US20050075302A1 - Immune stimulation by phosphorothioate oligonucleotide analogs - Google Patents

Immune stimulation by phosphorothioate oligonucleotide analogs Download PDF

Info

Publication number
US20050075302A1
US20050075302A1 US10/643,141 US64314103A US2005075302A1 US 20050075302 A1 US20050075302 A1 US 20050075302A1 US 64314103 A US64314103 A US 64314103A US 2005075302 A1 US2005075302 A1 US 2005075302A1
Authority
US
United States
Prior art keywords
canceled
cells
phosphorothioate
isis
phosphorothioate oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/643,141
Inventor
Stephen Hutcherson
Josephine Glover
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coley Pharmaceutical Group Inc
Original Assignee
Coley Pharmaceutical Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/712,135 external-priority patent/US5723335A/en
Application filed by Coley Pharmaceutical Group Inc filed Critical Coley Pharmaceutical Group Inc
Priority to US10/643,141 priority Critical patent/US20050075302A1/en
Assigned to COLEY PHARMACEUTICAL GROUP, INC. reassignment COLEY PHARMACEUTICAL GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISIS PHARMACEUTICALS, INC.
Assigned to ISIS PHARMACEUTICALS, INC. reassignment ISIS PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOVER, JOSEPHINE, HUTCHERSON, STEPHEN
Publication of US20050075302A1 publication Critical patent/US20050075302A1/en
Assigned to PFIZER INC. reassignment PFIZER INC. CONFIRMATION OF EXCLUSIVE PATENT LICENSE Assignors: COLEY PHARMACEUTICAL GROUP, INC., COLEY PHARMACEUTICAL GROUP, LTD., COLEY PHARMACEUTICAL, GMBH
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • C12N15/1133Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses against herpetoviridae, e.g. HSV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification

Definitions

  • This invention is directed towards methods for stimulating a localized immune response and for enhancing the efficacy of antiinfective and anticancer agents through local immune stimulation.
  • This invention is further directed toward immunopotentiators comprising phosphorothioate oligonucleotide analogs which produce the desired immune stimulation.
  • the cell-mediated immune response (“local immune response”) is produced by T-cells or thymus derived lymphocytes.
  • T-cells are able to detect the presence of invading pathogens through a recognition system referred to as the T-cell antigen receptor.
  • T-cells direct the release of multiple T-cell lymphokines including the interleukin-2 family (IL-2).
  • IL-2 is a T-cell growth factor which promotes the production of many more T-cells sensitive to the particular antigen. This production constitutes a clone of T-cells.
  • the sensitized T-cells attach to cells containing the antigen. T-cells carry out a variety of regulatory and defense functions and play a central role in immunologic responses.
  • T-cells When stimulated to produce a cell-mediated immune response, some T-cells respond by acting as killer cells, killing the host's own cells when these have become infected with virus and possibly when they become cancerous and therefore foreign. Some T-cells respond by stimulating B cells while other T-cells respond by suppressing immune responses.
  • the antibody or humoral immune response (“systemic immune response”) depends on the ability of B-cells, or bone marrow-derived lymphocytes, to recognize specific antigens.
  • the mechanism by which B-cells recognize antigens and react to them is as follows. Each B cell has receptor sites for specific antigens on its surface. When an antigen attaches to the receptor site of a B-cell, the B-cell is stimulated to divide. The daughter cells become plasma cells which manufacture antibodies complementary to the attached antigen. Each plasma cell produces thousands of antibody molecules per minute which are released into the bloodstream. As the plasma cells die, others are produced, so that, once the body is exposed to a particular antigen, antibodies are produced against that antigen as long as the antigen is present in the body.
  • helper T-cells appear to be regulated by the helper T-cells and suppressor T-cells.
  • Helper T-cells appear to stimulate B-cells to produce antibodies against antigens, while suppressor T-cells inhibit antibody production by either preventing the B-cells from functioning or preventing the helper T-cells from stimulating the B-cells.
  • Immunopotentiators such as adjuvants
  • adjuvants are substances which are added to therapeutic or prophylactic agents, for example vaccines or antigens used for immunization, to stimulate the immune response.
  • Adjuvants cause an accumulation of mononuclear cells, especially macrophages, at the site of injection. Macrophages involved in this first stage of the immune response take in the protein antigens and break them down into peptide fragments which are then exposed on the cell surface where they form a physical association with class II histocompatibility antigens.
  • the T helper cells recognize only protein fragments associated with class II histocompatibility antigen, and not the free undegraded protein.
  • Nonprotein antigens are similarly processed by macrophages or other antigen-presenting cells.
  • the macrophages release monokines from the interleukin-1 family (IL-1) which stimulate the T helper cells to secrete IL-2.
  • IL-1 and IL-2 result in the clonal expansion of T helper cells.
  • the clonal expansion of T helper cells is followed by their interaction with B-cells, which in turn secrete antibody.
  • IL-1 proteins have been linked with prostaglandin production, inflammation and induction of fever. IL-1 proteins have been shown to have multiple effects on cells involved in inflammation and wound healing and are known to stimulate proliferation of fibroblasts and attract cells involved in the inflammatory response.
  • Adjuvants encompass several broad classes including aluminum salts, surface-active agents, polyanions, bacterial derivatives, vehicles and slow-release materials. At present, most adjuvants have been found to stimulate macrophages at the site of action; however, certain adjuvants have been found to act as T-cell replacers enabling B-cells to respond to antigen in the absence of T-cells. An example of such an adjuvant is endotoxin, a B-cell mitogen.
  • cytokines Polynucleotides and other polyanions have been shown to cause release of cytokines. Also, bacterial DNA species have been reported to be mitogenic for lymphocytes in vitro. Furthermore, deoxyoligonucleotides (30-45 nucleotides in length) have been reported to induce interferons and enhance natural killer (NK) cell activity. Kuramoto et al. (1992) Jpn. J. Cancer Res. 83:1128-1131. Oligonucleotides that displayed NK-stimulating activity contained specific palindromic sequences and tended to be guanosine rich.
  • Immune stimulation has also been reported for antisense oligomers that are complementary to the initiation sequence of HIV rev and to the mink cell focus-forming (MCF) envelope gene initiation region. Krieg et al. (1989) J. Immunol. 143:2448-2451; Branda et al. (1993) Biochemical Pharmacology 45:2037-2043.
  • the MCF sequence is an endogenous retroviral sequence found in mice. In a study designed to determine whether expression of these endogenous viral sequences suppresses lymphocyte activation (as expressed infectious retroviral sequences can), antisense oligonucleotides and analogs complementary to the MCF env gene AUG region were used to inhibit expression of MCF mRNA. This resulted in increased lymphocyte activation.
  • TGF- ⁇ transforming growth factor- ⁇
  • TGF- ⁇ 2-specific phosphorothioate-antisense oligonucleotide analogs Jachimaczak et al. (1993) J. Neurosurg 78:944-951.
  • TGF- ⁇ an immunosuppressive factor produced by malignant gliomas
  • TGF- ⁇ is characterized by a wide range of immunoregulatory properties including depression of T-cell mediated tumor cytotoxicity, inhibition of IL-1- or IL-2-dependent T-cell proliferation, lymphokine-activated killer and natural killer cell activation, generation of cytotoxic macrophages and B-cell function.
  • the oligonucleotide analogs in these experiments were used to block TGF- ⁇ protein synthesis at the translation level.
  • preincubation of tumor cell cultures with TGF- ⁇ 2-S-ODN's enhanced lymphocyte proliferation up to 2.5 fold and autologous tumor cytotoxicity up to 60%. Jachimaczak et al. suggested these observations may have implications for in vivo and in vitro activation of a cellular immune response against autologous malignant glioma cells by inhibiting TGF- ⁇ synthesis.
  • antisense oligonucleotides and analogs have been used to specifically inhibit expression of genes implicated in immunosuppression, thus reversing the immunosuppressive effects.
  • An antisense oligonucleotide targeted to the cellular proto-oncogene c-myb has been demonstrated to block T-cell proliferation in peripheral blood mononuclear cells.
  • Antisense oligonucleotides targeted to interleukin-2 (IL-2) have been shown to specifically inhibit T-cell functions, i.e., proliferation in response to allo-antigen or PHA and IL-2 production.
  • IL-2 interleukin-2
  • antisense oligonucleotides have been used to specifically inhibit the expression of genes involved in T-cell proliferation, thus blocking proliferation and resulting in an immunosuppressive effect.
  • Phosphorothioate monomers and congeners thereof also have been demonstrated to affect humoral and cell-mediated immune responses. It was shown that mice treated with O,O,S-trimethyl phosphorothioate (OOS-TMP), a contaminant of malathion and other organophosphate pesticides, developed immunosuppression characterized by a decreased ability to make either humoral or cell-mediated immune responses to subsequent immunizations.
  • OOS-TMP O,O,S-trimethyl phosphorothioate
  • Rodgers et al. (1987) Toxicol. Appl. Pharmacol. 88: 270-281 On the contrary, O,S,S-trimethylphosphorodithioate (OSS-TMP) enhanced the generation of humoral and cell-mediated immune responses in mice. Rodgers et al. (1988
  • AMPLIGEN® Bacterial DNA and certain synthetic polynucleotides, both single- and double-stranded, can stimulate proliferation of lymphocytes in mice.
  • AMPLIGEN® polyI:poly(C 12 U), HEM Research Inc., Rockville, Md.
  • dsRNA double-stranded RNA
  • AMPLIGEN® has been reported to stabilize T4 cell counts in patients with AIDS-related complex and to have antineoplastic effects.
  • AMPLIGEN® is a specific form of mismatched dsRNA which has a uridine substituted for every twelfth cytosine in the poly(C) strand.
  • Poly(I):poly(C) without this mismatching was highly immunogenic but proved to be severely toxic and was abandoned as a clinical candidate in the 1970s.
  • oligonucleotide and analogs have been shown to be mitogenic in vitro. These oligonucleotides were polydeoxyguanosine, polydeoxycytosine or a mixture of the two. Phosphorothioates were found to be more active than the corresponding phosphodiesters. Pisetsky et al., (1993) Life Sciences 54:101-107.
  • ISIS 1082 21-mer phosphorothioate oligonucleotide analog, ISIS 1082 (SEQ ID NO: 2), was also shown to stimulate proliferation and antibody production by murine B cells. This oligonucleotide is complementary to the translation initiation codon of the herpes simplex virus UL13 gene.
  • Oligonucleotides having a sequence identical to a portion of the sense strand of the mRNA encoding the p65 subunit of NF-kB, a DNA binding protein, were found to stimulate splenic cell proliferation both in vitro and in vivo.
  • the proliferating spleen cells were shown to be B cells. Immunoglobulin secretion and NF-kB activity in these cell lines was also increased by the sense oligonucleotide. Both phosphodiester and phosphorothioate sense oligonucleotides stimulated the splenocyte proliferation.
  • the antisense phosphorothioate oligonucleotide complementary to the same region of p65 did not have this effect, and the stimulatory effect was abolished by mixing the sense and antisense oligonucleotides.
  • Sense oligonucleotides having two mismatches from the target sense sequence also failed to elicit the proliferative effect. It was concluded that this was a sequence-specific effect which may involve direct binding of the sense sequence to specific proteins. McIntyre et al. (1993) Antisense Res. and Devel. 3:309-322.
  • oligonucleotide analogs having at least one phosphorothioate bond can induce stimulation of a local immune response.
  • This immunostimulation does not appear to be related to any antisense effect which these oligonucleotide analogs may or may not possess.
  • These oligonucleotide analogs are useful as immunopotentiators, either alone or in combination with other therapeutic modalities, such as drugs, particularly antiinfective and anticancer drugs, and surgical procedures to increase efficacy.
  • the antiinfective and anticancer effects already possessed by certain antisense oligonucleotide analogs are enhanced through such immune stimulation.
  • oligonucleotide analogs having at least one phosphorothioate bond can be used to induce stimulation of a systemic or humoral immune response.
  • these oligonucleotides are also useful as immunopotentiators of an antibody response, either alone or in combination with other therapeutic modalities.
  • the present invention provides methods of stimulating a local immune response in selected cells or tissues by administering an oligonucleotide analog having at least one phosphorothioate bond to the cells or tissues.
  • Phosphorothioate oligonucleotide analogs have been shown to stimulate a local immune response in animals and humans. These methods are believed to be useful for enhancing the efficacy of a therapeutic treatment, particularly an antiinfective or anticancer treatment.
  • the present invention also provides oligonucleotide immunopotentiators having at least one phosphorothioate bond which are capable of eliciting a local inflammatory response. These oligonucleotide immunopotentiators may also possess a therapeutic activity, for example antisense activity. Several embodiments of these immunopotentiators are provided which have been shown to stimulate a local immune response in animals and humans.
  • Oligonucleotides and oligonucleotide analogs have recently become accepted as therapeutic moieties in the treatment of disease states in animals and man. For example, workers in the field have now identified antisense, triplex, decoy and other oligonucleotide therapeutic compositions which are capable of modulating expression of genes implicated in viral, fungal and metabolic functions and diseases. Oligonucleotide drugs have been safely administered to humans and several clinical trials of antisense oligonucleotide analog drugs are presently underway. It is, thus, established that oligonucleotides and analogs can be useful therapeutic instrumentalities and that the same can be configured to be useful in regimes for treatment of cells, tissues and animals, especially humans.
  • the present invention provides a method for stimulating a local immune response in selected cells or tissues.
  • the method comprises administering to selected cells or tissues an effective amount, preferably the amount needed to elicit a local inflammatory response, of an oligonucleotide analog having at least one phosphorothioate bond.
  • selected cells or tissues be infected by a fungus bacterium or virus.
  • the cells are skin cells infected with a virus, such as Herpes Simplex Virus Type-1 (HSV-1), Herpes Simplex Virus Type-2 (HSV-2) or Human Papilloma Virus.
  • the tissues are condyloma acuminata (genital warts).
  • the present invention also provides a method for enhancing the efficacy of a therapeutic treatment, preferably treatment with an antiinfective or anticancer drug or a surgical treatment, by administering to cells or tissues an effective amount, preferably the amount needed to elicit a local inflammatory response, of an oligonucleotide analog having at least one phosphorothioate bond.
  • the cells are skin cells infected with a virus, such as Herpes Simplex Virus Type-1 (HSV-1), Herpes Simplex Virus Type-2 (HSV-2) or Human Papilloma Virus
  • the therapeutic treatment is treatment with an antiviral drug or surgical excision.
  • the tissues are condyloma acuminata (genital warts).
  • the present invention employs phosphorothioate antisense oligonucleotide analogs which elicit a local inflammatory response.
  • These oligonucleotide analogs can be used alone to stimulate a local immune response or can be administered in combination with another therapeutic modality, either a drug or a surgical procedure.
  • These oligonucleotide analogs can modulate cytokine release in skin cells upon contacting skin cells with an effective amount of oligonucleotide analog.
  • an “effective amount” it is meant an amount sufficient to elicit an immune response resulting in the release of cytokines.
  • oligonucleotide analogs which have both therapeutic efficacy (through antisense or other means) and immunopotentiating activity.
  • the therapeutic activity is antisense activity against a foreign nucleic acid (bacterial, fungal, viral or oncogene-derived) in a host. Examples of several phosphorothioate oligonucleotide analog sequences useful in the present invention are provided in SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
  • immunopotentiator refers to a material which produces non-specific immune stimulation. Immune stimulation can be assayed by measuring various immune parameters, for example antibody-forming capacity, number of lymphocyte subpopulations, mixed leukocyte response assay or lymphocyte proliferation assay. Immune stimulation may result in increased resistance to infection or resistance to tumor growth upon administration.
  • oligonucleotide refers to a plurality of joined nucleotide units formed from naturally-occurring bases and cyclofuranosyl groups joined by native phosphodiester bonds.
  • Oligonucleotide analog refers to moieties which function similarly to oligonucleotides but which have non naturally-occurring portions.
  • oligonucleotide analogs may have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. They may also comprise altered base units or other modifications consistent with the spirit of this invention.
  • at least one of the phosphodiester bonds of the oligonucleotide is replaced by a phosphorothioate bond.
  • the oligonucleotide analog may have additional modifications to enhance the uptake, stability, affinity or other features of the oligonucleotide. Some examples of such modifications are modifications at the 2′ position of the sugar such as 2′-O-alkyl modifications, preferably lower alkyl such as 2′-O-methyl and 2′-O-propyl. All such analogs are comprehended by this invention so long as they function effectively to produce an immune response.
  • the oligonucleotide analogs in accordance with this invention preferably comprise from about 15 to about 50 subunits. As will be appreciated, a subunit is a base and sugar combination suitably bound to adjacent subunits through phosphodiester or other bonds.
  • oligonucleotide analogs of this invention are designed to be specifically hybridizable with messenger RNA of a virus or oncogene, for example HSV-1, HSV-2, HPV or ras. This relationship between an oligonucleotide and its complementary RNA target is referred to as “antisense”. These antisense oligonucleotide analogs, which also stimulate an immune response in keeping with the nature of the invention, thus can be said to have a “combination” or “multimodal” mechanism of action.
  • Hybridization in the context of this invention, means hydrogen bonding, also known as Watson-Crick base pairing, between complementary bases, usually on opposite nucleic acid strands or two regions of a nucleic acid strand. Guanine and cytosine are examples of complementary bases which are known to form three hydrogen bonds between them. Adenine and thymine are examples of complementary bases which form two hydrogen bonds between them.
  • oligonucleotide and “substantially complementary” are terms which indicate a sufficient degree of complementarity such that stable and specific binding occurs between the target and the oligonucleotide or analog. It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable.
  • An oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the messenger RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or, in the case of in vitro assays, under conditions in which the assays are conducted.
  • messenger RNA to be interfered with include all vital functions such as translocation of the RNA to the site for protein translation, actual translation of protein from the RNA, maturation of the RNA and possibly even independent catalytic activity which may be engaged in by the RNA.
  • the overall effect of such interference with the RNA function is to cause interference with expression of the targeted nucleic acid.
  • oligonucleotide analogs of this invention are used as immunopotentiators.
  • oligonucleotide analogs are administered to animals, especially humans, in accordance with this invention.
  • Oligonucleotides may be formulated in a pharmaceutical composition, which may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the oligonucleotide.
  • Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, antiinflammatory agents, anesthetics, and the like in addition to oligonucleotides.
  • the pharmaceutical composition may be administered in a number of ways depending on whether local or systemic treatment is desired, and on the area to be treated. Administration may be done topically (including ophthalmically, vaginally, rectally, intranasally), intralesionally, orally, by inhalation, or parenterally, for example by intravenous drip or subcutaneous, intraperitoneal, intradermal or intramuscular injection. It is generally preferred to apply the oligonucleotide analogs in accordance with this invention topically, intralesionally or parenterally.
  • Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders may be desirable.
  • Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
  • the oligonucleotide analog is administered in conjunction with a therapeutic agent, for example an antiinfective or anticancer drug, or a surgical procedure.
  • a therapeutic agent for example an antiinfective or anticancer drug, or a surgical procedure.
  • the oligonucleotide analog may be administered before, after and/or simultaneously with the alternative treatment.
  • the oligonucleotide analog is administered by intradermal injection to the wound area upon excision of genital warts.
  • the oligonucleotide analog is administered by intradermal injection into genital warts.
  • Dosing is dependent on severity and responsiveness of the condition to be treated, but will normally be one or more doses per day, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is achieved. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates.
  • oligonucleotides which are targeted to selected mRNAs were made. Natural oligonucleotides containing a phosphodiester backbone were screened for anti-viral activity in an infectious yield assay. The sequences showing the best activity in this assay were synthesized as phosphorothioate analogs, the phosphorothioate backbone modification greatly enhancing the antiviral activity of the oligonucleotides through stimulation of a local immune response.
  • Phosphorothioate oligonucleotide analogs include at least one modified or unnatural internucleotide linkage which, in addition to its enhancement of immune stimulation, can confer stability and enhance uptake of oligonucleotide into cells.
  • An O (oxygen) of the phosphate diester group linking nucleotides is modified to S (sulfur).
  • Phosphorothioates often have in vivo half-lives over 24 hours and have been shown to be stable in cells, tissues, and drug formulations.
  • Phosphorothioate oligonucleotide analogs are believed to enter cells by receptor-mediated endocytosis, and cellular uptake is often dependent on length and size, specific sequences, protein binding, and pendant modifications. Liposomes and cationic lipids can significantly enhance the uptake and fate of oligonucleotides and analogs.
  • ISIS 1082 (SEQ ID NO: 2), a phosphorothioate oligonucleotide analog 21 nucleotides in length targeted to the translation initiation codon for the UL13 gene of Herpes Simplex Virus (HSV) type 1 and 2, has been shown to inhibit HSV-1 replication in vitro. Synthesis of the UL13 protein in vitro by translational arrest with an IC 50 of 200-400 nm has been observed. In vitro assessment of the cellular toxicity of ISIS 1082 demonstrated that the predicted therapeutic index for the compound is equivalent to or better than that predicted for ACV in parallel assays.
  • HSV Herpes Simplex Virus
  • ISIS 1082 shows antiviral activity in ACV-resistant strains of virus and the favorable therapeutic index observed with the compound underscore the potential clinical value of this class of antiviral compounds.
  • the safety profile of this and other related phosphorothioates has also been evaluated in animal models. It has been observed that the compound causes an immune cell activation in rodents at the site of injection. Specifically, repeated intradermal administrations to rats elicited an infiltrate of mononuclear cells. This was believed to be a consequence of the interaction between the oligonucleotide analog and keratinocytes of the skin, and the resulting release of cytokines.
  • ISIS 1082 Incubation of the skin model with ISIS 1082 resulted in a concentration dependent increase of cytokine release with essentially no effect on cellular viability, as measured by the Neutral Red assay.
  • ISIS 1082 SEQ ID NO: 2
  • IL-1 ⁇ and possibly other cytokines, are released from keratinocytes in response to ISIS 1082 (SEQ ID NO: 2) may contribute to the immune cell responses seen in vivo.
  • an oligonucleotide ISIS 1049, SEQ ID NO: 2 having the same sequence as ISIS 1082 but with a phosphodiester backbone did not induce IL-1 ⁇ release in the skin model.
  • oligonucleotide structure a series of oligonucleotides and analogs having SEQ ID NO: 2 and either phosphorothioate (P ⁇ S) or phosphodiester (P ⁇ O) backbones were prepared. These oligonucleotide analogs were further modified at the 2′ position. Table 1 shows these oligonucleotides and their ability to induce IL-1 ⁇ induction from the skin model. TABLE 1 Oligonucleotide induction of IL-1 ⁇ (all are SEQ ID NO: 2) ISIS # Backbone 2′ group Induce IL-1 ⁇ ?
  • Antisense oligonucleotides and analogs have been used to inhibit the replication of virus in cell culture. Studies have also shown the effectiveness of antisense oligonucleotides in animal models of viral infection. Animal models of HSV-induced keratitis are well suited for such studies. Such ocular HSV infections are usually treated topically and thus provide a relatively simple way to test the effectiveness of antisense oligonucleotides in vivo; The drugs can be applied topically in aqueous solution and several parameters of the infection can be monitored.
  • ISIS 2105 (SEQ ID NO: 1) is a phosphorothioate 20 mer complementary to the translation initiation of both HPV types 6 and 11 mRNA encoded by the HPV E2 open-reading frame. HPV-6 and HPV-11 are associated with genital warts. ISIS 2105 has been shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. ISIS 2105 is among the first compounds to have specific antiviral effect on papillomavirus, as demonstrated by inhibition of focus formation.
  • ISIS 2105 The effects of ISIS 2105 on IL-1 ⁇ release and viability in the 3-dimensional in vitro human skin model was examined. Incubation of the skin model with ISIS 2105 resulted in a concentration dependent increase of cytokine release similar to that seen with ISIS 1082. There was essentially no effect on cellular viability, as measured by the Neutral Red assay. These data suggest that IL-1 ⁇ (and possibly other cytokines) is released from keratinocytes in response to ISIS 2105 (SEQ ID NO: 1).
  • Intradermal administration of ISIS 2105 in rabbits has resulted in no local or systemic toxicity.
  • Phosphorothioate oligonucleotide analogs can be administered to mice, rats and rabbits without significant acute or subacute toxicity.
  • ISIS 2105 has also been administered to cynomolgus monkeys by intradermal injection at doses up to 10 mg/kg every other day for four weeks, and was found to be well tolerated. No antibodies to ISIS 2105 were detectable in monkey plasma at the end of the study, indicating that ISIS 2105 is not intrinsically antigenic, i.e., while it stimulates an immune response, it is not itself an antigen.
  • Intradermal administration of ISIS 2105 does produce a local inflammatory response, however, in all species examined, including rats, mice, rabbits, guinea pigs, monkeys and humans. This response appears to be a class effect of all phosphorothioate oligonucleotide analogs, as similar responses were produced in rat skin by both ISIS 2105 and ISIS 1082 in 14-day studies. This response is not a delayed-type hypersensitivity involving memory T-lymphocytes but rather a result of the immunostimulation caused by these oligonucleotide analogs acting as adjuvants or immunopotentiators.
  • phosphorothioate oligonucleotide analogs do not appear to be intrinsically antigenic, they are immunostimulatory. Immune stimulation is also indicated by an increased humoral immune response in rats and B-cell proliferation in the spleens of mice. Lymphoid hyperplasia in the spleen of both rats and mice, and in the lymph nodes of mice, was seen after ISIS 2105 treatment.
  • mice and rats given repeated intradermal injections of ISIS 1082 (SEQ ID NO: 2) or repeated intravenous or subcutaneous injections of several other phosphorothioate oligonucleotide analogs [ISIS 2105 (SEQ ID NO: 1), ISIS 2503 (SEQ ID NO: 3, targeted to the ras oncogene)] developed, on a subacute basis, splenomegaly characterized by lymphoid hyperplasia. Lymphoid hyperplasia was also observed in lymph nodes under many experimental conditions.
  • a predominantly mononuclear inflammatory infiltrate has been observed in other organs/tissues following repeated parenteral administration of phosphorothioate oligonucleotide analogs.
  • Biopsies were taken from the injection sites of two of the three men in the dosing group receiving ISIS 2105 injections in the forearm twice weekly (1.02 mg/injection at 3 sites) for three weeks. Both subjects had a dense inflammatory reaction at the injection sites. This was detected by histological examination of biopsies from injection sites. There was both T- and B-cell involvement which is indicative of a local immunological response to ISIS 2105.
  • ISIS 2105 Blood samples taken from three subjects at least two months after completion of the trial showed no evidence of circulating antibodies to ISIS 2105. This indicates that, as was found in monkeys, ISIS 2105 is not intrinsically antigenic in humans.
  • Radiolabelled ISIS 2105 has been injected intradermally into each of four genital warts (condyloma acuminata) in five male patients. Systemic absorption of radiolabelled compound was monitored by blood sampling at intervals postinjection. Warts were removed at 1, 24, 48, 72, 96, 120 and 144 hours postinjection. After injection, ISIS 2105 was localized at the site of injection with rapid absorption (70% in 4 hours). Appreciable amounts of intact drug (4 ⁇ M) still remained in the wart tissue at 72 hours. Current estimates from in vitro studies indicate that concentrations of approximately 1 ⁇ M (and perhaps lower) are therapeutically effective. The prolonged retention time at the site of injection indicates that twice-weekly intralesional injections should be sufficient for therapeutic effect.
  • Oligonucleotides and analogs were synthesized at ISIS Pharmaceuticals on an automated DNA synthesizer using standard phosphoramidite chemistry with oxidation by iodine. ⁇ -cyanoethyldiisopropyl-phosphoramidites were purchased from Applied Biosystems (Foster City, Calif.). For phosphorothioate oligonucleotide analogs, the standard oxidation bottle was replaced by a 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation cycle wait step was increased to 68 seconds and was followed by the capping step.
  • 2′-O-methyl phosphorothioate oligonucleotide analogs were synthesized according to the procedures set forth above substituting 2′-O-methyl ⁇ -cyanoethyldiisopropyl phosphoramidites (Chemgenes, Needham, Mass.) for standard phosphoramidites and increasing the wait cycle after the pulse delivery of tetrazole and base to 360 seconds. 2′-O-propyl phosphorothioate oligonucleotide analogs were prepared by slight modifications of this procedure.
  • oligonucleotides and analogs Prior to use in various assays, oligonucleotides and analogs were prepared by first incubating stock solutions at 37° C. for 1 hour and diluting prewarmed drug in tissue culture medium to specified concentrations. Diluted compounds were filter sterilized by centrifugation through 0.2 ⁇ m pore size Centrex filters.
  • HeLa (ATCC CCL2) cells were maintained as monolayer cultures in low glucose Dulbecco's Modified Eagles Medium (DME) supplemented with 10% heat inactivated fetal bovine serum (FCS) while normal human dermal fibroblasts (NHDF) [Clonetics #CC2010] were grown in Fibroblast Basal Medium (Clonetics #CC-3130) with 0.2% FCS) in a 5% CO 2 -humidified incubator at 37° C.
  • DME Dulbecco's Modified Eagles Medium
  • FCS heat inactivated fetal bovine serum
  • NHDF normal human dermal fibroblasts
  • HeLa cells (10 4 ) were plated in 24 well tissue culture plates in 2.0 ml of 10% DME and allowed to attach to plate surfaces overnight. The next day, medium was aspirated and 2.0 ml of medium containing increasing concentrations of ISIS 1082 or medium alone was added to each well and placed in the incubator for 5 days. At the end of the incubation period, the cells were harvested and counted in the presence of trypan blue.
  • the in vitro model of skin was obtained from Advanced Tissue Sciences (La Jolla, Calif.). Nylon mesh squares of tissue derived from neonatal keratinocytes and fibroblasts were removed from storage wells containing agarose and transferred to sterile, 24 well tissue culture plates containing low glucose DME supplemented with 10% FCS and allowed to equilibrate in a 37° C. incubator overnight. The next day, the growth medium was removed and replaced with assay medium (DME, 2% FCS) containing oligonucleotide and incubated with the tissue for 24 hours.
  • assay medium DME, 2% FCS
  • the keratinocyte tissue substrates were incubated for 24 hours at 37° C., 5% CO 2 , 90% humidity in the presence of oligonucleotide or LPS/PMA in assay media.
  • the test agents were removed, replaced with neutral red solution (50 ⁇ g/ml), and incubated for 3 hours. The neutral red was removed and tissue substrates were washed with PBS.
  • incorporated dye was extracted using 1% acetic acid in 50% aqueous ethanol. The color intensity of the solution, measured at 540 nm, was proportional to viability of cells after drug exposure.
  • a murine monoclonal antibody specific for IL-1 ⁇ was applied to microtiter plates. A 200 ⁇ l aliquot of sample supernatant was pipetted into the wells and incubated at room temperature for 2 hours. After washing away any unbound proteins, a polyclonal antibody against IL-1 ⁇ conjugated to horseradish peroxidase was added to the wells to sandwich any immobilized IL-1 ⁇ and incubated for 1 hour at room temperature. Following a wash to remove any unbound antibody-enzyme, a substrate solution of hydrogen peroxide and tetramethylbenzidine was added to the wells and color developed in proportion to the amount of bound IL-1 ⁇ . The color development was terminated by the addition of 2N sulfuric acid and the intensity of the color was measured at 450 nm.
  • ISIS 2105 The effects of repeated administration of ISIS 2105 to rats on the humoral component of the immune response to a T-cell dependent antigen were determined. Lymphoid hyperplasia in the spleen and lymph nodes of rats dosed with ISIS 2105 had previously been observed. Histomorphologic changes were found to be associated with increased antibody production capacity in the spleen. Doses of 0.033, 0.18, 0.33 or 3.3 mg/kg/day were administered intradermally to groups of 5 female Sprague-Dawley rats daily for 14 days. The control group was given vehicle alone. A positive control group received cyclophosphamide (25 mg/kg/day) by intraperitoneal injection on days 11-14 of the study.
  • the IgM antibody-forming cell response to the T-dependent sheep erythrocyte antigen when evaluated as total spleen activity, was increased by 72% in the 3.3 mg/kg/day group compared to vehicle-treated animals. This was considered to be significant.
  • the positive control, cyclophosphamide produced anticipated decreases in immune parameters.
  • ISIS 2105 appeared to enhance the humoral response in rats receiving 3.3 mg/kg/day.
  • mice The effects of ISIS 2105 on various immune parameters in female B6C3F1 mice when administered by intradermal injection daily for 14 days were determined. Lymphoid hyperplasia in the spleen of mice dosed with ISIS 2105 had previously been observed. Groups of 5 females each received doses of 0 (vehicle control), 0.066, 0.33, 0.66 or 6.6 mg/kg/day. On the day after the last injection (day 15), the animals were sacrificed, spleens were removed and weighed, and a spleen cell homogenate was prepared for determination of immunologic parameters, including enumeration of lymphocyte subpopulations using specific antibodies, the mixed leukocyte response (MLR) assay, and the lymphocyte proliferation assay.
  • MLR mixed leukocyte response
  • ISIS 2105 for clinical trials was formulated as sterile phosphate-buffered solution for intradermal injection of volumes of 0.1 ml to 0.15 ml per injection. The concentration of ISIS 2105 varied depending on desired dose. Intradermal injections of ISIS 2105 were given into the ventral surface of the forearm of healthy male volunteers.
  • Skin biopsies were performed in two human subjects following administration of 5 doses of 1.02 mg of ISIS 2105.
  • a skin ellipse measuring 1.2 ⁇ 0.5 cm having a central pigmented area of 0.2 cm was removed from the forearm injection site. This ellipse was bisected and processed for microscopic histological analysis. The histological analysis revealed a moderately dense, inflammatory infiltrate in all layers of the dermis from both subjects. Immunohistochemistry revealed a mixture of cell types present. T-cells were predominant; however, B-cells were also present suggesting the immunological response was both T-cell and B-cell in nature.
  • the phosphorothioate oligonucleotide analog ISIS 2105 was 14 C labeled in the 2-position of thymine. Approximately 1 mg (3.5 ⁇ Ci/mg) was injected intradermally in each of four genital warts (condyloma acuminata) in five male patients. Systemic absorption of radiolabelled compound was monitored by blood sampling 1, 4, 8, 12, 24, 48, 72 and 144 hours postinjection. Warts were removed at 1, 24, 48, 72, 96, 120 and 144 hours postinjection. Urine and CO 2 samples for 14 C analysis were taken at intervals postinjection. Safety monitoring of these patients revealed no clinically significant abnormalities.
  • ISIS 2105 After injection, ISIS 2105 was rapidly absorbed (70% in 4 hours). However, appreciable amounts of intact drug (4 ⁇ M) remained in the wart tissue at 72 hours. Current estimates indicate that concentrations of approximately 1 ⁇ M are therapeutically effective. Peak plasma concentrations were achieved within 1 hour following the absorption of labeled ISIS 2105 from the injection site. Drug was cleared from plasma with a rapid distribution and prolonged elimination phase. The total body elimination half-life was estimated at 156 hours. The oligonucleotide was slowly metabolized and the radiolabel was eliminated, principally as CO 2 in expired air and in urine. In summary, following a single dose, intact ISIS 2105 was localized at the site of injection with rapid absorption but prolonged retention time in wart tissue. This indicates that twice-weekly intralesional injections should be sufficient for therapeutic effect.
  • Condyloma acuminata (genital warts) measuring at least 1 ⁇ 1 mm 2 are surgically removed. Upon cessation of bleeding with electrocautery, skin surrounding the ablated area is injected with 0.1 cc of ISIS 2105 drug formulation containing 0.3 mg or 1 mg of ISIS 2105. Up to 4 warts are treated.

Abstract

Methods of stimulating a local immune response in selected cells or tissues employing immunopotentiating oligonucleotide analogs having at least one phosphorothioate internucleotide bond are provided. Methods of enhancing the efficacy of a therapeutic treatment by stimulating a local immune response in selected cells or tissues employing oligonucleotide analogs having at least one phosphorothioate bond are also provided. The oligonucleotide analogs may have antisense efficacy in addition to immunopotentiating activity. Methods of modulating cytokine release in skin cells and immunopotentiators which include oligonucleotide analogs having at least one phosphorothioate bond capable of eliciting a local inflammatory response are also provided.

Description

    FIELD OF THE INVENTION
  • This invention is directed towards methods for stimulating a localized immune response and for enhancing the efficacy of antiinfective and anticancer agents through local immune stimulation. This invention is further directed toward immunopotentiators comprising phosphorothioate oligonucleotide analogs which produce the desired immune stimulation.
  • BACKGROUND OF THE INVENTION
  • Developments in recombinant DNA technology and peptide synthesis have made possible the creation of a new generation of drugs. However, small peptides and other agents do not always invoke the immune response necessary for a therapeutic effect. Substances which increase cell-mediated and/or humoral response may be required in the formulation for efficacy. The potency of a variety of agents, particularly antiinfective and antitumor drugs, may be enhanced by stimulation of an immune response.
  • The cell-mediated immune response (“local immune response”) is produced by T-cells or thymus derived lymphocytes. T-cells are able to detect the presence of invading pathogens through a recognition system referred to as the T-cell antigen receptor. Upon detection of an antigen, T-cells direct the release of multiple T-cell lymphokines including the interleukin-2 family (IL-2). IL-2 is a T-cell growth factor which promotes the production of many more T-cells sensitive to the particular antigen. This production constitutes a clone of T-cells. The sensitized T-cells attach to cells containing the antigen. T-cells carry out a variety of regulatory and defense functions and play a central role in immunologic responses. When stimulated to produce a cell-mediated immune response, some T-cells respond by acting as killer cells, killing the host's own cells when these have become infected with virus and possibly when they become cancerous and therefore foreign. Some T-cells respond by stimulating B cells while other T-cells respond by suppressing immune responses.
  • The antibody or humoral immune response (“systemic immune response”) depends on the ability of B-cells, or bone marrow-derived lymphocytes, to recognize specific antigens. The mechanism by which B-cells recognize antigens and react to them is as follows. Each B cell has receptor sites for specific antigens on its surface. When an antigen attaches to the receptor site of a B-cell, the B-cell is stimulated to divide. The daughter cells become plasma cells which manufacture antibodies complementary to the attached antigen. Each plasma cell produces thousands of antibody molecules per minute which are released into the bloodstream. As the plasma cells die, others are produced, so that, once the body is exposed to a particular antigen, antibodies are produced against that antigen as long as the antigen is present in the body. Many B-cells appear to be regulated by the helper T-cells and suppressor T-cells. Helper T-cells appear to stimulate B-cells to produce antibodies against antigens, while suppressor T-cells inhibit antibody production by either preventing the B-cells from functioning or preventing the helper T-cells from stimulating the B-cells. Some B-cells, however, are T-cell independent and require no stimulation by the T-cells.
  • Immunopotentiators, such as adjuvants, are substances which are added to therapeutic or prophylactic agents, for example vaccines or antigens used for immunization, to stimulate the immune response. Adjuvants cause an accumulation of mononuclear cells, especially macrophages, at the site of injection. Macrophages involved in this first stage of the immune response take in the protein antigens and break them down into peptide fragments which are then exposed on the cell surface where they form a physical association with class II histocompatibility antigens. The T helper cells recognize only protein fragments associated with class II histocompatibility antigen, and not the free undegraded protein. Nonprotein antigens are similarly processed by macrophages or other antigen-presenting cells. The macrophages release monokines from the interleukin-1 family (IL-1) which stimulate the T helper cells to secrete IL-2. The actions of IL-1 and IL-2 result in the clonal expansion of T helper cells. The clonal expansion of T helper cells is followed by their interaction with B-cells, which in turn secrete antibody.
  • Administration of an adjuvant resulting in stimulation of IL-1 and other cytokines results in a complex spectrum of biological activities. In addition to being a primary immunostimulatory signal, IL-1 proteins have been linked with prostaglandin production, inflammation and induction of fever. IL-1 proteins have been shown to have multiple effects on cells involved in inflammation and wound healing and are known to stimulate proliferation of fibroblasts and attract cells involved in the inflammatory response.
  • Adjuvants encompass several broad classes including aluminum salts, surface-active agents, polyanions, bacterial derivatives, vehicles and slow-release materials. At present, most adjuvants have been found to stimulate macrophages at the site of action; however, certain adjuvants have been found to act as T-cell replacers enabling B-cells to respond to antigen in the absence of T-cells. An example of such an adjuvant is endotoxin, a B-cell mitogen.
  • Polynucleotides and other polyanions have been shown to cause release of cytokines. Also, bacterial DNA species have been reported to be mitogenic for lymphocytes in vitro. Furthermore, deoxyoligonucleotides (30-45 nucleotides in length) have been reported to induce interferons and enhance natural killer (NK) cell activity. Kuramoto et al. (1992) Jpn. J. Cancer Res. 83:1128-1131. Oligonucleotides that displayed NK-stimulating activity contained specific palindromic sequences and tended to be guanosine rich. Immune stimulation has also been reported for antisense oligomers that are complementary to the initiation sequence of HIV rev and to the mink cell focus-forming (MCF) envelope gene initiation region. Krieg et al. (1989) J. Immunol. 143:2448-2451; Branda et al. (1993) Biochemical Pharmacology 45:2037-2043. The MCF sequence is an endogenous retroviral sequence found in mice. In a study designed to determine whether expression of these endogenous viral sequences suppresses lymphocyte activation (as expressed infectious retroviral sequences can), antisense oligonucleotides and analogs complementary to the MCF env gene AUG region were used to inhibit expression of MCF mRNA. This resulted in increased lymphocyte activation. However, this was believed to be a specific effect resulting from inhibition of the target gene, rather than an effect of oligonucleotides per se. In this case both phosphodiester and phosphorothioate oligonucleotides complementary to this target had the same effect, whereas antisense oligonucleotides to other retroviral targets and phosphorothioate control oligonucleotides had no effect. Krieg et al. (1989) J. Immunol. 143:2448-2451; Branda et al. (1993) Biochemical Pharmacology 45:2037-2043. Branda et al. showed that an anti-rev phosphorothioate oligonucleotide analog is mitogenic in both mononuclear cells from murine spleens and human peripheral blood mononuclear cells. A concentration-dependent stimulation of immunoglobulin production was also observed in vitro and in vivo. This mitogenic effect was specific for B-cells. These effects on B-cells were believed to be specific to this anti-rev oligomer as oligonucleotides complementary to the gag-pol initiation site and the 3′ splice site of endogenous retroviral sequences were known not to be stimulatory (Krieg et al. (1989) J. Immunol. 143:2448-2451) and because another phosphorothioate oligonucleotide analog of similar size, targeted to the human p53 protein, did not exhibit the same effect. The data suggested that endogenous retroviruses may suppress lymphocyte activation and that antisense oligonucleotides specific for these inhibitory retroviruses may reverse this suppression and stimulate B-lymphocytes. Though Branda et al. speculated about the possibility that the immune stimulation associated with this oligomer may be independent of its antisense activity, for example, contamination with endotoxin, no evidence for this could be found. Furthermore, the lymphocyte stimulation seen was to an extent not usually seen with exposure to double-stranded RNAs, which stimulate lymphokines. Immune stimulation was concluded not to be a general property of oligodeoxynucleotides, as they have been used by others to inhibit T-cell function. Branda et al. (1993) Biochemical Pharmacology 45:2037-2043.
  • The ability to reverse transforming growth factor-β (TGF-β)-mediated cellular immunosuppression in malignant glioma by addition of TGF-β2-specific phosphorothioate-antisense oligonucleotide analogs (TGF-β2-S-ODN's) has also been reported. Jachimaczak et al. (1993) J. Neurosurg 78:944-951. TGF-β, an immunosuppressive factor produced by malignant gliomas, is characterized by a wide range of immunoregulatory properties including depression of T-cell mediated tumor cytotoxicity, inhibition of IL-1- or IL-2-dependent T-cell proliferation, lymphokine-activated killer and natural killer cell activation, generation of cytotoxic macrophages and B-cell function. The oligonucleotide analogs in these experiments were used to block TGF-β protein synthesis at the translation level. In in vitro studies, preincubation of tumor cell cultures with TGF-β2-S-ODN's enhanced lymphocyte proliferation up to 2.5 fold and autologous tumor cytotoxicity up to 60%. Jachimaczak et al. suggested these observations may have implications for in vivo and in vitro activation of a cellular immune response against autologous malignant glioma cells by inhibiting TGF-β synthesis.
  • Thus, as illustrated by the above-described studies, antisense oligonucleotides and analogs have been used to specifically inhibit expression of genes implicated in immunosuppression, thus reversing the immunosuppressive effects.
  • An antisense oligonucleotide targeted to the cellular proto-oncogene c-myb has been demonstrated to block T-cell proliferation in peripheral blood mononuclear cells. Gewirtz et al. (1989) Science 245:180-183. Antisense oligonucleotides targeted to interleukin-2 (IL-2) have been shown to specifically inhibit T-cell functions, i.e., proliferation in response to allo-antigen or PHA and IL-2 production. Kloc et al. (1991) FASEB J. 5:A973.
  • Thus, antisense oligonucleotides have been used to specifically inhibit the expression of genes involved in T-cell proliferation, thus blocking proliferation and resulting in an immunosuppressive effect. Phosphorothioate monomers and congeners thereof also have been demonstrated to affect humoral and cell-mediated immune responses. It was shown that mice treated with O,O,S-trimethyl phosphorothioate (OOS-TMP), a contaminant of malathion and other organophosphate pesticides, developed immunosuppression characterized by a decreased ability to make either humoral or cell-mediated immune responses to subsequent immunizations. Rodgers et al. (1987) Toxicol. Appl. Pharmacol. 88: 270-281. On the contrary, O,S,S-trimethylphosphorodithioate (OSS-TMP) enhanced the generation of humoral and cell-mediated immune responses in mice. Rodgers et al. (1988) Toxicol. 51:241-253.
  • Bacterial DNA and certain synthetic polynucleotides, both single- and double-stranded, can stimulate proliferation of lymphocytes in mice. One such example is AMPLIGEN® [polyI:poly(C12U), HEM Research Inc., Rockville, Md.], a double-stranded RNA (dsRNA) which acts as a lymphokine to mediate cellular immune activity. This includes killer cell modulation, macrophage modulation, B-lymphocyte modulation, tumor necrosis factor modulation, interferon modulation and modulation of interferon-induced intracellular enzymes. AMPLIGEN® has been reported to stabilize T4 cell counts in patients with AIDS-related complex and to have antineoplastic effects. AMPLIGEN® is a specific form of mismatched dsRNA which has a uridine substituted for every twelfth cytosine in the poly(C) strand. Poly(I):poly(C) without this mismatching was highly immunogenic but proved to be severely toxic and was abandoned as a clinical candidate in the 1970s. U.S. Pat. No. 5,194,245.
  • Certain synthetic oligonucleotides and analogs have been shown to be mitogenic in vitro. These oligonucleotides were polydeoxyguanosine, polydeoxycytosine or a mixture of the two. Phosphorothioates were found to be more active than the corresponding phosphodiesters. Pisetsky et al., (1993) Life Sciences 54:101-107. In addition, a 21-mer phosphorothioate oligonucleotide analog, ISIS 1082 (SEQ ID NO: 2), was also shown to stimulate proliferation and antibody production by murine B cells. This oligonucleotide is complementary to the translation initiation codon of the herpes simplex virus UL13 gene. It was concluded that the mitogenic effects of this and certain other oligonucleotides on B cells may be due to preferential uptake of phosphorothioates and other mitogenic oligonucleotides by B cells, and that the enhanced penetration promotes a high intracellular concentration of these compounds, leading to non-specific activation.
  • Oligonucleotides having a sequence identical to a portion of the sense strand of the mRNA encoding the p65 subunit of NF-kB, a DNA binding protein, were found to stimulate splenic cell proliferation both in vitro and in vivo. The proliferating spleen cells were shown to be B cells. Immunoglobulin secretion and NF-kB activity in these cell lines was also increased by the sense oligonucleotide. Both phosphodiester and phosphorothioate sense oligonucleotides stimulated the splenocyte proliferation. The antisense phosphorothioate oligonucleotide complementary to the same region of p65 did not have this effect, and the stimulatory effect was abolished by mixing the sense and antisense oligonucleotides. Sense oligonucleotides having two mismatches from the target sense sequence also failed to elicit the proliferative effect. It was concluded that this was a sequence-specific effect which may involve direct binding of the sense sequence to specific proteins. McIntyre et al. (1993) Antisense Res. and Devel. 3:309-322.
  • It has now been found, surprisingly, that oligonucleotide analogs having at least one phosphorothioate bond can induce stimulation of a local immune response. This immunostimulation does not appear to be related to any antisense effect which these oligonucleotide analogs may or may not possess. These oligonucleotide analogs are useful as immunopotentiators, either alone or in combination with other therapeutic modalities, such as drugs, particularly antiinfective and anticancer drugs, and surgical procedures to increase efficacy. In addition, the antiinfective and anticancer effects already possessed by certain antisense oligonucleotide analogs are enhanced through such immune stimulation.
  • It has also been found that oligonucleotide analogs having at least one phosphorothioate bond can be used to induce stimulation of a systemic or humoral immune response. Thus, these oligonucleotides are also useful as immunopotentiators of an antibody response, either alone or in combination with other therapeutic modalities.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods of stimulating a local immune response in selected cells or tissues by administering an oligonucleotide analog having at least one phosphorothioate bond to the cells or tissues. Phosphorothioate oligonucleotide analogs have been shown to stimulate a local immune response in animals and humans. These methods are believed to be useful for enhancing the efficacy of a therapeutic treatment, particularly an antiinfective or anticancer treatment.
  • The present invention also provides oligonucleotide immunopotentiators having at least one phosphorothioate bond which are capable of eliciting a local inflammatory response. These oligonucleotide immunopotentiators may also possess a therapeutic activity, for example antisense activity. Several embodiments of these immunopotentiators are provided which have been shown to stimulate a local immune response in animals and humans.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Oligonucleotides and oligonucleotide analogs have recently become accepted as therapeutic moieties in the treatment of disease states in animals and man. For example, workers in the field have now identified antisense, triplex, decoy and other oligonucleotide therapeutic compositions which are capable of modulating expression of genes implicated in viral, fungal and metabolic functions and diseases. Oligonucleotide drugs have been safely administered to humans and several clinical trials of antisense oligonucleotide analog drugs are presently underway. It is, thus, established that oligonucleotides and analogs can be useful therapeutic instrumentalities and that the same can be configured to be useful in regimes for treatment of cells, tissues and animals, especially humans.
  • The present invention provides a method for stimulating a local immune response in selected cells or tissues. The method comprises administering to selected cells or tissues an effective amount, preferably the amount needed to elicit a local inflammatory response, of an oligonucleotide analog having at least one phosphorothioate bond. It is preferred that selected cells or tissues be infected by a fungus bacterium or virus. In one embodiment, the cells are skin cells infected with a virus, such as Herpes Simplex Virus Type-1 (HSV-1), Herpes Simplex Virus Type-2 (HSV-2) or Human Papilloma Virus. In one embodiment, the tissues are condyloma acuminata (genital warts).
  • The present invention also provides a method for enhancing the efficacy of a therapeutic treatment, preferably treatment with an antiinfective or anticancer drug or a surgical treatment, by administering to cells or tissues an effective amount, preferably the amount needed to elicit a local inflammatory response, of an oligonucleotide analog having at least one phosphorothioate bond. In one embodiment, the cells are skin cells infected with a virus, such as Herpes Simplex Virus Type-1 (HSV-1), Herpes Simplex Virus Type-2 (HSV-2) or Human Papilloma Virus, and the therapeutic treatment is treatment with an antiviral drug or surgical excision. In one embodiment, the tissues are condyloma acuminata (genital warts).
  • The present invention employs phosphorothioate antisense oligonucleotide analogs which elicit a local inflammatory response. These oligonucleotide analogs can be used alone to stimulate a local immune response or can be administered in combination with another therapeutic modality, either a drug or a surgical procedure. These oligonucleotide analogs can modulate cytokine release in skin cells upon contacting skin cells with an effective amount of oligonucleotide analog. By an “effective amount” it is meant an amount sufficient to elicit an immune response resulting in the release of cytokines. In one embodiment of the invention, oligonucleotide analogs are provided which have both therapeutic efficacy (through antisense or other means) and immunopotentiating activity. In one embodiment, the therapeutic activity is antisense activity against a foreign nucleic acid (bacterial, fungal, viral or oncogene-derived) in a host. Examples of several phosphorothioate oligonucleotide analog sequences useful in the present invention are provided in SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
  • In the context of this invention, the term “immunopotentiator” refers to a material which produces non-specific immune stimulation. Immune stimulation can be assayed by measuring various immune parameters, for example antibody-forming capacity, number of lymphocyte subpopulations, mixed leukocyte response assay or lymphocyte proliferation assay. Immune stimulation may result in increased resistance to infection or resistance to tumor growth upon administration.
  • The term “oligonucleotide” refers to a plurality of joined nucleotide units formed from naturally-occurring bases and cyclofuranosyl groups joined by native phosphodiester bonds.
  • “Oligonucleotide analog,” as that term is used in connection with this invention, refers to moieties which function similarly to oligonucleotides but which have non naturally-occurring portions. Thus, oligonucleotide analogs may have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. They may also comprise altered base units or other modifications consistent with the spirit of this invention. In accordance with this invention, at least one of the phosphodiester bonds of the oligonucleotide is replaced by a phosphorothioate bond. The oligonucleotide analog may have additional modifications to enhance the uptake, stability, affinity or other features of the oligonucleotide. Some examples of such modifications are modifications at the 2′ position of the sugar such as 2′-O-alkyl modifications, preferably lower alkyl such as 2′-O-methyl and 2′-O-propyl. All such analogs are comprehended by this invention so long as they function effectively to produce an immune response. The oligonucleotide analogs in accordance with this invention preferably comprise from about 15 to about 50 subunits. As will be appreciated, a subunit is a base and sugar combination suitably bound to adjacent subunits through phosphodiester or other bonds.
  • Certain oligonucleotide analogs of this invention are designed to be specifically hybridizable with messenger RNA of a virus or oncogene, for example HSV-1, HSV-2, HPV or ras. This relationship between an oligonucleotide and its complementary RNA target is referred to as “antisense”. These antisense oligonucleotide analogs, which also stimulate an immune response in keeping with the nature of the invention, thus can be said to have a “combination” or “multimodal” mechanism of action. Several embodiments of this type are phosphorothioate oligonucleotide analogs of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3.
  • “Hybridization,” in the context of this invention, means hydrogen bonding, also known as Watson-Crick base pairing, between complementary bases, usually on opposite nucleic acid strands or two regions of a nucleic acid strand. Guanine and cytosine are examples of complementary bases which are known to form three hydrogen bonds between them. Adenine and thymine are examples of complementary bases which form two hydrogen bonds between them.
  • “Specifically hybridizable” and “substantially complementary” are terms which indicate a sufficient degree of complementarity such that stable and specific binding occurs between the target and the oligonucleotide or analog. It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable. An oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the messenger RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or, in the case of in vitro assays, under conditions in which the assays are conducted.
  • The functions of messenger RNA to be interfered with include all vital functions such as translocation of the RNA to the site for protein translation, actual translation of protein from the RNA, maturation of the RNA and possibly even independent catalytic activity which may be engaged in by the RNA. The overall effect of such interference with the RNA function is to cause interference with expression of the targeted nucleic acid.
  • The oligonucleotide analogs of this invention are used as immunopotentiators. For therapeutic or prophylactic treatment, oligonucleotide analogs are administered to animals, especially humans, in accordance with this invention. Oligonucleotides may be formulated in a pharmaceutical composition, which may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the oligonucleotide. Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, antiinflammatory agents, anesthetics, and the like in addition to oligonucleotides.
  • The pharmaceutical composition may be administered in a number of ways depending on whether local or systemic treatment is desired, and on the area to be treated. Administration may be done topically (including ophthalmically, vaginally, rectally, intranasally), intralesionally, orally, by inhalation, or parenterally, for example by intravenous drip or subcutaneous, intraperitoneal, intradermal or intramuscular injection. It is generally preferred to apply the oligonucleotide analogs in accordance with this invention topically, intralesionally or parenterally. Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets, or tablets. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders may be desirable.
  • Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
  • In certain embodiments, the oligonucleotide analog is administered in conjunction with a therapeutic agent, for example an antiinfective or anticancer drug, or a surgical procedure. When oligonucleotide analog is administered in conjunction with another such therapeutic modality, the oligonucleotide analog may be administered before, after and/or simultaneously with the alternative treatment. In one embodiment of the invention, the oligonucleotide analog is administered by intradermal injection to the wound area upon excision of genital warts. In another embodiment of the invention, the oligonucleotide analog is administered by intradermal injection into genital warts.
  • Dosing is dependent on severity and responsiveness of the condition to be treated, but will normally be one or more doses per day, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is achieved. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates.
  • In accordance with certain embodiments of the invention, a number of antisense oligonucleotides which are targeted to selected mRNAs were made. Natural oligonucleotides containing a phosphodiester backbone were screened for anti-viral activity in an infectious yield assay. The sequences showing the best activity in this assay were synthesized as phosphorothioate analogs, the phosphorothioate backbone modification greatly enhancing the antiviral activity of the oligonucleotides through stimulation of a local immune response.
  • Phosphorothioate oligonucleotide analogs include at least one modified or unnatural internucleotide linkage which, in addition to its enhancement of immune stimulation, can confer stability and enhance uptake of oligonucleotide into cells. An O (oxygen) of the phosphate diester group linking nucleotides is modified to S (sulfur). Phosphorothioates often have in vivo half-lives over 24 hours and have been shown to be stable in cells, tissues, and drug formulations. Phosphorothioate oligonucleotide analogs are believed to enter cells by receptor-mediated endocytosis, and cellular uptake is often dependent on length and size, specific sequences, protein binding, and pendant modifications. Liposomes and cationic lipids can significantly enhance the uptake and fate of oligonucleotides and analogs.
  • ISIS 1082 (SEQ ID NO: 2), a phosphorothioate oligonucleotide analog 21 nucleotides in length targeted to the translation initiation codon for the UL13 gene of Herpes Simplex Virus (HSV) type 1 and 2, has been shown to inhibit HSV-1 replication in vitro. Synthesis of the UL13 protein in vitro by translational arrest with an IC50 of 200-400 nm has been observed. In vitro assessment of the cellular toxicity of ISIS 1082 demonstrated that the predicted therapeutic index for the compound is equivalent to or better than that predicted for ACV in parallel assays. The demonstration that ISIS 1082 shows antiviral activity in ACV-resistant strains of virus and the favorable therapeutic index observed with the compound underscore the potential clinical value of this class of antiviral compounds. Studies have shown that the compound is minimally toxic at therapeutically relevant concentrations in vitro. The safety profile of this and other related phosphorothioates has also been evaluated in animal models. It has been observed that the compound causes an immune cell activation in rodents at the site of injection. Specifically, repeated intradermal administrations to rats elicited an infiltrate of mononuclear cells. This was believed to be a consequence of the interaction between the oligonucleotide analog and keratinocytes of the skin, and the resulting release of cytokines.
  • To better understand the mechanism of the local immunostimulatory response, the effects of ISIS 1082 on IL-1α release and viability in a 3-dimensional in vitro human skin model consisting of neonatal keratinocytes and fibroblasts were examined. This system was chosen because epidermal cytokines play an important role in mediating inflammatory and immune responses in the skin. Keratinocytes are the principal source of cytokines in the epidermis. This in vitro skin model displays many of the functional and metabolic properties of a differentiated epidermis and has been induced to specifically release IL-1α in response to a mixture of lipopolysaccharide/phorbol myristate acetate. Incubation of the skin model with ISIS 1082 resulted in a concentration dependent increase of cytokine release with essentially no effect on cellular viability, as measured by the Neutral Red assay. These data indicate that IL-1α, and possibly other cytokines, are released from keratinocytes in response to ISIS 1082 (SEQ ID NO: 2) may contribute to the immune cell responses seen in vivo. It was subsequently determined that an oligonucleotide (ISIS 1049, SEQ ID NO: 2) having the same sequence as ISIS 1082 but with a phosphodiester backbone did not induce IL-1α release in the skin model. To further elucidate the relationship between oligonucleotide structure and IL-1α release, a series of oligonucleotides and analogs having SEQ ID NO: 2 and either phosphorothioate (P═S) or phosphodiester (P═O) backbones were prepared. These oligonucleotide analogs were further modified at the 2′ position. Table 1 shows these oligonucleotides and their ability to induce IL-1α induction from the skin model.
    TABLE 1
    Oligonucleotide induction of IL-1α
    (all are SEQ ID NO: 2)
    ISIS # Backbone 2′ group Induce IL-1α?
    ISIS 1049 P═O deoxy no
    ISIS 1082 P═S deoxy yes
    ISIS 7374 P═O O-methyl no
    ISIS 2007 P═S O-methyl yes
    ISIS 7389 P═O O-propyl no
    ISIS 7337 P═S O-propyl yes

    The ability to induce IL-1α in this assay is correlated with the presence of the phosphorothioate backbone. It is likely that a uniformly phosphorothioate backbone is not necessary for cytokine induction, i.e., gapped, alternating or otherwise mixed backbones containing at least one phosphorothioate linkage may also induce IL-1α. These results also demonstrate that other modifications, such as the sugar modifications in this example, can also be present as long as at least one phosphorothioate is present.
  • Antisense oligonucleotides and analogs have been used to inhibit the replication of virus in cell culture. Studies have also shown the effectiveness of antisense oligonucleotides in animal models of viral infection. Animal models of HSV-induced keratitis are well suited for such studies. Such ocular HSV infections are usually treated topically and thus provide a relatively simple way to test the effectiveness of antisense oligonucleotides in vivo; The drugs can be applied topically in aqueous solution and several parameters of the infection can be monitored. In one experiment using a murine model, the effectiveness of the phosphorothioate antisense oligonucleotide analog ISIS 1082 (SEQ ID NO: 2) made in accordance with the teachings of the invention was tested for treatment of herpetic keratitis. It was found that topical treatment with this anti-UL13 oligonucleotide analog significantly reduced the severity of HSV-induced stromal keratitis.
  • Three different concentrations of the oligonucleotide analog as well as a buffer control (50 mM sodium acetate, pH 5.8, 0.15 M NaCl) and untreated animals infected with HSV-1 were tested. All animals were infected with 1×105 plaque forming units (pfu) following scratching of the cornea. It was found that treatment with 0.3% and 1.0% ISIS 1082 did not affect the severity of blepharitis, but treated mice healed slightly faster. Treatment with ISIS 1082 reduced stromal disease and vascularization on days 11, 13, and 15 post-infection. This reduction in disease was statistically significant on some days but not on others, probably because of small sample size and variability in the disease. These results indicate that antisense oligonucleotide analogs of the invention may be useful in treating HSV keratitis.
  • ISIS 2105 (SEQ ID NO: 1) is a phosphorothioate 20 mer complementary to the translation initiation of both HPV types 6 and 11 mRNA encoded by the HPV E2 open-reading frame. HPV-6 and HPV-11 are associated with genital warts. ISIS 2105 has been shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. ISIS 2105 is among the first compounds to have specific antiviral effect on papillomavirus, as demonstrated by inhibition of focus formation.
  • The effects of ISIS 2105 on IL-1α release and viability in the 3-dimensional in vitro human skin model was examined. Incubation of the skin model with ISIS 2105 resulted in a concentration dependent increase of cytokine release similar to that seen with ISIS 1082. There was essentially no effect on cellular viability, as measured by the Neutral Red assay. These data suggest that IL-1α (and possibly other cytokines) is released from keratinocytes in response to ISIS 2105 (SEQ ID NO: 1).
  • Intradermal administration of ISIS 2105 in rabbits has resulted in no local or systemic toxicity. Phosphorothioate oligonucleotide analogs, both as single doses and as daily doses over a several-week period, can be administered to mice, rats and rabbits without significant acute or subacute toxicity. ISIS 2105 has also been administered to cynomolgus monkeys by intradermal injection at doses up to 10 mg/kg every other day for four weeks, and was found to be well tolerated. No antibodies to ISIS 2105 were detectable in monkey plasma at the end of the study, indicating that ISIS 2105 is not intrinsically antigenic, i.e., while it stimulates an immune response, it is not itself an antigen.
  • Intradermal administration of ISIS 2105 does produce a local inflammatory response, however, in all species examined, including rats, mice, rabbits, guinea pigs, monkeys and humans. This response appears to be a class effect of all phosphorothioate oligonucleotide analogs, as similar responses were produced in rat skin by both ISIS 2105 and ISIS 1082 in 14-day studies. This response is not a delayed-type hypersensitivity involving memory T-lymphocytes but rather a result of the immunostimulation caused by these oligonucleotide analogs acting as adjuvants or immunopotentiators. Thus, while the phosphorothioate oligonucleotide analogs do not appear to be intrinsically antigenic, they are immunostimulatory. Immune stimulation is also indicated by an increased humoral immune response in rats and B-cell proliferation in the spleens of mice. Lymphoid hyperplasia in the spleen of both rats and mice, and in the lymph nodes of mice, was seen after ISIS 2105 treatment.
  • Mice and rats given repeated intradermal injections of ISIS 1082 (SEQ ID NO: 2) or repeated intravenous or subcutaneous injections of several other phosphorothioate oligonucleotide analogs [ISIS 2105 (SEQ ID NO: 1), ISIS 2503 (SEQ ID NO: 3, targeted to the ras oncogene)] developed, on a subacute basis, splenomegaly characterized by lymphoid hyperplasia. Lymphoid hyperplasia was also observed in lymph nodes under many experimental conditions. In addition, a predominantly mononuclear inflammatory infiltrate has been observed in other organs/tissues following repeated parenteral administration of phosphorothioate oligonucleotide analogs. These effects were not associated with any organ damage or dysfunction, and were reversible upon cessation of oligonucleotide administration.
  • Studies in rats to determine the association of this hyperplasia and the humoral component of the immune response to a T-cell dependent antigen demonstrated that the IgM antibody-forming cell response to the antigen was increased by 72% in rats dosed daily with ISIS 2105 at 3.3 mg/kg/day, compared with rats dosed with vehicle only. This was considered significant.
  • In clinical trials, 21 human subjects completed the trial with seven different dosing regimens. All subjects showed some degree of inflammation at the injection site, the extent of which was related to size and frequency of dose. Biopsies were taken from the injection sites of two of the three men in the dosing group receiving ISIS 2105 injections in the forearm twice weekly (1.02 mg/injection at 3 sites) for three weeks. Both subjects had a dense inflammatory reaction at the injection sites. This was detected by histological examination of biopsies from injection sites. There was both T- and B-cell involvement which is indicative of a local immunological response to ISIS 2105.
  • Blood samples taken from three subjects at least two months after completion of the trial showed no evidence of circulating antibodies to ISIS 2105. This indicates that, as was found in monkeys, ISIS 2105 is not intrinsically antigenic in humans.
  • Radiolabelled ISIS 2105 has been injected intradermally into each of four genital warts (condyloma acuminata) in five male patients. Systemic absorption of radiolabelled compound was monitored by blood sampling at intervals postinjection. Warts were removed at 1, 24, 48, 72, 96, 120 and 144 hours postinjection. After injection, ISIS 2105 was localized at the site of injection with rapid absorption (70% in 4 hours). Appreciable amounts of intact drug (4 μM) still remained in the wart tissue at 72 hours. Current estimates from in vitro studies indicate that concentrations of approximately 1 μM (and perhaps lower) are therapeutically effective. The prolonged retention time at the site of injection indicates that twice-weekly intralesional injections should be sufficient for therapeutic effect.
  • The invention is further illustrated by the following examples which are meant to be illustrations only and are not intended to limit the present invention to specific embodiments.
  • EXAMPLES Example 1 Preparation of Oligonucleotides and Analogs
  • Oligonucleotides and analogs were synthesized at ISIS Pharmaceuticals on an automated DNA synthesizer using standard phosphoramidite chemistry with oxidation by iodine. β-cyanoethyldiisopropyl-phosphoramidites were purchased from Applied Biosystems (Foster City, Calif.). For phosphorothioate oligonucleotide analogs, the standard oxidation bottle was replaced by a 0.2 M solution of 3H-1,2-benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation cycle wait step was increased to 68 seconds and was followed by the capping step.
  • 2′-O-methyl phosphorothioate oligonucleotide analogs were synthesized according to the procedures set forth above substituting 2′-O-methyl β-cyanoethyldiisopropyl phosphoramidites (Chemgenes, Needham, Mass.) for standard phosphoramidites and increasing the wait cycle after the pulse delivery of tetrazole and base to 360 seconds. 2′-O-propyl phosphorothioate oligonucleotide analogs were prepared by slight modifications of this procedure.
  • Prior to use in various assays, oligonucleotides and analogs were prepared by first incubating stock solutions at 37° C. for 1 hour and diluting prewarmed drug in tissue culture medium to specified concentrations. Diluted compounds were filter sterilized by centrifugation through 0.2 μm pore size Centrex filters.
  • Example 2 Cell Line Maintenance
  • HeLa (ATCC CCL2) cells were maintained as monolayer cultures in low glucose Dulbecco's Modified Eagles Medium (DME) supplemented with 10% heat inactivated fetal bovine serum (FCS) while normal human dermal fibroblasts (NHDF) [Clonetics #CC2010] were grown in Fibroblast Basal Medium (Clonetics #CC-3130) with 0.2% FCS) in a 5% CO2-humidified incubator at 37° C.
  • Example 3 In Vitro Cellular Proliferation Assay
  • Asynchronous, logarithmically growing HeLa cells (104) were plated in 24 well tissue culture plates in 2.0 ml of 10% DME and allowed to attach to plate surfaces overnight. The next day, medium was aspirated and 2.0 ml of medium containing increasing concentrations of ISIS 1082 or medium alone was added to each well and placed in the incubator for 5 days. At the end of the incubation period, the cells were harvested and counted in the presence of trypan blue.
  • Example 4 In Vitro Skin Model
  • The in vitro model of skin (Full thickness model ZK1200) was obtained from Advanced Tissue Sciences (La Jolla, Calif.). Nylon mesh squares of tissue derived from neonatal keratinocytes and fibroblasts were removed from storage wells containing agarose and transferred to sterile, 24 well tissue culture plates containing low glucose DME supplemented with 10% FCS and allowed to equilibrate in a 37° C. incubator overnight. The next day, the growth medium was removed and replaced with assay medium (DME, 2% FCS) containing oligonucleotide and incubated with the tissue for 24 hours.
  • Example 5 Neutral Red Assay
  • The keratinocyte tissue substrates were incubated for 24 hours at 37° C., 5% CO2, 90% humidity in the presence of oligonucleotide or LPS/PMA in assay media. The test agents were removed, replaced with neutral red solution (50 μg/ml), and incubated for 3 hours. The neutral red was removed and tissue substrates were washed with PBS. After a brief exposure to 0.5% formaldehyde/lk calcium chloride solution, incorporated dye was extracted using 1% acetic acid in 50% aqueous ethanol. The color intensity of the solution, measured at 540 nm, was proportional to viability of cells after drug exposure.
  • Example 6 Human IL-1α Immunoassay
  • A murine monoclonal antibody specific for IL-1α was applied to microtiter plates. A 200 μl aliquot of sample supernatant was pipetted into the wells and incubated at room temperature for 2 hours. After washing away any unbound proteins, a polyclonal antibody against IL-1α conjugated to horseradish peroxidase was added to the wells to sandwich any immobilized IL-1α and incubated for 1 hour at room temperature. Following a wash to remove any unbound antibody-enzyme, a substrate solution of hydrogen peroxide and tetramethylbenzidine was added to the wells and color developed in proportion to the amount of bound IL-1α. The color development was terminated by the addition of 2N sulfuric acid and the intensity of the color was measured at 450 nm.
  • Example 7 Immunological Evaluation of ISIS 2105 in Rats
  • The effects of repeated administration of ISIS 2105 to rats on the humoral component of the immune response to a T-cell dependent antigen were determined. Lymphoid hyperplasia in the spleen and lymph nodes of rats dosed with ISIS 2105 had previously been observed. Histomorphologic changes were found to be associated with increased antibody production capacity in the spleen. Doses of 0.033, 0.18, 0.33 or 3.3 mg/kg/day were administered intradermally to groups of 5 female Sprague-Dawley rats daily for 14 days. The control group was given vehicle alone. A positive control group received cyclophosphamide (25 mg/kg/day) by intraperitoneal injection on days 11-14 of the study. All animals were sensitized to sheep RBCs on day 11 by intravenous injection. At the end of the 14-day dosing period, the rats were euthanized and terminal body weights, spleen and thymus weights were recorded. The IgM antibody-forming cell response of the spleen was determined ex vivo in spleen homogenates by quantifying plaque formation after addition of sheep RBCs. High-dose animals had increased spleen weights, both absolute (55%) and percent of body weight (48%), and an increased spleen cellularity (27%) compared to vehicle-treated animals. The IgM antibody-forming cell response to the T-dependent sheep erythrocyte antigen, when evaluated as total spleen activity, was increased by 72% in the 3.3 mg/kg/day group compared to vehicle-treated animals. This was considered to be significant. The positive control, cyclophosphamide, produced anticipated decreases in immune parameters. In conclusion, ISIS 2105 appeared to enhance the humoral response in rats receiving 3.3 mg/kg/day.
  • Example 8 Immunological Evaluation of ISIS 2105 in Mice
  • The effects of ISIS 2105 on various immune parameters in female B6C3F1 mice when administered by intradermal injection daily for 14 days were determined. Lymphoid hyperplasia in the spleen of mice dosed with ISIS 2105 had previously been observed. Groups of 5 females each received doses of 0 (vehicle control), 0.066, 0.33, 0.66 or 6.6 mg/kg/day. On the day after the last injection (day 15), the animals were sacrificed, spleens were removed and weighed, and a spleen cell homogenate was prepared for determination of immunologic parameters, including enumeration of lymphocyte subpopulations using specific antibodies, the mixed leukocyte response (MLR) assay, and the lymphocyte proliferation assay. No animals died during the study, and there were no treatment-related effects on body weight or weight gain. Spleen weight (both absolute and relative to body weight) was increased by approximately 50-60% in the high-dose group (6.6 mg/kg/day) and this was associated with increases in total spleen cell number (35%) and in the fraction of Ig+ cells (45%) which is a marker for B-lymphocytes. Results at the lower doses were inconsistent. The MLR, an indicator of T-cell-dependent immune function, was decreased at the two highest doses, but there was no effect on the spleen cell proliferative response to the T-cell mitogen, Con A, at any dose level, which indicates that the proliferative capacity of T-lymphocytes was not altered. These results are somewhat inconsistent and must be considered preliminary; however, it was concluded that the high doses of ISIS 2105 may cause a form of immunostimulation.
  • Example 9 Intradermal Injection of ISIS 2105 in Humans
  • ISIS 2105 for clinical trials was formulated as sterile phosphate-buffered solution for intradermal injection of volumes of 0.1 ml to 0.15 ml per injection. The concentration of ISIS 2105 varied depending on desired dose. Intradermal injections of ISIS 2105 were given into the ventral surface of the forearm of healthy male volunteers.
  • Example 10 Immunostimulatory Response in Humans
  • Skin biopsies were performed in two human subjects following administration of 5 doses of 1.02 mg of ISIS 2105. A skin ellipse measuring 1.2×0.5 cm having a central pigmented area of 0.2 cm was removed from the forearm injection site. This ellipse was bisected and processed for microscopic histological analysis. The histological analysis revealed a moderately dense, inflammatory infiltrate in all layers of the dermis from both subjects. Immunohistochemistry revealed a mixture of cell types present. T-cells were predominant; however, B-cells were also present suggesting the immunological response was both T-cell and B-cell in nature.
  • Example 11 Injection of ISIS 2105 into Genital Warts in Human Subjects
  • To evaluate its pharmacokinetics, the phosphorothioate oligonucleotide analog ISIS 2105 (SEQ ID NO: 1) was 14C labeled in the 2-position of thymine. Approximately 1 mg (3.5 μCi/mg) was injected intradermally in each of four genital warts (condyloma acuminata) in five male patients. Systemic absorption of radiolabelled compound was monitored by blood sampling 1, 4, 8, 12, 24, 48, 72 and 144 hours postinjection. Warts were removed at 1, 24, 48, 72, 96, 120 and 144 hours postinjection. Urine and CO2 samples for 14C analysis were taken at intervals postinjection. Safety monitoring of these patients revealed no clinically significant abnormalities. After injection, ISIS 2105 was rapidly absorbed (70% in 4 hours). However, appreciable amounts of intact drug (4 μM) remained in the wart tissue at 72 hours. Current estimates indicate that concentrations of approximately 1 μM are therapeutically effective. Peak plasma concentrations were achieved within 1 hour following the absorption of labeled ISIS 2105 from the injection site. Drug was cleared from plasma with a rapid distribution and prolonged elimination phase. The total body elimination half-life was estimated at 156 hours. The oligonucleotide was slowly metabolized and the radiolabel was eliminated, principally as CO2 in expired air and in urine. In summary, following a single dose, intact ISIS 2105 was localized at the site of injection with rapid absorption but prolonged retention time in wart tissue. This indicates that twice-weekly intralesional injections should be sufficient for therapeutic effect.
  • Example 12 Evaluation of ISIS 2105 as Surgical Adjuvant Therapy
  • Condyloma acuminata (genital warts) measuring at least 1×1 mm2 are surgically removed. Upon cessation of bleeding with electrocautery, skin surrounding the ablated area is injected with 0.1 cc of ISIS 2105 drug formulation containing 0.3 mg or 1 mg of ISIS 2105. Up to 4 warts are treated.

Claims (48)

1. (canceled).
2. (canceled).
3. (canceled).
4. (canceled).
5. (canceled).
6. (canceled).
7. (canceled).
8. (canceled).
9. (canceled).
10. (canceled).
11. (canceled).
12. (canceled).
13. (canceled).
14. (canceled).
15. (canceled).
16. (canceled).
17. (canceled).
18. (canceled).
19. (canceled).
20. (canceled).
21. (canceled).
22. (canceled).
23. (canceled).
24. (canceled).
25. (canceled).
26. A method for stimulating an immune response in a human comprising:
administering by a route selected from the group consisting of inhalation, ophthalmic, intranasal, parenteral, oral and intradermal to the human as an immunopotentiator an amount of a phosphorothioate oligonucleotide analog effective to stimulate an immune response, wherein the phosphorothioate oligonucleotide analog is not antisense.
27. The method of claim 26, wherein the phosphorothioate oligonucleotide analog is an immunopotentiator of an antibody response.
28. The method of claim 26, wherein the human has cancer.
29. The method of claim 26, wherein the human has an infection.
30. The method of claim 26, wherein the human is having surgery.
31. The method of claim 26, wherein the phosphorothioate oligonucleotide analog is formulated in a vehicle selected from the group consisting of liposomes and cationic lipids.
32. The method of claim 26, wherein all of the internucleotide linkages of the phosphorothioate oligonucleotide analog are phosphorothioate linkages.
33. The method of claim 26, wherein the phosphorothioate oligonucleotide analog includes at least one 2′-O-alkyl modification.
34. The method of claim 26, wherein the 2′-O-alkyl modification is a 2′-O-methyl modification.
35. The method of claim 26, wherein the 2′-O-alkyl modification is a 2′-O-propyl modification.
36. The method of claim 26, further comprising administering a therapeutic modality, before, after or simultaneously with the phosphorothioate oligonucleotide analog.
37. The method of claim 26, wherein the therapeutic modality is a drug.
38. A method for stimulating a systemic or humoral immune response in a human comprising:
administering to the human as an immunopotentiator an amount of a phosphorothioate oligonucleotide analog formulated in a vehicle selected from the group consisting of liposomes and cationic lipids effective to stimulate the systemic or humoral immune response, wherein the phosphorothioate oligonucleotide analog is not antisense.
39. The method of claim 38, wherein the phosphorothioate oligonucleotide analog is an immunopotentiator of an antibody response.
40. The method of claim 38, wherein the human has cancer.
41. The method of claim 38, wherein the human has an infection.
42. The method of claim 38, wherein the human is having surgery.
43. The method of claim 38, wherein all of the internucleotide linkages of the phosphorothioate oligonucleotide analog are phosphorothioate linkages.
44. The method of claim 38, wherein the phosphorothioate oligonucleotide analog includes at least one 2′-O-alkyl modification.
45. The method of claim 38, wherein the 2′-O-alkyl modification is a 2′-O-methyl modification.
46. The method of claim 38, wherein the 2′-O-alkyl modification is a 2′-O-propyl modification.
47. The method of claim 38, further comprising administering a therapeutic modality, before, after or simultaneously with the phosphorothioate oligonucleotide analog.
48. The method of claim 38, wherein the therapeutic modality is a drug.
US10/643,141 1994-03-25 2003-08-18 Immune stimulation by phosphorothioate oligonucleotide analogs Abandoned US20050075302A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/643,141 US20050075302A1 (en) 1994-03-25 2003-08-18 Immune stimulation by phosphorothioate oligonucleotide analogs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21798894A 1994-03-25 1994-03-25
US08/712,135 US5723335A (en) 1994-03-25 1996-09-11 Immune stimulation by phosphorothioate oligonucleotide analogs
US09/009,634 US6727230B1 (en) 1994-03-25 1998-01-20 Immune stimulation by phosphorothioate oligonucleotide analogs
US10/643,141 US20050075302A1 (en) 1994-03-25 2003-08-18 Immune stimulation by phosphorothioate oligonucleotide analogs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/009,634 Continuation US6727230B1 (en) 1994-03-25 1998-01-20 Immune stimulation by phosphorothioate oligonucleotide analogs

Publications (1)

Publication Number Publication Date
US20050075302A1 true US20050075302A1 (en) 2005-04-07

Family

ID=32109766

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/009,634 Expired - Fee Related US6727230B1 (en) 1994-03-25 1998-01-20 Immune stimulation by phosphorothioate oligonucleotide analogs
US10/643,141 Abandoned US20050075302A1 (en) 1994-03-25 2003-08-18 Immune stimulation by phosphorothioate oligonucleotide analogs

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/009,634 Expired - Fee Related US6727230B1 (en) 1994-03-25 1998-01-20 Immune stimulation by phosphorothioate oligonucleotide analogs

Country Status (1)

Country Link
US (2) US6727230B1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020164341A1 (en) * 1997-03-10 2002-11-07 Loeb Health Research Institute At The Ottawa Hospital Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US20030139364A1 (en) * 2001-10-12 2003-07-24 University Of Iowa Research Foundation Methods and products for enhancing immune responses using imidazoquinoline compounds
US20030148976A1 (en) * 2001-08-17 2003-08-07 Krieg Arthur M. Combination motif immune stimulatory oligonucleotides with improved activity
US20030191079A1 (en) * 1994-07-15 2003-10-09 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20030212026A1 (en) * 1999-09-25 2003-11-13 University Of Iowa Research Foundation Immunostimulatory nucleic acids
US20030232074A1 (en) * 2002-04-04 2003-12-18 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040087534A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040092472A1 (en) * 2002-07-03 2004-05-13 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040131628A1 (en) * 2000-03-08 2004-07-08 Bratzler Robert L. Nucleic acids for the treatment of disorders associated with microorganisms
US20040147468A1 (en) * 1994-07-15 2004-07-29 Krieg Arthur M Immunostimulatory nucleic acid molecules
US20040152649A1 (en) * 2002-07-03 2004-08-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040157791A1 (en) * 1998-06-25 2004-08-12 Dow Steven W. Systemic immune activation method using nucleic acid-lipid complexes
US20040171571A1 (en) * 2002-12-11 2004-09-02 Coley Pharmaceutical Group, Inc. 5' CpG nucleic acids and methods of use
US20040198680A1 (en) * 2002-07-03 2004-10-07 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040235777A1 (en) * 1998-05-14 2004-11-25 Coley Pharmaceutical Gmbh Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040235774A1 (en) * 2000-02-03 2004-11-25 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US20050100983A1 (en) * 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
US20050119273A1 (en) * 2003-06-20 2005-06-02 Coley Pharmaceutical Gmbh Small molecule toll-like receptor (TLR) antagonists
US20050130911A1 (en) * 2003-09-25 2005-06-16 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
US20050181422A1 (en) * 2000-09-15 2005-08-18 Coley Pharmaceutical Gmbh Process for high throughput screening of CpG-based immuno-agonist/antagonist
US20050197314A1 (en) * 1998-04-03 2005-09-08 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US20050239733A1 (en) * 2003-10-31 2005-10-27 Coley Pharmaceutical Gmbh Sequence requirements for inhibitory oligonucleotides
US20050239734A1 (en) * 2003-10-30 2005-10-27 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
US20050256073A1 (en) * 2004-02-19 2005-11-17 Coley Pharmaceutical Group, Inc. Immunostimulatory viral RNA oligonucleotides
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20060140875A1 (en) * 2004-10-20 2006-06-29 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
US20060211644A1 (en) * 2005-02-24 2006-09-21 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20060229271A1 (en) * 2005-04-08 2006-10-12 Coley Pharmaceutical Group, Inc. Methods for treating infectious disease exacerbated asthma
US20060241076A1 (en) * 2005-04-26 2006-10-26 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
US20060286070A1 (en) * 1999-09-27 2006-12-21 Coley Pharmaceutical Gmbh Methods related to immunostimulatory nucleic acid-induced interferon
US20070009710A1 (en) * 2000-08-04 2007-01-11 Toyo Boseki Kabushiki Kaisha Flexible metal-clad laminate and method for producing the same
US20070065467A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations
US20080226649A1 (en) * 2000-12-08 2008-09-18 Coley Pharmaceutical Gmbh CPG-like nucleic acids and methods of use thereof
US20090117132A1 (en) * 2005-07-07 2009-05-07 Pfizer, Inc. Anti-Ctla-4 Antibody and Cpg-Motif-Containing Synthetic Oligodeoxynucleotide Combination Therapy for Cancer Treatment
US20090142362A1 (en) * 2006-11-06 2009-06-04 Avant Immunotherapeutics, Inc. Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP)
US20090214578A1 (en) * 2005-09-16 2009-08-27 Coley Pharmaceutical Gmbh Immunostimulatory Single-Stranded Ribonucleic Acid with Phosphodiester Backbone
US20090306177A1 (en) * 2005-09-16 2009-12-10 Coley Pharmaceutical Gmbh Modulation of Immunostimulatory Properties of Short Interfering Ribonucleic Acid (Sirna) by Nucleotide Modification
US20090311277A1 (en) * 2002-07-03 2009-12-17 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20100010193A1 (en) * 1999-02-17 2010-01-14 Csl Limited Immunogenic complexes and methods relating thereto
US7662949B2 (en) 2005-11-25 2010-02-16 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US7741300B2 (en) 1998-06-25 2010-06-22 National Jewish Medical And Research Center Methods of using nucleic acid vector-lipid complexes
US20110081366A1 (en) * 1997-10-30 2011-04-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8574599B1 (en) 1998-05-22 2013-11-05 Ottawa Hospital Research Institute Methods and products for inducing mucosal immunity
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US8883174B2 (en) 2009-03-25 2014-11-11 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10286065B2 (en) 2014-09-19 2019-05-14 Board Of Regents, The University Of Texas System Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
WO2001095935A1 (en) * 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
US7320793B2 (en) * 2001-01-19 2008-01-22 Cytos Biotechnology Ag Molecular antigen array
US20030050268A1 (en) * 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
EP1425040A2 (en) * 2001-09-14 2004-06-09 Cytos Biotechnology AG In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles
CA2492826C (en) * 2001-09-14 2016-12-13 Cytos Biotechnology Ag Encapsulation of unmethylated cpg-containing oligonucleotides into virus-like particles: method of preparation and use
WO2003103586A2 (en) * 2002-06-05 2003-12-18 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory cpg nucleic acids
CN1662253A (en) * 2002-06-20 2005-08-31 赛托斯生物技术公司 Packaged virus-like particles for use as adjuvants: method of preparation and use
AU2004224762B2 (en) * 2003-03-26 2009-12-24 Kuros Us Llc Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use
US20060210588A1 (en) * 2003-03-26 2006-09-21 Cytos Biotechnology Ag Hiv-peptide-carrier-conjugates
CA2521050A1 (en) * 2003-04-02 2004-10-14 Coley Pharmaceutical Group, Ltd. Immunostimulatory nucleic acid oil-in-water formulations and related methods of use
TWI235440B (en) * 2004-03-31 2005-07-01 Advanced Semiconductor Eng Method for making leadless semiconductor package
EP2484374A1 (en) * 2004-07-18 2012-08-08 CSL Limited Immuno stimulating complex and oligonucleotide formulations for inducing enhanced interferon-gamma responses
US9809824B2 (en) * 2004-12-13 2017-11-07 The United States Of America, Represented By The Secretary, Department Of Health And Human Services CpG oligonucleotide prodrugs, compositions thereof and associated therapeutic methods
AU2006325225B2 (en) 2005-12-14 2013-07-04 Cytos Biotechnology Ag Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity
US8541559B2 (en) 2006-06-12 2013-09-24 Cytos Biotechnology Ag Process for producing aggregated oligonucleotides
FR2975600B1 (en) 2011-05-24 2013-07-05 Assist Publ Hopitaux De Paris AGENTS FOR THE TREATMENT OF TUMORS
DE102013004595A1 (en) 2013-03-15 2014-09-18 Emergent Product Development Germany Gmbh RSV vaccines

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087617A (en) * 1989-02-15 1992-02-11 Board Of Regents, The University Of Texas System Methods and compositions for treatment of cancer using oligonucleotides
US5093318A (en) * 1983-11-01 1992-03-03 Scripps Clinic And Research Foundation Immunostimulating guanosine derivatives and their pharmaceutical compositions
US5194428A (en) * 1986-05-23 1993-03-16 Worcester Foundation For Experimental Biology Inhibition of influenza virus replication by oligonucleotide phosphorothioates
US5491088A (en) * 1989-06-30 1996-02-13 Oncogen Limited Partnership Monoclonal antibody BR 96 and chimeric monoclonal antibodies having the variable region of MAB BR96, which bind to a variant of ley antigen on human carcimona cells
US5506212A (en) * 1990-01-11 1996-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides with substantially chirally pure phosphorothioate linkages
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
US5591721A (en) * 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
US5594122A (en) * 1993-06-23 1997-01-14 Genesys Pharma Inc. Antisense oligonucleotides targeted against human immunodeficiency virus
US5599797A (en) * 1991-10-15 1997-02-04 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5723130A (en) * 1993-05-25 1998-03-03 Hancock; Gerald E. Adjuvants for vaccines against respiratory syncytial virus
US5723335A (en) * 1994-03-25 1998-03-03 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US5728518A (en) * 1994-01-12 1998-03-17 The Immune Response Corporation Antiviral poly-and oligonucleotides
US5736524A (en) * 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US5756097A (en) * 1985-06-28 1998-05-26 Landucci; Gary R. Lymphokine activated effector cells for antibody-dependent cellular cytotoxicity (ADCC) treatment of cancer and other diseases
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
US5858987A (en) * 1995-05-05 1999-01-12 Mitotix, Inc. E6AP antisense constructs and methods of use
US6013639A (en) * 1995-01-31 2000-01-11 Hoechst Aktiengesellschaft G cap-stabilized oligonucleotides
US6030955A (en) * 1996-03-21 2000-02-29 The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof
US6174872B1 (en) * 1996-10-04 2001-01-16 The Regents Of The University Of California Method for treating allergic lung disease
US6184369B1 (en) * 1993-04-23 2001-02-06 Aronex Pharmaceuticals, Inc. Anti-viral guanosine-rich oligonucleotides
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6214806B1 (en) * 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US6221882B1 (en) * 1997-07-03 2001-04-24 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6225292B1 (en) * 1997-06-06 2001-05-01 The Regents Of The University Of California Inhibitors of DNA immunostimulatory sequence activity
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6339068B1 (en) * 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
US20020028784A1 (en) * 2000-03-10 2002-03-07 Nest Gary Van Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences
US20020042387A1 (en) * 2000-02-23 2002-04-11 Eyal Raz Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation
US20020055477A1 (en) * 2000-03-10 2002-05-09 Nest Gary Van Immunomodulatory formulations and methods for use thereof
US6503533B1 (en) * 1994-07-28 2003-01-07 Georgetown University Antisense ogligonucleotides against Hepatitis B viral replication
US20030022852A1 (en) * 2000-03-10 2003-01-30 Nest Gary Van Biodegradable immunomodulatory formulations and methods for use thereof
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US20030050268A1 (en) * 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
US20030049266A1 (en) * 2000-12-27 2003-03-13 Fearon Karen L. Immunomodulatory polynucleotides and methods of using the same
US20030050263A1 (en) * 1994-07-15 2003-03-13 The University Of Iowa Research Foundation Methods and products for treating HIV infection
US6534062B2 (en) * 2000-03-28 2003-03-18 The Regents Of The University Of California Methods for increasing a cytotoxic T lymphocyte response in vivo
US20030064064A1 (en) * 1998-09-18 2003-04-03 Dino Dina Methods of treating IgE-associated disorders and compositions for use therein
US6552006B2 (en) * 2000-01-31 2003-04-22 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
US20030078223A1 (en) * 1996-01-30 2003-04-24 Eyal Raz Compositions and methods for modulating an immune response
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US20040006032A1 (en) * 2002-05-30 2004-01-08 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US20040006010A1 (en) * 1996-10-11 2004-01-08 Carson Dennis A. Immunostimulatory polynucleotide/immunomodulatory molecule conjugates
US20040009944A1 (en) * 2002-05-10 2004-01-15 Inex Pharmaceuticals Corporation Methylated immunostimulatory oligonucleotides and methods of using the same
US20040009942A1 (en) * 2000-03-10 2004-01-15 Gary Van Nest Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide sequences
US20040009949A1 (en) * 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
US20040030118A1 (en) * 1998-05-14 2004-02-12 Hermann Wagner Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040038922A1 (en) * 2000-10-06 2004-02-26 Jean Haensler Vaccine composition
US20040053880A1 (en) * 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040067902A9 (en) * 2000-02-03 2004-04-08 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20050004062A1 (en) * 1994-07-15 2005-01-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
US20050043529A1 (en) * 1997-03-10 2005-02-24 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US20050064401A1 (en) * 2000-09-01 2005-03-24 Alexander Olek Diagnosis of illnesses or predisposition to certain illnesses
US20050079152A1 (en) * 2003-06-17 2005-04-14 Bot Adrian Ian Methods of elicit, enhance and sustain immune responses against MHC class I-restricted epitopes, for prophylactic or therapeutic purposes
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20060019916A1 (en) * 2004-04-02 2006-01-26 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for inducing IL-10 responses
US20060019923A1 (en) * 2004-07-18 2006-01-26 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US20070065467A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20070066554A1 (en) * 1999-09-25 2007-03-22 Coley Pharmaceutical Gmbh Immunostimulatory nucleic acids
US20080009455A9 (en) * 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906092A (en) 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
JP2547714B2 (en) 1981-10-23 1996-10-23 モルキユラ− バイオシステムズ インコ−ポレテツド Oligonucleotide therapeutic agent and method for producing the same
US4956296A (en) 1987-06-19 1990-09-11 Genex Corporation Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G
CA1339596C (en) 1987-08-07 1997-12-23 New England Medical Center Hospitals, Inc. Viral expression inhibitors
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5786189A (en) 1989-11-29 1998-07-28 Smithkline Beecham Biologicals (S.A.) Vaccine
US5457189A (en) 1989-12-04 1995-10-10 Isis Pharmaceuticals Antisense oligonucleotide inhibition of papillomavirus
US5248670A (en) 1990-02-26 1993-09-28 Isis Pharmaceuticals, Inc. Antisense oligonucleotides for inhibiting herpesviruses
EP0468520A3 (en) 1990-07-27 1992-07-01 Mitsui Toatsu Chemicals, Inc. Immunostimulatory remedies containing palindromic dna sequences
EP0544713B1 (en) 1990-08-16 1997-07-02 Isis Pharmaceuticals, Inc. Oligonucleotides for modulating the effects of cytomegalovirus infections
US5234811A (en) 1991-09-27 1993-08-10 The Scripps Research Institute Assay for a new gaucher disease mutation
JPH06509704A (en) 1991-04-18 1994-11-02 ザ ソールク インスチチュート フォア バイオロジカル スタディズ Oligodeoxynucleotides and oligonucleotides useful as pseudoconstructs for proteins that selectively bind to specific DNA sequences
JPH06500128A (en) 1991-05-08 1994-01-06 シュバイツ・ゼルム―・ウント・インプフィンスティテュート・ベルン Immune stimulating and immunoenhancing reconstituted influenza virosomes and vaccines containing the same
WO1994008003A1 (en) 1991-06-14 1994-04-14 Isis Pharmaceuticals, Inc. ANTISENSE OLIGONUCLEOTIDE INHIBITION OF THE ras GENE
AU2169992A (en) 1991-05-31 1993-01-08 Genta Incorporated Compositions and delivery systems for transdermal administration of neutral oligomers
US5582986A (en) 1991-06-14 1996-12-10 Isis Pharmaceuticals, Inc. Antisense oligonucleotide inhibition of the ras gene
US5585479A (en) 1992-07-24 1996-12-17 The United States Of America As Represented By The Secretary Of The Navy Antisense oligonucleotides directed against human ELAM-I RNA
US5679647A (en) 1993-08-26 1997-10-21 The Regents Of The University Of California Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides
US5804566A (en) 1993-08-26 1998-09-08 The Regents Of The University Of California Methods and devices for immunizing a host through administration of naked polynucleotides with encode allergenic peptides
WO1995005853A1 (en) 1993-08-26 1995-03-02 The Regents Of The University Of California Method, compositions and devices for administration of naked polynucleotides which encode biologically active peptides
WO1996035782A1 (en) 1995-05-11 1996-11-14 Applied Research Systems Il-6 activity inhibitor
DE69634084T2 (en) 1995-06-07 2005-12-08 Inex Pharmaceuticals Corp. PREPARATION OF LIPID NUCLEIC ACID PARTICLES A HYDROPHOBIC LIPID NUCLEIC ACID COMPLEX INTERMEDIATE PRODUCT AND FOR THE USE IN THE TRANSFER OF THE INVENTION
US6410690B1 (en) 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US5780448A (en) 1995-11-07 1998-07-14 Ottawa Civic Hospital Loeb Research DNA-based vaccination of fish
EP0879284B1 (en) 1996-01-30 2009-07-29 The Regents of The University of California Gene expression vectors which generate an antigen specific immune response and methods of using the same
DE69841122D1 (en) 1997-03-10 2009-10-15 Coley Pharm Gmbh Use of non-methylated CpG dinucleotide in combination with aluminum as adjuvants
WO1999055743A1 (en) 1998-04-28 1999-11-04 Inex Pharmaceuticals Corporation Polyanionic polymers which enhance fusogenicity
EP1204425B1 (en) 1999-08-19 2009-01-07 Dynavax Technologies Corporation Methods of modulating an immune response using immunostimulatory sequences and compositions for use therein

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093318A (en) * 1983-11-01 1992-03-03 Scripps Clinic And Research Foundation Immunostimulating guanosine derivatives and their pharmaceutical compositions
US5756097A (en) * 1985-06-28 1998-05-26 Landucci; Gary R. Lymphokine activated effector cells for antibody-dependent cellular cytotoxicity (ADCC) treatment of cancer and other diseases
US5194428A (en) * 1986-05-23 1993-03-16 Worcester Foundation For Experimental Biology Inhibition of influenza virus replication by oligonucleotide phosphorothioates
US5087617A (en) * 1989-02-15 1992-02-11 Board Of Regents, The University Of Texas System Methods and compositions for treatment of cancer using oligonucleotides
US5491088A (en) * 1989-06-30 1996-02-13 Oncogen Limited Partnership Monoclonal antibody BR 96 and chimeric monoclonal antibodies having the variable region of MAB BR96, which bind to a variant of ley antigen on human carcimona cells
US5506212A (en) * 1990-01-11 1996-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides with substantially chirally pure phosphorothioate linkages
US5514577A (en) * 1990-02-26 1996-05-07 Isis Pharmaceuticals, Inc. Oligonucleotide therapies for modulating the effects of herpes viruses
US5599797A (en) * 1991-10-15 1997-02-04 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US6184369B1 (en) * 1993-04-23 2001-02-06 Aronex Pharmaceuticals, Inc. Anti-viral guanosine-rich oligonucleotides
US5723130A (en) * 1993-05-25 1998-03-03 Hancock; Gerald E. Adjuvants for vaccines against respiratory syncytial virus
US5594122A (en) * 1993-06-23 1997-01-14 Genesys Pharma Inc. Antisense oligonucleotides targeted against human immunodeficiency virus
US20030027782A1 (en) * 1993-08-26 2003-02-06 Carson Dennis A. Method for treating allergic lung disease
US5728518A (en) * 1994-01-12 1998-03-17 The Immune Response Corporation Antiviral poly-and oligonucleotides
US5723335A (en) * 1994-03-25 1998-03-03 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US20050009774A1 (en) * 1994-07-15 2005-01-13 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050054602A1 (en) * 1994-07-15 2005-03-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20080031936A1 (en) * 1994-07-15 2008-02-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070078104A1 (en) * 1994-07-15 2007-04-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070065467A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US6194388B1 (en) * 1994-07-15 2001-02-27 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20060058251A1 (en) * 1994-07-15 2006-03-16 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20060089326A1 (en) * 1994-07-15 2006-04-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070009482A9 (en) * 1994-07-15 2007-01-11 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20060003955A1 (en) * 1994-07-15 2006-01-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070010470A9 (en) * 1994-07-15 2007-01-11 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050070491A1 (en) * 1994-07-15 2005-03-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050004061A1 (en) * 1994-07-15 2005-01-06 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050059625A1 (en) * 1994-07-15 2005-03-17 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050004062A1 (en) * 1994-07-15 2005-01-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20080026011A1 (en) * 1994-07-15 2008-01-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050049215A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050049216A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070066553A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050037403A1 (en) * 1994-07-15 2005-02-17 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20030050261A1 (en) * 1994-07-15 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid molecules
US20050037985A1 (en) * 1994-07-15 2005-02-17 Krieg Arthur M. Methods and products for treating HIV infection
US20050032736A1 (en) * 1994-07-15 2005-02-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030050263A1 (en) * 1994-07-15 2003-03-13 The University Of Iowa Research Foundation Methods and products for treating HIV infection
US6503533B1 (en) * 1994-07-28 2003-01-07 Georgetown University Antisense ogligonucleotides against Hepatitis B viral replication
US5591721A (en) * 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
US5736524A (en) * 1994-11-14 1998-04-07 Merck & Co.,. Inc. Polynucleotide tuberculosis vaccine
US6013639A (en) * 1995-01-31 2000-01-11 Hoechst Aktiengesellschaft G cap-stabilized oligonucleotides
US5858987A (en) * 1995-05-05 1999-01-12 Mitotix, Inc. E6AP antisense constructs and methods of use
US20030078223A1 (en) * 1996-01-30 2003-04-24 Eyal Raz Compositions and methods for modulating an immune response
US6030955A (en) * 1996-03-21 2000-02-29 The Trustees Of Columbia University In The City Of New York And Imclone Systems, Inc. Methods of affecting intracellular phosphorylation of tyrosine using phosphorothioate oligonucleotides, and antiangiogenic and antiproliferative uses thereof
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
US6174872B1 (en) * 1996-10-04 2001-01-16 The Regents Of The University Of California Method for treating allergic lung disease
US20040006010A1 (en) * 1996-10-11 2004-01-08 Carson Dennis A. Immunostimulatory polynucleotide/immunomodulatory molecule conjugates
US7001890B1 (en) * 1997-01-23 2006-02-21 Coley Pharmaceutical Gmbh Pharmaceutical compositions comprising a polynucleotide and optionally an antigen especially for vaccination
US20090060927A1 (en) * 1997-01-23 2009-03-05 Coley Pharmaceutical Gmbh Pharmaceutical compositions comprising a polynucleotide and optionally an antigen especially for vaccination
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US6214806B1 (en) * 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
US20050043529A1 (en) * 1997-03-10 2005-02-24 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US7488490B2 (en) * 1997-03-10 2009-02-10 University Of Iowa Research Foundation Method of inducing an antigen-specific immune response by administering a synergistic combination of adjuvants comprising unmethylated CpG-containing nucleic acids and a non-nucleic acid adjuvant
US6339068B1 (en) * 1997-05-20 2002-01-15 University Of Iowa Research Foundation Vectors and methods for immunization or therapeutic protocols
US20050032734A1 (en) * 1997-05-20 2005-02-10 Krieg Arthur M. Vectors and methods for immunization or therapeutic protocols
US6225292B1 (en) * 1997-06-06 2001-05-01 The Regents Of The University Of California Inhibitors of DNA immunostimulatory sequence activity
US6221882B1 (en) * 1997-07-03 2001-04-24 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US7354711B2 (en) * 1997-07-03 2008-04-08 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6521637B2 (en) * 1997-07-03 2003-02-18 University Of Iowa Research Foundation Methods for inhibiting immunostimulatory DNA associated responses
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US20040030118A1 (en) * 1998-05-14 2004-02-12 Hermann Wagner Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US20030064064A1 (en) * 1998-09-18 2003-04-03 Dino Dina Methods of treating IgE-associated disorders and compositions for use therein
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
US20070066554A1 (en) * 1999-09-25 2007-03-22 Coley Pharmaceutical Gmbh Immunostimulatory nucleic acids
US6552006B2 (en) * 2000-01-31 2003-04-22 The Regents Of The University Of California Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
US20040067902A9 (en) * 2000-02-03 2004-04-08 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20070037767A1 (en) * 2000-02-03 2007-02-15 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20020042387A1 (en) * 2000-02-23 2002-04-11 Eyal Raz Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation
US20040009942A1 (en) * 2000-03-10 2004-01-15 Gary Van Nest Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide sequences
US20020028784A1 (en) * 2000-03-10 2002-03-07 Nest Gary Van Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences
US20030059773A1 (en) * 2000-03-10 2003-03-27 Gary Van Nest Immunomodulatory formulations and methods for use thereof
US20020055477A1 (en) * 2000-03-10 2002-05-09 Nest Gary Van Immunomodulatory formulations and methods for use thereof
US20030022852A1 (en) * 2000-03-10 2003-01-30 Nest Gary Van Biodegradable immunomodulatory formulations and methods for use thereof
US6534062B2 (en) * 2000-03-28 2003-03-18 The Regents Of The University Of California Methods for increasing a cytotoxic T lymphocyte response in vivo
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US20050064401A1 (en) * 2000-09-01 2005-03-24 Alexander Olek Diagnosis of illnesses or predisposition to certain illnesses
US20040038922A1 (en) * 2000-10-06 2004-02-26 Jean Haensler Vaccine composition
US20030049266A1 (en) * 2000-12-27 2003-03-13 Fearon Karen L. Immunomodulatory polynucleotides and methods of using the same
US20030050268A1 (en) * 2001-03-29 2003-03-13 Krieg Arthur M. Immunostimulatory nucleic acid for treatment of non-allergic inflammatory diseases
US20040009944A1 (en) * 2002-05-10 2004-01-15 Inex Pharmaceuticals Corporation Methylated immunostimulatory oligonucleotides and methods of using the same
US20040006032A1 (en) * 2002-05-30 2004-01-08 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US20040009949A1 (en) * 2002-06-05 2004-01-15 Coley Pharmaceutical Group, Inc. Method for treating autoimmune or inflammatory diseases with combinations of inhibitory oligonucleotides and small molecule antagonists of immunostimulatory CpG nucleic acids
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040053880A1 (en) * 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20050079152A1 (en) * 2003-06-17 2005-04-14 Bot Adrian Ian Methods of elicit, enhance and sustain immune responses against MHC class I-restricted epitopes, for prophylactic or therapeutic purposes
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
US20060019916A1 (en) * 2004-04-02 2006-01-26 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for inducing IL-10 responses
US20060019923A1 (en) * 2004-07-18 2006-01-26 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US20090017021A1 (en) * 2004-07-18 2009-01-15 Coley Pharmaceutical Group, Ltd. Methods and compositions for inducing innate immune responses
US20080009455A9 (en) * 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050049216A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20070078104A1 (en) * 1994-07-15 2007-04-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8309527B2 (en) 1994-07-15 2012-11-13 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US8258106B2 (en) 1994-07-15 2012-09-04 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030191079A1 (en) * 1994-07-15 2003-10-09 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20070202128A1 (en) * 1994-07-15 2007-08-30 Coley Pharmaceutical Group, Inc Immunomodulatory oligonucleotides
US20070010470A9 (en) * 1994-07-15 2007-01-11 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050049215A1 (en) * 1994-07-15 2005-03-03 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20080026011A1 (en) * 1994-07-15 2008-01-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040087534A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040087538A1 (en) * 1994-07-15 2004-05-06 University Of Iowa Research Foundation Methods of treating cancer using immunostimulatory oligonucleotides
US8158592B2 (en) 1994-07-15 2012-04-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acid molecules
US20040106568A1 (en) * 1994-07-15 2004-06-03 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US8148340B2 (en) 1994-07-15 2012-04-03 The United States Of America As Represented By The Department Of Health And Human Services Immunomodulatory oligonucleotides
US20040142469A1 (en) * 1994-07-15 2004-07-22 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040147468A1 (en) * 1994-07-15 2004-07-29 Krieg Arthur M Immunostimulatory nucleic acid molecules
US8129351B2 (en) 1994-07-15 2012-03-06 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040152657A1 (en) * 1994-07-15 2004-08-05 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20080031936A1 (en) * 1994-07-15 2008-02-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040167089A1 (en) * 1994-07-15 2004-08-26 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US8114848B2 (en) 1994-07-15 2012-02-14 The United States Of America As Represented By The Department Of Health And Human Services Immunomodulatory oligonucleotides
US20040171150A1 (en) * 1994-07-15 2004-09-02 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20040181045A1 (en) * 1994-07-15 2004-09-16 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US8058249B2 (en) 1994-07-15 2011-11-15 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040198688A1 (en) * 1994-07-15 2004-10-07 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20040229835A1 (en) * 1994-07-15 2004-11-18 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7674777B2 (en) 1994-07-15 2010-03-09 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7713529B2 (en) 1994-07-15 2010-05-11 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US20060094683A1 (en) * 1994-07-15 2006-05-04 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US8008266B2 (en) 1994-07-15 2011-08-30 University Of Iowa Foundation Methods of treating cancer using immunostimulatory oligonucleotides
US20050004062A1 (en) * 1994-07-15 2005-01-06 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050004061A1 (en) * 1994-07-15 2005-01-06 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050009774A1 (en) * 1994-07-15 2005-01-13 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050032736A1 (en) * 1994-07-15 2005-02-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20100125101A1 (en) * 1994-07-15 2010-05-20 Krieg Arthur M Immunostimulatory nucleic acid molecules
US20070065467A1 (en) * 1994-07-15 2007-03-22 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US20060003955A1 (en) * 1994-07-15 2006-01-05 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050277609A1 (en) * 1994-07-15 2005-12-15 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050054602A1 (en) * 1994-07-15 2005-03-10 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7935675B1 (en) 1994-07-15 2011-05-03 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050070491A1 (en) * 1994-07-15 2005-03-31 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050267057A1 (en) * 1994-07-15 2005-12-01 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050101554A1 (en) * 1994-07-15 2005-05-12 University Of Iowa Research Foundation Methods for treating and preventing infectious disease
US7888327B2 (en) 1994-07-15 2011-02-15 University Of Iowa Research Foundation Methods of using immunostimulatory nucleic acid molecules to treat allergic conditions
US20050123523A1 (en) * 1994-07-15 2005-06-09 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7879810B2 (en) 1994-07-15 2011-02-01 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050148537A1 (en) * 1994-07-15 2005-07-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050171047A1 (en) * 1994-07-15 2005-08-04 The University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US7723022B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050244379A1 (en) * 1994-07-15 2005-11-03 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050233999A1 (en) * 1994-07-15 2005-10-20 Krieg Arthur M Immunostimulatory nucleic acid molecules
US20050239732A1 (en) * 1994-07-15 2005-10-27 Krieg Arthur M Immunostimulatory nucleic acid molecules
US20050245477A1 (en) * 1994-07-15 2005-11-03 University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US20050054601A1 (en) * 1997-01-23 2005-03-10 Coley Pharmaceutical Gmbh Pharmaceutical composition comprising a polynucleotide and optionally an antigen especially for vaccination
US20090060927A1 (en) * 1997-01-23 2009-03-05 Coley Pharmaceutical Gmbh Pharmaceutical compositions comprising a polynucleotide and optionally an antigen especially for vaccination
US20030224010A1 (en) * 1997-03-10 2003-12-04 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20030091599A1 (en) * 1997-03-10 2003-05-15 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US8202688B2 (en) 1997-03-10 2012-06-19 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20020164341A1 (en) * 1997-03-10 2002-11-07 Loeb Health Research Institute At The Ottawa Hospital Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20050043529A1 (en) * 1997-03-10 2005-02-24 Coley Pharmaceutical Gmbh Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20110081366A1 (en) * 1997-10-30 2011-04-07 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20050197314A1 (en) * 1998-04-03 2005-09-08 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
US20040235777A1 (en) * 1998-05-14 2004-11-25 Coley Pharmaceutical Gmbh Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040235778A1 (en) * 1998-05-14 2004-11-25 Coley Pharmaceutical Gmbh Methods for regulating hematopoiesis using CpG-oligonucleotides
US20040234512A1 (en) * 1998-05-14 2004-11-25 Coley Pharmaceutical Gmbh Methods for regualting hematopoiesis using CpG-oligonucleotides
US8574599B1 (en) 1998-05-22 2013-11-05 Ottawa Hospital Research Institute Methods and products for inducing mucosal immunity
US7741300B2 (en) 1998-06-25 2010-06-22 National Jewish Medical And Research Center Methods of using nucleic acid vector-lipid complexes
US20040157791A1 (en) * 1998-06-25 2004-08-12 Dow Steven W. Systemic immune activation method using nucleic acid-lipid complexes
US7776343B1 (en) 1999-02-17 2010-08-17 Csl Limited Immunogenic complexes and methods relating thereto
US8173141B2 (en) 1999-02-17 2012-05-08 Csl Limited Immunogenic complexes and methods relating thereto
US20100010193A1 (en) * 1999-02-17 2010-01-14 Csl Limited Immunogenic complexes and methods relating thereto
US7271156B2 (en) 1999-09-25 2007-09-18 University Of Iowa Research Foundation Immunostimulatory nucleic acids
US20030212026A1 (en) * 1999-09-25 2003-11-13 University Of Iowa Research Foundation Immunostimulatory nucleic acids
US20060286070A1 (en) * 1999-09-27 2006-12-21 Coley Pharmaceutical Gmbh Methods related to immunostimulatory nucleic acid-induced interferon
US20110033421A1 (en) * 1999-09-27 2011-02-10 Coley Pharmaceutical Gmbh Methods related to immunostimulatory nucleic acid-induced interferon
US7776344B2 (en) 1999-09-27 2010-08-17 University Of Iowa Research Foundation Methods related to immunostimulatory nucleic acid-induced interferon
US20060154890A1 (en) * 2000-02-03 2006-07-13 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20070037767A1 (en) * 2000-02-03 2007-02-15 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040235774A1 (en) * 2000-02-03 2004-11-25 Bratzler Robert L. Immunostimulatory nucleic acids for the treatment of asthma and allergy
US20040131628A1 (en) * 2000-03-08 2004-07-08 Bratzler Robert L. Nucleic acids for the treatment of disorders associated with microorganisms
US20030026801A1 (en) * 2000-06-22 2003-02-06 George Weiner Methods for enhancing antibody-induced cell lysis and treating cancer
US20070009710A1 (en) * 2000-08-04 2007-01-11 Toyo Boseki Kabushiki Kaisha Flexible metal-clad laminate and method for producing the same
US20050181422A1 (en) * 2000-09-15 2005-08-18 Coley Pharmaceutical Gmbh Process for high throughput screening of CpG-based immuno-agonist/antagonist
US7820379B2 (en) 2000-09-15 2010-10-26 Coley Pharmaceutical Gmbh Process for high throughput screening of CpG-based immuno-agonist/antagonist
US20080226649A1 (en) * 2000-12-08 2008-09-18 Coley Pharmaceutical Gmbh CPG-like nucleic acids and methods of use thereof
US20030148976A1 (en) * 2001-08-17 2003-08-07 Krieg Arthur M. Combination motif immune stimulatory oligonucleotides with improved activity
US8834900B2 (en) 2001-08-17 2014-09-16 University Of Iowa Research Foundation Combination motif immune stimulatory oligonucleotides with improved activity
US20030139364A1 (en) * 2001-10-12 2003-07-24 University Of Iowa Research Foundation Methods and products for enhancing immune responses using imidazoquinoline compounds
US8153141B2 (en) 2002-04-04 2012-04-10 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US20030232074A1 (en) * 2002-04-04 2003-12-18 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US8658607B2 (en) 2002-04-04 2014-02-25 Zoetis Belgium Immunostimulatory G, U-containing oligoribonucleotides
US20060172966A1 (en) * 2002-04-04 2006-08-03 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US9428536B2 (en) 2002-04-04 2016-08-30 Zoetis Belgium Sa Immunostimulatory G, U-containing oligoribonucleotides
US20090311277A1 (en) * 2002-07-03 2009-12-17 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040067905A1 (en) * 2002-07-03 2004-04-08 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040092472A1 (en) * 2002-07-03 2004-05-13 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040152649A1 (en) * 2002-07-03 2004-08-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US8114419B2 (en) 2002-07-03 2012-02-14 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20040198680A1 (en) * 2002-07-03 2004-10-07 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7807803B2 (en) 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US20050059619A1 (en) * 2002-08-19 2005-03-17 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8304396B2 (en) 2002-08-19 2012-11-06 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US20060246035A1 (en) * 2002-10-29 2006-11-02 Coley Pharmaceutical Gmbh Methods and products related to treatment and prevention of hepatitis c virus infection
US20060003962A1 (en) * 2002-10-29 2006-01-05 Coley Pharmaceutical Group, Ltd. Methods and products related to treatment and prevention of hepatitis C virus infection
US20040171571A1 (en) * 2002-12-11 2004-09-02 Coley Pharmaceutical Group, Inc. 5' CpG nucleic acids and methods of use
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
US20050119273A1 (en) * 2003-06-20 2005-06-02 Coley Pharmaceutical Gmbh Small molecule toll-like receptor (TLR) antagonists
US7410975B2 (en) 2003-06-20 2008-08-12 Coley Pharmaceutical Group, Inc. Small molecule toll-like receptor (TLR) antagonists
US20100183639A1 (en) * 2003-09-25 2010-07-22 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
US20050130911A1 (en) * 2003-09-25 2005-06-16 Coley Pharmaceutical Group, Inc. Nucleic acid-lipophilic conjugates
US20050239734A1 (en) * 2003-10-30 2005-10-27 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
US8188254B2 (en) 2003-10-30 2012-05-29 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
US20050239733A1 (en) * 2003-10-31 2005-10-27 Coley Pharmaceutical Gmbh Sequence requirements for inhibitory oligonucleotides
US20050100983A1 (en) * 2003-11-06 2005-05-12 Coley Pharmaceutical Gmbh Cell-free methods for identifying compounds that affect toll-like receptor 9 (TLR9) signaling
US20050256073A1 (en) * 2004-02-19 2005-11-17 Coley Pharmaceutical Group, Inc. Immunostimulatory viral RNA oligonucleotides
US20060140875A1 (en) * 2004-10-20 2006-06-29 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
US20090137519A1 (en) * 2004-10-20 2009-05-28 Coley Pharmaceutical Group, Inc. Semi-soft c-class immunostimulatory oligonucleotides
US20110201672A1 (en) * 2004-10-20 2011-08-18 Krieg Arthur M Semi-soft c-class immunostimulatory oligonucleotides
US7795235B2 (en) 2004-10-20 2010-09-14 Coley Pharmaceutical Gmbh Semi-soft c-class immunostimulatory oligonucleotides
US20060211644A1 (en) * 2005-02-24 2006-09-21 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20080009455A9 (en) * 2005-02-24 2008-01-10 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
US20060229271A1 (en) * 2005-04-08 2006-10-12 Coley Pharmaceutical Group, Inc. Methods for treating infectious disease exacerbated asthma
US20060241076A1 (en) * 2005-04-26 2006-10-26 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
US20090117132A1 (en) * 2005-07-07 2009-05-07 Pfizer, Inc. Anti-Ctla-4 Antibody and Cpg-Motif-Containing Synthetic Oligodeoxynucleotide Combination Therapy for Cancer Treatment
US20090214578A1 (en) * 2005-09-16 2009-08-27 Coley Pharmaceutical Gmbh Immunostimulatory Single-Stranded Ribonucleic Acid with Phosphodiester Backbone
US20090306177A1 (en) * 2005-09-16 2009-12-10 Coley Pharmaceutical Gmbh Modulation of Immunostimulatory Properties of Short Interfering Ribonucleic Acid (Sirna) by Nucleotide Modification
US7662949B2 (en) 2005-11-25 2010-02-16 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US8354522B2 (en) 2005-11-25 2013-01-15 Coley Pharmaceutical Gmbh Immunostimulatory oligoribonucleotides
US20080045473A1 (en) * 2006-02-15 2008-02-21 Coley Pharmaceutical Gmbh Compositions and methods for oligonucleotide formulations
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US10260071B2 (en) 2006-09-27 2019-04-16 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US9382545B2 (en) 2006-09-27 2016-07-05 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US20090142362A1 (en) * 2006-11-06 2009-06-04 Avant Immunotherapeutics, Inc. Peptide-based vaccine compositions to endogenous cholesteryl ester transfer protein (CETP)
US9186400B2 (en) 2009-03-25 2015-11-17 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US9504742B2 (en) 2009-03-25 2016-11-29 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US8883174B2 (en) 2009-03-25 2014-11-11 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10722573B2 (en) 2009-03-25 2020-07-28 The Board Of Regents, The University Of Texas System Compositions for stimulation of mammalian innate immune resistance to pathogens
US10286065B2 (en) 2014-09-19 2019-05-14 Board Of Regents, The University Of Texas System Compositions and methods for treating viral infections through stimulated innate immunity in combination with antiviral compounds

Also Published As

Publication number Publication date
US6727230B1 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
US6727230B1 (en) Immune stimulation by phosphorothioate oligonucleotide analogs
US5723335A (en) Immune stimulation by phosphorothioate oligonucleotide analogs
EP3087988A2 (en) Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto
CA2229171C (en) Method of modulating gene expression with reduced immunostimulatory response
US6426334B1 (en) Oligonucleotide mediated specific cytokine induction and reduction of tumor growth in a mammal
US7943316B2 (en) Immunostimulatory oligonucleotides and uses thereof
EP0788366B1 (en) Use of 2'-substituted oligonucleotides to down-regulating gene expression
US7173014B2 (en) HIV-specific synthetic oligonucleotides and methods of their use
JP5101282B2 (en) Therapeutic uses of CpG oligodeoxynucleotides for skin diseases
CN104278037A (en) Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
IL195181A (en) Compositions for inhibiting the expression of the pcsk9 gene
KR100353924B1 (en) Composition and Method for Treatment of CMV Infections
JPH09500787A (en) Promoting inhibition of oligonucleotides on protein production, cell growth and / or growth of infectious disease pathogens
Barker Jr et al. Plasmodium falciparum: Effect of Chemical Structure on Efficacy and Specificity of Antisense Oligonucleotides against Malariain Vitro
US5837854A (en) Oligonucleotides with anti-Epstein-Barr virus activity
KR20010042796A (en) Antisense oligonucleotides for the inhibition of integrin αv-subunit expression
AU705122B2 (en) Oligonucleotides specific for cytokine signal transducer gp130 mRNA
EP1007656B1 (en) Modified protein kinase a-specific hybrid oligonucleotide in combination with paclitaxol and methods of their use
Litterst Promising Anti-HIV Compounds in Preclinical or Early Clinical Development

Legal Events

Date Code Title Description
AS Assignment

Owner name: ISIS PHARMACEUTICALS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUTCHERSON, STEPHEN;GLOVER, JOSEPHINE;REEL/FRAME:014412/0183

Effective date: 19940524

Owner name: COLEY PHARMACEUTICAL GROUP, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISIS PHARMACEUTICALS, INC.;REEL/FRAME:014410/0014

Effective date: 20000927

AS Assignment

Owner name: PFIZER INC., NEW YORK

Free format text: CONFIRMATION OF EXCLUSIVE PATENT LICENSE;ASSIGNORS:COLEY PHARMACEUTICAL GROUP, INC.;COLEY PHARMACEUTICAL GROUP, LTD.;COLEY PHARMACEUTICAL, GMBH;REEL/FRAME:017353/0372

Effective date: 20050506

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION