US20050118040A1 - Progressive cavity pump/motor - Google Patents

Progressive cavity pump/motor Download PDF

Info

Publication number
US20050118040A1
US20050118040A1 US11/027,062 US2706204A US2005118040A1 US 20050118040 A1 US20050118040 A1 US 20050118040A1 US 2706204 A US2706204 A US 2706204A US 2005118040 A1 US2005118040 A1 US 2005118040A1
Authority
US
United States
Prior art keywords
profile
elastomeric layer
stator
outer housing
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/027,062
Inventor
Mark Zitka
William Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robbins and Myers Energy Systems LP
Original Assignee
Robbins and Myers Energy Systems LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robbins and Myers Energy Systems LP filed Critical Robbins and Myers Energy Systems LP
Priority to US11/027,062 priority Critical patent/US20050118040A1/en
Assigned to ROBBINS & MYERS ENERGY SYSTEMS, L.P. reassignment ROBBINS & MYERS ENERGY SYSTEMS, L.P. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURRAY, WILLIAM D., ZITKA, MARK D.
Publication of US20050118040A1 publication Critical patent/US20050118040A1/en
Assigned to J.P. MORGAN TRUST COMPANY, N.A., AS AGENT reassignment J.P. MORGAN TRUST COMPANY, N.A., AS AGENT SECURITY AGREEMENT Assignors: ROBBINS & MYERS ENERGY SYSTEMS, L.P.
Assigned to ROBBINS & MYERS ENERGY SYSTEMS, L.P. reassignment ROBBINS & MYERS ENERGY SYSTEMS, L.P. PATENT RELEASE OF SECURITY INTEREST Assignors: BANK OF NEW YORK TRUST COMPANY, N.A., THE, AS SUCCESSOR TO J.P. MORGAN TRUST COMPANY, AS AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture

Definitions

  • This invention relates to the design and manufacture of pumps and motors utilizing progressive cavity power sections. More specifically, this invention relates to the design and manufacture of the female stator component of the progressive cavity pump or motor.
  • U.S. Pat. No. 1,892,217 discloses a gear mechanism of a progressive cavity pump or motor. This progressive cavity technology is commonly used in a pump to convert mechanical to power fluid energy, and in a motor to convert fluid energy to mechanical power. As a downhole motor, the moving energy of a drilling fluid may be converted to rotary motion to rotate a bit to drill a subterranean well.
  • Other publications of interest including U.S. Pat. Nos. 3,084,631; 4,104,009; 4,676,725; 5,171,138; 5,759,019; 6,183,226; 6,309,195; and 6,336,796; and WO 01/44615.
  • Operation of a progressive cavity pump or motor utilizes an interference between the external profile of the rotor which resides inside the stator, and the internal profile of the stator.
  • This interference allows the cavities of the pump or motor to be sealed from adjoining cavities. This seal resists the fluid pressure resulting from the mechanical pumping action, or resulting from the conversion of fluid energy to mechanical energy in a motor.
  • This interference between the internal rotor and stator necessitates that one of or both of these components be covered with a resilient or dimensionally forgiving material which also allows the pump or motor to pass or transfer particles and other abrasive objects in either the driving fluid (motor) or the transmitted fluid (pump).
  • this resilient material has been provided on the interior of the stator.
  • the resilient material used for the stator introduces weaknesses into the operation and life of the pump/motor.
  • Common elastomers have temperature tolerances below that of most other components in the pump or motor, e.g., metal components.
  • Mechanical resistance of the elastomer is also of concern since high pressures are generated in the cavities of the pump/motor. These high fluid pressures and the necessary reactive forces result in significant deflection and stress in the elastomer, particularly along the rotor/stator interferences. These forces create friction which generates a large amount of heat during operation, and this heat may be very deleterious to the desired characteristics of the elastomer, and thus deleterious to the performance and life of the pump/motor.
  • a progressive cavity pump or motor stator is conventionally constructed by molding an elastomer with the desired spiral interior profile within a cylindrical steel tube or housing. Due to the spiral profile on the stators inner surface, varying thicknesses of elastomer are molded between the stator inner surface and the inner surface of the metal tube to which the stator is adhered. If the heat resulting from the previously mentioned sources becomes excessive, the properties of the elastomer will more generally degrade. Elastomers have high insulative properties and thus inherently restrict the conduction of the heat generated at the rotor and stator interface from being conducted to the thermally conductive metal tube, which may then be dissipated from the pump/motor, if desired, with various cooling systems, including liquid cooling systems and exposed fin systems.
  • the radially thicker sections of elastomer create the greater insulative properties, and thus typically degrade faster than radially thin sections. Additionally, the high pressure experienced during operation may deflect the thicker sections of elastomer to the extent that the interference is overcome and contact with the rotor is lost. This loss of contact results in decreasing speeds for the motor and decreasing flows for the pump, resulting in poor efficiency. In addition, heat from the pump/motor operation, in some cases in conjunction with the environment in which pump/motor operates, distorts the shape of the elastomer molded to the interior of the metal tube. Elastomers have a high coefficient of thermal expansion compared to other materials used in the construction of progressive cavity pump/motor.
  • the radially thick sections distort more than the thinner sections of the stator, which results in a geometrical profile drastically different than intended, thereby hindering the proper operation of the pump/motor.
  • This distorted profile may generate additional heat and further distort the stator profile, creating a system which rapidly contributes to its own degradation and ultimate failure.
  • a conventional downhole progressive cavity drill motor develops a great deal of heat due to the friction between the rotor and the stator.
  • the flexing of the rubber profile generates heat which must be removed from the motor to prevent the elastomeric material portion of the stator from being detrimentally effected.
  • Heat generated may be transferred to the fluid being pumped through the motor.
  • the heat may be conducted through the elastomer to the stator tube or housing where the thermally conductive steel tube then conducts heat to the drilling fluid moving along the exterior of the housing. Due to the high insulative properties of elastomeric material, heat generated along the radially thick portion of the stator profile is inhibited from effectively transferring to the thermally conductive steel tube.
  • the center of the stator profile lobes is subjected to heat from a large percentage of its surrounding area and is the most limited in transferring this heat to the metal tube due to the thickness of the elastomeric material.
  • the center of the stator profile lobes may become hard and brittle as a result of the excessive heat in this area, and the mechanical properties of the rubber or elastomer in this area are accordingly severely degraded. As a result, the stator lobe may break or “chunk out” of the stator profile.
  • stator lobe may deflect from its original shape or may break or “chunk off” the stator lobe. A deflecting stator lobe degrades the pressure seal for the chambers created between the rotor and the stator.
  • An improved progressive cavity pump/motor is hereinafter disclosed which overcomes many of the problems of prior art pumps and motors, including excessive build-up.
  • the motor of a present invention is particularly well suited for use as the downhole motor in a well to rotate a bit.
  • the present invention relates to the design and manufacture of a stator for a progressive cavity pump or motor.
  • the stator includes a substantially uniform layer of elastomer on the interior of the stator profile. This uniform layer of elastomer has significant advantages, and overcomes many of the disadvantages of prior art progressive cavity pumps and motors. Alternatively, the elastomer layer may deviate from a uniform thickness to achieve desirable properties known to those skilled in the art.
  • a profiled reinforcement member may be mounted to the interior of the cylindrical tube or housing.
  • the reinforcement preferably has a profile substantially similar to but radially larger than that of the elastomeric lining.
  • a layer of elastomeric material may then be molded to the interior of the reinforcement to create the desired stator.
  • a stator tube may include an inner stator member cast or molded into the tube.
  • the inner surface of the inner stator member may have a slight taper which matches the taper on the generally tubular stator tube.
  • the interior surface which defines the interior profile of the pump stator may be integral with the outer housing, such that the elastomeric layer is formed on an interior profile of the outer housing.
  • the interior profile of the stator tube may be integral with respect to the outer housing. In both embodiments, the elastomeric layer is formed on the interior of the resulting housing.
  • the rubber layer may have an increasing thickness or taper extending along the axial length of the stator, such that a radial thickness of a first end of the elastomeric layer is less than the radial thickness of an opposing second end of the elastomeric layer.
  • the inner profile has a varying diameter, such that the radial thickness of an first end of the elastomeric layer is less than the radial thickness of a second end of the elastomeric layer.
  • a stator alignment feature is also disclosed, along with tooling which may be used during alignment and positioning to manufacture and repair the stator. Tooling may also be used to accurately verify the lead of any interior profiled stator tube.
  • FIG. 1 is a transverse cross-sectional view of a conventional progressive cavity stator.
  • FIG. 2 is a transverse cross-sectional view of a conventional progressive cavity stator incorporating a rotor.
  • FIG. 3 is a longitudinal cross-sectional view of a conventional progressive cavity pump/motor incorporating a rotor.
  • FIG. 4 is a transverse cross-sectional view of a conventional stator illustrating various failures.
  • FIG. 5 is a transverse cross-sectional view of an even rubber thickness progressive cavity stator according to the present invention.
  • FIG. 6 is a transverse cross-sectional view of an alternate embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating the internal profile.
  • FIG. 7 is a longitudinal cross-sectional view of another embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating the internal profile, and a profiled elastomer layer.
  • FIG. 8 is a longitudinal cross-sectional view of yet another embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating a tapered internal profile resulting in a longitudinally varying elastomer thickness.
  • FIG. 9 is a longitudinal cross-sectional view of a conventional progressive cavity stator mold incorporating the alignment feature.
  • FIG. 10 is a longitudinal cross-sectional view of an even elastomer thickness stator tube incorporating an alignment feature.
  • FIG. 11 is a longitudinal cross-sectional view of a conventional progressive cavity stator mold assembly incorporating the alignment modifications of the present invention.
  • FIG. 12 is a cross-sectional view of an even elastomer thickness progressive cavity stator mold.
  • FIG. 13 is a transverse cross-sectional view of an even rubber thickness progressive cavity stator tube illustrating a lead measurement tool.
  • FIG. 14 is a longitudinal cross-sectional view of an cast in place insert stator with a tapered insert creating a longitudinally varying elastomer thickness with the addition of a rotor.
  • FIG. 1 depicts a conventional progressive cavity stator 9 of a pump or motor which includes a steel or similar structural material tube or housing 10 .
  • Elastomeric layer 11 is molded into the tube 10 .
  • the number of lobes 12 may be of any practical number greater than one.
  • the rotor 13 has one less lobe 14 than the mating stator. The number of lobes depends on the desired operating characteristics of the pump or motor.
  • debris entrained in the fluid which supplies the energy for a motor, or is being moved by a pump, may become caught between the rotor surface 16 and the stator surface 24 .
  • the flexible nature of an elastomeric material allows this debris to be pressed into the stator surface 24 , thereby allowing the rotor 13 to continue rotating unabated.
  • FIG. 3 illustrates a conventional technology progressive cavity motor 18 , which alternatively could be a progressive cavity pump.
  • the rotor 13 includes a lower connection section 15 .
  • This rotor connecting section 15 may incorporate mechanical connections to allow the rotor 13 to be fixed to the adjoining system, thereby forming a complete drilling tool for rotating a bit in a well.
  • drilling fluid is pumped down to the motor 18 , and enters the first end 19 of the motor 18 .
  • rotational resistance which in turn is transmitted through mechanical connections to the motor.
  • High fluid pressure in the cavities 20 , 21 and 22 formed between the rotor 13 and the stator 9 develops in response to the torque demands of the bit.
  • the exact number of cavities will vary depending on the desired operating performance desired the pump/motor. Fluid pressure inside these cavities reacts against the rotor surface 16 and the stator surface 24 , causing the rotor 13 to turn inside the stator 9 .
  • the rotor 13 includes a lower connecting section 15 .
  • This rotor connecting section 15 may incorporate mechanical connections to allow the rotor 13 to be fixed to the adjoining system, thereby forming a complete drilling tool for rotating a bit in a well.
  • a progressive cavity pump works inversely of the motor described above.
  • FIG. 4 illustrates some of the typical failures experienced by a conventional stator. Due to heat generation in the center of the lobes 12 , hard nodules or regions 50 can develop. These nodules 50 occur as a result of the further cross-linking of the elastomer molecules and have inferior mechanical properties compared to the normal elastomer. With high stress being applied to the lobes 12 during operation, the lobes 12 have a tendency to deflect or shift to a new position 51 from their original desired position 52 . This shift in position negatively effects performance of the motor or pump. If the stress of operation reaches a substantially high level failure or chunking 53 of the lobe 12 can occur. As understood by those skilled in the art the reinforcement rendered by the profile tube or insert as illustrated in FIGS. 5 and 6 address these shortcomings and will reduce the occurrence of these failures.
  • FIG. 5 illustrates a substantially even rubber or elastomeric thickness stator 60 .
  • the layer 65 of rubber or elastomer is molded in a substantially even layer of uniform thickness on a stator tube or housing 61 with a varying radial thickness.
  • the stator tube 61 has an inner profile 62 , which substantially matches the inner profile 63 of the stator 60 . Matching the inner tube profile mechanically strengthens the stator lobes 64 , allowing them to resist the bending or deflecting forces discussed above.
  • the uniform or even layer 65 of elastomer also allows any heat generated during operation to be effectively conducted away by the high thermal conductivity of the stator tube 61 . This uniform rubber thickness layer also maintains the desired geometrical relationship of the profiles 62 , 63 .
  • an alternative embodiment to having the stator tube constructed from a unitary material tube is to have the inner profile 70 of the tube 10 cast or molded inside a conventional steel tube with a substantially uniform wall thickness.
  • the inner cast profile 70 may be manufactured from material with the strength necessary to physically support the even thickness rubber lining 71 .
  • the molded or cast in profile may also be manufactured from a highly thermal conductive material to effectively conduct heat generated at the stator/rotor interface. In a downhole drilling motor application, this heat in turn may be conducted to the drilling fluid exterior of the stator tube.
  • FIG. 7 illustrates a longitudinal cross-sectional view of the stator shown in FIG. 6 . As illustrated, the rubber layer 71 maintains a substantially even radial thickness over the length of the stator.
  • FIG. 7 also depicts a profiled reinforcement layer 73 mounted to the interior of the cylindrical stator tube 10 .
  • Reinforcement layer 73 preferably has a profile substantially similar to but radially slightly larger than that of the elastomeric lining.
  • the profiled layer 73 may be formed from various materials which enhance the strength of the elastomeric material, including metals or fibers.
  • FIG. 8 An alternative embodiment stator is illustrated in FIG. 8 .
  • a substantially uniform thickness stator tube 10 has the inner stator member 81 cast or molded into the stator tube, with the inner stator member 81 having an inner surface profile 82 similar to profile 70 .
  • the inner stator member 81 maybe cast with a slight taper between the upper or first end 85 of the stator and opposite lower or second end 86 of the stator.
  • An inner stator member with identical geometry may be manufactured from an integral piece of steel or similar material, then lowered in place within the tube 64 .
  • FIG. 14 illustrates the stator of FIG. 8 with the addition of a rotor.
  • the differential pressure existing between the different motor cavities in the pump/motor is not constant over the length of the stator.
  • the pressure differential existing between the cavities 72 A and 72 B at the first lower end of the stator are generally higher than the pressure differentials existing between the cavities 72 B and 72 C at the second upper end of the stator.
  • FIG. 11 illustrates a cross-sectional view of an improved stator mold assembly 140 in which the rubber or elastomeric lining is of a uniform thickness.
  • the core 101 is held rotationally aligned with the shaped stator tube 61 .
  • the uncured rubber tends to force the stator tube 61 to rotate relative to the core 101 .
  • the present invention preferably restrains the shaped stator tube 61 from rotating relative to the core 101 during injection of the rubber layer.
  • the shaped stator tube 61 has an area of contour 120 with an internal profile 121 identical in shape to the shape of stator tube profile 81 .
  • the core has an external profiled alignment key 130 .
  • the externally profiled alignment key 130 has an external profile 131 substantially similar to that of the stator tube alignment profile 120 .
  • FIG. 13 is a cross-sectional view of an embodiment of the stator tube lead measurement tool 200 positioned in a section of an even rubber thickness stator tube 201 .
  • lead measurement tool 200 includes a measurement device 202 , such that the relative thickness between the outside diameter 205 and the inner profile surface 81 of the stator tube 201 may be determined.
  • One or more stabilizing supports 203 may be present to maintain the measurement tool 200 in alignment with the stator tube 201 .
  • the varying relative tube thicknesses may be displayed on indicator dial 204 . Once a minimum or maximum extreme of the thickness is determined, the angular position of the tool may be recorded.
  • Angular position may be determined with conventional devices, such as protractors and levels. This procedure may then be repeated on the opposite end of the stator tube 61 . With the angular positions from each end determined and the length of the stator tube 61 known, the lead or pitch of the spiraling contour may be mathematically determined.

Abstract

A progressive cavity pump or motor, particularly suitable for hydrocarbon recovery operations, includes a rotor 20 and a stator 10. Fluid pressure in cavities between the stator and the rotor create torque which rotates the bit. An interior surface of the stator is rigidly secured to the outer housing of the pump stator and defines an interior profile. A substantially uniform thickness elastomeric layer 62 is supported on the outer housing. The pump rotor has an exterior profile which corresponds with the interior profile of the elastomeric layer.

Description

    FIELD OF THE INVENTION
  • This invention relates to the design and manufacture of pumps and motors utilizing progressive cavity power sections. More specifically, this invention relates to the design and manufacture of the female stator component of the progressive cavity pump or motor.
  • BACKGROUND OF THE INVENTION
  • U.S. Pat. No. 1,892,217 discloses a gear mechanism of a progressive cavity pump or motor. This progressive cavity technology is commonly used in a pump to convert mechanical to power fluid energy, and in a motor to convert fluid energy to mechanical power. As a downhole motor, the moving energy of a drilling fluid may be converted to rotary motion to rotate a bit to drill a subterranean well. Other publications of interest including U.S. Pat. Nos. 3,084,631; 4,104,009; 4,676,725; 5,171,138; 5,759,019; 6,183,226; 6,309,195; and 6,336,796; and WO 01/44615.
  • Operation of a progressive cavity pump or motor utilizes an interference between the external profile of the rotor which resides inside the stator, and the internal profile of the stator. This interference allows the cavities of the pump or motor to be sealed from adjoining cavities. This seal resists the fluid pressure resulting from the mechanical pumping action, or resulting from the conversion of fluid energy to mechanical energy in a motor. This interference between the internal rotor and stator necessitates that one of or both of these components be covered with a resilient or dimensionally forgiving material which also allows the pump or motor to pass or transfer particles and other abrasive objects in either the driving fluid (motor) or the transmitted fluid (pump). Historically, this resilient material has been provided on the interior of the stator.
  • The resilient material used for the stator introduces weaknesses into the operation and life of the pump/motor. Common elastomers have temperature tolerances below that of most other components in the pump or motor, e.g., metal components. Mechanical resistance of the elastomer is also of concern since high pressures are generated in the cavities of the pump/motor. These high fluid pressures and the necessary reactive forces result in significant deflection and stress in the elastomer, particularly along the rotor/stator interferences. These forces create friction which generates a large amount of heat during operation, and this heat may be very deleterious to the desired characteristics of the elastomer, and thus deleterious to the performance and life of the pump/motor.
  • A progressive cavity pump or motor stator is conventionally constructed by molding an elastomer with the desired spiral interior profile within a cylindrical steel tube or housing. Due to the spiral profile on the stators inner surface, varying thicknesses of elastomer are molded between the stator inner surface and the inner surface of the metal tube to which the stator is adhered. If the heat resulting from the previously mentioned sources becomes excessive, the properties of the elastomer will more generally degrade. Elastomers have high insulative properties and thus inherently restrict the conduction of the heat generated at the rotor and stator interface from being conducted to the thermally conductive metal tube, which may then be dissipated from the pump/motor, if desired, with various cooling systems, including liquid cooling systems and exposed fin systems. The radially thicker sections of elastomer create the greater insulative properties, and thus typically degrade faster than radially thin sections. Additionally, the high pressure experienced during operation may deflect the thicker sections of elastomer to the extent that the interference is overcome and contact with the rotor is lost. This loss of contact results in decreasing speeds for the motor and decreasing flows for the pump, resulting in poor efficiency. In addition, heat from the pump/motor operation, in some cases in conjunction with the environment in which pump/motor operates, distorts the shape of the elastomer molded to the interior of the metal tube. Elastomers have a high coefficient of thermal expansion compared to other materials used in the construction of progressive cavity pump/motor. As a result of the varying thicknesses and the relatively high thermal expansion of the elastomer, the radially thick sections distort more than the thinner sections of the stator, which results in a geometrical profile drastically different than intended, thereby hindering the proper operation of the pump/motor. This distorted profile may generate additional heat and further distort the stator profile, creating a system which rapidly contributes to its own degradation and ultimate failure.
  • During operation, a conventional downhole progressive cavity drill motor develops a great deal of heat due to the friction between the rotor and the stator. In addition, the flexing of the rubber profile generates heat which must be removed from the motor to prevent the elastomeric material portion of the stator from being detrimentally effected. Heat generated may be transferred to the fluid being pumped through the motor. Alternatively, the heat may be conducted through the elastomer to the stator tube or housing where the thermally conductive steel tube then conducts heat to the drilling fluid moving along the exterior of the housing. Due to the high insulative properties of elastomeric material, heat generated along the radially thick portion of the stator profile is inhibited from effectively transferring to the thermally conductive steel tube. The center of the stator profile lobes is subjected to heat from a large percentage of its surrounding area and is the most limited in transferring this heat to the metal tube due to the thickness of the elastomeric material. With extended operation, the center of the stator profile lobes may become hard and brittle as a result of the excessive heat in this area, and the mechanical properties of the rubber or elastomer in this area are accordingly severely degraded. As a result, the stator lobe may break or “chunk out” of the stator profile. In addition, the pressure acting in the chambers between the stator and the rotor may exceed the strength of the elastomeric material, and the stator lobe may deflect from its original shape or may break or “chunk off” the stator lobe. A deflecting stator lobe degrades the pressure seal for the chambers created between the rotor and the stator.
  • The disadvantages of the prior art are overcome by the present invention. An improved progressive cavity pump/motor is hereinafter disclosed which overcomes many of the problems of prior art pumps and motors, including excessive build-up. The motor of a present invention is particularly well suited for use as the downhole motor in a well to rotate a bit.
  • SUMMARY OF THE INVENTION
  • The present invention relates to the design and manufacture of a stator for a progressive cavity pump or motor. In one embodiment, the stator includes a substantially uniform layer of elastomer on the interior of the stator profile. This uniform layer of elastomer has significant advantages, and overcomes many of the disadvantages of prior art progressive cavity pumps and motors. Alternatively, the elastomer layer may deviate from a uniform thickness to achieve desirable properties known to those skilled in the art.
  • To create the layer of elastomer on the interior of the stator profile, a profiled reinforcement member may be mounted to the interior of the cylindrical tube or housing. The reinforcement preferably has a profile substantially similar to but radially larger than that of the elastomeric lining. A layer of elastomeric material may then be molded to the interior of the reinforcement to create the desired stator.
  • In an alternate embodiment, a stator tube may include an inner stator member cast or molded into the tube. The inner surface of the inner stator member may have a slight taper which matches the taper on the generally tubular stator tube.
  • It is a feature of the invention that the interior surface which defines the interior profile of the pump stator may be integral with the outer housing, such that the elastomeric layer is formed on an interior profile of the outer housing. In an additional alternative embodiment, the interior profile of the stator tube may be integral with respect to the outer housing. In both embodiments, the elastomeric layer is formed on the interior of the resulting housing.
  • It is a further feature of the invention that the rubber layer may have an increasing thickness or taper extending along the axial length of the stator, such that a radial thickness of a first end of the elastomeric layer is less than the radial thickness of an opposing second end of the elastomeric layer.
  • In an alternate embodiment, the inner profile has a varying diameter, such that the radial thickness of an first end of the elastomeric layer is less than the radial thickness of a second end of the elastomeric layer.
  • A stator alignment feature is also disclosed, along with tooling which may be used during alignment and positioning to manufacture and repair the stator. Tooling may also be used to accurately verify the lead of any interior profiled stator tube.
  • These and further objects, features, and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a transverse cross-sectional view of a conventional progressive cavity stator.
  • FIG. 2 is a transverse cross-sectional view of a conventional progressive cavity stator incorporating a rotor.
  • FIG. 3 is a longitudinal cross-sectional view of a conventional progressive cavity pump/motor incorporating a rotor.
  • FIG. 4 is a transverse cross-sectional view of a conventional stator illustrating various failures.
  • FIG. 5 is a transverse cross-sectional view of an even rubber thickness progressive cavity stator according to the present invention.
  • FIG. 6 is a transverse cross-sectional view of an alternate embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating the internal profile.
  • FIG. 7 is a longitudinal cross-sectional view of another embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating the internal profile, and a profiled elastomer layer.
  • FIG. 8 is a longitudinal cross-sectional view of yet another embodiment of an even rubber thickness progressive cavity stator, illustrating a cast in place insert creating a tapered internal profile resulting in a longitudinally varying elastomer thickness.
  • FIG. 9 is a longitudinal cross-sectional view of a conventional progressive cavity stator mold incorporating the alignment feature.
  • FIG. 10 is a longitudinal cross-sectional view of an even elastomer thickness stator tube incorporating an alignment feature.
  • FIG. 11 is a longitudinal cross-sectional view of a conventional progressive cavity stator mold assembly incorporating the alignment modifications of the present invention.
  • FIG. 12 is a cross-sectional view of an even elastomer thickness progressive cavity stator mold.
  • FIG. 13 is a transverse cross-sectional view of an even rubber thickness progressive cavity stator tube illustrating a lead measurement tool.
  • FIG. 14 is a longitudinal cross-sectional view of an cast in place insert stator with a tapered insert creating a longitudinally varying elastomer thickness with the addition of a rotor.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIG. 1 depicts a conventional progressive cavity stator 9 of a pump or motor which includes a steel or similar structural material tube or housing 10. Elastomeric layer 11 is molded into the tube 10. The number of lobes 12 may be of any practical number greater than one. As can be seen in FIG. 2, the rotor 13 has one less lobe 14 than the mating stator. The number of lobes depends on the desired operating characteristics of the pump or motor. As the rotor 13 rotates inside of the stator 9, debris entrained in the fluid which supplies the energy for a motor, or is being moved by a pump, may become caught between the rotor surface 16 and the stator surface 24. The flexible nature of an elastomeric material allows this debris to be pressed into the stator surface 24, thereby allowing the rotor 13 to continue rotating unabated.
  • FIG. 3 illustrates a conventional technology progressive cavity motor 18, which alternatively could be a progressive cavity pump. To transmit the power developed inside the motor 18 to the adjoining systems, the rotor 13 includes a lower connection section 15. This rotor connecting section 15 may incorporate mechanical connections to allow the rotor 13 to be fixed to the adjoining system, thereby forming a complete drilling tool for rotating a bit in a well.
  • During operation in a hydrocarbon recovery well, drilling fluid is pumped down to the motor 18, and enters the first end 19 of the motor 18. When the bit encounters rotational resistance, which in turn is transmitted through mechanical connections to the motor. High fluid pressure in the cavities 20, 21 and 22 formed between the rotor 13 and the stator 9 develops in response to the torque demands of the bit. The exact number of cavities will vary depending on the desired operating performance desired the pump/motor. Fluid pressure inside these cavities reacts against the rotor surface 16 and the stator surface 24, causing the rotor 13 to turn inside the stator 9. To transmit the power developed inside the motor 18 to the adjoining systems, the rotor 13 includes a lower connecting section 15. This rotor connecting section 15 may incorporate mechanical connections to allow the rotor 13 to be fixed to the adjoining system, thereby forming a complete drilling tool for rotating a bit in a well. A progressive cavity pump works inversely of the motor described above.
  • FIG. 4 illustrates some of the typical failures experienced by a conventional stator. Due to heat generation in the center of the lobes 12, hard nodules or regions 50 can develop. These nodules 50 occur as a result of the further cross-linking of the elastomer molecules and have inferior mechanical properties compared to the normal elastomer. With high stress being applied to the lobes 12 during operation, the lobes 12 have a tendency to deflect or shift to a new position 51 from their original desired position 52. This shift in position negatively effects performance of the motor or pump. If the stress of operation reaches a substantially high level failure or chunking 53 of the lobe 12 can occur. As understood by those skilled in the art the reinforcement rendered by the profile tube or insert as illustrated in FIGS. 5 and 6 address these shortcomings and will reduce the occurrence of these failures.
  • FIG. 5 illustrates a substantially even rubber or elastomeric thickness stator 60. The layer 65 of rubber or elastomer is molded in a substantially even layer of uniform thickness on a stator tube or housing 61 with a varying radial thickness. The stator tube 61 has an inner profile 62, which substantially matches the inner profile 63 of the stator 60. Matching the inner tube profile mechanically strengthens the stator lobes 64, allowing them to resist the bending or deflecting forces discussed above. The uniform or even layer 65 of elastomer also allows any heat generated during operation to be effectively conducted away by the high thermal conductivity of the stator tube 61. This uniform rubber thickness layer also maintains the desired geometrical relationship of the profiles 62, 63.
  • Referring to FIG. 6, an alternative embodiment to having the stator tube constructed from a unitary material tube is to have the inner profile 70 of the tube 10 cast or molded inside a conventional steel tube with a substantially uniform wall thickness. The inner cast profile 70 may be manufactured from material with the strength necessary to physically support the even thickness rubber lining 71. The molded or cast in profile may also be manufactured from a highly thermal conductive material to effectively conduct heat generated at the stator/rotor interface. In a downhole drilling motor application, this heat in turn may be conducted to the drilling fluid exterior of the stator tube. FIG. 7 illustrates a longitudinal cross-sectional view of the stator shown in FIG. 6. As illustrated, the rubber layer 71 maintains a substantially even radial thickness over the length of the stator. FIG. 7 also depicts a profiled reinforcement layer 73 mounted to the interior of the cylindrical stator tube 10. Reinforcement layer 73 preferably has a profile substantially similar to but radially slightly larger than that of the elastomeric lining. The profiled layer 73 may be formed from various materials which enhance the strength of the elastomeric material, including metals or fibers.
  • An alternative embodiment stator is illustrated in FIG. 8. A substantially uniform thickness stator tube 10 has the inner stator member 81 cast or molded into the stator tube, with the inner stator member 81 having an inner surface profile 82 similar to profile 70. In a preferred embodiment, the inner stator member 81 maybe cast with a slight taper between the upper or first end 85 of the stator and opposite lower or second end 86 of the stator. An inner stator member with identical geometry may be manufactured from an integral piece of steel or similar material, then lowered in place within the tube 64.
  • FIG. 14 illustrates the stator of FIG. 8 with the addition of a rotor. The differential pressure existing between the different motor cavities in the pump/motor is not constant over the length of the stator. The pressure differential existing between the cavities 72A and 72B at the first lower end of the stator are generally higher than the pressure differentials existing between the cavities 72B and 72C at the second upper end of the stator. By increasing the thickness of the rubber profile as one moves toward the first lower end of the stator, the elastomeric deflection resulting from the pressure will be greater. This slight increase in deflection towards the first end of the stator will tend to reduce the pressure differential existing near the bottom of the stator, thereby ensuring an even distribution of pressure in the various cavities 72A, B, C, etc., over the length of the stator. An even distribution of pressure over the length of the stator also assures a more even wear and stress to the rubber layer, and therefore maximizes the life of the rubber layer.
  • FIG. 11 illustrates a cross-sectional view of an improved stator mold assembly 140 in which the rubber or elastomeric lining is of a uniform thickness. To mold this uniform thickness of rubber in the stator tube 61, the core 101 is held rotationally aligned with the shaped stator tube 61. During the process of injecting the elastomer into stator mold assembly 140, the uncured rubber tends to force the stator tube 61 to rotate relative to the core 101.
  • The present invention preferably restrains the shaped stator tube 61 from rotating relative to the core 101 during injection of the rubber layer. As illustrated in FIG. 10, the shaped stator tube 61 has an area of contour 120 with an internal profile 121 identical in shape to the shape of stator tube profile 81. As illustrated in FIG. 11, the core has an external profiled alignment key 130. The externally profiled alignment key 130 has an external profile 131 substantially similar to that of the stator tube alignment profile 120. When the stator mold 140 is assembled, the alignment key 130 engages the stator alignment profile 120, thereby restraining the shaped stator tube 61 rotationally about the longitudinal axis of the core 101. After assembly, the mold 140 may be injected in a conventional manner known to those skilled in the art.
  • FIG. 13 is a cross-sectional view of an embodiment of the stator tube lead measurement tool 200 positioned in a section of an even rubber thickness stator tube 201. In a preferred embodiment, lead measurement tool 200 includes a measurement device 202, such that the relative thickness between the outside diameter 205 and the inner profile surface 81 of the stator tube 201 may be determined. One or more stabilizing supports 203 may be present to maintain the measurement tool 200 in alignment with the stator tube 201. As the lead measurement tool 200 is rotated relative to the centerline of the stator tube 201, the varying relative tube thicknesses may be displayed on indicator dial 204. Once a minimum or maximum extreme of the thickness is determined, the angular position of the tool may be recorded. Angular position may be determined with conventional devices, such as protractors and levels. This procedure may then be repeated on the opposite end of the stator tube 61. With the angular positions from each end determined and the length of the stator tube 61 known, the lead or pitch of the spiraling contour may be mathematically determined.
  • While preferred embodiments of the present invention have been illustrated in detail, it is apparent that modifications and adaptations of the preferred embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention as set forth in the following claims.

Claims (35)

1-5. (canceled)
6. A method of manufacturing a progressive cavity pump/motor, comprising:
providing a stator including an outer housing and an interior surface homogenous with the outer housing and defining an interior profile;
forming an elastomeric layer on the interior profile of the outer housing to form an elastomeric layer interior profile;
providing an internal profile on the stator for rotationally aligning the interior surface of the housing with respect to a mold for molding the elastomeric layer; and
providing a rotor having an exterior profile to correspond with the interior profile of the elastomeric layer and rotatable within the stator with a plurality of axially moving chambers between the exterior profile on the rotor and the interior profile on the elastomeric layer.
7. A method as defined in claim 6, wherein the stator includes an interior profile taper along its axial length.
8. A method as defined in claim 7, wherein the elastomeric layer has an increasing thickness extending axially through the stator, such that a radial thickness of an first end of the elastomeric layer is less than a radial thickness of a second end of the elastomeric layer.
9. A method as defined in claim 6, wherein the interior surface has a varying radial thickness with respect to a generally cylindrical outer surface of the outer housing, such that the radial thickness of an first end of the elastomeric layer is less than a radial thickness of a second end of the elastomeric layer.
10. A method as defined in claim 6, further comprising:
providing a reinforcement layer within the elastomeric layer.
11. (canceled)
12. A method as defined in claim 6, further comprising:
positioning a lead measurement tool on the interior profile surface to measure the thickness between the outside diameter of the outer housing and the interior profile surface.
13. A method as defined in claim 12, wherein the lead measurement tool is rotated relative to a centerline of the outer housing; and
displaying an indication of varying thickness in response to the lead measurement tool.
14. A method as defined in claim 6, further comprising:
monitoring angular position of the interior profile of the housing as a function of internal dimensions of the profile;
determining angular positions of the profile at each end of the outer housing; and
determining a lead of the interior profile in response to the determined angular position or angular positions.
15-22. (canceled)
23. A method of manufacturing a progressive cavity pump/motor, comprising:
providing a stator including an outer housing;
providing an insert member with the interior surface defining an interior profile, and an exterior surface defining an exterior profile to secure the insert member within the outer housing;
supporting a substantially uniform thickness elastomeric layer on the insert member to form an elastomeric layer interior profile;
providing an internal profile on the stator for rotationally aligning the interior surface of the housing with respect to a mold for molding the elastomeric layer; and
providing a rotor having an exterior profile to correspond with the interior profile of the elastomeric layer and rotatable within the stator with a plurality of axially moving chambers between the exterior profile on the rotor and the interior profile on the elastomeric layer.
24. A method as defined in claim 23, further comprising:
utilizing an alignment profile on at least one of the insert member and the outer housing for rotationally aligning the interior surface on the insert with respect to the outer housing.
25. A method as defined in claim 23, further comprising:
positioning a lead measurement tool on the interior profile surface of the insert member to measure one of a radial thickness between the outside diameter of the outer housing and the interior profile surface on the insert member, and a radial spacing between a centerline of the insert member and the interior profile surface on the insert member.
26. A method as defined in claim 25, wherein the lead measurement tool is rotated relative to a centerline of the outer housing; and
displaying an indication of varying measurements in response to the lead measurement tool.
27. A method as defined in claim 25, further comprising:
monitoring radial measurements as a function of angular position of the outer housing;
determining radial measurements at angular positions at each end of the outer housing; and
determining the lead of the interior profile in response to the determined radial measurements at angular positions.
28. A method as defined in claim 23, further comprising:
providing a reinforcement layer within the elastomeric layer.
29. A method as defined in claim 23, further comprising:
forming the elastomeric layer with an increasing thickness extending axially through the stator, such that a radial thickness of one end of the elastomeric layer is less than a radial thickness of an opposing end of the elastomeric layer.
30. A method as defined in claim 23, further comprising:
forming the inner profile secured to the outer housing with a varying radial thickness with respect to a generally cylindrical outer surface of the outer housing, such that the radial thickness of one end of the elastomeric layer is less than a radial thickness of an opposing end of the elastomeric layer.
31. A method as defined in claim 23, further comprising:
using the progressive cavity pump/motor as a downhole motor for rotating a bit in a well.
32. A method as defined in claim 23, further comprising:
determining a spiral pitch of the interior profile with a lead measurement tool.
33. A method as defined in claim 32, wherein the spiral pitch is determined by inserting the lead measurement tool into each end of the interior profile.
34. A method as defined in claim 23, further comprising:
measuring radial spacing of the interior profile surface with respect to one of an exterior surface of the outer housing and a central axis of the insert member; and
a maximum radial spacing determines the position of the lead measurement tool.
35. A method of manufacturing a progressive cavity pump/motor, comprising:
providing a stator including an outer housing;
providing an insert member with the interior surface defining an interior profile, and an exterior surface defining an exterior profile to secure the insert motor within the outer housing;
securing the insert member to the outer housing;
supporting a elastomeric layer on the insert member to form an elastomeric layer interior profile;
utilizing an alignment profile on at least one of the insert member and the housing for rotationally aligning the insert member with respect to the elastomeric layer; and
providing a rotor having an exterior profile to correspond with the interior profile of the elastomeric layer and rotatable within the stator with a plurality of axially moving chambers between the exterior profile on the rotor and the interior profile on the elastomeric layer.
36. A method as defined in claim 35, further comprising:
positioning the lead measurement tool on the interior profile to measure the thickness between the outside diameter of the outer housing and the interior profile surface.
37. A method as defined in claim 36, wherein the lead measurement tool is rotated relative to a centerline of the outer housing; and
displaying an indication of varying thickness in response to the lead measurement tool.
38. A method as defined in claim 36, further comprising:
monitoring radial thickness as a function of angular position of the outer housing;
determining radial thickness at angular positions at each end of the outer housing; and
determining the lead of the interior profile in response to the determined angular position or angular positions.
39. A method as defined in claim 35, further comprising:
providing a reinforcement layer within the elastomeric layer.
40. A method as defined in claim 35, further comprising:
forming the elastomeric layer with an increasing thickness extending axially through the stator, such that a radial thickness of one end of the elastomeric layer is less than a radial thickness of an opposing end of the elastomeric layer.
41. A method as defined in claim 35, further comprising:
forming the inner profile secured to the outer housing with a varying radial thickness with respect to a generally cylindrical outer surface of the outer housing, such that the radial thickness of one end of the elastomeric layer is less than a radial thickness of an opposing end of the elastomeric layer.
42. A method as defined in claim 35, further comprising:
using the progressive cavity pump/motor as a downhole motor for rotating a bit in a well.
43. A method as defined in claim 35, further comprising:
determining a spiral pitch of the interior profile with a lead measurement tool.
44. A method as defined in claim 43, wherein the spiral pitch is determined by inserting the lead measurement tool into each end of the interior profile.
45. A method as defined in claim 35, further comprising:
measuring radial thickness of the interior profile; and
forming the elastomeric layer with an increasing thickness extending axially through the stator, such that a radial thickness of one end of the elastomeric layer is less than a radial thickness of an opposing end of the elastomeric layer.
46-52. (canceled)
US11/027,062 2003-06-19 2004-12-30 Progressive cavity pump/motor Abandoned US20050118040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/027,062 US20050118040A1 (en) 2003-06-19 2004-12-30 Progressive cavity pump/motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/465,458 US6881045B2 (en) 2003-06-19 2003-06-19 Progressive cavity pump/motor
US11/027,062 US20050118040A1 (en) 2003-06-19 2004-12-30 Progressive cavity pump/motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/465,458 Division US6881045B2 (en) 2003-06-19 2003-06-19 Progressive cavity pump/motor

Publications (1)

Publication Number Publication Date
US20050118040A1 true US20050118040A1 (en) 2005-06-02

Family

ID=33517530

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/465,458 Expired - Fee Related US6881045B2 (en) 2003-06-19 2003-06-19 Progressive cavity pump/motor
US11/027,062 Abandoned US20050118040A1 (en) 2003-06-19 2004-12-30 Progressive cavity pump/motor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/465,458 Expired - Fee Related US6881045B2 (en) 2003-06-19 2003-06-19 Progressive cavity pump/motor

Country Status (2)

Country Link
US (2) US6881045B2 (en)
WO (1) WO2004113727A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060182644A1 (en) * 2005-02-11 2006-08-17 Dyna-Drill Technologies, Inc. Progressing cavity stator including at least one cast longitudinal section
US20080304992A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Braze or solder reinforced moineu stator
US20080304991A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Moineu stator including a skeletal reinforcement
US20100322808A1 (en) * 2009-06-22 2010-12-23 Guidry Jr Michael J Progressing Cavity Pump/Motor
US20110243774A1 (en) * 2010-03-30 2011-10-06 Smith International, Inc. Undercut stator for a positive displacment motor
WO2017184337A1 (en) * 2016-04-18 2017-10-26 Baker Hughes Incorporated Mud motor stators and pumps and method of making
US10676992B2 (en) 2017-03-22 2020-06-09 Infocus Energy Services Inc. Downhole tools with progressive cavity sections, and related methods of use and assembly
US11035338B2 (en) 2017-11-16 2021-06-15 Weatherford Technology Holdings, Llc Load balanced power section of progressing cavity device
US11421533B2 (en) 2020-04-02 2022-08-23 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt
US11808153B2 (en) 2020-04-02 2023-11-07 Abaco Drilling Technologies Llc Positive displacement motor stators with diameter reliefs compensating for rotor tilt

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442019B2 (en) * 2002-10-21 2008-10-28 Noetic Engineering Inc. Stator of a moineau-pump
US7074018B2 (en) * 2003-07-10 2006-07-11 Sheldon Chang Direct drive linear flow blood pump
US20050109502A1 (en) * 2003-11-20 2005-05-26 Jeremy Buc Slay Downhole seal element formed from a nanocomposite material
US7517202B2 (en) * 2005-01-12 2009-04-14 Smith International, Inc. Multiple elastomer layer progressing cavity stators
US20070011873A1 (en) * 2005-07-14 2007-01-18 Teale David W Methods for producing even wall down-hole power sections
US20070065538A1 (en) * 2005-09-16 2007-03-22 Husky Injection Molding Systems Ltd. Molding system having valve including pump
US7419007B2 (en) * 2005-10-12 2008-09-02 Robbins & Myers Energy Systems, L.P. Retrievable downhole pumping system
US20080037361A1 (en) * 2006-02-15 2008-02-14 Jerry Fleishman Mixer apparatus
US9163629B2 (en) * 2006-07-31 2015-10-20 Schlumberger Technology Corporation Controlled thickness resilient material lined stator and method of forming
US20080310981A1 (en) * 2007-06-12 2008-12-18 General Electric Company Positive displacement flow separator
US20080310982A1 (en) * 2007-06-12 2008-12-18 General Electric Company Positive displacement flow separator with combustor
US20100071458A1 (en) * 2007-06-12 2010-03-25 General Electric Company Positive displacement flow measurement device
US20080310984A1 (en) * 2007-06-12 2008-12-18 General Electric Company Positive displacement capture device
CA2696117A1 (en) * 2007-08-15 2009-02-19 Moyno, Inc. Progressing cavity pump with heat management system
US8197241B2 (en) * 2007-12-18 2012-06-12 Schlumberger Technology Corporation Nanocomposite Moineau device
US20090152009A1 (en) * 2007-12-18 2009-06-18 Halliburton Energy Services, Inc., A Delaware Corporation Nano particle reinforced polymer element for stator and rotor assembly
US7941906B2 (en) * 2007-12-31 2011-05-17 Schlumberger Technology Corporation Progressive cavity apparatus with transducer and methods of forming and use
US8444901B2 (en) * 2007-12-31 2013-05-21 Schlumberger Technology Corporation Method of fabricating a high temperature progressive cavity motor or pump component
US8133044B2 (en) 2008-02-29 2012-03-13 General Electric Company Positive displacement capture device and method of balancing positive displacement capture devices
US7837451B2 (en) 2008-02-29 2010-11-23 General Electric Company Non-contact seal for positive displacement capture device
US20100108393A1 (en) * 2008-11-04 2010-05-06 Baker Hughes Incorporated Downhole mud motor and method of improving durabilty thereof
US8734141B2 (en) * 2009-09-23 2014-05-27 Halliburton Energy Services, P.C. Stator/rotor assemblies having enhanced performance
US9347266B2 (en) * 2009-11-13 2016-05-24 Schlumberger Technology Corporation Stator inserts, methods of fabricating the same, and downhole motors incorporating the same
US20110116961A1 (en) * 2009-11-13 2011-05-19 Hossein Akbari Stators for downhole motors, methods for fabricating the same, and downhole motors incorporating the same
US20120024632A1 (en) * 2010-07-27 2012-02-02 Baker Hughes Incorporated Downhole seal and method of lubricating a downhole tool
US9482223B2 (en) 2010-11-19 2016-11-01 Smith International, Inc. Apparatus and method for controlling or limiting rotor orbit in moving cavity motors and pumps
US9091264B2 (en) 2011-11-29 2015-07-28 Baker Hughes Incorporated Apparatus and methods utilizing progressive cavity motors and pumps with rotors and/or stators with hybrid liners
US9404493B2 (en) 2012-06-04 2016-08-02 Indian Institute Of Technology Madras Progressive cavity pump including a bearing between the rotor and stator
US20150122549A1 (en) * 2013-11-05 2015-05-07 Baker Hughes Incorporated Hydraulic tools, drilling systems including hydraulic tools, and methods of using hydraulic tools
US9896885B2 (en) 2015-12-10 2018-02-20 Baker Hughes Incorporated Hydraulic tools including removable coatings, drilling systems, and methods of making and using hydraulic tools
US10968699B2 (en) * 2017-02-06 2021-04-06 Roper Pump Company Lobed rotor with circular section for fluid-driving apparatus
US10920493B2 (en) * 2017-02-21 2021-02-16 Baker Hughes, A Ge Company, Llc Method of forming stators for downhole motors
US11371503B2 (en) 2019-12-16 2022-06-28 Saudi Arabian Oil Company Smart drilling motor stator
RU2745677C1 (en) * 2020-02-25 2021-03-30 Общество с ограниченной ответственностью "Фирма "Радиус-Сервис" Stator of screw gerotor hydraulic machine
DE102020004334A1 (en) 2020-07-20 2022-01-20 Wilhelm Kächele GmbH Stator for progressing cavity machine
DE102021130260A1 (en) 2021-11-19 2023-05-25 Wilhelm Kächele GmbH Stator for eccentric screw machine and manufacturing method for this

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1892217A (en) * 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US3084631A (en) * 1962-01-17 1963-04-09 Robbins & Myers Helical gear pump with stator compression
US3975121A (en) * 1973-11-14 1976-08-17 Smith International, Inc. Wafer elements for progressing cavity stators
US4104009A (en) * 1976-03-09 1978-08-01 Societe Generale De Mecanique Et De Metallurgie Screw pump stators
US4585401A (en) * 1984-02-09 1986-04-29 Veesojuzny Ordena Trudovogo Krasnogo Znameni Naucho-Issle Multistage helical down-hole machine with frictional coupling of working elements, and method therefor
US4676725A (en) * 1985-12-27 1987-06-30 Hughes Tool Company Moineau type gear mechanism with resilient sleeve
US5171138A (en) * 1990-12-20 1992-12-15 Drilex Systems, Inc. Composite stator construction for downhole drilling motors
US5711083A (en) * 1995-09-11 1998-01-27 Bidwell Corporation Gage set for measuring inside and outside diameters of ring-shaped parts
US5759019A (en) * 1994-02-14 1998-06-02 Steven M. Wood Progressive cavity pumps using composite materials
US5832604A (en) * 1995-09-08 1998-11-10 Hydro-Drill, Inc. Method of manufacturing segmented stators for helical gear pumps and motors
US6019583A (en) * 1994-02-14 2000-02-01 Wood; Steven M. Reverse moineau motor
US6102681A (en) * 1997-10-15 2000-08-15 Aps Technology Stator especially adapted for use in a helicoidal pump/motor
US6158988A (en) * 1997-12-10 2000-12-12 Artemis Kautschuk - Und Kunststofftechnik Gmbh & Cie Method of producing elastomeric stators for eccentric spiral pumps
US6183226B1 (en) * 1986-04-24 2001-02-06 Steven M. Wood Progressive cavity motors using composite materials
US6293358B1 (en) * 1998-06-18 2001-09-25 Artemis Kautschuk Und Kunstofftechnik Gmbh & Cie Machine operating according to the Moineau-Principle for the use in deep drilling
US6309195B1 (en) * 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
US6336796B1 (en) * 1999-06-07 2002-01-08 Institut Francais Du Petrole Progressive-cavity pump with composite stator and manufacturing process
US6358027B1 (en) * 2000-06-23 2002-03-19 Weatherford/Lamb, Inc. Adjustable fit progressive cavity pump/motor apparatus and method
US6413407B1 (en) * 2000-11-27 2002-07-02 Lehr Precision, Inc. Fluted electrochemical machining
US6457958B1 (en) * 2001-03-27 2002-10-01 Weatherford/Lamb, Inc. Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures
US6543132B1 (en) * 1997-12-18 2003-04-08 Baker Hughes Incorporated Methods of making mud motors
US6994935B2 (en) * 2001-04-06 2006-02-07 Isao Matsumoto Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
US7192260B2 (en) * 2003-10-09 2007-03-20 Lehr Precision, Inc. Progressive cavity pump/motor stator, and apparatus and method to manufacture same by electrochemical machining

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE279043C (en) * 1913-12-23
SU412367A1 (en) * 1970-11-05 1974-01-25
SU400689A1 (en) * 1970-11-05 1973-10-01 Всесоюзный ордена Трудового Красного Знамени научно исследовательскнй институт буровой техники HEROTOR SCREW MECHANISM
US4339406A (en) * 1979-02-26 1982-07-13 3U Partners Process of forming a nozzle
DD279043A1 (en) * 1988-12-29 1990-05-23 Hydrogeologie Nordhausen Halle STATOR FOR ECCENTRIC SCISSORS
DE4111166C2 (en) * 1991-04-06 1999-03-18 Gummi Jaeger Kg Gmbh & Cie Eccentric screw pump
WO2001044615A2 (en) 1999-11-10 2001-06-21 Ewm Technology, Inc. Composite stator for drilling motors and method of constructing same

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1892217A (en) * 1930-05-13 1932-12-27 Moineau Rene Joseph Louis Gear mechanism
US3084631A (en) * 1962-01-17 1963-04-09 Robbins & Myers Helical gear pump with stator compression
US3975121A (en) * 1973-11-14 1976-08-17 Smith International, Inc. Wafer elements for progressing cavity stators
US4104009A (en) * 1976-03-09 1978-08-01 Societe Generale De Mecanique Et De Metallurgie Screw pump stators
US4585401A (en) * 1984-02-09 1986-04-29 Veesojuzny Ordena Trudovogo Krasnogo Znameni Naucho-Issle Multistage helical down-hole machine with frictional coupling of working elements, and method therefor
US4676725A (en) * 1985-12-27 1987-06-30 Hughes Tool Company Moineau type gear mechanism with resilient sleeve
US6183226B1 (en) * 1986-04-24 2001-02-06 Steven M. Wood Progressive cavity motors using composite materials
US5171138A (en) * 1990-12-20 1992-12-15 Drilex Systems, Inc. Composite stator construction for downhole drilling motors
US6019583A (en) * 1994-02-14 2000-02-01 Wood; Steven M. Reverse moineau motor
US5759019A (en) * 1994-02-14 1998-06-02 Steven M. Wood Progressive cavity pumps using composite materials
US5832604A (en) * 1995-09-08 1998-11-10 Hydro-Drill, Inc. Method of manufacturing segmented stators for helical gear pumps and motors
US5711083A (en) * 1995-09-11 1998-01-27 Bidwell Corporation Gage set for measuring inside and outside diameters of ring-shaped parts
US6102681A (en) * 1997-10-15 2000-08-15 Aps Technology Stator especially adapted for use in a helicoidal pump/motor
US6158988A (en) * 1997-12-10 2000-12-12 Artemis Kautschuk - Und Kunststofftechnik Gmbh & Cie Method of producing elastomeric stators for eccentric spiral pumps
US6543132B1 (en) * 1997-12-18 2003-04-08 Baker Hughes Incorporated Methods of making mud motors
US6309195B1 (en) * 1998-06-05 2001-10-30 Halliburton Energy Services, Inc. Internally profiled stator tube
US6293358B1 (en) * 1998-06-18 2001-09-25 Artemis Kautschuk Und Kunstofftechnik Gmbh & Cie Machine operating according to the Moineau-Principle for the use in deep drilling
US6336796B1 (en) * 1999-06-07 2002-01-08 Institut Francais Du Petrole Progressive-cavity pump with composite stator and manufacturing process
US6358027B1 (en) * 2000-06-23 2002-03-19 Weatherford/Lamb, Inc. Adjustable fit progressive cavity pump/motor apparatus and method
US6413407B1 (en) * 2000-11-27 2002-07-02 Lehr Precision, Inc. Fluted electrochemical machining
US6457958B1 (en) * 2001-03-27 2002-10-01 Weatherford/Lamb, Inc. Self compensating adjustable fit progressing cavity pump for oil-well applications with varying temperatures
US6994935B2 (en) * 2001-04-06 2006-02-07 Isao Matsumoto Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
US7192260B2 (en) * 2003-10-09 2007-03-20 Lehr Precision, Inc. Progressive cavity pump/motor stator, and apparatus and method to manufacture same by electrochemical machining

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396220B2 (en) 2005-02-11 2008-07-08 Dyna-Drill Technologies, Inc. Progressing cavity stator including at least one cast longitudinal section
US20060182644A1 (en) * 2005-02-11 2006-08-17 Dyna-Drill Technologies, Inc. Progressing cavity stator including at least one cast longitudinal section
US20110203110A1 (en) * 2007-06-05 2011-08-25 Smith International, Inc. Braze or solder reinforced moineu stator
US20080304992A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Braze or solder reinforced moineu stator
US20080304991A1 (en) * 2007-06-05 2008-12-11 Dyna-Drill Technologies, Inc. Moineu stator including a skeletal reinforcement
US8333231B2 (en) 2007-06-05 2012-12-18 Schlumberger Technology Corporation Braze or solder reinforced moineu stator
US7878774B2 (en) 2007-06-05 2011-02-01 Smith International, Inc. Moineau stator including a skeletal reinforcement
US7950914B2 (en) 2007-06-05 2011-05-31 Smith International, Inc. Braze or solder reinforced Moineau stator
US8147228B2 (en) * 2009-06-22 2012-04-03 Robbins & Myers Energy Systems, L.P. Progressing cavity pump/motor
WO2010151407A1 (en) * 2009-06-22 2010-12-29 Robbins & Myers Energy Systems, L.P. Progressing cavity pump/motor
US20100322808A1 (en) * 2009-06-22 2010-12-23 Guidry Jr Michael J Progressing Cavity Pump/Motor
US20110243774A1 (en) * 2010-03-30 2011-10-06 Smith International, Inc. Undercut stator for a positive displacment motor
US9393648B2 (en) * 2010-03-30 2016-07-19 Smith International Inc. Undercut stator for a positive displacment motor
WO2017184337A1 (en) * 2016-04-18 2017-10-26 Baker Hughes Incorporated Mud motor stators and pumps and method of making
US10527037B2 (en) 2016-04-18 2020-01-07 Baker Hughes, A Ge Company, Llc Mud motor stators and pumps and method of making
US10676992B2 (en) 2017-03-22 2020-06-09 Infocus Energy Services Inc. Downhole tools with progressive cavity sections, and related methods of use and assembly
US11035338B2 (en) 2017-11-16 2021-06-15 Weatherford Technology Holdings, Llc Load balanced power section of progressing cavity device
US11519381B2 (en) 2017-11-16 2022-12-06 Weatherford Technology Holdings, Llc Load balanced power section of progressing cavity device
US11421533B2 (en) 2020-04-02 2022-08-23 Abaco Drilling Technologies Llc Tapered stators in positive displacement motors remediating effects of rotor tilt
US11808153B2 (en) 2020-04-02 2023-11-07 Abaco Drilling Technologies Llc Positive displacement motor stators with diameter reliefs compensating for rotor tilt

Also Published As

Publication number Publication date
US20040258548A1 (en) 2004-12-23
WO2004113727B1 (en) 2005-04-14
US6881045B2 (en) 2005-04-19
WO2004113727A2 (en) 2004-12-29
WO2004113727A3 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US6881045B2 (en) Progressive cavity pump/motor
EP1693571B1 (en) Multiple elastomer layer progressing cavity stators
US10724299B2 (en) Reinforced directional drilling assemblies and methods of forming same
US9347266B2 (en) Stator inserts, methods of fabricating the same, and downhole motors incorporating the same
US8777598B2 (en) Stators for downwhole motors, methods for fabricating the same, and downhole motors incorporating the same
US6604921B1 (en) Optimized liner thickness for positive displacement drilling motors
US7083401B2 (en) Asymmetric contouring of elastomer liner on lobes in a Moineau style power section stator
US20080050259A1 (en) Highly reinforced elastomer for use in downhole stators
CN110326196B (en) Method of forming a stator for a downhole motor
RU2733589C1 (en) Downhole motor manufacturing method
GB2525500B (en) Asymmetric lobes for motors and pumps
US20060131079A1 (en) Composite motor stator
US20210363826A1 (en) System and Method for a Radial Support in a Stator Housing
EP3499038B1 (en) Stator and rotor profile for improved power section performance and reliability
US11326594B2 (en) Stator element of a progressive cavity pump and progressive cavity pump
CN114458524A (en) Embedded stator and screw motor
KR20060045632A (en) Progressive cavity pump/motor stator, and apparatus and method to manufacture same by electrochemical machining
GB2408776A (en) Helical Moineau pump having small radius peaks on rotor and stator

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBBINS & MYERS ENERGY SYSTEMS, L.P., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZITKA, MARK D.;MURRAY, WILLIAM D.;REEL/FRAME:016133/0067

Effective date: 20030619

AS Assignment

Owner name: J.P. MORGAN TRUST COMPANY, N.A., AS AGENT, ILLINOI

Free format text: SECURITY AGREEMENT;ASSIGNOR:ROBBINS & MYERS ENERGY SYSTEMS, L.P.;REEL/FRAME:017379/0841

Effective date: 20051223

AS Assignment

Owner name: ROBBINS & MYERS ENERGY SYSTEMS, L.P., TEXAS

Free format text: PATENT RELEASE OF SECURITY INTEREST;ASSIGNOR:BANK OF NEW YORK TRUST COMPANY, N.A., THE, AS SUCCESSOR TO J.P. MORGAN TRUST COMPANY, AS AGENT;REEL/FRAME:018866/0268

Effective date: 20061219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION