beating heart. This is in addition to providing annulus reinforcement. However, it is believed that among the drawbacks of these rings is that they may fold or crimp during implantation and thereby undesirably reduce the size of the valve (e.g., mitral) opening. Also, the sutures used to secure the ring may cause scarring and stiffening of the valve annulus and reduce annulus flexibility over time.
  • C-shaped bands or partial annuloplasty rings also have been developed. These devices can be attached solely to the posterior portion of the valve annulus which eliminates the need to attach material to the anterior portion of the annulus. The annulus is fibrous and generally does not require plication and/or reinforcement. Thus, the partial rings can preserve the normal function of the anterior portion of the annulus. Full and partial ring devices are disclosed, for example, in U.S. Pat. No. 3,656,185, which issued to Carpentier.
  • Other attempts to improve upon valve repair procedures, including the De Vega approach and the use of rigid, flexible, and partial rings, include that described in U.S. Pat. No. 5,450,860, which issued to O'Connor, U.S. Pat. No. 6,183,512B1, which issued to Howanec, Jr. et al., and U.S. Pat. No. U.S. Pat. No. 6,250,308B1, which issued to Cox.
  • The O'Connor patent discloses a plication approach, particularly suitable for use with an annuloplasty operation on heart valves (e.g., mitral or tricuspid valves). The approach involves a ligament, which can comprise a wide, flexible strip of expanded polytetrafluorethylene or similar material, and sutures to retain the ligament in place. The ligament has at least an end of constricted diameter and a needle attached thereto, or it can have two constricted ends and a needle attached to each of the ends. This construction permits the ligament to be drawn through an area of tissue to be plicated. Once in place, a first end of the ligament is anchored, preferably with sewing of conventional sutures through the ligament, and the tissue is cinched along the length of the ligament to provide the desired amount of plication. Once the tissue is correctly oriented, the second end of the ligament is then likewise anchored in place, again preferably through the use of a suture sewn through the ligament.
  • The Howanec patent describes a system that includes an elongate flexible band with a needle attached to one end of the band and a fit adjuster attached to the other end of the band. The needle is used to introduce the band into the atrioventricular groove (hereafter “AV groove”) and then pull a portion of the band out of the tissue. After the band is so implanted into the AV groove, a fit adjuster is used to couple the exposed ends of the band and size and position the band in the annulus. After the band is pulled to cinch the tissue in the AV groove until the valve annulus is reconfigured to an optimal shape, the band can be secured to the valve annulus with sutures and the exposed portions of the annuloplasty system removed.
  • The Cox patent describes a system that comprises a combined annuloplasty ring implant, which has a rigid section and a flexible section. A needle is coupled to one end of the implant. The needle facilitates introducing the implant into the fatty pad of the AV groove, which surrounds the valve annulus, at one end of the posterior portion of the annulus and pulling one end portion of the implant out of the AV groove in the vicinity of the other end of the posterior portion of the annulus. The flexible section of the ring extends adjacent to the flexible posterior portion of the annulus, while the rigid section of the ring spans the substantially rigid inter-trigone section of the annulus. Cox advances that with this procedure one need not suture the flexible section directly to the mitral valve annulus, thereby substantially eliminating scarring and stiffening of the annulus. In one example, the flexible material is also elastic to accommodate the expansion and contraction of the annulus, in addition to flexing. The system further includes means for joining the ends of the ring, which are positioned along the inter-trigone section, after the needle is removed. Sutures can be added to secure the annuloplasty ring to the annulus, for example, along the inter-trigone section.
  • Other plication and valve repair approaches are disclosed in PCT International Patent Application Nos. PCT/US01/42653 and PCT/US01/31709, which are co-owned by the assignee of the present invention and entitled “Minimally Invasive Annuloplasty Procedure and Apparatus” and “Minimally Invasive Valve Repair Procedure and Apparatus,” respectively. These approaches, in-part, address various inherent disadvantages with prior open heart surgical procedures as described, for example, by F. Maisano, et al. in their article entitled “The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease” which appeared in European Journal of Cardio-thoracic Surgery, Vol. 17 (2000) 201-205. Disadvantages associated with such open-heart procedures include cumbersome suture management, timely knot tying steps, pain, and long recovery time.
  • Generally, known annuloplasty ring and band recipients are required to undergo anticoagulation therapy for a minimum of several months post-operatively due to the high risk of prosthesis-induced thrombosis. However, anticoagulation therapy increases the risk of bleeding complications due to the inhibition of blood clot formation.
  • Applicants believe that there remains a need for improved valvular repair apparatus and methods.
  • SUMMARY OF THE INVENTION
  • The present invention involves annuloplasty systems that avoid problems and disadvantages of the prior art. The present invention involves an annuloplasty system for repairing a valve in a patient's heart. The system comprises a surgical implant, which includes a member having first and second end portions. The implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus. The implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member to anchor the implant in tissue such as the mitral or tricuspid valve annulus. The system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the anterior annulus of the tricuspid valve) and reinforcement of a valve annulus.
  • The partial ring configuration may reduce or minimize the risk of stenosis as compared to more bulky systems using full rings. This configuration also can reduce the amount of prosthetic material that is exposed to blood flow, thus, minimizing or eliminating the requirement for post-operative anticoagulation. Further, since the ends are not joined, the surgeon need not place anything on the anterior portion of the annulus (in the case of mitral valve repair), which otherwise could obstruct flow intake.
  • According to another aspect of the annuloplasty system, clips can be used in lieu of sutures to anchor or fasten the implant in the desired position. This eliminates cumbersome suturing approaches, simplifies implantation as compared to conventional methods, and facilitates minimally invasive (e.g., endoscopic) approaches to valve annuloplasty (e.g., mitral or tricuspid valve annuloplasty).
  • According to one embodiment of the invention, the implant member has a small cross-sectional dimension, but it is curved to form an implant of much greater overall transverse dimension or diameter. In this embodiment, the implant member can comprise a wire formed to have, for example, an undulating configuration adapted for implantation within the valve annulus. The implant wire with a wire diameter, for example, can range from about 0.002 to 0.062 inches, yet have an overall transverse dimension (measured from peak to trough) of about 0.010 to 0.375 inches. Preferably, the overall transverse dimension, which also may be described as the width or amplitude of the undulating member, taken along a portion of the implant is about 5 to 10 times greater than the implant wire diameter. This construction facilitates implant stability and proper implant orientation with respect to the annulus, while minimizing implant bulk, which, in turn, can reduce or eliminate the risk of prostheses induced thrombosis.
  • The curved wire construction of the present invention also can be configured to provide desirable flexibility so that the implant can comply with annulus flexure during normal cardiac function. The implant also can be configured to be axially elastic or compliant. With such axial elasticity, the implant can expand and contract to accommodate annulus expansion and contraction during relaxation (i.e., expansion) and contraction of the left ventricle.
  • According to a further embodiment of the invention, the implant member can comprise a wire formed to have a plurality of loops formed therein. Anchors or sutures can be attached to the loops and tissue to secure the implant member to the tissue. The wire diameter typically is about 0.002 to 0.062 inches and the diameter of the loops preferably range from about 0.010 to 0.050 inches. As the annulus is secured to the loops, it conforms to the implant shape, which can be configured to reshape the annulus toward or to its original size and shape to improve or correct cardiac function.
  • According to a further aspect of the invention, a needle can be releasably coupled to one end of the implant. The needle simplifies implant delivery and avoids the need for time-consuming suture procedures.
  • The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of an annuloplasty system constructed in accordance with the present invention.
  • FIG. 1B is a longitudinal sectional view of the annuloplasty system depicted in FIG. 1.
  • FIG. 1C is a variation of the annuloplasty system of FIG. 1.
  • FIGS. 2A, 2B, 2C, and 2D diagrammatically show release of the implant illustrated in FIG. 1.
  • FIG. 3A is a perspective view of the pivotally mounted retainer illustrated in longitudinal and transverse positions in FIGS. 2A-2D.
  • FIG. 3B is an end view taken along line 3B-3B in FIG. 3A.
  • FIG. 3C is a sectional view taken along line 3C-3C in FIG. 3A.
  • FIGS. 4A and 4B depicts a straight and curved embodiment of the implant shown in FIG. 1A.
  • FIGS. 5A, 5B, 5C, 5D, and 5E diagrammatically illustrate a method using of the annuloplasty system of FIG. 1.
  • FIGS. 6A, 6B, 6C, 6D, and 6E diagrammatically illustrate another method of using the annuloplasty system of FIG. 1A.
  • FIGS. 7A, 7B, 7C, and 7D diagrammatically illustrate a further method of using the annuloplasty system of FIG. 1A.
  • FIG. 8A shows another annuloplasty system in accordance with principles of the present invention.
  • FIG. 8B is a sectional view of the release mechanism of FIG. 8A taken along line 8B-8B.
  • FIG. 8C is a sectional view of taken along line 8C-8C in FIG. 8B.
  • FIG. 9 diagrammatically illustrates one juncture configuration between one of the surgical clips and the implant member of FIG. 8A.
  • FIGS. 10A, 10B, 10C, 10D, and 10E show a method of using the annuloplasty system of FIG. 8A.
  • FIG. 11 is a perspective view of the delivery and release apparatus of FIG. 1 coupled to a self-closing clip such as the self-closing clip of FIG. 11.
  • FIGS. 12A, 12B, 12C, and 12D diagrammatically illustrate the operation of one release apparatus for use with the system of FIGS. 1 or 11.
  • FIGS. 13A, 13B, 13C, and 13D diagrammatically illustrate the operation of another release apparatus for use with the system of FIGS. 1 or 11.
  • FIGS. 14A, 14B, 14C, and 14D diagrammatically illustrate the operation of yet another release apparatus for use with the system of FIGS. 1 or 11.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • Referring to the drawings wherein like numerals indicate like elements, FIG. 1 illustrates an annuloplasty system 100 constructed in accordance with the principles of the invention. Annuloplasty system 100 generally comprises an implant member 102, a flexible member 104, and a needle 106. In the illustrated embodiment, system 100 also includes anchors or stoppers 112 (FIG. 1A) and 114 (FIG. 1B) and a release mechanism 108 to releasably couple the implant to the flexible member.
  • The distal end of the implant member may have an enlarged portion 110 as shown in the drawings. A stopper or anchor 112, preferably in the form of a disc and preferably welded to the distal end of the implant member, may be provided adjacent to the enlarged portion 110. Similarly, another stopper or anchor 114 may be provided adjacent to the implant's proximal enlarged portion 116 as shown in FIG. 1B. Stopper or anchors 112 and 114 also may referred to as retainers. Stopper 114 will be described in further detail in the discussion of FIGS. 2A-2D and 3A-3C. Pledgets 118 and 120 (see e.g. FIG. 2B), which may comprise any suitable material such as TEFLON® polytetrafluoroethylene material or DACRON® synthetic polyester textile fiber, also may coupled to the implant adjacent to the stoppers to minimize or eliminate the risk of having the implant tear the tissue in which is it embedded.
  • Referring to FIG. 1B, release mechanism 108 generally includes a plurality of arms or cables 122, which releasably engage enlarged portion 116 of implant 102, and a sleeve 124 that retains the arms 122 in a closed configuration such that enlarged portion 116 is locked or secured therein. Arms 122 have notches 126 and 128 (FIG. 2D) formed therein to form inner annular grooves 130 and 132, respectively. Annular groove 130 holds or retains enlarged portion 116 and annular groove 132 holds or retains enlarged portion 134, which is formed on the end of cable or wire 136, which, in turn, is secured to needle 106. A band 138 is fit into an outer annular channel 140 (FIG. 2C), which is formed by forming notches 142 in the outer surface of cables or arms 122. Band 138 retains the portion of the bundle of cables or arms 122 adjacent thereto tightly together so that enlarged portion 134 remains secured therein.
  • A flexible tubular member 104 is provided between needle 106 and release mechanism sleeve 124. Specifically, one end oftubular member receives one end of release mechanism sleeve 124. Release mechanism sleeve 124 is sufficiently flexible so that it can slide within tubular member 104 as it is retracted or removed from the bundle of cables or arms 122 to release enlarged portion 116 and, thus, implant member 102 as will be described in more detail below. The other end of tubular member 104, together with the end of wire 136 is inserted in a recess 146 (FIG. 1B) formed in the needle and secured therein such as by swaging.
  • Referring to FIG. 1C, a variant of the system illustrated in FIG. 1B is shown where tubular member 104 is eliminated and the tubular sleeve 124 of the release mechanism 108 is directly coupled to the needle. In this embodiment a needle 106′ is formed with a deep recess 146′ so that release mechanism sleeve 124 can sufficiently slide into the recess and be sufficiently removed from the cable bundle to release enlarged portion 116 and, thus, implant 102.
  • Returning to the embodiment of FIGS. 1A and 1B, FIGS. 2A-2D sequentially depict release of implant member 102, which in the illustrated embodiments includes straight portion 102(a) and undulating portion 102(b) the length of which is indicated in FIG. 2D with reference characters “a” and “b,” respectively. After the implant member is positioned in the desired location, the surgeon or assistant can slide pledget 120 over needle 106, tube 104, and release mechanism 108 (FIG. 2A) so that it can be positioned adjacent to undulating portion 102(b) of the implant prior to actuating release of the implant member (FIG. 2B). Sleeve 124 is retracted and drawn into tubular member 104 first releasing pivotally mounted stopper or anchor 114, which also may be referred to as a retainer, so that it may pivot to a transverse position relative to the wire of which the illustrated implant comprises. As sleeve 124 is further retracted, it releases arms 122 of release mechanism 108, which in turn release enlarged portion 116 of implant member 102 (FIG. 2D). Since sleeve 124 biases arms 122, which normally assume the radially outward expanded configuration shown in FIG. 2D, to the closed configuration shown in FIGS. 2A-C, the arms open as shown in FIG. 2D when sleeve 124 is retracted.
  • Referring to FIGS. 3A-C, proximal stopper or anchor 114, which also may be referred to as a retainer, is shown in further detail. Stopper 114 can be formed from a tube by removing two half tubular sections as shown in the drawings. One can remove one have tubular section along one section of the tube and another half tubular section along another section of the tube on the other side thereof as illustrated in FIGS. 3A-C. As shown, surfaces 112(a) and 112(b) can be angled to simplify the material removal process in forming stopper 112.
  • Although a particular implant configuration has been shown, other configurations can be used without departing from the scope of the invention. Referring to FIG. 4A, undulating portion 102(b) of implant 102 can comprise a wire, which is formed so that it is generally two-dimensional (flat or planar) and straight as previously shown prior to implantation. Alternatively, a curved, arc-shaped, or crescent shaped undulating wire member that is generally two-dimensional (flat or planar) can be used for implantation as shown in FIG. 4B. These configurations afford orientation stability when embedded in a mitral valve annulus, for example and as will be further described below, while minimizing the size or bulk of the implant. It is believed that the reduced valve implant bulk can reduce the risk of thrombosis. Although the undulating portion also may be formed so that it has two and three dimensional portions or so that is entirely three dimensional, the two dimensional variation is believed to offer optimal stability.
  • The wire diameter can vary from application to application. For example, when applied to normal human mitral valves, it can range from about 0.002 to 0.062 inches, more preferably in the range of about 0.005 to 0.015 inches, and typically will be about 0.089 inches. The wire diameter range is the same when applied to tricuspid valves. The transverse dimension or width “W” (FIG. 2C) of the undulating member can range from about 0.010 to 0.375 inches and thus can be 5 to 10 times greater than the wire diameter. The implant length also can vary depending on the application. When used for mitral annuloplasty it is embedded in the annulus from one trigone to the other trigone. Therefore, its length ranges from about 25 to 85 mm when applied to normal adult human mitral valves. When applied to human tricuspid valves it is implanted along the posterior annulus and extends in a circumferential direction from trigone to trigone, and its length can be in the same ranges.
  • The implant or implant wire preferably comprises a shape memory alloy or elastic material. As is well known in the art, shape memory material has thermal or stress relieved properties that enable it to return to a memory shape. When stress is applied to shape memory alloy material causing at least a portion of the material to be in its martensitic form, it will retain its new shape until the stress is relieved. Then it returns to its original, memory shape. On the other hand, when shape memory material is cooled to where it is in its martensitic form and then deformed, it retains the deformed shape until its temperature is increased so that the material becomes austenitic. Then it returns to its original, memory shape. One preferred shape memory material for the implant member is nitinol.
  • The shape memory wire (e.g., nitinol) can be shape set into the undulating configuration by weaving the wire through a fixture having a row of rods and affixing the two ends of the nitinol wire under tension. Alternatively, the nitinol wire can be shape set by press molding using a mold with a crimped pattern. The heat treatment to permanently set the shape of the nitinol wire can be achieved by heat-treating in either a convection oven or bath at a temperature range of 100 to 600° C. for a duration of 2 to 20 minutes. In assembling the system the distal stopper can be welded to one end of the shape set imbedded wire. The retractable stopper is loaded onto the proximal end of the imbedded wire. A ball is formed onto the proximal end of the imbedded wire by welding. The release mechanism is assembled with a flexible member and a taper component to transition from the flexible member to the release mechanism. The release mechanism is attached to the ball of the imbedded wire at the proximal end and the retractable stopper is placed into its retracted position within the release mechanism component. Then, a needle is swaged onto the flexible member.
  • Referring to FIGS. 5A-5D, an exemplary method of using annuloplasty system 100 for mitral valve annuloplasty is shown in accordance with the present invention. As noted above, a competent mitral valve (MV) allows one-way flow of oxygenated blood that has entered the left atrium from the lungs to enter the left ventricle. The left ventricle then pumps the oxygenated blood to the rest of the body.
  • Referring to FIG. 5A, the mitral valve (MV) comprises a pair of leaflets, the anterior leaflet (AL) and the posterior leaflet (PL) of which the latter is larger. The base of each leaflet is attached to the mitral valve annulus (MVA). The mitral valve annulus includes a posterior portion (PP) and an anterior portion (AP) also known as the inter-trigone section, which is a generally straight substantially rigid section. The posterior portion of the annulus is a flexible, curved section that encompasses a larger portion of the annulus circumference than the anterior portion. The right and left fibrous trigones (generally indicated with reference characters RT and LT) mark the end of the generally straight section (inter-trigone section) and define the intersection points between the posterior and anterior portions (PP, AP).
  • The leaflets open and close in response to pressure differences on either side of thereof. However, when the leaflets do not fully close, regurgitation and valve insufficiency can result. One method to treat the insufficiency using the annuloplasty system of FIG. 1 will be described with reference to FIGS. 5B-5E.
  • Referring to FIG. 5B, needle 106 of annuloplasty system 100 is passed though the endocardium and the left atrial myocardial wall and into the right fibrous trigone (RT). The needle is then moved in a clockwise direction through the fibrous structure of mitral valve annulus toward the left fibrous trigone (LT). At the left fibrous trigone (LT), the needle is passed back through the left atrial myocardial wall from the epicardium and back through the endocardium at the left fibrous trigone (FIG. 5C). The needle is further drawn from the annulus until the release mechanism is fully withdrawn from the annulus and above the tissue surface. This preloads the implant wire and plicates the annulus. Pledget 120 is drawn over the needle and slid over the flexible member and release mechanism and then positioned between the undulating implant member and the release mechanism as described above. The surgeon withdraws sleeve 124, thereby releasing implant member 102 from the release mechanism 108, flexible member 104, and needle 106, and deploying proximal retainer or anchor 112 so that is opens to its active position as previously shown in FIGS. 2C and 2D and here in FIG. 5E where both retainers or anchors are firmly set at the fibrous trigones. Alternatively, the needle can be introduced through the left fibrous trigone and withdrawn from the right fibrous trigone.
  • Referring to FIG. 5E, the undulating wire is fully embedded within the valve annulus with the anterior and posterior leaflets restored in a sealed configuration. The only non-embedded, blood contacting components are the anchors or retainers 112 and 114, which are positioned at the two fibrous trigones (RT, LT). Due to the implant wire's undulating configuration, the wire can be elongated in the axial direction. In the elongated condition (partially in FIG. 5C and fully in FIG. 5D), the wire, which has shape memory to regain its original unloaded length, applies a recoil force to draw the two ends of the implant together in the axial direction. In the implanted condition where the undulating wire is stressed to an elongated configuration by threading through the tissue, the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size (FIG. 5C). In sum, the procedure generally provides annuloplasty plication and reinforcement, while maintaining annular compliance.
  • Referring to FIGS. 6A-6E, a variation on the procedure described above is illustrated. This procedure is the same as that shown in FIGS. 5A-5E with the exception that needle 106 is not drawn through the entire posterior annulus in a single pass. In this case, the surgeon makes multiple bites (see FIGS. 6B and 6C) with the needle to cover the distance of the posterior annulus. The procedure is completed in the same way as that described above (FIGS. 6D & E are the same as FIGS. 5D & E)
  • Referring to FIGS. 7A-7D, a further variation on the procedures described above is illustrated. In this procedure, multiple undulated implants are used to span the length of the posterior annulus. In this example, two implants are used to span the annulus. The initial needle penetration occurs at either fibrous trigone. A needle bite length segment of wire is terminated with each needle bite resulting in the plication of discrete sections of the annulus. Subsequent wire segments are penetrated at and are linked to the terminating distal retainer 112. In this manner, separate, but joined wire segments span the posterior annulus to the opposite fibrous trigone resulting in the plication of the entire posterior annulus and reduction in annular size.
  • In the embodiments described above, the implant member returns to its memory shape upon stress release (i.e., actuation of release mechanism 108). As the implant is inserted, the tissue and pulling forces placed on the device to pull it into position cause it to axially expand. Once in position, the release mechanism is actuated, thereby removing the pulling force and allowing the implant to axially contract toward its memory shape.
  • Alternatively, the device can be designed to have thermal properties to return to its memory shape at a predetermined temperature. It can be deformed at a first temperature to generally remove or reduce the amplitude(s) or period(s) of the undulations and then inserted into the tissue. After insertion, its temperature rises to the predetermined temperature and it assumes its original, undulating memory configuration. As it returns to its memory shape, it axially contracts and decreases the circumferential dimension of the valve annulus.
  • Although particular configurations have been illustrated, other configurations can be used without departing from the scope of the invention. For example, the wire can be flat. The undulations can have varying or changing amplitude or frequency. The radius of the crests and troughs also can vary from implant to implant or within a single implant. Further, the implant wire can be a single length of wire as shown in the drawings or it can be made up of multiple lengths of wire joined together.
  • The undulating implant can provide high strength and elasticity to material volume (or diameter) ratio. The implant configuration and construction can provide desirable elasticity that allows for physiological motion in the linear direction (annular dilatation) and planar surface. Since the undulating member can be self-terminating at the trigones, it does not require knot tying, connectors, or cutting. The implant can be less traumatic to the annular tissue as compared to other devices. For example, it does not require multiple suture passes. The implant configuration and placement also can minimize the amount of implant surface that comes into contact with blood flow.
  • Referring to FIG. 8A, another embodiment of the invention is shown and generally indicated with reference numeral 200. Annuloplasty system 200 generally comprises an implant member 202, anchors comprising or in the form of surgical clips 204 coupled to ends of implant member 202, flexible members or wires 206, release mechanisms 208, which releasably couple the flexible members to implant member 202, and tissue piercing members or needles 210, which are secured to the flexible members or wires 206.
  • Implant member 202 can be straight (not shown), or crescent or arc-shaped so as to form a partial ring as shown in FIG. 8A. Implant member 202 has a plurality of attachment loops 212 formed therein such as by folding the wire of which the implant comprises according to this embodiment. Alternatively, loops 212 may be separately formed and secured to implant member 202 by welding, soldering or other suitable process. Preferably, the loops are equidistantly spaced from one another.
  • With the exception of one of the surgical clip ends being secured to implant member 202, each anchor-clip, release mechanism, flexible member and needle combination forms a tissue connector assembly 214 similar to tissue connector assemblies described in U.S. patent application Ser. Nos. 09/089,884 and 09/090,305 both filed Jun. 3, 1998 and Ser. Nos. 09/259,705 and 09/260,623 both filed Mar. 1, 2000 and International Application Nos. PCT/US99/12563 and PCT/US99/12566 both filed Jun. 3, 1999 and published under International Publication Nos. WO 99/62409 and WO 99/62406, all of which are hereby incorporated by reference herein. Although one tissue connector assembly configuration is shown herein, any other suitable assemblies described in the applications cited in the preceding sentence can be used.
  • The applications cited in the previous paragraph describe tissue connector assemblies having self-closing clips, which can be characterized as having two end points, which tend to come closer together either by elasticity or so-called pseudoelasticity. Such a clip may be made by heat-treating a NiTi wire to a certain temperature and time to have a desired undeformed shape. The surgical clip generally comprises a wire, preferably, comprise shape memory alloy. In the present invention, each clips preferably has two end points, an unbiased closed configuration, the ability to be moved or biased to an open configuration, the tendency to return to the naturally closed memory configuration, which reduces the separation between the two end points as compared to the spaced end point orientation when the clip is in an open configuration.
  • The clips disclosed in aforementioned U.S. and PCT patent applications describe a clip comprising a deformable wire made of a shape memory alloy, which clip can assume a U-shape when in the open configuration and one example of a suitable clip for this embodiment of the present invention.
  • Such a clip may be deployed, for example, in the form of a single-arm clip assembly as shown in FIG. 8A and designated with reference numeral 214 and as generally described in the aforementioned U.S. patent applications Ser. Nos. 09/089,884 and 09/090,305, and the section of International Application No. PCT/US99/12566 from page 10, line 10 through page 11, line 21, which section and accompanying FIG. 1 is hereby specifically incorporated by reference herein.
  • The ends of the clip coil 204(b) are constrained with the coil in compression to urge or bias clip wire 204(a) into a generally U-shaped open configuration.
  • A release mechanism 208, such as disclosed in aforementioned U.S. patent application Ser. No. 09/260,623 (or International Application No. PCT/US99/12566, which published on Dec. 9, 1999 under International Publication No. WO 99/62406 is provided so that clip wire 204(a) can readily be released by squeezing the release mechanism with a surgical instrument. One suitable release mechanism is specifically described in International Application No. PCT/US99/12566 from page 25, line 12 through page 27, line 30 ending with the text “mechanism 23c” (but without the text “such as needle 17 as shown in FIG. 1” on line 27 of page 27) and the referenced figures are hereby incorporated by reference herein. A summary of such a release mechanism is provided below with reference to FIGS. 8B and 8C.
  • Referring to FIGS. 8B and 8C, release mechanism 208 generally comprises a plurality of substantially rigid strands, cables or wires 216 (which are the same as cables or strands 122 in FIG. 1B). Cables 208 can be metal and are arranged substantially parallel to one another and circularly about a longitudinal axis. The hidden end portions of the strands are coupled to tapered section “T,” which is coupled to piercing member a needle 210. The strands can be coupled to rod 218, which is fixed to the tapered section. End portions of the strands include notches, which form a chamber 220 for releasably receiving and/or holding enlarged portion “E1” of the clip and/or fastener wire 204(a) which also has and enlarged portion “E2” at its other end to facilitate compression of coil 204(b). According to International Application No. PCT/US99/12566, supra, the notches preferably are placed about 0.015 inches from the free ends of the strands, but this distance can vary depending upon the desired compression on the coil or spring 204(b). A shrink wrap layer 222, preferably in the form of tubing, is provided around at lest the free end portions of the strands and the shrink wrap heated to compress against the strands and hold them in place against enlarged wire portion “E1” to effectively hold the enlarged portion captive until the shrink wrap is squeezed, the strands displaced and the enlarged portion released.
  • Referring to FIG. 9, implant member 202 and the surgical clip can be formed from a single element or wire. In the embodiment shown in FIG. 8A, a single wire forms the surgical clip and implant member 202. When using a surgical clip such as shown in FIG. 8B, there is no enlarged portion E2. Rather, clip wire 204(a) is long enough to form implant member 202. It can also form a similar clip wire at the other end of the implant as well. In place of enlarged portion E2, the wire can be passed through a washer 224 (FIG. 9) or similar device having a hole formed therethrough and the washer secured to the wire by swaging, for example. The washer is placed at a location along the wire to provide the desired compression of coil 204(b). On the other hand, a clip having an enlarged portion E2 can be used and the enlarged portion E2 secured to the implant member 202 by any suitable means such as welding.
  • According to one method of making the device, the loops and the general curve shape of member 202 are made from the same piece of wire. The loops are formed by wrapping the wire around mandrels. The mandrels are arranged in the general curve shape, thus giving the appearance of loops superposed onto a general curve shape. Wire cross section diameters can range from about 0.002 to 0.062 inches. Loop diameters can range from about 0.010 to 0.050 inches. The radius of curvature of the overall implant member 202, having loops formed therein, can range from about 0.25 to 1.25 inches, but can be made to any radius. The straight-line distance between the ends of the implant member 202 (between washers 224) ranges from about 0.5 to 2.5 inches. The length of the implant member (measured from washer 224 to washer 224) can range from about 0.75 to 3.0 inches. The profile is essentially the thickness of prosthetic material attached to the annulus. The smaller the diameter, the lower the profile. Lower profile may prevent nonphysiological blood flow, which can lead to undesirable hemodynamic effects, e.g., thrombosis, disruption of red blood cells, or slower tissue healing. When the surgical clip is made from the same piece of wire as the multilooped member, the last loop is the one that abuts washer 224, which is passed onto the multiloop member and crimped to act as a stopper for the coil 204(b), which surrounds a portion of the wire that forms the implant member and surgical clip. The release mechanism 208 compresses the coil against washer or constraint 224, which maintains the surgical clip in a U-shaped configuration.
  • Referring to FIG. 10A-10D, an exemplary mitral valve annuloplasty method using annuloplasty system 200 will be described. In general, implant member 202 is implanted onto the mitral valve annulus of the target mitral valve such that the implant member or wire is attached to the surface of the annular tissue. In this mitral valve annuloplasty example, the implant member or wire is secured along the posterior annulus with the ends of the implant member secured to the annulus at the two fibrous trigones.
  • Referring to FIG. 10A, the surgeon first secures tissue connector assemblies 214 at the right and left fibrous trigones. This is accomplished by threading needles 210 into the fibrous structure of the annulus and then drawing the needles out from the annulus sufficiently so that anchors 204 extend out from the annulus at incisions “I.” A 5-0 needle can be used in this example. Release mechanisms 208 are squeezed to release the anchors 204 from the release mechanisms 208, flexible members 206, and needles 210 and allow anchors to close as shown in FIG. 10B.
  • Then discrete or individual tissue connector assemblies 214 are passed through loops 212 (FIG. 10C) and released so that the clips or anchors 204 of the individual tissue connector assemblies close and secure the loops to the tissue as shown in FIG. 10D, which shows inserting clips 204 radially. According to a variation on the described method, the anchors or clips 204 can be inserted circumferentially as shown in FIG. 10E.
  • The attachment loops provide elasticity and act as torsion springs. The spring properties generally provide elasticity. In the deployed condition, the implant, having shape memory to regain its original unloaded length, applies a recoil force to draw the two ends together along the length of the implant. In the implanted condition where the implant wire is loaded to an elongated configuration, the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size. The preloaded condition of the implant wire continues to provide a reinforcement force to prevent further dilation of the valve annulus. Furthermore, the elastic nature of the loops allow for the natural compliance and physiological motion of the annulus.
  • The low profile characteristic of the implant as compared to conventional annuloplasty rings or bands reduces the amount or volume of prosthetic material that is exposed to blood flow. This can substantially reduce the need for post-operative anticoagulation therapy.
  • Although annuloplasty system 200 has been described with self-closing clip type anchors, other surgical clips can be used as anchors such as that disclosed in U.S. Pat. No. 5,972,024, which issued to Northrop, III et al. Further, sutures can be used to form the anchors as will be discussed in more detail below.
  • Although a particular system embodiment having two clip anchors, release mechanisms, and delivery needles has been described and illustrated in FIGS. 8A-C, variations of this system can be made within the scope of the invention. For example, only one clip anchor, release mechanism, and delivery member may be used. In this case, the clip anchor with its release mechanism and delivery needle can be coupled to one end of the implant member as shown in FIG. 8A. The other end of the implant member can be constructed to end with one of the loops illustrated in FIG. 8A. That loop is then sutured to the tissue with conventional suture techniques. Alternatively, it can be secured to the tissue using a surgical clip such as any one of the clips described above.
  • In yet a further case, both clip anchors and their release mechanisms and delivery needles can be eliminated and both ends of the implant member constructed to end in a loop as described above. Both loops can then be fastened to the tissue using a suture or clip as described with respect to the previous example.
  • In another variation, the implant member can be a full ring and the loops secured to tissue thereunder.
  • Referring to FIG. 11, an alternative tissue connector assembly suitable for use with system 200 to secure the implant member ends and/or loops to the valve tissue is shown. The tissue connector assembly 400 generally comprises a needle 106, tubular flexible member 104, clip or anchor 204 (all of which have been described above) and a remote release mechanism “R.” Although the squeeze actuated release mechanism 208 is very effective, a remote release mechanism is especially advantageous where the operative space or field is limited such as in the case of valve annuloplasty. Various remote release mechanisms in accordance with the invention are illustrated in FIGS. 12A-12D, 13A-13D, and 14A-14D. Generally, the remote release mechanism “R” comprises a holding mechanism, such as the plurality of arms or wires 122 illustrated in FIGS. 2A-D, and a sheath or tubular member for holding the holding mechanism closed, such as tubular member 124 illustrated in FIGS. 2A-D and, therefore can be the same as release mechanism 108.
  • More specifically, when constructed for holding a clip or anchor, the holding mechanism or member(s) can comprise multiple strands, cables or wires 122 having a radially outward bias as shown in FIGS. 12A-12D, two halves 122′ of hypodermic tubing as shown in FIGS. 13A-13D (with recesses 126′ for receiving the surgical clip and having an inner diameter less than the diameter of enlarged portion E2), or one piece of hypodermic tubing 122″ as shown in FIGS. 14A-14D. That is the holding mechanism has recesses 126, 126′, or 126″ formed therein to receive and/or hold the enlarged end E2 of the clip or anchor 204. In the embodiment of FIGS. 12A-D, the strands 122 have notches 128, as shown in FIGS. 2A-D, to hold enlarged portion 134. Sleeve 124 is retracted to release the holding mechanism and the clip or anchor 204 as shown in FIGS. 12D, 13D, and 14D. The longer the sleeve, the more remotely one can actuate release of the clip.
  • The hypodermic halves shown in FIGS. 13A-D, also have cut out portions that form arms 240 and collars 242. Collars 242 surround wire 136 and have inner diameters less than the diameter of enlarged portion or ball 134 to secure halves 122′ to wire 136. In this manner, the delivery apparatus can be readily removed, while leaving the clip or anchor at the desired site.
  • The one-piece hypodermic tubing embodiment of FIGS. 14A-D, has a cut out to form a longitudinal opening for releasing a clip or anchor 204 from holding member 122″. The tubing also has cut outs to form arm 240′ and collar 242′ having an inner diameter less than the diameter of enlarged portion or ball 134 to secure the tubing to wire 136 and facilitate removal of the delivery apparatus, while leaving the clip or anchor at the desired site.
  • While the invention has been described with reference to specific embodiments, the invention by no means is limited to the specific embodiments illustrated and described herein. It is recognized that departures from the disclosed embodiments may be made within the scope of the invention and that obvious modifications will occur to a person skilled in the art. Accordingly, all suitable modifications and equivalents may be resorted to to the extent that they fall within the scope of the invention and claims appended hereto.

Claims (4)

1. An annuloplasty system for repairing a valve in a patient's heart, said annuloplasty system comprising a surgical implant having first and second ends, first and second anchors, and a needle, said implant having a plurality of curves pre-formed therein and being adapted to form a partial ring along a portion of one of the valve annulae of a patient's hear; said annuloplasty system having a first state for placing said implant along said portion of one of the valve annulae and a second state for securing said implant to said portion of one of the valve annulae with said anchors; when said annuloplasty system is in said first state, each one of said anchors is coupled to a different one of said implant ends with at least one of said anchors being exposed, said implant ends are uncoupled from one another, and said needle is releasably coupled to one of said implant ends; and when said annuloplasty system is in said second state, said implant ends remain uncoupled from one another and said needle is uncoupled from said one of said implant ends.
2. The annuloplasty system of claim 1 wherein said implant comprises a member that is axially elastic.
3. The annuloplasty system of claim 1 wherein said implant comprises a wire having an undulating memory configuration.
4. The annuloplasty system of claim 1 wherein said implant comprises a wire formed with a plurality of loops between said end portions and at least one of said anchors comprises a surgical fastener.
US10/985,768 2002-04-18 2004-11-10 Annuloplasty apparatus and methods Abandoned US20050065601A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/985,768 US20050065601A1 (en) 2002-04-18 2004-11-10 Annuloplasty apparatus and methods
US12/880,823 US8167933B2 (en) 2002-04-18 2010-09-13 Annuloplasty apparatus and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/125,811 US20030199974A1 (en) 2002-04-18 2002-04-18 Annuloplasty apparatus and methods
US10/985,768 US20050065601A1 (en) 2002-04-18 2004-11-10 Annuloplasty apparatus and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/125,811 Continuation US20030199974A1 (en) 2002-04-18 2002-04-18 Annuloplasty apparatus and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/880,823 Continuation US8167933B2 (en) 2002-04-18 2010-09-13 Annuloplasty apparatus and methods

Publications (1)

Publication Number Publication Date
US20050065601A1 true US20050065601A1 (en) 2005-03-24

Family

ID=29214854

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/125,811 Abandoned US20030199974A1 (en) 2002-04-18 2002-04-18 Annuloplasty apparatus and methods
US10/985,768 Abandoned US20050065601A1 (en) 2002-04-18 2004-11-10 Annuloplasty apparatus and methods
US12/880,823 Expired - Fee Related US8167933B2 (en) 2002-04-18 2010-09-13 Annuloplasty apparatus and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/125,811 Abandoned US20030199974A1 (en) 2002-04-18 2002-04-18 Annuloplasty apparatus and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/880,823 Expired - Fee Related US8167933B2 (en) 2002-04-18 2010-09-13 Annuloplasty apparatus and methods

Country Status (3)

Country Link
US (3) US20030199974A1 (en)
AU (1) AU2003228586A1 (en)
WO (1) WO2003088875A1 (en)

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191481A1 (en) * 2000-03-31 2003-10-09 John Nguyen Multiple bias surgical fastener
US20040054303A1 (en) * 2002-07-29 2004-03-18 Taylor Geoffrey L. Blanching response pressure sore detector apparatus and method
US20040050393A1 (en) * 2002-09-12 2004-03-18 Steve Golden Anastomosis apparatus and methods
US20040102797A1 (en) * 1999-04-05 2004-05-27 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US20050075667A1 (en) * 1999-03-01 2005-04-07 Laurent Schaller Tissue connector apparatus and methods
US20050184122A1 (en) * 2002-10-21 2005-08-25 Mitralign, Inc. Method and apparatus for performing catheter-based annuloplasty using local plications
US20050288777A1 (en) * 2004-06-29 2005-12-29 Rhee Richard S Thermal conductor for adjustable cardiac valve implant
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244555A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070255295A1 (en) * 2006-04-27 2007-11-01 Medtronic, Inc. Sutureless implantable medical device fixation
US20080132981A1 (en) * 2006-11-30 2008-06-05 Medtronic, Inc. Implantable medical device including a conductive fixation element
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20080228266A1 (en) * 2007-03-13 2008-09-18 Mitralign, Inc. Plication assistance devices and methods
US20080275503A1 (en) * 2003-12-23 2008-11-06 Mitralign, Inc. Method of heart valve repair
US20080288060A1 (en) * 2004-07-06 2008-11-20 Baker Medical Research Institute Treating Valvular Insufficiency
US20080312750A1 (en) * 2006-10-04 2008-12-18 Michael Laufer Methods and devices for reconfiguring a body organ
US20090053980A1 (en) * 2007-08-23 2009-02-26 Saint-Gobain Abrasives, Inc. Optimized CMP Conditioner Design for Next Generation Oxide/Metal CMP
US20090270966A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Stent Graft System and Method of Use
US20090270980A1 (en) * 2000-10-06 2009-10-29 Edwards Lifesciences Llc Methods and Devices for Improving Mitral Valve Function
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
US7731649B2 (en) 2000-04-13 2010-06-08 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US7744611B2 (en) 2000-10-10 2010-06-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US7763040B2 (en) 1998-06-03 2010-07-27 Medtronic, Inc. Tissue connector apparatus and methods
US20100280605A1 (en) * 2009-05-04 2010-11-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US20110035000A1 (en) * 2002-01-30 2011-02-10 Cardiac Dimensions, Inc. Tissue Shaping Device
US20110106247A1 (en) * 2009-10-29 2011-05-05 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US7963973B2 (en) 1998-06-03 2011-06-21 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20110153009A1 (en) * 2003-05-20 2011-06-23 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US20110166649A1 (en) * 2008-06-16 2011-07-07 Valtech Cardio Ltd. Annuloplasty devices and methods of deliver therefor
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8029519B2 (en) 2003-08-22 2011-10-04 Medtronic, Inc. Eversion apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US8163010B1 (en) 2008-06-03 2012-04-24 Cardica, Inc. Staple-based heart valve treatment
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8211124B2 (en) 2003-07-25 2012-07-03 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US20120198835A1 (en) * 2008-10-13 2012-08-09 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US8337390B2 (en) 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US8496671B1 (en) 2010-06-16 2013-07-30 Cardica, Inc. Mitral valve treatment
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8523939B1 (en) 2006-06-12 2013-09-03 Cardica, Inc. Method and apparatus for heart valve surgery
US8523940B2 (en) 2011-05-17 2013-09-03 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8690939B2 (en) 2009-10-29 2014-04-08 Valtech Cardio, Ltd. Method for guide-wire based advancement of a rotation assembly
US8734467B2 (en) 2009-12-02 2014-05-27 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8747462B2 (en) 2011-05-17 2014-06-10 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
US8814932B2 (en) 2011-05-17 2014-08-26 Boston Scientific Scimed, Inc. Annuloplasty ring with piercing wire and segmented wire lumen
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US8951286B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor and anchoring system
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US9358112B2 (en) 2001-04-24 2016-06-07 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US9492657B2 (en) 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US10350068B2 (en) 2009-02-17 2019-07-16 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US10512460B2 (en) 2014-12-19 2019-12-24 Renzo Cecere Surgical method and system for performing the same
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6726716B2 (en) * 2001-08-24 2004-04-27 Edwards Lifesciences Corporation Self-molding annuloplasty ring
DE60234675D1 (en) * 2002-03-27 2010-01-21 Sorin Biomedica Emodialisi S R Anuloplasty prosthesis with a pierced component
US7758637B2 (en) 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20060122633A1 (en) 2002-06-13 2006-06-08 John To Methods and devices for termination
US7753858B2 (en) 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US8287555B2 (en) 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7666193B2 (en) 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
US7883538B2 (en) 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
US7753922B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
EP1530441B1 (en) 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US7753924B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
MXPA05002284A (en) * 2002-08-29 2006-02-10 Mitralsolutions Inc Implantable devices for controlling the internal circumference of an anatomic orifice or lumen.
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
JP4241732B2 (en) * 2003-12-15 2009-03-18 株式会社村田製作所 Noise filter mounting structure
WO2005087139A1 (en) 2004-03-15 2005-09-22 Baker Medical Research Institute Treating valve failure
EP1773239B1 (en) * 2004-07-15 2010-03-31 Micardia Corporation Shape memory devices for reshaping heart anatomy
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US7285087B2 (en) * 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
US8012202B2 (en) 2004-07-27 2011-09-06 Alameddine Abdallah K Mitral valve ring for treatment of mitral valve regurgitation
US10219902B2 (en) 2005-03-25 2019-03-05 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop
US8864823B2 (en) * 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
EP2767260B1 (en) * 2005-03-25 2019-07-03 St. Jude Medical, Cardiology Division, Inc. Apparatus for controlling the internal circumference of an anatomic orifice or lumen
EP1893131A1 (en) * 2005-04-20 2008-03-05 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
DE602006009113D1 (en) * 2005-07-15 2009-10-22 Cleveland Clinic Foundation Device for remodeling a heart valve ring
US7927371B2 (en) 2005-07-15 2011-04-19 The Cleveland Clinic Foundation Apparatus and method for reducing cardiac valve regurgitation
US20070078297A1 (en) * 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
DE602005015238D1 (en) * 2005-12-28 2009-08-13 Sorin Biomedica Cardio Srl Denture for annuloplasty with auxetic structure
US7799038B2 (en) * 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7877142B2 (en) * 2006-07-05 2011-01-25 Micardia Corporation Methods and systems for cardiac remodeling via resynchronization
EP2111189B1 (en) * 2007-01-03 2017-04-05 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008097999A2 (en) 2007-02-05 2008-08-14 Mitralsolutions, Inc. Minimally invasive system for delivering and securing an annular implant
JP2011510797A (en) 2008-02-06 2011-04-07 ガイデッド デリバリー システムズ, インコーポレイテッド Multiple window guide tunnel
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US11083579B2 (en) 2008-04-16 2021-08-10 Heart Repair Technologies, Inc. Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US8262725B2 (en) * 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
EP2288402A4 (en) 2008-05-07 2011-10-05 Guided Delivery Systems Inc Deflectable guide
US8795298B2 (en) 2008-10-10 2014-08-05 Guided Delivery Systems Inc. Tether tensioning devices and related methods
EP2349019B1 (en) 2008-10-10 2020-03-25 Ancora Heart, Inc. Termination devices and related methods
US20100198192A1 (en) 2009-01-20 2010-08-05 Eugene Serina Anchor deployment devices and related methods
US8808371B2 (en) * 2009-01-22 2014-08-19 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US8734484B2 (en) 2009-04-21 2014-05-27 Medtronic, Inc. System and method for closure of an internal opening in tissue, such as a trans-apical access opening
ES2365317B1 (en) 2010-03-19 2012-08-03 Xavier Ruyra Baliarda PROTESTIC BAND, IN PARTICULAR FOR THE REPAIR OF A MITRAL VALVE.
WO2012019052A2 (en) 2010-08-04 2012-02-09 Micardia Corporation Percutaneous transcatheter repair of heart valves
US9861350B2 (en) 2010-09-03 2018-01-09 Ancora Heart, Inc. Devices and methods for anchoring tissue
EP2468215A1 (en) * 2010-12-22 2012-06-27 Centre Hospitaller Universitaire Vaudois (CHUV) Annuloplasty ring
US9402721B2 (en) 2011-06-01 2016-08-02 Valcare, Inc. Percutaneous transcatheter repair of heart valves via trans-apical access
EP3542758B1 (en) 2012-02-29 2022-12-14 Valcare, Inc. Percutaneous annuloplasty system with anterior-posterior adjustment
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
DE102013206132B4 (en) * 2012-04-11 2019-10-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Active material wire actuators with reinforced structural fasteners
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
WO2014145399A1 (en) 2013-03-15 2014-09-18 Valcare, Inc. Systems and methods for delivery of annuloplasty rings
WO2014140777A1 (en) * 2013-03-15 2014-09-18 Füglister Fabian Hermann Urban Tongue deformation implant
US10813751B2 (en) 2013-05-22 2020-10-27 Valcare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
EP3003187B1 (en) 2013-05-24 2023-11-08 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
CA2902169C (en) 2013-06-25 2022-07-26 Michael Sutherland Percutaneous valve repair by reshaping and resizing right ventricle
WO2014210600A2 (en) 2013-06-28 2014-12-31 Valcare, Inc. Device, system, and method to secure an article to a tissue
EP3019092B1 (en) * 2013-07-10 2022-08-31 Medtronic Inc. Helical coil mitral valve annuloplasty systems
ES2660196T3 (en) 2013-08-14 2018-03-21 Sorin Group Italia S.R.L. String replacement device
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
CN111110401B (en) 2015-02-13 2022-03-29 波士顿科学国际有限公司 Valve replacement using a rotating anchor
EP3265004B1 (en) 2015-03-05 2023-06-28 Ancora Heart, Inc. Devices of visualizing and determining depth of penetration in cardiac tissue
WO2016144391A1 (en) 2015-03-11 2016-09-15 Mvrx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US10010315B2 (en) 2015-03-18 2018-07-03 Mitralign, Inc. Tissue anchors and percutaneous tricuspid valve repair using a tissue anchor
CA2985659A1 (en) 2015-05-12 2016-11-17 Ancora Heart, Inc. Device and method for releasing catheters from cardiac structures
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
EP3377000B1 (en) 2015-11-17 2023-02-01 Boston Scientific Scimed, Inc. Implantable device and delivery system for reshaping a heart valve annulus
EP3386440A4 (en) 2015-12-10 2019-11-13 MVRx, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20200146854A1 (en) 2016-05-16 2020-05-14 Elixir Medical Corporation Methods and devices for heart valve repair
CN107753153B (en) 2016-08-15 2022-05-31 沃卡尔有限公司 Device and method for treating heart valve insufficiency
US10702384B2 (en) 2016-08-16 2020-07-07 Boston Scientific Scimed, Inc. Heart valve regurgitation anchor and delivery tool
US10471539B2 (en) * 2016-09-28 2019-11-12 Bombardier Transportation Gmbh Containment device for a laser head and associated manufacturing method
WO2018094258A1 (en) 2016-11-18 2018-05-24 Ancora Heart, Inc. Myocardial implant load sharing device and methods to promote lv function
AU2017382273A1 (en) 2016-12-22 2019-08-08 Heart Repair Technologies, Inc. Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus
EP3579792A1 (en) * 2017-02-08 2019-12-18 4 Tech Inc. Implantable force gauges
EP3579789A4 (en) 2017-02-10 2020-09-30 Millipede, Inc. Implantable device and delivery system for reshaping a heart valve annulus
CN108618871A (en) 2017-03-17 2018-10-09 沃卡尔有限公司 Bicuspid valve with multi-direction anchor portion or tricuspid valve repair system
WO2019036541A2 (en) 2017-08-17 2019-02-21 Boston Scientific Scimed, Inc. Anchor delivery system and methods for valve repair
WO2019108286A1 (en) 2017-11-30 2019-06-06 Boston Scientific Scimed, Inc. Connected anchor delivery systems and methods for valve repair
CN113613593A (en) 2018-12-03 2021-11-05 沃卡尔有限公司 Stabilization and adjustment tool for controlling minimally invasive mitral/tricuspid valve repair systems
WO2021011702A1 (en) 2019-07-15 2021-01-21 Valcare, Inc. Transcatheter bio-prosthesis member and support structure
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1087186A (en) * 1909-03-22 1914-02-17 Socrates Scholfield Illustrative educational device.
US1167014A (en) * 1915-06-25 1916-01-04 William R O'brien Veterinary surgical instrument.
US3082426A (en) * 1960-06-17 1963-03-26 George Oliver Halsted Surgical stapling device
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3638654A (en) * 1969-07-11 1972-02-01 Uche Akuba Suturing instrument
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4073179A (en) * 1976-06-01 1978-02-14 Codman & Shurtleff, Inc. Clip removing device
US4140125A (en) * 1976-02-25 1979-02-20 Med-Pro, Ltd. Surgical tape device
US4185636A (en) * 1977-12-29 1980-01-29 Albert Einstein College Of Medicine Of Yeshiva University Suture organizer, prosthetic device holder, and related surgical procedures
US4192315A (en) * 1976-12-23 1980-03-11 Aesculap-Werke Aktiengesellschaft Vormals Jetter & Scheerer Clip for surgical purposes
US4243048A (en) * 1976-09-21 1981-01-06 Jim Zegeer Biopsy device
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4492229A (en) * 1982-09-03 1985-01-08 Grunwald Ronald P Suture guide holder
US4576605A (en) * 1985-03-01 1986-03-18 Nauchno-Issledovatelsky Institut Khirurgii Imeni A.V. Vishnevskogo Cardiac valve prosthesis
US4637380A (en) * 1985-06-24 1987-01-20 Orejola Wilmo C Surgical wound closures
US4641652A (en) * 1984-04-12 1987-02-10 Richard Wolf Gmbh Applicator for tying sewing threads
US4719924A (en) * 1986-09-09 1988-01-19 C. R. Bard, Inc. Small diameter steerable guidewire with adjustable tip
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US4730615A (en) * 1986-03-03 1988-03-15 Pfizer Hospital Products Group, Inc. Sternum closure device
US4732151A (en) * 1986-10-08 1988-03-22 Patent Research & Development Corp. Low trauma suturing
US4809695A (en) * 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4890615A (en) * 1987-11-05 1990-01-02 Concept, Inc. Arthroscopic suturing instrument
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4899744A (en) * 1988-12-15 1990-02-13 Tatsuo Fujitsuka Apparatus for anastomosing digestive tract
US4901721A (en) * 1988-08-02 1990-02-20 Hakki Samir I Suturing device
US4983176A (en) * 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip
US4990152A (en) * 1988-10-12 1991-02-05 Inbae Yoon Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue
US4991567A (en) * 1990-01-16 1991-02-12 Mccuen Ii Brooks W Micro-iris retractor
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4997439A (en) * 1989-01-26 1991-03-05 Chen Fusen H Surgical closure or anastomotic device
US5002563A (en) * 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
US5002562A (en) * 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
US5002550A (en) * 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US5088692A (en) * 1990-09-04 1992-02-18 Weiler Raywood C Heavy duty staple remover
US5100421A (en) * 1991-02-05 1992-03-31 Cyprus Endosurgical Tools, Inc. Christoudias curved needle suture assembly
US5100418A (en) * 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5196022A (en) * 1988-12-12 1993-03-23 Ethicon, Inc. Ligature system for use in endoscopic surgery, ligature and handling instrument for said system
US5282825A (en) * 1993-06-02 1994-02-01 Muck Kin C Surgical ligaturing and animal restraining device
US5290289A (en) * 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5383904A (en) * 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
US5387227A (en) * 1992-09-10 1995-02-07 Grice; O. Drew Method for use of a laparo-suture needle
US5480405A (en) * 1987-05-14 1996-01-02 Yoon; Inbae Anchor applier instrument for use in suturing tissue
US5486197A (en) * 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US5591179A (en) * 1995-04-19 1997-01-07 Applied Medical Resources Corporation Anastomosis suturing device and method
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5593414A (en) * 1993-08-25 1997-01-14 Apollo Camera, L.L.C. Method of applying a surgical ligation clip
US5597378A (en) * 1983-10-14 1997-01-28 Raychem Corporation Medical devices incorporating SIM alloy elements
US5601572A (en) * 1989-08-16 1997-02-11 Raychem Corporation Device or apparatus for manipulating matter having a elastic ring clip
US5601571A (en) * 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
US5601573A (en) * 1994-03-02 1997-02-11 Ethicon Endo-Surgery, Inc. Sterile occlusion fasteners and instruments and method for their placement
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5603718A (en) * 1994-03-31 1997-02-18 Terumo Kabushiki Kaisha Suturing device
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US5715987A (en) * 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5720755A (en) * 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5868702A (en) * 1991-07-16 1999-02-09 Heartport, Inc. System for cardiac procedures
US5871528A (en) * 1996-06-28 1999-02-16 Medtronic, Inc. Temporary bipolar heart wire
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6024741A (en) * 1993-07-22 2000-02-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6176864B1 (en) * 1998-03-09 2001-01-23 Corvascular, Inc. Anastomosis device and method
US6176413B1 (en) * 1994-06-17 2001-01-23 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US6179848B1 (en) * 1996-07-24 2001-01-30 Jan Otto Solem Anastomotic fitting
US6179849B1 (en) * 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6179840B1 (en) * 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6190373B1 (en) * 1992-11-13 2001-02-20 Scimed Life Systems, Inc. Axially detachable embolic coil assembly
US6193733B1 (en) * 1997-06-20 2001-02-27 Boston Scientific Corporation Hemostatic clips
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US20020010490A1 (en) * 1999-03-01 2002-01-24 Laurent Schaller Tissue connector apparatus and methods
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US6350269B1 (en) * 1999-03-01 2002-02-26 Apollo Camera, L.L.C. Ligation clip and clip applier
US6514265B2 (en) * 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US6517558B2 (en) * 1999-01-15 2003-02-11 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US6524338B1 (en) * 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US6682540B1 (en) * 1999-11-05 2004-01-27 Onux Medical, Inc. Apparatus and method for placing multiple sutures
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US20050004582A1 (en) * 2002-12-16 2005-01-06 Edoga John K. Endovascular stapler
US20050021054A1 (en) * 2003-07-25 2005-01-27 Coalescent Surgical, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US20060004389A1 (en) * 1998-06-03 2006-01-05 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US20070027461A1 (en) * 1998-06-03 2007-02-01 Barry Gardiner Tissue connector apparatus and methods

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU577022A1 (en) * 1976-06-25 1977-10-30 Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии Cardiac valve prosthesis
US4595007A (en) * 1983-03-14 1986-06-17 Ethicon, Inc. Split ring type tissue fastener
US5171250A (en) * 1987-05-14 1992-12-15 Inbae Yoon Surgical clips and surgical clip applicator and cutting and transection device
US5026379A (en) * 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5219358A (en) * 1991-08-29 1993-06-15 Ethicon, Inc. Shape memory effect surgical needles
DE4217202C2 (en) * 1992-05-23 1994-06-23 Kernforschungsz Karlsruhe Surgical sewing instrument
US5356424A (en) * 1993-02-05 1994-10-18 American Cyanamid Co. Laparoscopic suturing device
US5582616A (en) * 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US6132438A (en) * 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5989242A (en) * 1995-06-26 1999-11-23 Trimedyne, Inc. Therapeutic appliance releasing device
US5820631A (en) * 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US5830221A (en) * 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
DE29616632U1 (en) * 1996-09-24 1996-11-28 Aesculap Ag Surgical application device for U-shaped clips
US6074401A (en) * 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US6149658A (en) * 1997-01-09 2000-11-21 Coalescent Surgical, Inc. Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
WO1999000059A1 (en) * 1997-06-27 1999-01-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
US5989268A (en) * 1997-10-28 1999-11-23 Boston Scientific Corporation Endoscopic hemostatic clipping device
US6641593B1 (en) * 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6250308B1 (en) * 1998-06-16 2001-06-26 Cardiac Concepts, Inc. Mitral valve annuloplasty ring and method of implanting
US6143004A (en) * 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6551332B1 (en) * 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
US6918917B1 (en) * 2000-10-10 2005-07-19 Medtronic, Inc. Minimally invasive annuloplasty procedure and apparatus

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1087186A (en) * 1909-03-22 1914-02-17 Socrates Scholfield Illustrative educational device.
US1167014A (en) * 1915-06-25 1916-01-04 William R O'brien Veterinary surgical instrument.
US3082426A (en) * 1960-06-17 1963-03-26 George Oliver Halsted Surgical stapling device
US3570497A (en) * 1969-01-16 1971-03-16 Gerald M Lemole Suture apparatus and methods
US3638654A (en) * 1969-07-11 1972-02-01 Uche Akuba Suturing instrument
US4006747A (en) * 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4140125A (en) * 1976-02-25 1979-02-20 Med-Pro, Ltd. Surgical tape device
US4073179A (en) * 1976-06-01 1978-02-14 Codman & Shurtleff, Inc. Clip removing device
US4243048A (en) * 1976-09-21 1981-01-06 Jim Zegeer Biopsy device
US4192315A (en) * 1976-12-23 1980-03-11 Aesculap-Werke Aktiengesellschaft Vormals Jetter & Scheerer Clip for surgical purposes
US4185636A (en) * 1977-12-29 1980-01-29 Albert Einstein College Of Medicine Of Yeshiva University Suture organizer, prosthetic device holder, and related surgical procedures
US4366819A (en) * 1980-11-17 1983-01-04 Kaster Robert L Anastomotic fitting
US4809695A (en) * 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4492229A (en) * 1982-09-03 1985-01-08 Grunwald Ronald P Suture guide holder
US5597378A (en) * 1983-10-14 1997-01-28 Raychem Corporation Medical devices incorporating SIM alloy elements
US4641652A (en) * 1984-04-12 1987-02-10 Richard Wolf Gmbh Applicator for tying sewing threads
US4576605A (en) * 1985-03-01 1986-03-18 Nauchno-Issledovatelsky Institut Khirurgii Imeni A.V. Vishnevskogo Cardiac valve prosthesis
US4637380A (en) * 1985-06-24 1987-01-20 Orejola Wilmo C Surgical wound closures
US4730615A (en) * 1986-03-03 1988-03-15 Pfizer Hospital Products Group, Inc. Sternum closure device
US4896668A (en) * 1986-04-10 1990-01-30 Peters Plate set for osteal fixation, equipped with suture strands
US4719924A (en) * 1986-09-09 1988-01-19 C. R. Bard, Inc. Small diameter steerable guidewire with adjustable tip
US4732151A (en) * 1986-10-08 1988-03-22 Patent Research & Development Corp. Low trauma suturing
US4719917A (en) * 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5100418A (en) * 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5480405A (en) * 1987-05-14 1996-01-02 Yoon; Inbae Anchor applier instrument for use in suturing tissue
US4890615B1 (en) * 1987-11-05 1993-11-16 Linvatec Corporation Arthroscopic suturing instrument
US4890615A (en) * 1987-11-05 1990-01-02 Concept, Inc. Arthroscopic suturing instrument
US5002562A (en) * 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
US4901721A (en) * 1988-08-02 1990-02-20 Hakki Samir I Suturing device
US4990152A (en) * 1988-10-12 1991-02-05 Inbae Yoon Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5196022A (en) * 1988-12-12 1993-03-23 Ethicon, Inc. Ligature system for use in endoscopic surgery, ligature and handling instrument for said system
US4899744A (en) * 1988-12-15 1990-02-13 Tatsuo Fujitsuka Apparatus for anastomosing digestive tract
US4997439A (en) * 1989-01-26 1991-03-05 Chen Fusen H Surgical closure or anastomotic device
US4983176A (en) * 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip
US5178634A (en) * 1989-03-31 1993-01-12 Wilson Ramos Martinez Aortic valved tubes for human implants
US5192294A (en) * 1989-05-02 1993-03-09 Blake Joseph W Iii Disposable vascular punch
US5002550A (en) * 1989-06-06 1991-03-26 Mitek Surgical Products, Inc. Suture anchor installation tool
US5601572A (en) * 1989-08-16 1997-02-11 Raychem Corporation Device or apparatus for manipulating matter having a elastic ring clip
US4991567A (en) * 1990-01-16 1991-02-12 Mccuen Ii Brooks W Micro-iris retractor
US5002563A (en) * 1990-02-22 1991-03-26 Raychem Corporation Sutures utilizing shape memory alloys
US5290289A (en) * 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5088692A (en) * 1990-09-04 1992-02-18 Weiler Raywood C Heavy duty staple remover
US5100421A (en) * 1991-02-05 1992-03-31 Cyprus Endosurgical Tools, Inc. Christoudias curved needle suture assembly
US5868702A (en) * 1991-07-16 1999-02-09 Heartport, Inc. System for cardiac procedures
US5707362A (en) * 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5387227A (en) * 1992-09-10 1995-02-07 Grice; O. Drew Method for use of a laparo-suture needle
US5383904A (en) * 1992-10-13 1995-01-24 United States Surgical Corporation Stiffened surgical device
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5488958A (en) * 1992-11-09 1996-02-06 Vance Products Incorporated Surgical cutting instrument for coring tissue affixed thereto
US6190373B1 (en) * 1992-11-13 2001-02-20 Scimed Life Systems, Inc. Axially detachable embolic coil assembly
US6346074B1 (en) * 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5855614A (en) * 1993-02-22 1999-01-05 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US6010531A (en) * 1993-02-22 2000-01-04 Heartport, Inc. Less-invasive devices and methods for cardiac valve surgery
US5282825A (en) * 1993-06-02 1994-02-01 Muck Kin C Surgical ligaturing and animal restraining device
US6024741A (en) * 1993-07-22 2000-02-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
US5593414A (en) * 1993-08-25 1997-01-14 Apollo Camera, L.L.C. Method of applying a surgical ligation clip
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5601573A (en) * 1994-03-02 1997-02-11 Ethicon Endo-Surgery, Inc. Sterile occlusion fasteners and instruments and method for their placement
US5486197A (en) * 1994-03-24 1996-01-23 Ethicon, Inc. Two-piece suture anchor with barbs
US5603718A (en) * 1994-03-31 1997-02-18 Terumo Kabushiki Kaisha Suturing device
US5715987A (en) * 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5601571A (en) * 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
US6176413B1 (en) * 1994-06-17 2001-01-23 Heartport, Inc. Surgical anastomosis apparatus and method thereof
US5593424A (en) * 1994-08-10 1997-01-14 Segmed, Inc. Apparatus and method for reducing and stabilizing the circumference of a vascular structure
US5709695A (en) * 1994-08-10 1998-01-20 Segmed, Inc. Apparatus for reducing the circumference of a vascular structure
US5720755A (en) * 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
US6171321B1 (en) * 1995-02-24 2001-01-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5591179A (en) * 1995-04-19 1997-01-07 Applied Medical Resources Corporation Anastomosis suturing device and method
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5709693A (en) * 1996-02-20 1998-01-20 Cardiothoracic System, Inc. Stitcher
US5871528A (en) * 1996-06-28 1999-02-16 Medtronic, Inc. Temporary bipolar heart wire
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US6179848B1 (en) * 1996-07-24 2001-01-30 Jan Otto Solem Anastomotic fitting
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US6022367A (en) * 1997-06-18 2000-02-08 United States Surgical Surgical apparatus for forming a hole in a blood vessel
US6193733B1 (en) * 1997-06-20 2001-02-27 Boston Scientific Corporation Hemostatic clips
US6346112B2 (en) * 1997-06-20 2002-02-12 Boston Scientific Corporation Hemostatic clips
US6193734B1 (en) * 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
US6176864B1 (en) * 1998-03-09 2001-01-23 Corvascular, Inc. Anastomosis device and method
US20070027461A1 (en) * 1998-06-03 2007-02-01 Barry Gardiner Tissue connector apparatus and methods
US20060004389A1 (en) * 1998-06-03 2006-01-05 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6517558B2 (en) * 1999-01-15 2003-02-11 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US6514265B2 (en) * 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US20020010490A1 (en) * 1999-03-01 2002-01-24 Laurent Schaller Tissue connector apparatus and methods
US6350269B1 (en) * 1999-03-01 2002-02-26 Apollo Camera, L.L.C. Ligation clip and clip applier
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6179849B1 (en) * 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6179840B1 (en) * 1999-07-23 2001-01-30 Ethicon, Inc. Graft fixation device and method
US6682540B1 (en) * 1999-11-05 2004-01-27 Onux Medical, Inc. Apparatus and method for placing multiple sutures
US6524338B1 (en) * 2000-08-25 2003-02-25 Steven R. Gundry Method and apparatus for stapling an annuloplasty band in-situ
US20050004582A1 (en) * 2002-12-16 2005-01-06 Edoga John K. Endovascular stapler
US20050021054A1 (en) * 2003-07-25 2005-01-27 Coalescent Surgical, Inc. Sealing clip, delivery systems, and methods
US7182769B2 (en) * 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) * 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US20070010835A1 (en) * 2003-08-22 2007-01-11 Tom Breton Eversion apparatus and methods

Cited By (277)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US7763040B2 (en) 1998-06-03 2010-07-27 Medtronic, Inc. Tissue connector apparatus and methods
US7963973B2 (en) 1998-06-03 2011-06-21 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US8353921B2 (en) 1999-03-01 2013-01-15 Medtronic, Inc Tissue connector apparatus and methods
US20050075667A1 (en) * 1999-03-01 2005-04-07 Laurent Schaller Tissue connector apparatus and methods
US7722643B2 (en) 1999-03-01 2010-05-25 Medtronic, Inc. Tissue connector apparatus and methods
US7892255B2 (en) 1999-03-01 2011-02-22 Medtronic, Inc. Tissue connector apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US7938840B2 (en) 1999-04-05 2011-05-10 Medtronic, Inc. Apparatus and methods for anastomosis
US8211131B2 (en) 1999-04-05 2012-07-03 Medtronic, Inc. Apparatus and methods for anastomosis
US20040102797A1 (en) * 1999-04-05 2004-05-27 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US20030191481A1 (en) * 2000-03-31 2003-10-09 John Nguyen Multiple bias surgical fastener
US7896892B2 (en) 2000-03-31 2011-03-01 Medtronic, Inc. Multiple bias surgical fastener
US8353092B2 (en) 2000-03-31 2013-01-15 Medtronic, Inc. Multiple bias surgical fastener
US8622884B2 (en) 2000-04-13 2014-01-07 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US7731649B2 (en) 2000-04-13 2010-06-08 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US20110066235A1 (en) * 2000-04-13 2011-03-17 Cube S.R.L. Endoventicular device for the treatment and correction of cardiomyopathies
US20090270980A1 (en) * 2000-10-06 2009-10-29 Edwards Lifesciences Llc Methods and Devices for Improving Mitral Valve Function
US9198757B2 (en) 2000-10-06 2015-12-01 Edwards Lifesciences, Llc Methods and devices for improving mitral valve function
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US7914544B2 (en) 2000-10-10 2011-03-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US7744611B2 (en) 2000-10-10 2010-06-29 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US9358112B2 (en) 2001-04-24 2016-06-07 Mitralign, Inc. Method and apparatus for catheter-based annuloplasty using local plications
US7972377B2 (en) 2001-12-27 2011-07-05 Medtronic, Inc. Bioprosthetic heart valve
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US20110035000A1 (en) * 2002-01-30 2011-02-10 Cardiac Dimensions, Inc. Tissue Shaping Device
US8974525B2 (en) * 2002-01-30 2015-03-10 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US8349003B2 (en) 2002-07-16 2013-01-08 Medtronic, Inc. Suture locking assembly and method of use
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
US20040054303A1 (en) * 2002-07-29 2004-03-18 Taylor Geoffrey L. Blanching response pressure sore detector apparatus and method
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US20040050393A1 (en) * 2002-09-12 2004-03-18 Steve Golden Anastomosis apparatus and methods
US7976556B2 (en) 2002-09-12 2011-07-12 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US8298251B2 (en) 2002-10-04 2012-10-30 Medtronic, Inc. Anastomosis apparatus and methods
US10028833B2 (en) 2002-10-21 2018-07-24 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US20050184122A1 (en) * 2002-10-21 2005-08-25 Mitralign, Inc. Method and apparatus for performing catheter-based annuloplasty using local plications
US8460371B2 (en) 2002-10-21 2013-06-11 Mitralign, Inc. Method and apparatus for performing catheter-based annuloplasty using local plications
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US8623080B2 (en) 2002-12-20 2014-01-07 Medtronic, Inc. Biologically implantable prosthesis and methods of using the same
US10595991B2 (en) 2002-12-20 2020-03-24 Medtronic, Inc. Heart valve assemblies
US8460373B2 (en) 2002-12-20 2013-06-11 Medtronic, Inc. Method for implanting a heart valve within an annulus of a patient
US8025695B2 (en) 2002-12-20 2011-09-27 Medtronic, Inc. Biologically implantable heart valve system
US7981153B2 (en) 2002-12-20 2011-07-19 Medtronic, Inc. Biologically implantable prosthesis methods of using
US9333078B2 (en) 2002-12-20 2016-05-10 Medtronic, Inc. Heart valve assemblies
US8480733B2 (en) * 2003-05-20 2013-07-09 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US20110153009A1 (en) * 2003-05-20 2011-06-23 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US8211124B2 (en) 2003-07-25 2012-07-03 Medtronic, Inc. Sealing clip, delivery systems, and methods
US8029519B2 (en) 2003-08-22 2011-10-04 Medtronic, Inc. Eversion apparatus and methods
US8747463B2 (en) 2003-08-22 2014-06-10 Medtronic, Inc. Methods of using a prosthesis fixturing device
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US8603161B2 (en) 2003-10-08 2013-12-10 Medtronic, Inc. Attachment device and methods of using the same
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US8142493B2 (en) 2003-12-23 2012-03-27 Mitralign, Inc. Method of heart valve repair
US20080275503A1 (en) * 2003-12-23 2008-11-06 Mitralign, Inc. Method of heart valve repair
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7722668B2 (en) 2004-06-29 2010-05-25 Micardia Corporation Cardiac valve implant with energy absorbing material
US20080200981A1 (en) * 2004-06-29 2008-08-21 Micardia Corporation Adjustable cardiac valve implant with coupling mechanism
US7713298B2 (en) 2004-06-29 2010-05-11 Micardia Corporation Methods for treating cardiac valves with adjustable implants
US7396364B2 (en) * 2004-06-29 2008-07-08 Micardia Corporation Cardiac valve implant with energy absorbing material
WO2006012013A3 (en) * 2004-06-29 2006-12-28 Micardia Corp Adjustable cardiac valve implant with selective dimensional adjustment
US20050288780A1 (en) * 2004-06-29 2005-12-29 Rhee Richard S Adjustable cardiac valve implant with selective dimensional adjustment
EP1765226A4 (en) * 2004-06-29 2009-01-21 Micardia Corp Adjustable cardiac valve implant with selective dimensional adjustment
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20050288777A1 (en) * 2004-06-29 2005-12-29 Rhee Richard S Thermal conductor for adjustable cardiac valve implant
EP1765226A2 (en) * 2004-06-29 2007-03-28 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20050288782A1 (en) * 2004-06-29 2005-12-29 Shahram Moaddeb Cardiac valve implant with energy absorbing material
US7510577B2 (en) 2004-06-29 2009-03-31 Micardia Corporation Adjustable cardiac valve implant with ferromagnetic material
US7377941B2 (en) 2004-06-29 2008-05-27 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US20080215145A1 (en) * 2004-06-29 2008-09-04 Micardia Corporation Cardiac valve implant with energy absorbing material
US20080288060A1 (en) * 2004-07-06 2008-11-20 Baker Medical Research Institute Treating Valvular Insufficiency
US20060015178A1 (en) * 2004-07-15 2006-01-19 Shahram Moaddeb Implants and methods for reshaping heart valves
US9526613B2 (en) 2005-03-17 2016-12-27 Valtech Cardio Ltd. Mitral valve treatment techniques
US11497605B2 (en) 2005-03-17 2022-11-15 Valtech Cardio Ltd. Mitral valve treatment techniques
US10561498B2 (en) 2005-03-17 2020-02-18 Valtech Cardio, Ltd. Mitral valve treatment techniques
US8500802B2 (en) 2005-04-08 2013-08-06 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7951197B2 (en) 2005-04-08 2011-05-31 Medtronic, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US20110190877A1 (en) * 2005-04-08 2011-08-04 Medtronic, Inc. Two-Piece Prosthetic Valves with Snap-In Connection and Methods for Use
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US9814454B2 (en) 2005-07-05 2017-11-14 Mitralign, Inc. Tissue anchor and anchoring system
US9259218B2 (en) 2005-07-05 2016-02-16 Mitralign, Inc. Tissue anchor and anchoring system
US10695046B2 (en) 2005-07-05 2020-06-30 Edwards Lifesciences Corporation Tissue anchor and anchoring system
US8951286B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor and anchoring system
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US20070244555A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244556A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244553A1 (en) * 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
JP2009538638A (en) * 2006-04-12 2009-11-12 メドトロニック ヴァスキュラー インコーポレイテッド Annuloplasty device with helical anchor and method of use
US8454683B2 (en) 2006-04-12 2013-06-04 Medtronic Vascular, Inc. Annuloplasty device having a helical anchor and methods for its use
US8406901B2 (en) 2006-04-27 2013-03-26 Medtronic, Inc. Sutureless implantable medical device fixation
US20070255295A1 (en) * 2006-04-27 2007-11-01 Medtronic, Inc. Sutureless implantable medical device fixation
US8821569B2 (en) 2006-04-29 2014-09-02 Medtronic, Inc. Multiple component prosthetic heart valve assemblies and methods for delivering them
US8523939B1 (en) 2006-06-12 2013-09-03 Cardica, Inc. Method and apparatus for heart valve surgery
US9649192B2 (en) 2006-06-12 2017-05-16 Dextera Surgical Inc. Method and apparatus for heart valve surgery
US8926641B2 (en) * 2006-10-04 2015-01-06 Ethicon Endo-Surgery, Inc. Methods and devices for reconfiguring a body organ
US20080312750A1 (en) * 2006-10-04 2008-12-18 Michael Laufer Methods and devices for reconfiguring a body organ
US20090018389A1 (en) * 2006-10-04 2009-01-15 Michael Laufer Methods and systems for tissue manipulation
US8882789B2 (en) 2006-10-04 2014-11-11 Ethicon Endo-Surgery, Inc. Methods and systems for tissue manipulation
US20080132981A1 (en) * 2006-11-30 2008-06-05 Medtronic, Inc. Implantable medical device including a conductive fixation element
US9492657B2 (en) 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US7765012B2 (en) 2006-11-30 2010-07-27 Medtronic, Inc. Implantable medical device including a conductive fixation element
US8926695B2 (en) 2006-12-05 2015-01-06 Valtech Cardio, Ltd. Segmented ring placement
US11344414B2 (en) 2006-12-05 2022-05-31 Valtech Cardio Ltd. Implantation of repair devices in the heart
US10363137B2 (en) 2006-12-05 2019-07-30 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US10357366B2 (en) 2006-12-05 2019-07-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9872769B2 (en) 2006-12-05 2018-01-23 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9883943B2 (en) 2006-12-05 2018-02-06 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9351830B2 (en) 2006-12-05 2016-05-31 Valtech Cardio, Ltd. Implant and anchor placement
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US20080228266A1 (en) * 2007-03-13 2008-09-18 Mitralign, Inc. Plication assistance devices and methods
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US9358111B2 (en) 2007-03-13 2016-06-07 Mitralign, Inc. Tissue anchors, systems and methods, and devices
US9750608B2 (en) 2007-03-13 2017-09-05 Mitralign, Inc. Systems and methods for introducing elements into tissue
US20090053980A1 (en) * 2007-08-23 2009-02-26 Saint-Gobain Abrasives, Inc. Optimized CMP Conditioner Design for Next Generation Oxide/Metal CMP
US9370424B2 (en) 2008-03-10 2016-06-21 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US11660191B2 (en) 2008-03-10 2023-05-30 Edwards Lifesciences Corporation Method to reduce mitral regurgitation
US10543091B2 (en) 2008-03-10 2020-01-28 Edwards Lifesciences Corporation Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US9603709B2 (en) 2008-03-10 2017-03-28 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20090270966A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Stent Graft System and Method of Use
US7972370B2 (en) 2008-04-24 2011-07-05 Medtronic Vascular, Inc. Stent graft system and method of use
US8163010B1 (en) 2008-06-03 2012-04-24 Cardica, Inc. Staple-based heart valve treatment
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US20110166649A1 (en) * 2008-06-16 2011-07-07 Valtech Cardio Ltd. Annuloplasty devices and methods of deliver therefor
US8337390B2 (en) 2008-07-30 2012-12-25 Cube S.R.L. Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart
US20120198835A1 (en) * 2008-10-13 2012-08-09 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US9022682B2 (en) * 2008-10-13 2015-05-05 GM Global Technology Operations LLC Active material wire actuators having reinforced structural connectors
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US9662209B2 (en) 2008-12-22 2017-05-30 Valtech Cardio, Ltd. Contractible annuloplasty structures
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US10470882B2 (en) 2008-12-22 2019-11-12 Valtech Cardio, Ltd. Closure element for use with annuloplasty structure
US9636224B2 (en) 2008-12-22 2017-05-02 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US11116634B2 (en) 2008-12-22 2021-09-14 Valtech Cardio Ltd. Annuloplasty implants
US9277994B2 (en) 2008-12-22 2016-03-08 Valtech Cardio, Ltd. Implantation of repair chords in the heart
US10856986B2 (en) 2008-12-22 2020-12-08 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9713530B2 (en) 2008-12-22 2017-07-25 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US10350068B2 (en) 2009-02-17 2019-07-16 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US11202709B2 (en) 2009-02-17 2021-12-21 Valtech Cardio Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US9474606B2 (en) 2009-05-04 2016-10-25 Valtech Cardio, Ltd. Over-wire implant contraction methods
US10548729B2 (en) 2009-05-04 2020-02-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring and over-wire rotation tool
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US20100280605A1 (en) * 2009-05-04 2010-11-04 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US11076958B2 (en) 2009-05-04 2021-08-03 Valtech Cardio, Ltd. Annuloplasty ring delivery catheters
US11185412B2 (en) 2009-05-04 2021-11-30 Valtech Cardio Ltd. Deployment techniques for annuloplasty implants
US11766327B2 (en) 2009-05-04 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Implantation of repair chords in the heart
US11844665B2 (en) 2009-05-04 2023-12-19 Edwards Lifesciences Innovation (Israel) Ltd. Deployment techniques for annuloplasty structure
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US9937042B2 (en) 2009-05-07 2018-04-10 Valtech Cardio, Ltd. Multiple anchor delivery tool
US10856987B2 (en) 2009-05-07 2020-12-08 Valtech Cardio, Ltd. Multiple anchor delivery tool
US11723774B2 (en) 2009-05-07 2023-08-15 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
US9119719B2 (en) 2009-05-07 2015-09-01 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US9968454B2 (en) 2009-10-29 2018-05-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of artificial chordae
US11141271B2 (en) 2009-10-29 2021-10-12 Valtech Cardio Ltd. Tissue anchor for annuloplasty device
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
CN102686185A (en) * 2009-10-29 2012-09-19 瓦尔泰克卡迪欧有限公司 Tissue anchor for annuloplasty device
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8940042B2 (en) 2009-10-29 2015-01-27 Valtech Cardio, Ltd. Apparatus for guide-wire based advancement of a rotation assembly
US11617652B2 (en) 2009-10-29 2023-04-04 Edwards Lifesciences Innovation (Israel) Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US20110106247A1 (en) * 2009-10-29 2011-05-05 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9414921B2 (en) 2009-10-29 2016-08-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8690939B2 (en) 2009-10-29 2014-04-08 Valtech Cardio, Ltd. Method for guide-wire based advancement of a rotation assembly
WO2011051942A1 (en) * 2009-10-29 2011-05-05 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US10751184B2 (en) 2009-10-29 2020-08-25 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US11602434B2 (en) 2009-12-02 2023-03-14 Edwards Lifesciences Innovation (Israel) Ltd. Systems and methods for tissue adjustment
US10492909B2 (en) 2009-12-02 2019-12-03 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US8734467B2 (en) 2009-12-02 2014-05-27 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US9622861B2 (en) 2009-12-02 2017-04-18 Valtech Cardio, Ltd. Tool for actuating an adjusting mechanism
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US10660751B2 (en) 2009-12-08 2020-05-26 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US8790394B2 (en) 2010-05-24 2014-07-29 Valtech Cardio, Ltd. Adjustable artificial chordeae tendineae with suture loops
US8888794B2 (en) 2010-06-16 2014-11-18 Cardica, Inc. Mitral valve treatment
US8496671B1 (en) 2010-06-16 2013-07-30 Cardica, Inc. Mitral valve treatment
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US10173050B2 (en) 2010-12-29 2019-01-08 Medtronic, Inc. Implantable medical device fixation
US9844659B2 (en) 2010-12-29 2017-12-19 Medtronic, Inc. Implantable medical device fixation
US10835737B2 (en) 2010-12-29 2020-11-17 Medtronic, Inc. Implantable medical device fixation
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
US10118026B2 (en) 2010-12-29 2018-11-06 Medtronic, Inc. Implantable medical device fixation
US8523940B2 (en) 2011-05-17 2013-09-03 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
US8814932B2 (en) 2011-05-17 2014-08-26 Boston Scientific Scimed, Inc. Annuloplasty ring with piercing wire and segmented wire lumen
US8747462B2 (en) 2011-05-17 2014-06-10 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
US8940044B2 (en) 2011-06-23 2015-01-27 Valtech Cardio, Ltd. Closure element for use with an annuloplasty structure
US9918840B2 (en) 2011-06-23 2018-03-20 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8926697B2 (en) 2011-06-23 2015-01-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US9775709B2 (en) 2011-11-04 2017-10-03 Valtech Cardio, Ltd. Implant having multiple adjustable mechanisms
US10363136B2 (en) 2011-11-04 2019-07-30 Valtech Cardio, Ltd. Implant having multiple adjustment mechanisms
US11197759B2 (en) 2011-11-04 2021-12-14 Valtech Cardio Ltd. Implant having multiple adjusting mechanisms
US9265608B2 (en) 2011-11-04 2016-02-23 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
US11857415B2 (en) 2011-11-08 2024-01-02 Edwards Lifesciences Innovation (Israel) Ltd. Controlled steering functionality for implant-delivery tool
US9724192B2 (en) 2011-11-08 2017-08-08 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10568738B2 (en) 2011-11-08 2020-02-25 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US11395648B2 (en) 2012-09-29 2022-07-26 Edwards Lifesciences Corporation Plication lock delivery system and method of use thereof
US10893939B2 (en) 2012-10-23 2021-01-19 Valtech Cardio, Ltd. Controlled steering functionality for implant delivery tool
US11344310B2 (en) 2012-10-23 2022-05-31 Valtech Cardio Ltd. Percutaneous tissue anchor techniques
US9949828B2 (en) 2012-10-23 2018-04-24 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US11890190B2 (en) 2012-10-23 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Location indication system for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10610360B2 (en) 2012-12-06 2020-04-07 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US11583400B2 (en) 2012-12-06 2023-02-21 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for guided advancement of a tool
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US10918374B2 (en) 2013-02-26 2021-02-16 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US11793505B2 (en) 2013-02-26 2023-10-24 Edwards Lifesciences Corporation Devices and methods for percutaneous tricuspid valve repair
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US11534583B2 (en) 2013-03-14 2022-12-27 Valtech Cardio Ltd. Guidewire feeder
US10682232B2 (en) 2013-03-15 2020-06-16 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11890194B2 (en) 2013-03-15 2024-02-06 Edwards Lifesciences Corporation Translation catheters, systems, and methods of use thereof
US11744573B2 (en) 2013-08-31 2023-09-05 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10918373B2 (en) 2013-08-31 2021-02-16 Edwards Lifesciences Corporation Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US11065001B2 (en) 2013-10-23 2021-07-20 Valtech Cardio, Ltd. Anchor magazine
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US11766263B2 (en) 2013-10-23 2023-09-26 Edwards Lifesciences Innovation (Israel) Ltd. Anchor magazine
US10973637B2 (en) 2013-12-26 2021-04-13 Valtech Cardio, Ltd. Implantation of flexible implant
US10265170B2 (en) 2013-12-26 2019-04-23 Valtech Cardio, Ltd. Implantation of flexible implant
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11071628B2 (en) 2014-10-14 2021-07-27 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11331096B2 (en) 2014-12-19 2022-05-17 Meacor, Inc. Surgical method and system for performing the same
US10512460B2 (en) 2014-12-19 2019-12-24 Renzo Cecere Surgical method and system for performing the same
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US10925610B2 (en) 2015-03-05 2021-02-23 Edwards Lifesciences Corporation Devices for treating paravalvular leakage and methods use thereof
US11020227B2 (en) 2015-04-30 2021-06-01 Valtech Cardio, Ltd. Annuloplasty technologies
US10765514B2 (en) 2015-04-30 2020-09-08 Valtech Cardio, Ltd. Annuloplasty technologies
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
US11660192B2 (en) 2015-12-30 2023-05-30 Edwards Lifesciences Corporation System and method for reshaping heart
US10828160B2 (en) 2015-12-30 2020-11-10 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US11890193B2 (en) 2015-12-30 2024-02-06 Edwards Lifesciences Corporation System and method for reducing tricuspid regurgitation
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11540835B2 (en) 2016-05-26 2023-01-03 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10959845B2 (en) 2016-07-08 2021-03-30 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US10226342B2 (en) 2016-07-08 2019-03-12 Valtech Cardio, Ltd. Adjustable annuloplasty device with alternating peaks and troughs
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11883611B2 (en) 2017-04-18 2024-01-30 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US11832784B2 (en) 2017-11-02 2023-12-05 Edwards Lifesciences Innovation (Israel) Ltd. Implant-cinching devices and systems
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US11779463B2 (en) 2018-01-24 2023-10-10 Edwards Lifesciences Innovation (Israel) Ltd. Contraction of an annuloplasty structure
US11666442B2 (en) 2018-01-26 2023-06-06 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
US11123191B2 (en) 2018-07-12 2021-09-21 Valtech Cardio Ltd. Annuloplasty systems and locking tools therefor
US11890191B2 (en) 2018-07-12 2024-02-06 Edwards Lifesciences Innovation (Israel) Ltd. Fastener and techniques therefor
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
US11819411B2 (en) 2019-10-29 2023-11-21 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies

Also Published As

Publication number Publication date
AU2003228586A1 (en) 2003-11-03
US8167933B2 (en) 2012-05-01
WO2003088875A1 (en) 2003-10-30
US20030199974A1 (en) 2003-10-23
US20110004298A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US8167933B2 (en) Annuloplasty apparatus and methods
EP3793483B1 (en) Devices for heart valve repair
KR102563189B1 (en) Heart valve sealing device and delivery device therefor
EP2293739B1 (en) Heart valve repair device
CN107666868B (en) Improved tissue fixation device
US7316706B2 (en) Tensioning device, system, and method for treating mitral valve regurgitation
US7077861B2 (en) Annuloplasty instrument
US6406420B1 (en) Methods and devices for improving cardiac function in hearts
US7485142B2 (en) Implantation system for annuloplasty rings
US8123801B2 (en) Implantation system for annuloplasty rings
IL268016A (en) Multi-level cardiac implant
JP2021506461A (en) Artificial chordae tendineae repair device and its delivery
US20050107871A1 (en) Apparatus and methods for valve repair
JP2022524124A (en) Heart valve repair devices with annuloplasty features, as well as related systems and methods
US20040162611A1 (en) Method of implanting a self-molding annuloplasty ring
JP7423614B2 (en) Ventricular remodeling using coil devices
US11191656B2 (en) Methods and devices for heart valve repair
CN111568607A (en) Pipe fitting for valve leaflet catching ring and valve leaflet catching ring
US20220280318A1 (en) Methods and devices for heart valve repair
US20220202570A1 (en) Annuloplasty Device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION